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prediction of early-acting inbreeding depression. Th erefore, it is 
unlikely that our ISI 

seed
  estimates are substantially aff ected by early-

acting inbreeding depression. 
 Instead, we believe the diff erence in the two ISI values likely 

arises from the technical aspect of treating all fruits with  ≥ 1 seed as 
successful, thus underestimating the SI reaction (reduces ISI 

fruit
 ) be-

cause 25% of “successful” self pollinations (4/16) produced fruits 
with only one seed and 43.75% produced fruits with less than fi ve 
seeds (7/16). In contrast, among the 101 “successful” outcross 
fruits, only one had a single seed (~1%), and another fi ve crosses 
had less than fi ve seeds (6/101 = ~6%). Clearly, self fruits were 
much more likely to have very few seeds, thereby artifi cially reduc-
ing ISI 

fruit
  to make it appear as partial SI instead of strongly SI like 

we concluded from the preferred ISI 
seed

 . 
 It is important to note two additional technical reasons why ISI 

values could be misleading. First, outcross pollen contamination 

would increase reproductive success of self pollinations in a truly SI 
species. Th is case is unlikely since we conducted emasculation con-
trols on every plant and they consistently produced no fruit. Sec-
ond, our ISI values are calculated based on the sum of reproductive 
success among all self and outcross pollinations, eff ectively averag-
ing the ISI values among individuals from diff erent populations 
and diff erent types of outcross pollinations (within- vs. between-
population crosses). Th is averaging eff ect is likely to produce in-
termediate ISI values if there is variation in the degree of the SI 
reaction among individuals, populations, and crosses ( Raduski et al., 
2012 ). Our ISI 

seed
  (0.82) is approaching the historical cutoff  for SI 

(0.80), suggesting that the SI system may be in the early stages of 
breakdown. Incomplete SI is supported by our in-vitro visualiza-
tion of self vs. outcross pollen-tube growth, providing independent 
evidence that the SI reaction is not absolute. Since the ancestral 
mating system for  Erysimum  is likely SI ( Vekemans et al., 2014 ), we 

  FIGURE 3  Pollen tube growth of  Erysium teretifolium  following diff erent pollination treatments. Pistils were harvested 24 h after either self pollination 

or outcross pollination from the same maternal plant (A–D). Pollen and pollen tubes fl uoresced under UV light; viewed at 40 × . Pistils were collected 

and imaged at 24 and 48 h. Pollen tube growth between 24 h and 48 h did not differ substantially. The inset in A confirms no pollen tube growth 

after 48 h.   
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interpret  E. teretifolium  as potentially showing early signs of SI 
breakdown. 

 Although the causes of SI breakdown can be numerous ( Mable, 
2004 ;  Anderson and Busch, 2006 ), polyploidy is likely a contribut-
ing factor. It is unknown whether the hexaploidy of  Erysimum 
teretifolium  is a result of an allopolyploid or autopolyploid event 
( Price, 1987 ), but with six alleles per pollen grain and stigma, the 
range of possible  S -allele interactions is substantially larger than in 
a diploid system signifi cantly complicating the SI reaction ( Igić and 
Busch, 2013 ). For example, in the allopolyploid  Arabidopsis kam-
chatica , the enzyme partially responsible for the self-incompatibility 
reaction is dysfunctional, leading to breakdown of SI ( Tsuchimatsu 
et al., 2012 ). 

 Th ere is modest evidence for inbreeding depression in  E. tereti-
folium  at early developmental stages under benign conditions. 
Self-progeny had a 24% decrease in fi tness in survival to 14 wk 
compared with off spring of between-population crosses, while 
within-population crosses had intermediate survival. A contrasting 
pattern was found in the aboveground dry biomass results, in 
which self progeny had a higher biomass than between-population 
and within-population crosses. Th is unexpected result may have 
arisen if inbreeding depression at the earlier survival stage culled all 
but the most vigorous self progeny, leading to an overestimate of 
the aboveground dry biomass in self progeny. Additionally, our 
model shows that competition among plants sharing a pot infl u-
enced biomass production, and since more self progeny died before 
our measurement cutoff , the individuals remaining in those pots 
may have been larger as a result. 

 A comparison of the cumulative relative fi tness of self progeny 
vs. outcross progeny can illuminate the overall magnitude of in-
breeding depression. At early developmental stages (germination, 
survival to 14 wk, and biomass at 14 wk), our estimate of inbreed-
ing depression based on between-population outcrosses is low 
(0.11), largely driven by the increased dry aboveground biomass of 
self progeny (potentially due to release from competition with 
other plants in the pot). Aft er including later developmental stages 
(growth rate and proportion fl owering in the fi rst year), the cumu-
lative amount of inbreeding depression is more dramatic (0.80). In 
comparison,  Husband and Schemske (1996)  revealed in a review of 
inbreeding depression in 54 plant species an average   δ   of 0.53 for 
predominantly outcrossing species. 

 Our fi nding that progeny from within-population crosses are 
22% less fi t at early developmental stages and 48% less fi t from ger-
mination to the fi rst year of fl owering compared with between-
population crosses suggests that the dynamics within these small 
populations and isolation among them may refl ect the negative 
consequences of biparental inbreeding or the positive effects of 
heterosis. Th e latter is still theoretically possible even with low 
levels of migration under certain circumstances ( Whitlock et al., 
2000 ). Without controlled crosses among pedigreed parents 
( Heywood, 1993 ), biparental inbreeding depression cannot be dis-
tinguished from heterosis, but the management conclusions are the 
same—mixing populations increases fi tness. Th e crossing results 
comparing seed set in outcrosses from diff erent maternal source 
populations, where BD has a signifi cantly lower average ( Fig. 2 ), 
could partly explain the reported reproductive failure at that site. 
Possible causes of reduced seed set in BD maternal parents includes 
biparental inbreeding and/or a stronger SI reaction. Regardless, the 
lack of outbreeding depression suggests that future reintroduction 
eff orts at this site  would not be harmed  by introducing seeds or 
plants from nearby populations. 

