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Abstract 

In this article we report further explorations of the Classroom Video Analysis instrument (CVA), 

a measure of usable teacher knowledge based on scoring teachers’ written analyses of classroom 

video clips. Like other researchers, our work thus far has attempted to identify and measure 

separable components of teacher knowledge. In this study we take a different approach, viewing 

teacher knowledge as a system in which different knowledge components are flexibly brought to 

bear on specific teaching situations. We explore this idea through a series of exploratory factor 

analyses of teacher’s clip level scores across three different CVA scales (fractions, ratio and 

proportions, and variables, expressions, and equations), finding that a single dominant dimension 

explained from 55 to 63 percent of variance in the scores. We interpret these results as consistent 

with a view that usable teacher knowledge requires both individual knowledge components, and 

an overarching ability to access and apply those components that are most relevant to a particular 

teaching episode. 
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1 Introduction 

Understanding what mathematics teachers need to know, and what it takes to be able to 

apply that knowledge in the classroom, is critical for helping teachers improve their practice and 

their students’ learning. For years, progress toward this goal was hampered by imprecise and 

inconsistent use of terminology, a lack of well-developed theories, and a paucity of measures 

(Baumert & Kunter, 2013). Despite recent progress on all of these fronts, (Ball, Thames, & 

Phelps, 2008; Baumert & Kunter, 2013; Hill & Ball, 2004; Koenig, Bloemke, & Kaiser, 2014; 

Seidel, Blomberg, & Stürmer, 2010; Stürmer & Seidel, 2014), however, we still know little about 

how the knowledge teachers acquire becomes usable, and how teachers apply it in the process of 

teaching (Ball et al., 2008). In this paper, we report on our own instrument development effort, 

the Classroom Video Analysis (CVA) instrument, which is based on teachers’ ability to analyze 

teaching events (Kersting, 2008; Kersting, Givvin, Sotelo, & Stigler, 2010; Kersting, Givvin, 

Thompson, Santagata, & Stigler, 2012; Kersting, Sherin, & Stigler, 2014). Specifically, we 

explore what we can learn from teachers’ scores on the CVA about usable knowledge and 

knowledge use. 

1.1 Advancements in Research on Teacher Knowledge in Mathematics 

Recent contributions to the study of teacher knowledge have been made in three 

important areas: (a) Identifying knowledge domains that are relevant for teaching, (b) developing 

instruments to measure these knowledge domains (thus making it possible to conduct systematic 

empirical studies), and (c) using video in item design to assess teachers’ ability to apply 

knowledge in a context that is closer to a real teaching situation.   

Over the last decades, research on teacher knowledge in the area of mathematics has 

increasingly focused on the classroom as the place where teachers need to apply their knowledge 
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in order to make instructional decisions that support student learning (Ball, 2000; Ball & Bass, 

2000; Baumert & Kunter, 2013; Kersting et al., 2010; 2012; Shulman, 1986; 1987). The work of 

Shulman was seminal in advancing our theories of teacher knowledge (Shulman, 1986; 1987). 

Shulman’s notion of pedagogical content knowledge (PCK), which he envisioned to be at the 

intersection of teaching and learning, highlights the importance of domain-specific knowledge as 

a component of professional knowledge.  Shulman conceptualized PCK as blending content 

knowledge with knowledge of learners, learning, and pedagogy (Ball & Bass, 2000; Shulman, 

1986; 1987). 

A number of researchers built on and successfully extended Shulman’s ideas in the area 

of mathematics, among them Ball, Hill, and colleagues (Hill, Schilling, & Ball, 2004; Ball & 

Bass, 2002). Ball recognized that although PCK can provide a useful “anticipatory resource for 

teachers, it sometimes falls short in the dynamic interplay of content and pedagogy in teachers’ 

real time problem solving” (Ball & Bass, 2000, p. 88). Interested in both what mathematics 

teachers know and in how they use their knowledge in the process of teaching (Ball & Cohen, 

1999), Ball and colleagues identified and analyzed mathematics as it unfolds in the process of 

teaching. They developed the Mathematics Knowledge for Teaching (MKT) construct, 

consisting of six subdomains, along with multiple-choice items to measure some domains (Ball, 

et al., 2008; Hill, H. & Ball, 2004; Hill, Schilling, & Ball, 2004). Factor analysis results indicated 

a dominant general factor, which they interpreted as common knowledge of content and which 

suggested an influence of general grasp of mathematics on teachers’ responses to items. In 

addition, some of the specific factors accounted for substantial proportion of the variance, 

although item loadings on subdomains were less consistent (Hill et al., 2004).  Subsequently, 

Ball and colleagues were able to show, at least in some studies, that teachers’ scores on the MKT 
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were related to instructional quality and student learning (Hill et al., 2008; Hill, Rowan, & Ball, 

2005). Although empirical evidence suggests that the MKT represents a relevant professional 

knowledge domain, Ball and colleagues (2008) note that “how such knowledge is actually used 

and what features of pedagogical thinking shape its use, remains tacit and unexamined” (p. 403).  

