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Machine Learning offers Predictive Insight into the Silver Nanomaterial Protein Corona 

Matthew Findlay, Daniel Freitas 

School of Engineering, Bioengineering 

 

I) Abstract: The use of engineered nanomaterials (ENMs) in consumer and commercial 

products is increasing rapidly. The small size and high surface reactivity of ENMs gives them a 

range of attractive properties, and allows them to be incorporated into various materials. These 

properties make ENMs very appealing to modern industry, but also make ENMs toxic, causing 

serious health and environmental concerns. This toxicity is largely driven by the formation of a 

protein corona on the surface of ENMs. This protein corona is caused by proteins encountered in 

biological systems that bind to the surface of (ENMs). Despite the importance of the protein 

corona, little research has been done to control protein corona formation and model the 

biological conditions that contribute to protein-ENM binding. We present a quantitative 

characterization of proteins found bound on the surface of silver ENMs. A matrix of protein-

ENM reactions were evaluated, including varied ENM sizes and surface coatings, as well as 

solution conditions (e.g. salt concentrations). Machine learning (random forest) classification 

was applied to this protein-ENM data matrix to evaluate the competing roles of the biophysical 

properties of proteins, ENM properties, and solution conditions in mediating formation of the 

ENM protein corona. The resulting model offers an accurate prediction of protein enrichment on 

ENMs with a receiver operating characteristic-score accuracy of 0.83. The effects of each 

variable in the formation of the ENM protein corona is calculated to provide recommendations 

for mechanistic models based upon protein quantification. Our model offers the framework to 

engineer ENMs to minimize the binding of toxic proteins, or maximize the binding of non-toxic 

proteins on the surface of ENMs. 

 

Keywords: Engineered Nanomaterial, Protein Corona, Toxicity, Machine Learning, Mechanistic 

Model, LC-MS/MS Proteomics 
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1.0) Introduction 

 
1.1) Background/Significance 

 

Engineered nanomaterials (ENMs) are a growing constituent of consumer and commercial 

products (figure 11) from transparent sunscreens and textiles to household and industrial cleaning 

supplies. Silver nanoparticles (AgNPs) in particular offer bacterial and UV resistance, semi- 

conductance and can be used as a deodorant. The small size and high surface reactivity of ENMs 

that elicit these attractive properties for use in modern industry can also render ENMs toxic and 

thereby pose serious health concerns. When nanoparticles come into contact with a biological 

system, proteins interact with and bind to the particle surface, forming what has come to be 

known as the protein corona2. These biochemical surface changes, dominated by protein 

adsorption, play a large role in impacting ENM toxicity3, biomagnification4
 and ecological fate5, 

ultimately altering the particles biological ‘identity’, and changing its expected physiological 

response6,7,8. Due to these findings, and findings alike, our project aims to reduce ENM toxicity 

by creating a statistical framework for ENM-Protein interactions, with the hope of informing 

predictive models that can deliver accurate and vital information about ENM-protein reactivity 

and surface adsorption to industry partners involved in manufacturing and implementing ENM 

technologies. This statistical framework will offer a crucial step forward in solving design 

concerns related to the use release of nanomaterials into our global ecosystem.   

 

As the use of ENMs by modern industry continues to increase, toxic ENM waste is released into 

the environment. This ENM waste spreads throughout our global ecosystem into waterways, 

airways, food supplies, residential areas, and eventually into humans (figure 2). Once exposed to 

the environment, ENM waste compounds, their relative toxicity increasing over time. The toxic 

effects of ENM pollution motivates our group to create a statistical framework that will aid in the 
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design of ENMs to reduce toxicity towards not only humans but the many layers of our global 

environment. Nanotechnology is a young field that is growing rapidly, and has the potential to be 

transformative in many areas of science and engineering, already leading to vast advancements 

in medicine9,16 ,the food industry17,textiles, cosmetics and sports. Due to the powerful 

implications of nanotechnology, it is vital that steps are taken to ensure that ENMs are produced 

ethically to reduce human and environmental health concerns. While we understand that large 

scale environmental disasters occur on a daily basis, we argue that these large scale disasters 

distract from the tangible risks of small scale pollutants such as ENMs. In an age where 

technological advancements often take priority over human and environmental health, it is 

crucial that someone steps in to offer a statistical framework that will reduce the ethical concerns 

surrounding the use and release of ENMs. Although it is growing quickly, since nanotechnology 

is still a young field, we have a small window of opportunity to push the growth of the industry 

in an ethical direction before the field starts to grow at an uncontrollable rate.   

