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ABSTRACT 
 

Santa Clara University is a large loads in Santa Clara needed two finders and a maximum 

of over 8MW peak demand; however, this consumption will only increase as the student body and 

electric vehicles on campus continue to grow. To meet this rising demand in both a sustainable 

and environmentally friendly manner, we proposed and simulated a complete energy management 

system with cost analysis of energy savings of a microgrid capable of reducing the power supplied 

to Santa Clara University’s campus from the grid by 40% using renewable energy, vehicle-to-grid 

(V2G) functionality, and real SCU energy data. The project further used machine learning to match 

SCU’s energy demand with the renewable generation for future use of optimizing the proposed 

system. The microgrid was simulated in MATLAB while the machine learning algorithm was 

developed in python. The benefits of this project provide SCU with a path to 100% clean energy, 

increased power reliability, and reduced operating cost for SCU. Increasing solar output on campus 

is the best way to achieve 100% renewable energy because the fuel cells on campus have a 

byproduct of carbon dioxide and are therefore not 100% renewable. Our vehicle to grid analysis 

showed that it is not currently a viable solution to help SCU run on 100% renewable energy; 

however, as electric vehicle charging capacity at SCU increases, vehicle to grid could become an 

important part of SCU achieving carbon neutrality. 
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Chapter 1: Introduction 
 

1.1  Background Information 

 

 A microgrid is a localized grid that has its own network of distribution and is capable of 

islanding from the main grid. Islanding means that the microgrid is totally disconnected from the 

grid [26]. When islanded, the microgrid is self-sufficient (ideally from renewable energy sources) 

for a certain period of time, or indefinitely, depending on the design. Islanding provides power 

reliability to its loads even during grid outage, which is crucial for critical loads such as hospitals 

and emergency response equipment. Self-sustaining, renewable energy integration, efficiency, 

reduced costs of electricity, and power reliability are some of the advantages microgrids provide 

as seen in Figure 1. Microgrids, while reducing costs through peak shaving and renewable power 

generation, can also provide power to the main grid if necessary.  

 

Figure 1: Microgrid Example [5] 

1.2 Motivation 

 

Microgrid deployments have become popular around the world for several reasons. Power 

outages are gradually increasing, which is alarming as we rely heavily on electricity to go about 

our daily lives and for our security. Just this past Fall quarter 2021, there have been three power 

outages at Cameron Refaee’s home. These frequent power outages are supported by the data in 
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Figure 2 which shows how power outages have steadily increased from 1980 to 2012. Power 

demand continues to rise due to our growing population, technologies (such as electric heaters, 

AC, and powerful computers), and as we transition to sustainable forms of transportation.  

 

Figure 2: Number of Power Outages from 1980 to 2012 [29] 

 Climate change is becoming a pressing concern as global surface temperatures, according 

to Figure 3, have continued to rise from the early 1900’s. Since the industrial revolution, the 

average global temperature has risen about one degree Celsius, resulting in more extreme climate 

events that further reduce grid reliability. Implementing microgrids with renewable energy will 

not only decrease CO2 emissions, but also improve power reliability and reduce operating costs 

[26].  
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Figure 3: Average Global surface temperature 

 V2G is an important rising technology that can help enable the grid to support the energy 

requirements of charging electrical vehicles. For example, current duel motor long range Tesla 

Model X and S electric vehicles have a 100 kwh battery pack. According to the U.S. Energy 

Information Administration, the average U.S. residential utility customer used an average of 

10,715 kWh per day in 2020 [3]. This means that roughly 10% of a Tesla Model X or S’s battery 

pack could provide enough energy to fully power the average person’s home. These massive 

batteries could power the house at night and be used in conjunction with peak shaving techniques 

peak needs while, for example, the owner is at work. An example of how this could work is shown 

in Figure 4. This figure shows the energy flowing to and from the electric vehicles and the local 

distribution systems of the grid to transfer power to other local sites. While a person is working, 

the car’s battery could be used to power the grid and at the end of the workday, the owner could 

set a threshold to how much they want the car to be charged. This massive, decentralized battery 

could be used similar to how Tesla’s virtual power plant that uses Tesla Powerwalls in participating 

owner’s home to support the grid. As electrical vehicles are becoming more common, we believe 

that planning and implementing V2G into a SCU microgrid will help SCU achieve its 

sustainability goals while benefiting the community with reduced grid stress.  
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Figure 4: V2G Diagram [1] 

 Microgrid deployments have been deployed around the world in efforts to reduce 

dependency on oil and promote a cleaner environment. Tesla has installed over 120 microgrids 

around the world [6] that have served to promote renewable energy and decrease our carbon 

footprint. These successful projects, such as the one implemented on the island of Ta’u in 

American Samoa that consists of 6 MWh of energy storage and 1.4 MW of solar capacity that has 

decreased the island’s diesel fuel consumption by over 100,000 gallons a year [9], show the 

advantages and impact that microgrids can have if adopted by SCU.  
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Chapter 2: Objectives 

2.1 Problem Statement 

Increased energy demand has put significant stress on the grid, causing power outages, 

while our carbon emissions have led to global warming. Microgrids have the potential to help 

solve both of these pressing issues while potentially saving costs as well.  