Another interesting set of findings and contributions comes out of the COACTIVE 

project. As part of the COACTIVE project, Baumert and colleagues developed a comprehensive 

model of Teacher Professional Competence, which along with beliefs, motivation and self-

regulation, includes professional knowledge as a key component (Baumert & Kunter, 2013). To 

be able to test their model empirically, they developed paper-and pencil measures that could 

assess each knowledge domain separately and examined the hypothesized relationships among 

the different knowledge domains. Among the five domains of professional knowledge Baumert 

and colleagues identified, three closely related to teaching: Content knowledge, pedagogical 

content knowledge, and pedagogical/psychological knowledge. Baumert and colleagues were 

able to show that pedagogical content knowledge could be distinguished empirically from 

content knowledge and that pedagogical content knowledge had a substantial positive effect on 

student learning that was mediated by cognitive activation and individual learning resources 

(Baumert et al., 2010). Being able to study the interplay between different knowledge domains 

and how they develop in connection with each other represents an important step toward 

understanding knowledge growth.  

Finally, a number of instrument development efforts, including our own, have used 

classroom video in the item design to investigate the application of knowledge in a context that is 

closer to the classroom and actual teaching performance. These studies recognize that the process 

of teaching relies on teachers’ ongoing interpretation of classroom events which inform 
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instructional decisions, and that teachers who are better in interpreting teaching situations are 

more likely to make more informed decisions toward a specific instructional goal than teachers 

who are less skillful. This premise is supported by findings from the literature on expertise.  

They have identified systematic differences in the way expert and novice teachers perceive and 

interpret classroom instruction, and have concluded that some of these differences can be 

explained by differences in knowledge (Berliner 1989; 1994; 2001; Carter, Cushing, Sabers, 

Stein, & Berliner, 1988; Carter, Sabers, Cushing, Pinnegar, & Berliner, 1987). Although these 

studies did not aim to understand in detail how differences in expert and novice performance 

relate back to differences in knowledge, there seems to be some agreement that the knowledge of 

expert teachers is organized and structured differently from that of novices. These ideas are also 

reflected in the concept of teacher noticing(Sherin & Hahn, 2004; Sherin & van Es, 2005; 2009; 

van Es & Sherin, 2008), hypothesized to be not only an indicator of teacher expertise, but also a 

possible mechanism for developing expertise. Being able to analyze videos of teaching events 

carries over into teachers’ analysis of their own practice, thus creating the conditions for 

reflection and learning that is not unlike what the expertise literature describes as deliberate 

practice (Ericsson, Krampe & Tesch-Romer, 1993).  

A related line of inquiry is the work on professional vision that has come out of the LUV 

project (Stürmer & Seidel, 2014). To assess pre-service teachers’ professional vision, Seidel and 

colleagues developed the video-based Observer Research Tool (Seidel et al., 2010) and 

eventually the Observer (Extended) Research Tool (Stürmer & Seidel, 2014), which combines 

video vignettes with rating scale items. Seidel and colleagues (Stürmer & Seidel, 2014) have 

shown that their instrument reliably assesses pre-service teachers’ ability to reason about 

classroom events depicted on video (i.e., describing, explaining, and predicting) as they evaluate 
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such things as goal clarity, teacher support, and learning climate. An exploratory study of pre-

service teachers learning over two years indicated that pre-service teachers’ professional vision 

changed over the course of the program (Stürmer, König, & Seidel, 2013). Similarly, Yeh and 

Santagata, in a study of pre-service teachers who had taken a modified methods course build 

around video cases, reported increases their ability to analyze teaching events as compared to 

pre-service teachers who had taken the regular course (Yeh & Santagata, 2013). 

Another video-based measure to assess teachers’ professional competence was developed 

in the context of the TED-FU study, a follow-up study to the international TED-M study, which 

compared teacher preparation in 17 different countries (reference). The measure, which consists 

of three video vignettes, assesses teachers’ ability to perceive and interpret classroom events 

through a number of higher- and lower-inference rating scale items attached to each of the 

vignettes (Koenig, et al., 2014). Findings showed that after three years in the classroom, German 

middle school mathematics teachers’ ability to perceive and interpret teaching situations varied 

in relation the proportion of teaching time to overall work time, a measure the researchers 

interpreted as an indicator of deliberate practice (Koenig et al., 2014). 

Together, these studies demonstrate the progress the field has made in defining the 

different kinds of knowledge that are relevant for teaching, and in developing measures to study 

how these different kinds of knowledge relate to each other, to teaching and student learning, and 

to other variables of interest. Still missing are studies that help us better understand how 

knowledge gets activated and used in classroom settings. It is within this broader context that our 

own work is situated. 

1.2 Our Prior Work 
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In our own instrument development efforts, we explicitly aimed to design a measure to 

capture the knowledge that teachers are able to activate and use in a classroom situation. We 

reasoned that even though teachers might have a lot of different knowledge, the knowledge most 

likely to affect teaching and student learning will be the knowledge they can access and apply in 

the classroom. In our measure, which we call the Classroom Video Analysis instrument (CVA) 

we present teachers with video clips taken from real mathematics classrooms in order to roughly 

approximate a real classroom situation (Kersting, 2008). We ask teachers to view the video clips 

online, and to submit written analyses of what they see. Teachers’ responses are scored 

according to four rubrics, generating measures of skills that seem basic to the work of teaching: 

analyzing the mathematical content and student thinking, generating suggestions for improving 

the teaching episode, and interpreting the teaching episode in depth. We hypothesized that the 

knowledge teachers’ are able to access and use in their written analyses of our video clips would 

also be available to them in real teaching situations.  