            

 

1.2) Review of Literature 

 

When studying the toxic effects of ENMs, researchers have failed to consider relevant biological 

conditions9. In other words, researchers have tested ENMs without consideration of how ENM 

chemistry changes within physiological systems. An example of this change is protein 

adsorption, which leads to the formation of a “corona” on ENMs, leaving the ENM surface with 

little resemblance to the original material6,7,8, in essence changing its biological identity. The 

protein corona permanently alters ENM reactivity and by extension, also ENM toxicity2,10,11,12. 

Although there is extensive evidence of nanomaterial toxicity13,14  and biomagnification4,5 in 

biological environments, little quantitative work has been done to explain the role proteins can 

play in altering nanomaterial fate. Our statistical framework is the first step towards a 

quantitative approach to a problem that has typically been dealt with through qualitative data 

evaluation. To offer a quantitative analysis, we employ machine learning to offer a robust 

predictive model and evaluate the importance of multiple variables. Machine learning has been 
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used to model nanomaterial datasets in the past15. However, we feel our analyses is unique 

because these models have failed to consider the effects of the protein corona.  

 

1.3) Statement of Project Goals and Objectives 

 

To address this issue and produce robust results, Python 2.0 and the scikit-learn package have 

been chosen to employ Random Forest Classification to generate our machine learning model18. 

Random forest classification was chosen as the predictive algorithm due to its relative 

insensitivity to outliers and noise, and ability to internally produce a list of feature importance. 

The power of a predictive model is limited to the quality of the dataset used to generate the 

model, therefore we employ a validated LC-MS/MS procedure previously developed in the 

Wheeler lab19 to acquire accurate and complete proteomics data. Our proteomics data quantifies 

the enrichment of proteins in unbound fractions as well as those bound tightly on the surface of 

nanomaterials. This enrichment data, coupled with protein characteristics taken from online 

databases and the ENM surface properties and solution conditions from our experimental 

procedure, gives our model the necessary data to produce a robust statistical framework that can 

offer strong predictive power into future nanomaterial interactions and offer insight into which 

nanomaterial characteristics can be altered to control protein adsorption. We are hoping that the 

same model we are developing for yeast protein can be applied also to ENM interactions with 

human protein populations and by extension other species as well. Hence the research objectives 

of our project are twofold: (i). To rank the statistical significance of factors relevant to protein-

enrichment and (ii). To construct a classifier model based on the Random Forest algorithm to 

predict the   Protein Corona formation under equilibrium binding conditions. 

 

1.4) Human and Environmental Health Implications 

 

As the use of ENMs by modern industry increases, toxic ENM waste is released into the 

environment.  This ENM waste spreads throughout our global ecosystem into waterways, 

airways, food supplies, residential areas, and eventually humans (Figure 2). Once exposed to the 

global ecosystem, ENM waste compounds, increasing in toxicity over time. The toxic effects of 
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ENM pollution motivates our group to aid in the design of ENMs to reduce toxicity towards not 

only humans but the global ecosystem. Nanotechnology is a young field that is growing rapidly, 

and has the potential to completely transform science and engineering. Due to the powerful 

implications of nanotechnology, it is vital that steps are taken to ensure that ENMs are produced 

ethically to reduce human and environmental health concerns. In an age where technological 

advancements often take priority over human and environmental health, it is crucial that 

someone steps in to offer a statistical framework that will reduce the ethical concerns 

surrounding the use and release of ENMs. Although it is growing quickly, nanotechnology is still 

a young field. We still have a small window of opportunity to push the growth of 

Nanotechnology in an ethical direction before the field starts to grow at an uncontrollable rate.    