2.2 Objectives 

Our project’s objective is to provide Santa Clara University with a path to 100% renewable 

energy using increased renewable output and V2G with a goal to design and simulate a complete 

energy management system with a microgrid capable of islanding for the entire Santa Clara 

University campus with vehicle-to-grid functionality using SCU energy data. We aim to 

successfully simulate this microgrid design using MATLAB and Simulink and verify the design 

in real-time using a hardware-in-the-loop simulator. If time permits, we will have one simulation 

using current SCU resources and another with proposed deployments (solar, fuel cell, battery, etc.) 

to show how SCU can reduce their operating cost, carbon footprint, increase power reliability, and 

plan for more EVs presence on campus. Throughout the course of the project, our objective slightly 

changed from using to Simulink to MATLAB. We were also unable to verify our design using the 

hardware-in-the-loop simulator because it did not arrive on time; however, the main objective of 

providing Santa Clara University with a path to 100% renewable energy remained constant.  
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Chapter 3: Project Plan and Implementation 

3.1 Project Plan   

 Our project was originally planned to be entirely simulated using MATLAB and Simulink 

and later verified using a hardware-in-the-loop. Santa Clara University consists of multiple loads, 

power generators, and is connected to the grid by two feeders. Because of this complexity, we 

broke the project down into three design steps: lumped load, split feeder, and individualized loads. 

The lumped load design was a simplified model of Santa Clara University by summing the capacity 

of each type of source, considering only one grid feeder (adding the two together), and considering 

each building on campus as one large load. This allowed us to get a basic model working quickly 

so that we can have an elementary understanding of how the system works. After tuned the model 

to perform properly, we will begin to add back the complexity to the system by splitting both the 

feeders and modeling the load from each building individually.  

 Once we completed a model that is as accurate as possible to the current and planned power 

systems of the entire campus, we planned to move the design over to the hardware-in-the-loop 

simulator for real-time simulations. This is the best way to ensure that our microgrid will be both 

reliable and accurate to a real-life implementation of the design; however, because the hardware-

in-the-loop did not arrive on time, we were unable to complete this step.  

Due to the tradeoff described below in Chapter 3.2.1, our project plan had to shift when we 

chose to implement a purely MATLAB simulation. Instead of having the three project phases of 

the Simulink plan, we decided to simplify the project into two main simulations. The first 

simulation was a simulation of Santa Clara University’s existing renewable generation on campus 

with a V2G, an energy storage system, and analysis with 2019 and current load data. The second 

simulation was the same as the existing simulation except it had additional renewable capacity and 

only used the current SCU load data.  
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3.2 Methodology 

3.2.1 Microgrid Simulation 

While MATLAB is powerful tool, there are other software packages available that could 

have been used for our project such as python. There were two main advantages of moving to 

a Python implementation for our project. First, this would allow the simulation run on any 

machine, regardless of hardware vendor or operating system as Python is a free to use in any 

application and very portable. Also, this would have been an excellent learning experience for 

our group as we had a limited experience with Python in comparison to our experience with 

both MATLAB and Simulink. The disadvantage of python is fewer supporting libraries for 

power systems and the time it would have taken to become proficient in the language to 

complete the project; therefore, we ultimately decided to complete the project in MATLAB and 

Simulink.  

While Simulink is a MATLAB product, implementing the project in Simulink versus 

MATLAB significantly differs.  Simulink provided a visual layout of our microgrid, but each 

piece implemented was a black box. Simulink has a library of blocks (ex. Battery, transformer, 

PV, etc…) but because we didn’t code the blocks ourselves, we were not sure 100% sure of the 

block limitations and how it functions even after looking at the MATLAB documentation.  

Another path we considered taking was starting with a Simulink based implementation so 

that it is easier for us to visualize and understand. Then, once we have a basic Simulink model 

working, we would then translate it to MATLAB functions with a main script to make the 

simulation more robust in the long term. We would anticipate this transition from Simulink to 

MATLAB to be somewhat trivial for the most part given that both tools are MathWorks 

products. 

 Due to the previously stated limitations of Simulink, we debated on whether we should 

continue to use Simulink with the inclusion of MATLAB scripts or to just use MATLAB 

functions with a main script. While this might be more difficult initially, and harder to visualize, 

we believed that it has the potential to be more tunable and operate more reliably than a 

Simulink based simulation because we would have built all the function ourselves; therefore, 

we would know its limitations and exactly how they operate. We come across strange errors 

when using Simulink throughout Fall 2021 and early 2022 which we often do not find a reason 

for; because of this, a pure MATLAB implementation was chosen for our final simulation.  
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Another significant issue with using Simulink was that MathWorks has not implemented a 

simple method to make the simulation a multi-threaded process. This would cause our 

simulation to run 60 – 100 times slower in real time, depending on the step size selected. Given 

that the workstation we were using had 36 threads available with 128GB of memory, we 

explored different ways to utilize the entirety of the hardware. After consulting with 

MathWorks for the latter half of the Winter quarter, we concluded that there was no feasible 

way to utilize the hardware available to us.  