In our work to date we have developed CVA scales for three different topic areas, each 

based on its own set of video clips: Fractions (F), ratio and proportions (RP), and variables, 

expressions and equations (VEE). For all three CVA scales we have found that teachers’ scored 

responses to the video clips are positively and strongly correlated with their scores on the MKT 

(Kersting et al., 2014). Further, in work focused on just the fractions scale, we have found that 

teachers’ total scores on the CVA, as well as subscores on each of the four rubrics separately, 

strongly relate to instructional quality. Perhaps surprisingly, we found that one of the rubrics, 

suggestions for improvement, directly predicted student learning, while we observed indirect 

effects, mediated by instructional quality, for the remaining rubrics (Kersting et al., 2010; 2012).  
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We also investigated the structure underlying the relationships among teachers’ scored 

responses.  Confirmatory factor analysis of the individual rubric scores assigned to teachers’ 

responses indicated that relationships between CVA scores were best explained by four strongly 

related factors, which corresponded to the four scoring rubrics.  The results suggested 

multidimensionality and indicated that clustering of scores within each rubric was stronger than 

clustering across all rubric scores. Nevertheless, the analyses also showed that for practical 

purposes, a solution based on a single underlying factor was reasonable, which suggested that 

much of the correlation between the four rubrics represented commonly shared variance among 

all scores. Considering the empirical results from these initial studies, we hypothesized that 

teachers’ scores on the CVA might reflect distinct, yet very closely related dimensions of usable 

knowledge. 

1.3 Current Study 

In our analyses so far we have focused on individual rubric scores to understand how our 

scoring rubrics function across clips and how the rubrics relate to each other and other variables 

of interest. What we have not done yet is to analyze teachers’ clip-level scores. Although we 

assign each teacher four scores for each video clip, it is important to remember that the scores are 

all constructed based on a single open response. Because teachers will only write so much, and 

because they don’t know how their responses are being scored, it seems reasonable that they 

would focus on the kind of analysis most relevant for the clip at hand. Thus, for one clip they 

might focus on student thinking, but for another on a suggestion for improvement. This led us to 

wonder if we might get a better indicator of teachers’ knowledge by summing the four rubric 

scores for each clip. Perhaps what we want to understand is not the separate knowledge 

components, but the degree to which teachers’ are able to flexibly and strategically access these 
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components in real time (Alexander & Judy, 1988). In this sense, perhaps teachers’ knowledge is 

best thought of as a system designed to produce the most useful analysis of each clip. 

Thus, in this study we analyze teachers’ aggregate clip level scores from three different 

CVA scales (F, RP, and VEE) to see what they might tell us about the functioning of teachers’ 

knowledge as a system. If we view teachers’ clip level scores as indicators of teachers’ ability to 

flexibly and strategically access different knowledge components, we might expect a single 

factor solution. To understand the structure underlying teachers’ clip level scores we factor 

analyzed these scores using exploratory procedures for each of the three CVA scales.  

Interpretation of our results, however, will need to take into careful consideration what 

we know about the effects of analyzing aggregate scores on dimensionality. Analytically and 

based on literature on item parceling (Bandalos & Finney, 2009; Magnus, 2013), we expect that 

creating aggregate scores by summing the individual rubric scores for each clip will reduce the 

number of factors obtained from the analysis of individual rubric scores, unless clip 

characteristics or content facets produce considerable clustering resulting in new and different 

factors (master thesis and review chapter). Similarly, we expect that factor loadings estimated for 

the aggregate scores will be larger than those observed in the analyses of individual rubric scores 

(Bandalos & Finney, 2009; Magnus, 2013). Hence, being able to interpret the factor analysis 

results of the clip level scores in a meaningful way rests on the assumption that the ability or 

knowledge underlying teachers’ analyses of the teaching episodes is different than the 

knowledge reflected in the individual rubric scores. If this argument can be made convincingly, 

then clip level scores are not simply aggregates and the factor analytic results do not represent a 

statistical artifact, but have a meaning of their own and are valid indicators of an underlying 

ability. 
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2 Methods 

2. 1 The Classroom Video Analysis (CVA) Instrument  

The CVA instrument, which is based on teachers’ ability to analyze authentic teaching 

events, is designed to measure the kind of knowledge that teachers can access and apply in the 

classroom. The approach builds on findings from research on expertise that has shown that 

expert and novice teachers perceive and interpret classroom events differently, which has been 

linked at least in part to differences in their knowledge (Carter at al., 1988; Carter et al., 1987). 

To approximate as much as possible a real teaching situation in which to elicit their 

knowledge, teachers view short, mathematically and pedagogically interesting video clips of 

authentic classroom instruction online and comment in writing on “how the teacher and the 

student(s) interact around the mathematical content” (Cohen, Raudenbusch, & Ball, 2003).  We 

intended the prompt, which is the same for all video clips, to provide some focus for teacher 

responses by mentioning the teacher, the student and the content. At the same time, we 

purposefully kept the wording broad because we expected that teachers with different levels of 

knowledge would focus on different aspects of the teaching episodes in their written responses.  