 

More specifically, the fate and transport of engineered nanomaterials (ENMs) in the biota is 

mediated by proteins that coat ENMs in a protein corona (PC). An array of in depth experimental 

studies have provided characterization of the ENM PC for various organisms and conditions, 

establishing the importance of PCs; yet, in each new system, a costly PC characterization must 

be performed. The random forest classification approach developed here-in models PC 

populations for an array of ENM properties and reaction conditions, while providing insight into 

feature importance to define which aspects of protein, ENM, and solvent chemistry are most 

important to defining the PC population. The model can be widely applied and the approach 

represents the first step toward a predictive model for ENM PC populations.  

 

1.5) Return on Investment 

 

Investing in our project offers more than just a clean environment and safe world for your 

children. Each year, the National Institute of Health spends 14.5 Billion Dollars on animal 

testing20. Our project offers an alternative method to animal testing by modelling toxicity 

pathways. As computational power increases, more toxicity tests will move to computational 

modelling as it is cheaper, offers a deeper insight into the mechanisms of toxicity, and does not 

harm animals. As the field of toxicity testing shifts to computational means, so will the billions 

of dollars associated thereof. We can use our software design to model other toxicity 
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mechanisms, and have the potential to be one of the first companies to take advantage of this 

paradigm shift. Although our project is deeply rooted in scientific inquiry, it will still produce 

tangible products. Once we finish modelling the protein corona that forms in biological systems, 

we aim to engineer a protein corona that can be pre-applied to ENMs before they are 

incorporated into nano-enabled products (NEPs). The pre-application of a protein corona can 

inhibit undesired protein binding to ENMs when they enter biological environments, giving 

manufactures full control over the fate of ENMs. This protein corona can be patented and sold to 

Nanotechnology manufacturers. If our engineered protein corona is truly effective and minimizes 

ENM toxicity, we predict that it will be required by the EPA for all NEPs. As of right now, there 

have been no attempts to engineer a protein corona, and there are no products that can control 

ENM fate. Our project has no competition and the potential to create a massive return on 

investment.   

 

 

 

 

 

 

 

 

 

 

 
Figure 2: A schematic of how ENMs are spread from 

industry into the ecosystem, impacting human and      

environmental health. (Modified from citation 21)                Figure 1. ENM use over time.  
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2.0) Methods 
 

2.1) Yeast Protein Isolation 

  

2L of BY4 yeast was cultured at 30C up to an optical density of 1 at λ = 595 nm, and was then 

harvested by centrifugation (Alegra X-22R) at 2300 x g for 30 minutes at a time. Cell pellets 

were washed with ice cold water and resuspended in 50 mM Ammonium Bicarbonate (AmBic, 

Sigma), pH 7.4. The resuspended cells were added dropwise to liquid nitrogen and mechanically 

lysed with mortar and pestle. As soon as the cells had been lysed, 50 mM AmBic containing 15 

uL of protease inhibitors (Halt Protease Inhibitor Cocktail, Sigma Aldrich) was added to prevent 

destruction of solubilized proteins. Cell debris was removed by centrifugation (15 min, 3900 x g) 

and the remaining supernatant (containing our yeast protein population) was moved to a clean 

falcon tube. Protein extract was dialyzed, 3 mL at a time, in 1L of 50 mM AmBic, pH 7.4,  with 

3500 MWCO dialyzers and constant stirring. Protein concentration was determined with a BCA 

protein assay kit (Thermo Scientific), and SDS page was performed to confirm that our sample 

contained protein and not peptides. 

  

2.2) Protein-Particle Reaction 

  

We allowed 0.25 mg mL-1 of silver nanoparticles (AgNPs, Nanocomposix) to react with 0.21 mg 

mL-1 of solubilized yeast protein overnight at 37C for each experiment in our matrix, in triplicate. 