3.2.2 Machine Learning 

 For this prediction model, we used a polynomial regression model. This is a form of 

regression analysis that models the relationship between the two variables as a polynomial. In our 

case, a 6th degree polynomial yields the best result as any degree higher than this provides very 

little benefit in return for the additional computational power. The results were validated using a 

K-fold cross validation, which is a method of evaluating the performance of a model for a small 

data set. 
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Chapter 4: Implementation 

4.3.1 Overview  

The Microgrid for Santa Clara with V2G project consisted of five main MATLAB scrips 

and functions (main, V2G, Battery, and V2G/Battery state of charge check). The simulation also 

included two main simulations (2019 and current load and a proposed Microgrid for SCU). The 

machine learning algorithm developed for this project was trained and tested entirely in Python. 

Santa Clara University currently has a renewable generational capacity of 1 MW of solar voltaic 

(PV), 2 MW from Bloom Energy Fuel Cells for a combined total of 3 MW. When we started the 

project, SCU was looking into a Tesla battery system with a peak power of about 1 MW. SCU has 

since postponed these plans; however, we decided to still add the energy storage system to our 

simulation. Because SCU was looking at a Tesla battery of about 1MW, we used the specs of a 

Tesla Megapack with a power rating of 1.3 MW and energy rating of 2.6 MWh. The simulations 

for the 2019 data were broken down into a sunny and cloudy day to analyze how the renewable 

capacity from the PV changed between the two days and how much of a cost difference this could 

incur SCU. For the proposed system, we choose to simulate a work week (Monday – Friday) in 

April to better illustrate daily trends and highlight the need for increased renewable generation at 

SCU.  

To help predict SCU’s power generation and to get a better understanding of the data that 

we collected, we created a machine learning algorithm that can predict how much power the solar 

array on campus will generate at a given time.  

4.3.2 Data Collection 

 At first, we used SCU’s 2019 load data. This data only included one feeder and was in 15-

minute intervals, which was the prominent reason why we decided collect irradiance data and plot 

our simulation in 15-minute intervals.  After this simulation was completed, we used data from 

SCU (April, 2022) including both the feeders and the new campus building, Sobrato Campus for 

Discovery and Innovation (SCDI) for our current simulation.   

 In order to better simulate the amount of power generated from solar panels on campus, we 

gathered real solar irradiance data using an Arduino with two photoresistors (Figure 6) in 15-

minute time intervals so it would match the interval of the load data provided to us by the SCU. It 
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collected this data for several weeks over the Winter 2022 quarter. While the data looked as 

expected for most days, on very sunny days, the data looked rather strange (Figure 5).  

 

Figure 5: Irradiance of Sunny Day (Left) and Normal Day (Right) 

 We believe that the abundance of light on these extremely sunny days either saturated the 

photoresistors that we used as sensors or overheated the Arduino board itself which caused these 

irregular curves. Otherwise, the acceptable data was used for training a machine learning 

prediction algorithm which allows us to model solar power generation.  

 
Figure 6: Arduino and Photoresistor Setup 
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 Because the Arduino data was saturated, the next best option to achieve the most accurate 

PV output was to get historical irradiance data. We used historical 2021 irradiance data, GHI 

(Global Horizonal Irradiance which included both direct normal irradiance and diffused horizontal 

irradiance), from Solar Cast because it allowed us to download data specifically for Santa Clara 

University’s campus in 15 minute intervals so it could be easily matched to the load data provided 

to us from SCU. The data from Solar Cast was available for free for students. 

4.3.3 Main Simulation Script 

 
Figure 7: Block Diagram 

The main MATLAB script call the V2G script, battery function, and displays all the 

necessary plots. The PV and fuel cell values are also calculated here. Because our data is in 15-

minute intervals, we have 96 data points per day or 480 points for our weeklong simulation of our 

current load data. The script loops through and each iteration and calculates the PV and fuel cell 

power then subtracts this from the SCU load to find the grid supply. The grid supply is how much 

power the grid needs to supply SCU in order to meet SCU’s load demand. The battery function 

and V2G script are then called and return their power (battery or V2G power can be positive or 

negative depending on if they are discharging or charging respectively). Finally, the script 

calculates the total amount of energy used and the cost of SCU’s power bill if SCU didn’t have 

any renewable generation and how much the power bill is with the current generation. A high-

level overview over the MATLAB script is shown in Figure 7.  
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This is a Simulink block diagram of our design. We have our photovoltaic system, or PV for 

short, in blue and includes all the solar panels on campus, along with the electronics that invert 

the DC power generated to AC for distribution. The fuel cell model is in teal. We have a 2MW 

fuel cell on campus, provided by Bloom Energy, and this acts like a constant source in our 

system. Battery storage is the orange box, and this component captures excess energy generated 

from the renewable resources for later use. The battery was implemented as a Tesla 1.3MW 2.6 