The video clips are each between one and three minutes long and feature student 

mistakes, teacher assistance episodes, student questions and the ensuing discussion, or interesting 

teaching strategies or moves to provide a rich stimulus for teachers’ analyses. In addition, we 

select video clips in such way that they cover as much as possible important mathematics ideas 

within a given content area. Even though there is no rewind button in a real classroom situation, 

we allow teachers to view a clip more than once if they want, compensating in part for the fact 

that teachers are unable to interact with and probe students’ thinking in a video as they would in 

a real classroom.  



13	
	

To obtain measures of teachers’ knowledge the responses are scored according to four 

rubrics that reflect common teaching tasks. We rate the degree to which a response analyzed the 

mathematics shown in the video clip (MC), and student thinking and understanding (ST), the 

degree to which a response included suggestions for improvement (SI) and we rated the overall 

interpretative depth and coherence of the response. Each of the four rubrics consists of three 

ordered categories (0-2). 

For the mathematical content (MC) rubric we assigned a score of 0, if a response did not 

address the mathematics shown in the video clip, a score of 1 if the mathematics or mathematical 

problem in the video clip was addressed descriptively but not further analyzed, and a score of 2 if 

the mathematics was analyzed beyond what was observable in the video clip. A score of 0 on the 

student thinking rubric (ST) rubric was assigned, if a response did not address student thinking or 

understanding, a score of 1 was assigned if there was some concern for student thinking or 

understanding without analyzing it in the context of the specific mathematics, and a response 

obtained a score of 2 if student thinking or understanding was analyzed in explicit connection to 

the mathematics shown in the clip. 

For the suggestions for improvement (SI) rubric, a response received a score of 0 if it did 

not contain any suggestion for improvement, it received a score of 1 if it included a general 

pedagogical suggestion and a score of 2 if the suggestion was mathematically based or directly 

related to the mathematics shown in the video clip.  Finally, we scored responses that contained 

no interpretations or substantiated judgments as 0 on the depth of interpretation (DI) rubric. 

Responses that contained some interpretation or substantiated judgments, but did not connect the 

different analytic points, were scored as 1, while responses in which different interpretative 

points were connected to form a coherent argument were scored as 2. It is important to note that 
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under the DI rubric credit can be given to general pedagogical observations that are not captured 

under the previous three rubrics as long as they represent interpretations or substantiated 

judgments.  In that way the DI rubric is independent from the other rubrics (it is possible 

although infrequent to obtain a score of 2 on the DI rubric while obtaining scores of 0 on the 

remaining 3 rubrics), but parts of the response that received scores under other rubrics are 

considered to evaluate the overall depth and coherence of the response.  

Because we score each teacher response with four rubrics it is important to consider 

whether the rubrics capture redundant aspects of knowledge, especially when we sum the 

individual rubric scores to obtain a total score for a given clip as we did in this study.  To avoid 

redundancy, we constructed the rubrics in such way that they can be linked to a unique text 

portion in the response. For example, if, in a given response, student thinking was analyzed in 

terms of the mathematics, then a score of 2 on the ST dimension would be linked to that portion 

of the response. If in that same response, the analysis of student thinking led to a general 

pedagogical suggestion, the suggestion would receive a score of 1 on the SI rubric because the 

suggestion itself was not mathematical.  Of course, it is also possible that a response contains a 

mathematical analysis of student thinking and a mathematically based suggestion for 

improvement, and hence such a response would receive a score of 2 for both rubrics.  

Scored example responses from the RP and VEE scales are shown in Table 1.  To 

illustrate differences between teachers’ responses both with regard to the individual knowledge 

components measured by the rubric scores and with regard to teachers’ ability to access and 

strategically combine different knowledge reflected in the clip level scores we describe the two 

example responses for the teaching episode about patterns (VEE) in more detail.  

Table 1.  
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 Scored Example Responses for the RP and VEE CVA Scales 

RP  VEE  
Clip Description: Students are 
learning about the meaning of part 
to part and part to whole ratios.  
They are working with red and 
yellow chips.  One student ends 
up with 8 red and 0 yellow chips 
after 8 draws and concludes that 
his ratio represents part to whole.  

Individual 
Rubric 
Scores 
and Clip 
Total 
Score 

Clip Description: In this clip 
students are working on patterns. 
The teacher is going over a 
problem which students had 
worked in pairs. The problem 
stated that a garden had 2 plants in 
the 1st row, 4 plants in the 2nd 
row, 6 plants in the 3rd row, and so 
on. The task was to determine how 
many plants were in the 10th row. 
To help students figure this out 
they had been given chips to 
represent the plants. 

Individual 
Rubric 
Scores 
and Clip 
Total 
Score  

Example Response: The student 
had a somewhat confusing 
example, because of the 0 yellow 
tosses.  The teacher got the 
student to say that it was a part to 
part relationship, but he was 
mostly listening and guessing 
what she wanted to hear, as 
opposed to further, deeper 
mathematical thinking. 