 Manifestation of inbreeding depression can be environment-
dependent and will be more apparent in harsher conditions and at 
later life stages ( Husband and Schemske, 1996 ;  Armbruster et al., 
2002 ;  Geber and Eckhart, 2005 ;  Charlesworth and Willis, 2009 ). 
Although we attempted to provide edaphically relevant conditions 
for our estimate of inbreeding depression, plants in our experiment 
experienced relatively benign environmental conditions in the 
greenhouse and experimental garden in terms of water availability 
and temperature extremes. Lack of strong inbreeding depression at 
early developmental stages was likely infl uenced by the reduced 
competitive eff ects within pots following increased mortality in the 
progeny of self pollinations. If  E. teretifolium  has been capable of 
some self pollination, it may have purged early-acting deleterious 
recessive alleles, and therefore stronger inbreeding depression would 
be seen at later life history stages (even beyond the proportion fl ow-
ering in the 1st year) as suggested by the fi ndings of  Husband and 
Schemske (1996) . Th e cumulative eff ects of inbreeding depression 
and apparent increase in its eff ects at later life stages in  E. teretifo-
lium  suggest that the current study may underestimate inbreeding 
depression at early developmental stages, a limitation common to 
many inbreeding depression studies ( Armbruster and Reed, 2005 ). 

 In a rare species, SI or even partial SI seems highly disadvanta-
geous. Yet  E. teretifolium  demonstrated a high proportion of fruit 
set and seed viability by wild, open pollination in our pollen supple-
mentation experiment ( Fig. 4 ), which indicates that reproduc-
tion is not pollen limited. This seems to be the rule of most wild 
populations (J. Whittall, personal observation). Our pollinator 

  

  FIGURE 4  Measures of reproductive success of  Erysium teretifolium  in the 

fi eld comparing open pollination (Control) and open pollination plus 

manual pollen supplementation (Suppl. Poll.) across three sites. Repro-

ductive success was estimated as (A) the proportion of fl owers producing 

a mature fruit, (B) number of seeds per mature fruit, and (C) proportion 

of ovules that produced viable (fi lled) seeds.   
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observations indicate a high rate of visitation by a diverse assemblage 
of insect pollinators, and experimental supplementations show no 
evidence of pollen limitation in three separate populations. We esti-
mate each fl ower is visited at least eight times, which should provide 
suffi  cient outcross pollen to maintain high seed set even in light of 
the largely SI mating system. Th e most common visitor to every popu-
lation in both years was in the small solitary bee guild ( Table 1 ), which 
may prevent pollen limitation. We also found no fi tness reductions 
in open-pollinated off spring compared with pollen-supplemented 
off spring (I. M. Parker, personal observation), supporting the con-
clusion that abundant pollinators ensure the reproductive success of 
 E. teretifolium  even as it remains at least partially SI. 

 Restoration and reintroduction activities for  E. teretifolium  must 
accommodate the SI mating system while recognizing the negative 

fi tness eff ects of inbreeding. Th e geographic isolation among popu-
lations of this endangered sandhill endemic has raised concerns 
about mixing seeds and plants from diff erent populations, which 
might disrupt coadapted gene complexes or local adaptations. 
However, we failed to detect any sign of outbreeding depression in 
F 

1
  progeny emerging from crosses among populations, but hybrid 

breakdown could potentially manifest itself in later generations 
( Edmands, 2007 ). We cannot rule out the possibility that some 
genotypes may be locally adapted to their sites; our experiments 
show that soil type can be a signifi cant factor in survival and growth 
at some life stages. However, our results suggest that the risk of in-
suffi  cient genetic variation within small populations outweighs the 
risk of any unmeasured outbreeding depression for this species. 
Th e SI or largely SI mating system requires population sizes large 

  FIGURE 5  Representatives of the most common pollinators of  Erysium teretifolium . (A) Hymenoptera, Halictidae, sweat bee; (B) Hymenoptera, Apidae, 

 Bombus vosnesenskii , yellow-faced bumblebee; (C) Hymenoptera, Halictidae, sweat bee; (D) Hymenoptera, Melecta, cuckoo bee; (E) Lepidoptera, 

Nymphalidae,  Euphydryas chalcedona , Chalcedon Checkerspot; (F) Lepidoptera, Hesperiidae, skipper butterfl y; (G) Coleoptera, Elateridae, click beetle; 

(H) Coleoptera, Mordellidae, tumbling fl ower beetle; (I) Coleoptera, Chrysomelidae, leaf beetle.   
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enough to ensure suffi  cient mates containing distinct  S  alleles. For 
 E. teretifolium , the ability to maintain high seed set and off spring 
fi tness in most of the natural populations studied here is likely due 
to the diversity of pollinators and high visitation rates. At the same 
time, the rapid decline of some  E. teretifolium  populations due to 
reproductive failure may be attributed to lack of unrelated mates 
(e.g., BD). Th e results of this study will aid in the development of 
reintroduction plans for this species and potentially other SI en-
demics facing similar threats. 
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