MWh Megapck. The load is modeled in the white box and in our simulation, we used real load 

data provided by SCU. Our simulated components respond to the load dynamically as it 

increases and decreases. The grid connection to our system is in the bottom right. The school 

has two separate grid connections, or feeders. Our simulation combines these two feeders for 

simplicity.  Finally, the V2G system is the yellow box. We modeling 40 electric vehicles, each 

with an 82KWh battery (this is the battery from a Tesla Model 3 Long Range). SCU has about a 

charging capacity on campus of about 40 electric vehicles which is why we chose our V2G system to 

have 40 cars in it.  

4.3.4 Battery 

 The Battery function calculates the SOC (state of charge) of the battery and ensures that it 

does not charge above the maximum SOC or below the minimum SOC using another function 

(SOC Check) that checks the new SOC and returns the adjusted power and energy levels ensuring 

the SOC of the battery is kept within the boundaries set, as seen in the flow chart in Figure 7. The 

inputs to the function are the current SOC and energy of the battery, grid supply, and the maximum 

power the battery is allowed to output. The function returns the new SOC, energy, and battery 

power. According to the Tesla website, their power packs have a 100% debt of discharge. While 

charging a battery to 100% and draining it completely is detrimental to its long term lifespan, we 

assumed that the batteries provided by Tesla are larger than the energy rating, but software limited; 

therefore, we set the 1.3 MW, 2.6 MWh Tesla Powerpack to have a minimum SOC of 0% and a 

maximum SOC of 100%.  

 The battery only charged when there was excess renewable generation. When the 

renewable generation is greater than SCU’s load, the battery would charge from this excess energy 

generation, and discharge whenever the load was greater than the renewable generation. For the 

battery, the load is considered the sum of the SCU and V2G loads. The battery was not charged 
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overnight, unless where the generation was greater than the load, because SCU is not on TOU 

(Time of Use) or demand response. Time of Use is where the utility provider chargers its customer 

a different amount per kWh while demand response is the utility provider can charger a higher 

amount per kWh during an event such as a heat wave to reduce stress on the grid.  

Figure 8 8: Battery Code Flow Chart 

4.3.5 Vehicle-to-Grid 

 Santa Clara University currently has a charging capacity of about 40 cars which is why we 

chose to simulate a V2G fleet of 40 cars. Each car has an 82 kWh battery pack, a maximum SOC 

of 90% and a minimum SOC of 60%, and could charge / discharge at a maximum rate of 11 kW 

which was based on V2G stations currently available today. An 82 kWh battery for each car was 

chosen because it was based on a very popular electric vehicle (EV) currently on the market, the 

long range Tesla Model 3. 

 For predictability, the algorithm we chose to implement was time dependent, This assumed 

that all the cars arrived at campus at the same time with 60 kWh, and that their owners would leave 

after 5PM and want a fully (90% SOC) charged car when they leave. The charging and discharging 

times are seen below in Table 1 and are based on peak power usage times and when we thought 



 

14 
 

 

people would arrive and or leave campus. Assuming that students and faculty arrived on campus 

in the morning, the cars were charged after they arrived from 8 AM – 1 PM, then discharged from 

1 - 4 PM if SCU’s load was greater than the renewable generation. Finally, the cars would be 

changed back up to 90% from 4 – 5 PM. To ensure the cars did not charge or discharge above or 

below their maximum / minimum SOC set points, a separate V2G SOC check function was 

implemented. This function was similar to the one used for battery function.  

 

Table 1: V2G Charging / Discharging Schedule 

Charging Discharging Charging 

8 AM – 1 PM 1 PM – 4 PM 4 PM – 5PM 

 

4.3.6 PV and Fuel Cell 

SCU has a 1 MW PV system and 2 MW fuel cell system from Bloom Energy. calculate the 

power output from the PV, we used the formula 𝑃 = 𝐴 ∗ 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒. Because the PV system has 

a maximum output of 1 MW and that the maximum irradiance the panels can receive is 1000 

W/m2, the area of the PV panels can be solved for which was 1000m2. To scale up the PV to 4 

MW for the proposed simulation, we simply multiplied the power of the PV by a scaling factor 

until the maxim value of the PV system was 4 MW.  

The Bloom Energy Fuel Cells on campus output a constant 2 MW. Because the fuel cell 

output can essential be viewed as a constant source and since we are not chemical engineering 

majors, the fuel cell was simply modeled as 𝑃 = 2𝑒6 𝑊. 