MC: 1 
ST: 1 
SI: 0 
DI: 1 
 
Clip 
Total: 3 

Example Response: One of the 
things that gets my attention in this 
video is the size of the class.  It 
doesn't seem like there are many 
students in this class, which can 
make a significant difference in the 
lesson.  If a teacher only has 8 
students or so, much can be done 
and there can be more 
individualized attention.   

The students are making a 
connection to linear equations by 
using objects.  … It seems like 
they understand what's going on, 
and the teacher reinforces what 
they already know in terms of 
multiplication and predicting 
future values. 

MC: 2 
ST: 1 
SI: 0 
DI: 1 
 
Clip 
Total: 4 

Example Response: The student 
was not asked why he thought the 
ratio was part-to-whole.  It was 
good that the teacher had him 
make the 8 red to 0 yellow with 
his coins so he could actually see 
what they were discussing.  When 
the teacher asked the student if 
they looked at the whole group 
yet, there was no response from 
the student.  She just said, "so that 

MC:1 
ST:2 
SI: 2 
DI:2 
 
Clip 
Total: 7 

Example Response: The teacher 
goes too quickly from "add two" to 
"multiply by two".  It seems as if 
she wants students to understand 
that they can figure out a rule 
without knowing every row before 
that row, but she doesn't make the 
distinction between these two. 
There is a difference between the 
recursive rule (add to the previous 
term) and the functional rule (use 

MC:2 
ST:1 
SII: 2 
DI: 2 
 
Clip 
Total: 7 
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wouldn't make it a part to whole, 
it would make it a..."  Essentially, 
she told the student the correct 
answer. 
I'm sure what was confusing the 
student on this problem was the 
fact that the 8 red coins WAS the 
entire set of red coins, which the 
student saw as the whole.  It 
would have been good for the 
teacher to point this out, but note 
that in the ratios that he had 
written (correctly!), he was still 
comparing two parts of the same 
data set. 

the term number).  The teacher 
goes on to say that this works 
because multiplying is the same as 
repeated addition.  This works in 
this problem because row 1 had 2 
plants.  I hope the next problem the 
students do works like this so the 
teacher can distinguish between the 
two types of rules. 
 

 

The first response has two different and somewhat unconnected foci.  The first part of the 

response addresses the small class size and its affordances for teaching and learning in term of 

general teaching strategies, and reflects dimensions of pedagogical/psychological knowledge.  

The response offers little in terms of student assessment and does not discuss assessment 

strategies the teacher in the video clip uses or could have used. In the second part of the response 

the focus is on the mathematics. The response reveals that the teacher knew that the functional 

rule (“P(n) = 2n, n = row number) to describe patterns represents a linear equations and 

multiplicative relationships, for which he receives as score of 2 on the MC rubric, even though 

his response reveals little about how these ideas are connected, and why understanding those 

connections might be important for student learning.  Nevertheless, we might say that it reflects 

content knowledge and specialized content knowledge.  Because the response does not analyze 

students’ mathematical thinking or understanding, yet suggests some assessment of student 

understanding the response receives a 1 on the ST rubric. The response does not include a 

suggestion for improvement and hence receives a score of 0. Finally, the response receives as a 

score of 1 on the DI rubric because it does offer interpretations, but the two main points appear 



17	
	

unconnected. The individual rubric scores reflect the relative strength of this teacher’s content 

knowledge.. If we assume that the entire response reflects this teacher’s most meaningful 

interpretation of the observed teaching episode, then the clip level score represents the teacher’s 

ability to access and strategically combine different knowledge.  

The second example response presents a more coherent analysis of the teaching episode, 

which earns it a score of 2 on the DI rubric. There is an immediate focus on the key 

mathematical idea, the distinction between the recursive description (“It’s +2”) and the 

functional rule (“P(n) = 2n”, n = row number) for describing patterns from a student learning 

perspective.  It is very clear from the response that the teacher has a solid understanding of both 

approaches, reflecting content and pedagogical content knowledge, and which leads to a score of 

2 on the MC rubric. Although he seems to wonder whether the students understood that the row 

number can be used to determine the number of plants, the response does not explicitly analyze 

the mathematical thinking, reflected in a score of 1 on the ST rubric.  He is able to use his 

understanding of repeated addition as multiplication to identify that the connection the teacher in 

the video draws between repeated addition and multiplication only works for describing some 

patterns, as is the case for the pattern presented in this mathematical problem, but not others. 

This concern leads him to conclude that it will be important in future lessons to present different 

kinds of pattern problems so that students are able to understand this important distinction. We 

may call much of this teacher’s demonstrated knowledge part of content knowledge and 

mathematics knowledge for teaching or in Shulman’s terms pedagogical content knowledge. 

Again, the rubric scores provide information about the individual knowledge components the 

teacher used for different aspects of his analysis, while the clip level score represents teachers’ 

ability to access and strategically use the different components. Both responses demonstrate that 
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teachers applied knowledge in their analyses of the teaching episodes, which by definition makes 

it usable.   

Based on our brief analysis of the example responses, three observations may be helpful 

when thinking about knowledge as a functional system. First, different kinds of knowledge are 

required to interpret the teaching episode, as demonstrated by both responses. Second, despite 

our attempts to define and discriminate among different kinds of knowledge, teachers’ 

application of knowledge “in the wild” seems less like a careful analysis based on all 

components, and more like a flexible zeroing in on the kind of analysis most germane to the 

specific situation. Third, when comparing both responses it becomes clear that the second 

response provides a better basis for instructional decision making than the first response. In fact, 

if the second teacher’s concern is any indication, in a comparable classroom situation this teacher 

might give students a pattern problem next that would allow them to understand the distinction 

between the recursive description and the functional rule.  

We do not suggest that analyzing video clips of authentic mathematics instruction is the 

same as making sense of teaching situations in the classroom in real time. We do, however, 

suggest that teachers who are less skillful in analyzing the teaching situations depicted in the 

video clips are not likely to be able to analyze teaching events in a more meaningful way when 

faced with the complexity of a real classroom. In this way, the CVA might serve as a good upper 

bound proxy measure of the knowledge teachers can apply in a real teaching situation.  

Nevertheless, it is important to recognize that teachers’ responses to the video clips 

depend on their understanding of the analysis prompt and might not reflect all the knowledge 

they have.  Finally, a lack of motivation or concentration, much like in actual teaching 

performance, might result in teacher responses that are poor indicators of their actual knowledge 
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and their ability to apply it. Thus, scores on the CVA can only provide information on teachers’ 

knowledge for teaching mathematics as demonstrated in their responses to the CVA video clips. 

2. 2 Analytical Approach and Statistical Models 

In previous studies we have factor analyzed teachers’ individual rubric scores to 

understand how our scoring rubrics function and how they relate to each other. Analyzing the 

individual rubric scores is comparable to an item-level analysis of the different knowledge 

components, which is recommended for instrument development efforts, especially if the 

dimensionality of the instrument is not known, as was the case for the CVA (Bandalos & Finney, 

2009; Magnus, 2013).  

In the current study, we factor analyzed teachers’ clip level scores by summing individual 

rubric scores for each clip. Creating aggregate scores from sets of items, also referred to as item 

parceling, and analyzing those aggregate scores has become an analytic strategy within structural 

equation models for a number of technical reasons, such as to increase score reliability, to reduce 

the number of model parameters to be estimated, and to improve parameter estimates. There 

exists an extensive literature around the effects of analyzing aggregate scores.  

Relevant for our study is the fact that analytical proof as well as simulation and empirical 

studies suggest that aggregating across items or, as in our case, individual rubric scores, will 

affect the dimensionality of the data (i.e., change the factor structure) if the original items 

indicated a multidimensional structure. The extent of the effect item parceling has on 

dimensionality depends on the amount of multidimensionality in the original data and whether 

items that are more similar or less alike are combined. The main concern of those who advise 

against this practice is that the factor structure based on aggregate scores is difficult to interpret 

because it represents the ability or knowledge underlying the aggregate scores, which may not be 
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the same as the original factors. This concern has merit especially when the results from the 

aggregate scores are used to interpret and label the underlying trait, the factor structure of the 

individual items is not known, and when items are combined that measure quite different 

domains. 

In the case of the CVA, however, a teacher’s total clip score represents a teacher’s ability 

to activate and strategically combine different knowledge components to produce the most useful 

analysis of a given teaching episode, while the individual rubric scores, which reflect knowledge 

components, contribute to the overall analysis but separately cannot create the same meaning as 

created by the analysis as a whole.  In this paper we make the argument that teachers’ clip level 

scores reflect a different ability, one that is not captured by the individual rubrics scores. Factor 

analyzing these clip level scores will reveal the structure of this underlying ability.   

To investigate the structure of the clip level scores, we fit simple exploratory factor 

models to the CVA assessment data, using maximum likelihood estimation. 

2.3 Data Sources and Description 

We analyzed responses from elementary and middle school mathematics teachers to three 

different CVA scales (on fractions, on ratios and proportions, and on variables, expressions, and 

equations).  All three samples were convenience samples, but were obtained based on recruiting 

efforts at the national level and hence should represent a considerable range of teacher 

backgrounds, experiences, and teaching contexts. 

We analyzed scored responses from 256 teachers for the topic of fractions, 212 responses 

from the VEE scale and 208 responses to the CVA ratio and proportions assessment.  The CVA 

fraction and RP scales consisted of 13 video clips each, the VEE scale comprised 14 clips in 

total.  The CVA fraction scale contained clips that addressed the meaning of fractions, the idea of 
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equivalence, comparing fractions, and all four fraction operations.  The ratio and proportion scale 

consisted of video clips that addressed the meaning of ratios, interpreting ratios, multiplicative 

reasoning, solving proportions, relationships between solving proportions and algebraic 

reasoning, ratios as fractions and combining ratios. Video clips that form the variables, 

expressions, and equation scale address the meaning of variables, solving equations, modeling 

with variables, understanding patterns, meaning and writing of expressions. Within each CVA 

scale, there was fair amount of variation with respect to the teaching situations and mathematical 

ideas. 