4.3.7 Machine Learning 

 From the K-fold cross validation, we can see the mean-squared error plotted in Figure 8, 

where it is much more favorable with degrees higher than five. Figure 7 shows the irradiance data 

gathered from the Arduino over a 24-hour period (this is several days of data in a single 24-hour 

frame). The red curve superimposed on the irradiance data is the polynomial regression model 

produced from our algorithm. These plots were generated using the matplotlib package in Python.  
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Figure 99: Regression Model (Red) Over Irradiance Data 

 
Figure 10: Mean-Squared Error of the Model by Degree 
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Chapter 5: Results 

5.1 SCU Current Simulation 

5.1.1 Sunny Day vs Cloudy Day 

While the 2019 data only contained load data for one of the feeders, it provided an insight 

into how an energy storage system, such as a battery, could help SCU achieve 100% renewable 

energy. In Figure 9, the top left plot is the SCU generation plot. The PV (in green), peaks at 1 MW 

and has a uniform shape with a potential small cloud passing over the panels in the morning. This 

is expected as the data was taken from June when the PV system will have its peak performance 

and because it was taken from a sunny day. The fuel cell (in yellow) is a constant 2 MW, and the 

battery (in orange) is charging or discharging based on the load conditions.  

 The SCU load plot in Figure 9, the load is in purple and peaks at about 3.1 MW and is 

steadily increasing as people arrive on campus from about 5am to 3PM. In the Battery Power plot 

(below the SCU Load plot), the battery power is negative when it is charging and positive when it 

is discharging or delivering power to the SCU load. As previously described in Chapter 3.2.3, the 

battery only charges when the SCU generation is greater than its load. In the plot, we can see that 

this mainly occurs during the middle of the night when the SCU load is at its lowest and before 

people start to arrive on campus. This can be seen from the Battery SOC plot in Figure 9 as the 

battery SOC is steadily increasing till about 8 AM where the SCU load becomes larger than the 

renewable generation on campus.  

 The bottom right two plots of Figure 9 are the V2G Power and SOC plots. Because the 

V2G algorithm is time dependent, the vehicles start charging at 8AM as seen by the negative power 

in the V2G Power plot as the cars are absorbing power and their SOC is increasing. The algorithm 

charges the cars from 8 AM to 1 PM; however, the cars reach their maximum SOC of 90% at 

approximately 9:30 AM and stop charging and remain idle until they are ready to be discharged 

from 1 – 4 PM. When the cars are discharging, their power is positive as they are delivering power 

to the SCU load, and their SOC is decreasing. Finally, the cars are charged back up at the end of 

the day from 4 – 5 PM.  

 The Load with V2G plot in Figure 9 displays SCU load (in purple) and SCU load with 

V2G (in grey). The spikes in the grey line are due to the cars charging but if we look at when SCU 

has its peak demand (1 – 4 PM), the grey line is below the purple line. This is because the cars are 
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peak shaving as they are reducing SCU’s peak demand during when electricity rates can be high; 

thus, saving SCU money.  

In the top right graph of Figure 9, the SCU load with V2G is again plotted in grey, SCU 

renewable generation in orange, and the grid supply is plotted in red. The grid supply is how much 

power is being supplied to SCU from the grid. Ideally, we want this red line to always be zero so 

SCU will run on 100% renewable energy and be grid independent. The grid supply to SCU is zero 

until a little before 5PM. This is because the battery runs out of energy and SCU’s load is greater 

than the renewable generation on campus. With more renewable generation on campus, this red 

line can remain zero for longer and eventually be perpetually zero.  

  

 

 

 

Figure 1110: SCU  2019 Load: Sunny day 

Figure 12 11: SCU  2019 Load: Cloudy Day 
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Figure 10 displays the same 2019 load; however, the PV system outputs much less power 

because the day is cloudy as seen by the PV not peaking at 1 MW and has a much less uniform 

shape. This is expected as the data was taken from a day in October and on a non-sunny day. 

Because of the reduction in PV output, the battery SOC in Figure 10 does not charge as much 

compared to the maximum battery SOC in Figure 9, on the sunny day. In Figure 10, the V2G plots 

remained the same as those of Figure 9, but the grid supply in the top right plot of Figure 10 

remained non-zero for much longer because of the reduce PV generation was not able to charge 

the battery as much. As a result, the battery was discharged earlier in the day than on the sunny 

day. This means that the grid is supplying SCU with more energy and SCU is more reliant on the 

grid, not using 100% renewable energy.  

This demonstrates the importance of an energy storage system and the need for over 

generation on ideal days so the battery can be fully charged at the start of a non-ideal day (such as 

a cloudy or rainy day) so the battery can be deployed longer throughout the day, reducing the gird 

supply. With a large enough combination of renewable generation and energy storage unit, SCU 

could become fully islanded from the grid (grid supply would be zero) for extended periods of 

time, running on 100% renewable energy and independent from grid outages. 
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5.1.2 Sunny vs Cloudy Day Energy and Cost Analysis  

There was a large energy difference in the energy supplied from the grid between the sunny 

and cloudy day. This energy difference is broken down in Table 2 below and the same load data 

was used for each day. If we analyze how much energy then grid would need to supply SCU if 

SCU had no renewables, it would be 54.21 MWh; however, with renewables, it is only about 2.96 

MWh on a sunny day and 6.57 MWh on a cloudy day. This shows how the renewables on campus 

are significantly reducing the grid supply to SCU, but still more generation is needed to become 

fully independent from the gird and to run on 100% renewable energy. We are not allowed to 

disclose exact numbers relating to the SCU energy bill; however,  difference between the total cost 

of energy supplied from the grid on the sunny vs the cloudy day is over $500. This cost difference 

on non-ideal days can be diminished through an energy storage system and overgeneration from 

sunny days to have the storage system be fully charged at the start of the non-ideal day.  