Overall, clip mean scores showed some variation within scales as shown in Table 2. The 

largest differences were observed for the fraction scale; average clip total scores ranged from 

1.77 to 3.63. Variation in average clip scores for VEE and RP were smaller, ranging from 1.58 to 

2.45, and 1.78 to 2.94, respectively. The observed variation in average clip scores might indicate 

that some clips were easier to analyze than others, or that some clips offered more opportunities 

for analysis than others. Standard deviations also varied within scales, indicating that some clips 

produced greater variation in responses than others. Finally, the distribution of clip level total 

scores was somewhat skewed with more responses receiving a total clip scores of 0, 1, or 2 than 

receiving clips scores of 3 and higher. The mean clip total scores, averaged across all clips for 

each scale, were 2.1 and 2.2 for VEE and RP respectively, and 2.9 for fractions. The variation in 

average scores across scales is difficult to interpret because it might reflect differences in teacher 

ability across samples or that the teaching episodes shown in the video clips were relatively more 

difficult for one topic area than another, or both.   

Table 2. 

Means and Standard Deviations of Total Scores by Clip and by Topic Area 



22	
	

 Variables Expressions & 

Equations (VEE) 

Fractions (F) Ratios & Proportions (RP) 

# Video Clip M SD M SD M SD 

 Clip 1Total 2.08 1.99 2.41 2.10 2.41 2.12 

 Clip 2Total 1.94 1.86 3.09 2.51 1.78 1.83 

Clip 3Total 1.86 2.01 3.16 2.73 1.91 1.75 

Clip 4Total 2.36 2.15 3.04 2.17 2.34 2.19 

Clip 5Total 1.58 1.73 3.61 2.51 2.10 2.01 

 Clip 6Total 2.18 2.01 3.63 3.36 2.25 1.85 

Clip 7Total 1.90 1.91 2.43 1.95 2.27 2.10 

Clip 8Total 1.97 2.11 1.77 2.30 2.94 2.38 

Clip 9Total 2.45 2.06 2.50 2.79 2.05 2.20 

Clip 10Total 2.25 2.11 2.59 2.68 2.16 2.06 

Clip 11Total 1.96 1.73 3.18 2.42 2.49 2.05 

Clip 12Total 2.39 2.12 3.40 2.68 2.00 1.72 

Clip 13Total 2.25 2.10 2.85 2.88 2.27 2.13 

Clip14Total 2.23 2.22     

Mean Clip Score 2.1  2.90  2.22  

Notes. NVEE = 201; NRP = 212; NF = 256. 

3 Results 
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Across all three CVA scales, exploratory factor analysis results indicate a strong, single 

dimension that explains a considerable proportion of variance in teachers’ total clip scores. For 

the variables, expressions, and equations CVA scale, a single factor explained 63 percent of the 

variance, and for the fraction and ratio and proportion scales, a single factor explained 55 percent 

of variance, respectively (Table 3). Additional eigenvalues reflecting additional shared variance 

among total clips scores (not already explained by the first factor), were below the commonly 

used Kaiser cutoff value of 1.0 (Fabrigar, Wegener, MacCallum, & Strahan, 1999; Kaiser, 1960), 

and hence negligible. Scree plots of the Eigenvalues are presented in Figure A1a through c in the 

Appendix. 

Table 3.  

Model Summary Table of EFA by Topic 

 Eigenvalue > 1 % Variance Cumulative % 

Variance 

Variables, Expressions, and Equations 8.820 63.00 63.00 

Fractions 7.193 55.33 55.33 

Ratio and Proportions 7.131 54.86 54.86 

Note.  Extraction method = Maximum Likelihood. 

Factor loadings based on total clip scores were large and fairly consistent across clips and 

scales as shown in Table 4. The standardized loadings range from .63 to .85, which can be 

interpreted as representing the correlation between the item and the underlying factor. The 

largest range of factor loadings is observed for the fraction scale, the least variation for the ratio 
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and proportion scale. The results suggest that teachers’ clip level scores are good indicators of 

the underlying ability to access and strategically combine knowledge to produce the most useful 

analysis of a given teaching episode. 

Table 4.  

Standardized Factor Loadings by CVA Scale  

# Video Clips Variables 

Expressions & 

Equations (VEE) 

Fractions (F) Ratios & 

Proportions (RP) 

Clip 1 Total .789 .698 .719 

Clip 2 Total .772 .734 .698 

Clip 4 Total .815 .680 .697 

Clip 5 Total .841 .840 .785 

Clip 6 Total .750 .854 .744 

Clip 7 Total .845 .840 .688 

Clip 8 Total .824 .801 .737 

Clip 9 Total .816 .627 .778 

Clip 10 Total .762 .713 .788 

Clip 11 Total .812 .719 .767 

Clip 12 Total .757 .726 .766 

Clip 13 Total .759 .750 .716 
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Clip 14 Total .821 - - 

 

4 Discussion 

In this article we further explored the classroom video analysis instrument, which is 

based on teachers’ ability to analyze teaching events shown in short video clips of authentic 

classroom instruction. In our prior work, we, like other researchers, have attempted to identify 

and measure separable components of teacher knowledge. In this study we took a different 

approach, viewing teacher knowledge as a system in which different knowledge components are 

flexibly brought to bear on specific teaching situations. To explore this idea we carried out a 

series of exploratory factor analyses using clip-level scores from three different CVA scales 

(fractions, ratio and proportions, and variables, expressions, and equations) to see what we can 

learn about the knowledge the CVA measures and about how teachers activate and use their 

knowledge.  