 

Table 2: Sunny Day vs Cloudy Day Grid Supply 

Energy Supplied from the gird Sunny Day Cloudy Day 

With Renewables 2.96 MWh 6.57 MWh 

Without Renewables 54.21 MWh 50.6 MWh 

 

5.1.3 Current Load Analysis 

 The 2019 load data from one feeder provided a good insight into how an energy storage 

system could help provide SCU with a path to 100% renewable energy and grid independence but 

the load data was only about half of the current load. We acquired new data in Spring of 2022 that 

included both feeders and the new building that is shown below in Figure 11. In this figure, the 

SCU Generation plot has the same PV, fuel cell, and battery, but it is for five days now. The Load 

plot (in purple) in the left column of Figure 11 is the current, 2022, SCU load data taken from a 

week in April. Most noticeable aspect of this plot is that the load peaks at almost 8 MW and has a 

minimum of a little over 4 MW.  
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 This is significant because the load is always greater than SCU’s renewable generation. 

Because the battery only charges when the renewable generation is greater than the load, the 

battery is never able to charge. This is seen by the battery power remaining zero in the SCU 

Generation plot and Battery Power Plot, and is confirmed by the Battery SOC staying zero in the 

Battery SOC plot. The V2G plots remained the same with the cars charging and discharging at 

their scheduled times. The most important line in Figure 11 is the grid supply (in red) from the 

Supply, Load, Grid plot in the top right of this figure.  

 The grid supply line is never zero, signifying that SCU constantly needs to be supplied 

with power from the gird. There is still a large difference between grey line (SCU load with V2G) 

and red line (grid supply), indicating how the renewable generation on campus is significantly 

reducing the energy supplied from the grid to SCU, but it also shows how SCU needs increased 

renewable generation on campus to minimize the grid supply to zero and run on 100% renewable 

energy. This will also lead to increased cost savings as discussed in Chapter 4.3. 

 
Figure 1312: SCU Current Load 

5.1.4 Current Load Cost Analysis 

The current load with both feeders is much larger than the 2019 data with only one feeder. 

Without renewables, the grid supply to SCU would be a massive 136.67 MWh; however, with 
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renewables, this is reduced to 80.05 MWh for savings of up to over $8,000/day on a sunny day. 

While these daily savings are immense, these still be significantly increased with additional 

renewable capacity added to Santa Clara University’s campus.  

 

Table 3: Current Load Energy and Cost Analysis 

Energy Supplied from the gird Sunny Day 1 Day Cost Savings 

With Renewables 80.05 MWh $8k+/day 

Without Renewables 136.67 MWh $0/day 

 

5.2 V2G Findings  

 

After analyzing the impact of V2G on SCU’s load and the energy supplied to SCU from 

the grid, we found that V2G had a negligible impact on the overall load. The V2G simulation did 

not show a large reduction in the grid supply with V2G. This could be because the cars were 

charged up at the end of the day, resulting in their net energy supplied to SCU’s load to be 

insignificant. SCU also does not currently have an incentive to implement V2G for peak shaving 

because SCU is not on TOU (Time of Use) or demand response. Time of Use is when the utility 

company charges their customer a different $/kWh at different times of the day while demand 

response is when during a time of peak demand (ex: during a hot summer day when everyone is 

running their AC units), the utility company will have a demand charge where people will be 

charged a higher amount $/kWh to incentivize customers to shift their energy usage to a different 

time to avoid the higher energy prices. Because SCU is charged the same $/kWh no matter what 

time of the day it is, there is no financial incentive for SCU to reduce their peak demand or load 

shift, thus no incentive to implement peak shaving with V2G; however, as V2G technology 

matures, EVs become more prevalent, and SCU increases the charging capacity on campus, we 

think V2G could become a vital part in helping SCU achieve 100% renewable energy and grid 

independence.  

 We also must explore other options than V2G to provide a path for SCU to run on 100% 

renewable energy. Scaling up solar capacity is one way to increase renewable generation on 



 

22 
 

 

campus, but we also must education the students and faculty on their actions (such as turning on 

the AC) can increase our peak demand and what steps that can take to reduce our peak demand 

through load shifting. Machine Learning can also be used to help predict our future renewable 

generation and match it to our predicted load. This could tell us ahead of time if action is needed 

to reduce SCU’s power consumption so SCU could always run on 100% renewable energy. 

Finally, we do think that a more complex V2G algorithm could show promising results and help 

provide a path for SCU to by 100% renewable.  

5.3 Proposed System 

5.3.1 Overview 

For the proposed system, we wanted to reduce SCU’s grid supply by about 40%. SCU can 

add around an additional 3 MW (not including SCDI) of solar if the parking lots, structures, and 

building rooftops are used. For this proposed system, we added and additional 3 MW of PV for a 

total of 4 MW PV capacity on campus. The same 1.3 MW, 2.6 MWh battery that was used in the 

SCU current simulation was implemented. We chose not to increase the capacity of the fuel cell 

because the Bloom Energy Fuel Cells have a byproduct of C02, making them not a 100% renewable 

energy resource.  

5.3.2 Energy and Cost Analysis 

 With the extra renewable capacity from the three additional megawatts of PV and with the 

same load of 136.67 MWh without renewables, the grid supply to SCU with renewables is now 

only 55.29 MWh. This is an energy difference of 81.38 MWh, an increase of about 25 MWh when 

compared to our current renewable capacity on campus. The additional renewable generation lead 

to a 50% increase in daily savings when compared to our current system from about $8,000+/day 

to $12,000+/day. The savings can continue to increase as the renewable generation on campus 

continues to increase until SCU is running on 100% renewable energy for maximum energy 

savings.  
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Table 4: Proposed System Energy and Cost Analysis 

Energy Supplied from the gird Sunny Day 1 Day Cost Savings 

With Renewables 55.29 MWh $12k+/day 

Without Renewables 136.67 MWh $0/day 

5.3.3 Simulation Result 

 In Figure 12, Proposed SCU Microgrid, the top left plot, SCU Generation, displays the 

increased PV capacity. The PV (in green) peaks at 4 MW while the fuel cell (in yellow), was kept 

at a constant 2 MW, and the battery power (orange) charges and discharges based on if the 

renewable generation is greater than the load. In thr current system, the battery was never able to 

charge because the load was always greater than the renewable generation; however, with the 

increased capacity of PV, the battery is now able to charge. This is seen by the battery SOC 

increasing in the Battery SOC plot in Figure 12.  

The V2G algorithm was kept the same and is still time dependent as seen by the V2G 

Power and V2G SOC plots in light blue in the bottom right of Figure 12. Due to the increased PV 

capacity, SCU is now able to run on 100% renewable energy (for short periods of time) as seen by 

the red grid supply line equaling zero in the Supply, Load, Grid plot. When the grid supply is zero, 

SCU is running on 100% renewable energy and is grid independent. There is also a larger 

difference between the Load with V2G (grey line) and the grid supply, showing how the increased 

PV is reducing the energy supplied from the grid to SCU. While reducing SCU’s grid supply by 

about 40% is a great step for SCU to become 100% renewable, SCU will still need to add more 

renewable generation on campus to achieve 100% renewable energy and grid independence.  
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Figure 14 13: Proposed SCU Microgrid 

5.4 Machine Learning 

The machine learning model yielded a model with approximately 97% prediction accuracy. 

This will allow better control of our microgrid system, such as when we need to ready resources 

before the load will increase. Anticipating load increases will not only benefit the grid as the grid 

operator will know what to expect from our load but will also allow us to predict how many cars 

we will potentially need on campus to be able to store the solar power generated in case the load 

is not large enough to absorb all the renewable generation power.  

Given the success of the generation of this algorithm, we figured that creating more models 

for our other sets of data would prove to be fruitful. As of now, we are working on creating two 

more machine learning prediction models for the load of our campus. We believe that we have a 

warranted use case for more machine learning in this project as predicting power usage and 

generation would greatly optimize our system in real life. This requires two different models as 

the load on the weekdays is much greater than that of the weekends due to the scheduled nature of 

the campus. Figures 15 & 16 are plots of 2019 load data over a 24-hour period, recorded every 

fifteen minutes for weekends and weekdays respectively. These are plotted similarly to the 

irradiance data shown previously.  
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Figure 15 14: 24 Hour Load on the Weekend 

  

 
Figure 16 15: 24 Hour Load on a Weekday 



 

26 
 

 

We can see that for each respective day, there is a clear curve that each load follows. Since 

everything that happens on campus follows a schedule, the load is inherently predictable, unlike 

other facilities that are randomized in usage. A machine learning algorithm for this would make it 

even more predictable. Again, having algorithms like these would provide us with valuable 

knowledge that will help anticipate how much power we will need to generate for a given usage 

and time, which will allow for further optimizations in both our simulation and a real-life system. 

5.5 Project Success 

 Overall, we have been able to create a versatile framework for modelling the power 

generation and usage behaviors of the campus. Given its portability in MATLAB, the system is 

quite modular, which would allow for the addition of either new subsystems or scaling the 

currently simulated systems to a greater capacity. Also, since the simulation has been written in 

MATLAB, it has the potential to be ported over to a hardware-in-the-loop system in the future. 

This will allow for more complexity in each component, while maintaining the run time of the 

system to real-time.  