Results from our exploratory factor analysis of teachers’ clip level scores indicated a 

single, strong factor underlying teachers’ scores with large factor loadings for each of the three 

CVA scales.  The total amount of variance in teachers’ clip level scores explained by the single 

underlying dimension ranged from 55 and 63 percent and factor loadings were large across the 

board (ranging between .62 and .85). The results suggest that clip level scores are good 

indicators of a single dimension underlying teachers’ analyses of the teaching episodes. The 

interpretation of this dimension, however, and what we can learn about the knowledge measured 

by the CVA depends on the meaning of teachers’ clip level scores. Several different 

interpretations are possible. 
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One possible interpretation is that teachers’ clip level scores simply reflect the sum of 

teachers’ usable knowledge, that is, the same knowledge that is captured by the individual rubric 

scores and that is usable because it is applied to a teaching situation. In this case, we would 

interpret the single factor as reflecting usable knowledge, and we would have to reconcile that 

the same construct has different structures depending on the level at which it is measured, which 

raises concern. Earlier analyses of the individual rubric scores revealed a multidimensional 

structure. Used in this way, the term usable knowledge, means knowledge that can be applied. Tt 

implies that the underlying cognitive processes for applying individual knowledge components 

and for strategically accessing and combining those components that are most relevant for 

interpreting a specific teaching situation are the same. 

Another interpretation of our factor analysis results might be that either the 

multidimensional or the unidimensional construct structure represents the “correct” construct 

structure of usable knowledge, while the other solution should be considered a statistical artifact. 

The issue with this interpretation is that it might be difficult to decide which is more appropriate 

because this decision would need to be based on some meaningful rationale. 

There is, however, a third interpretation. This interpretation assumes that the usable 

knowledge captured in teachers’ individual rubric scores is different from the knowledge 

reflected in teacher’s total clip scores. As a result, different dimensionality structures can be 

interpreted meaningfully because they reflect two different competencies. The multidimensional 

structure based on the individual rubric scores would be consistent with the understanding that 

teachers need to have different kinds of knowledge that they can apply to teaching situation. The 

single dimension underlying teachers’ clip level scores, is assumed to capture teachers’ ability to 

activate and strategically use their knowledge to produce interpretations that are most useful to 
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understand a given teaching episode. This interpretation is consistent with a view on knowledge 

as a functional system, in which the meaning created by the analysis as a whole goes beyond the 

meaning conveyed by the individual knowledge components. Viewed from a system perspective, 

usable teacher knowledge requires both individual knowledge components, and an overarching 

ability to access and apply those components that are most relevant to a particular teaching 

episode. 

Classrooms are complex environments and for teachers to act in them effectively, simply 

having lots of knowledge is not going to be enough. In order to make informed instructional 

decisions, teachers need to be able to use their knowledge system efficiently to produce the most 

useful interpretation for a given context. If we assume that instructional decision making relies in 

part on the degree to which teachers’ are able to make sense of teaching situations, then teachers’ 

whole analyses provide a better basis for decision making than any or all of the individual 

knowledge components separately. At this point, we cannot say with certainty whether teachers 

clip level scores measure usable knowledge as a functional system. The factor analyses results by 

themselves do not provide sufficient evidence for this interpretation, but the two example 

responses we discussed show well, both that the entire analysis is more than the sum of its single 

components and that the usefulness and relevance of the analyses varies across teachers. 

What is exciting about the idea of a functional knowledge system is that it can be studied 

and tested in systematic ways. We can imagine studies, in which we ask teachers of different 

levels of knowledge and expertise to interpret the teaching situations shown in the video clips 

and to share through speak-alouds which aspects or events in the episodes attract their attention 

and why. We might learn that teachers are largely unaware of the exact processes that lead to 

their analyses or we might discover some of the rules or the thinking that governs how teachers 
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use their knowledge in the process of teaching. We can also devise studies to test how 

knowledge becomes usable. We could test under which experimental learning conditions 

teachers’ become able to recognize specific instructional strategies or approaches, for example, 

supporting and furthering student thinking, and strategically use this knowledge in their analyses 

of the teaching episodes.  

To be sure, the knowledge dimensions captured by the CVA scoring rubrics are certainly 

not the only dimensions that help describe the knowledge base from which teachers draw, and 

perhaps they are not the most important ones. We only score teachers responses according to 

four rubrics when in reality there are additional knowledge dimensions not captured by the CVA.  

Nevertheless, taking a functional system view on knowledge, however limited realized in the 

CVA, seems a promising avenue for understanding usable knowledge and how teachers use their 

knowledge in the classroom.  
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Appendix 

Figures A1a-c.   

Scree Plots of the Extracted Factor Structure by Topic 

 

1a. Variables, Expressions, and Equations 

 

1b. Fractions 

 

 

1c. Ratios and Proportions 
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