As for the machine learning aspect of the project, this has given us a new perspective into 

our power generation and usage. Through these algorithms, we can create accurate predictions of 

how much power we will generate, how much power we will absorb, and how much battery storage 

(or V2G capacity) we would need as a result of these two predictions. So, in a real-life 

implementation of our proposed system, these predictions can be invaluable. Since the algorithms 

have been written in Python, they can easily be used with other data sets in the future; given our 

somewhat limited data sets, the algorithms should be retrained when larger sets are available to 

improve and guarantee both the accuracy and the performance of each model.  
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Chapter 6: Professional Issues, Constraints, and Modern Standards 

6.1 Testing Environment and Limitation 

 While our project was purely simulation based, and not ever implemented in real life, 

testing our work was only on our workstation computer. However, this proved to be vital to the 

direction of our project due to the long simulation times; therefore, we progressed to using 

MATLAB instead of Simulink.  

 With our original Simulink simulation, test runs quickly proved to be infeasible as running 

just a few minutes of our simulation would take at least a full day of run time. This limitation in 

our testing method forced us to transition over to a MATLAB script-based simulation, where the 

run time was much faster than real-time.  

 As far as testing our machine learning algorithm, a K-fold cross validation is a proven, 

reliable way to test the performance of an algorithm. Given how low the mean-squared error of 

the model became, we can confidently label this as a valid prediction model.  

Modern standards that were implemented into our project to insure its validity and 

professionalism. The standards that our project used were American National Standards (ANSI) 

and the Institute of Electrical and Electronics Engineers (IEEE).  

6.2 Ordering Issues 

 Our original plan for the project included the eventual transition of moving our 

Simulink/MATLAB based simulation to a hardware-in-the-loop real-time simulator from OPAL-

RT. This would have allowed us to simulate our system very precisely with excellent accuracy and 

control over most parameters. This system was expected to arrive on campus by the end of January 

2022; however, it is now scheduled to arrive June 2022. Even though we were unable to acquire 

the hardware-in-the-loop in time for our conference, we were still able to make an accurate and 

detailed simulation in MATLAB running on the host workstation.  

6.3 Ethical Considerations 

 Given that our project is simulation based, there are no immediate ethical concerns or 

considerations to be had. However, if the system were to be implemented, there would be a positive 

impact on climate change, grid stability both on and off campus, and an overall reduction in carbon 

footprint. This is all due to the extensive use of renewable energy sources to generate power on 

campus which makes the on-campus grid power more stable while reducing the load on the city’s 

grid.  
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 A negative impact that our current system has on campus is the fuel cells use natural gas 

to generate power. While this is “greener” that using another fossil fuel, like diesel, it still produces 

CO2. Our design considers this and attempts to offset the impact with the implementation of more 

solar panels, larger battery storage units, and more electric vehicles on campus to approach carbon 

neutrality.   

Chapter 7: Future Work and Conclusion 

7.1 Future Work 

 We believe that the hardware-in-the-loop simulator, which was expected to arrive earlier 

this year, is set to be delivered to our lab this summer. This would be a natural next step in our 

project as it was a system that we had originally planned to learn and use for our simulation. Given 

that our simulation is now based in MATLAB, it should be relatively straightforward to transfer it 

over to the hardware-in-the-loop. Running our simulation on this system would give us greater 

control over more parameters in the system, and would allow for real-time simulations, which 

introduces more realism into our project.  

 With the success of our machine learning prediction model for solar power generation, we 

would like to pursue implementing more machine learning algorithms to create more predictions 

based on our other data sets, like the campus load previously mentioned.  

7.2 Summary and Conclusion 

Overall, we have successfully designed and simulated a working model of our school’s 

current and potential on campus power grid. We did this by first considering the entirety of the 

system to be a simple microgrid. In an effort to increase its potential, we added battery storage to 

our model along with more photovoltaic panels. The hallmark addition to the system was the 

vehicle-to-grid component as it allowed us to learn several key concepts: how a vehicle-to-grid 

system works, how we can implement it in our microgrid, and what would be required of the design 

to make this a useful addition. Our results concluded that V2G is not currently a viable solution 

for SCU due to the current charging capacity on campus and how SCU is not on TOU; however, 

in the future, V2G could play a vital role in providing SCU with a path to 100% renewable energy.  

We found that these improvements in renewable energy usage greatly increase financial 

savings for the university as well, since the campus would not have to absorb as much power from 

the grid, or at all in some cases. Even greater than the financial impact of this project is the 
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environmental impact that it carries as the increased usage of renewable energy on campus 

alleviates stress on the grid, which mainly uses fossil fuels to generate its power; thus, significantly 

decreasing Santa Clara University’s carbon footprint.  

Last, we successfully implemented machine learning into our project to create a prediction 

model of our solar power generation for a given time of day. This will allow for further 

optimizations in the simulation, and will also pave a path for future datasets, especially larger 

datasets, so that the algorithm can be trained more accurate.  
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