AgNPs and the proteins strongly associated to their surface were removed from the unassociated 

proteins in solution by centrifugation (15000 rpm, 30 min). This step was repeated, washing with 

50 mM Ambic between spins, to ensure that only the proteins most tightly bound to the particle 

surface remained, and that those enriched in solution were removed. The removed supernatant 

was placed in eppendorfs labeled ‘unbound’ and the particles spun from solution were suspended 

in 50 mM AmBic and labeled ‘bound.’ The unbound protein samples were concentrated in 3000 

MWCO millipore concentrators by centrifugation at 14000 rpm for 10 min, a total of four times. 

At this point we have two sets of triplicate samples, one set for unbound proteins and one set for 

bound proteins. 
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To reduce disulfide bonds, 5 µL of 200 mM TCEP (Sigma) was added to each sample, which 

were then vortexed, spun down and left to reduce at room temperature for 1h. Sulfhydryl 

alkylation was done by adding 4 µL of 1 M iodoacetamide (Sigma) in 10 mM AmBic left at 

room temperature for 1h, before being neutralized by adding of 20 uL of TCEP and incubated for 

an additional hour. Samples were incubated at 37° C overnight after addition of 2 µL of mass-

spec grade trypsin (promega), in order to digest the proteins in unbound solution and on the 

particle surface. After digestion, any peptide in both the unbound and bound triplicate sets were 

separated from any remaining AgNP debris by centrifugation (15000 rpm, 15 min). Samples 

were packaged and sent to Stanford University Mass Spectrometry Center on dry ice for LC-

MS/MS proteomic analyses. 

  

2.3) Mass Spectrometry 

 

All LC-MS/MS analyses was performed at Stanford University’s mass spectrometry center. 

Digested peptides were suspended in 0.1% trifluoroacetic acid and 2% acetonitrile by 

centrifugation (15000 rpm, 10 min) and sonication. Peptides were then analyzed by LC-MS/MS 

using a Thermo LTQ ion trap mass spectrometer with a nano-spray source after separation at 2 

uL min-1 via 200 µm x 150 mm C18 reversed phase column. The two buffer mobile phase 

system included 0.1% formic acid and acetonitrile, with a 2h long gradient. MS/MS spectra were 

acquired and an MS survey scan was obtained with a m/z range of 375-1400. As previously 

stated, three replicates were used for both the bound and unbound protein sample sets. Peptide 

identification by this method was accepted if there presence was determined with over 85% 

probability.  

 

2.4) Database Development  

 

Protein abundance and spectral counts were obtained from LC-MS/MS. To obtain protein 

enrichment, spectral counts were divided by protein length and then normalized in the database 

as seen in (eq 1). The ratio of bound NSAF values to unbound NSAF values were taken for each 
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protein-particle pair to obtain an enrichment factor. Enrichment factors greater than one were 

considered bound, and enrichment factors less than one were considered unbound. For each 

protein identified by MS proteomics, biophysical characteristics were obtained from Uniprot22, 

including molecular weight, pI, IP number, and amino acid sequence. Interpro numbers23 were 

also included when available for a protein. ENM characteristics were assigned based upon 

experimental characterization. This includes ENM size rounded to 10 or 100 nm and zeta-

potential assigned as a binomial (either negative or positive). Finally, solvent conditions were 

summarized as two categories. The first category was either 0, 0.8, or 3.0 mM NaCl, while the 

second category included either 0 or 0.1 mM cysteine. The database was organized as seen in 

Figure 3. 

 

 

                                                                                          [1] 

                                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Database structure. 
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2.5) Machine Learning Approach  

  

Python was used to employ Random Forest Classification (RFC) with the scikit-learn package. 

RFC was chosen because it is a robust ensemble learning method that combines multiple 

decision trees to form a predictive model that is less susceptible to overfitting than traditional 

decision trees, as seen in Figure 4. Similar approaches have proven successful in analysis of 

other proteomics datasets24 and other predictions of ENM fate25. Each decision tree produces a 

predictive model by splitting data using simple decisional rules.26  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RFC then returns the majority vote produced by the group of predictive models. Our 

implementation of RFC can be summarized into five steps, summarized in Figure 5: (1.) Each 

protein-particle pair in the database was represented as a vector containing each feature as a 

normalized dimension. (2.) 90 % of the dataset was randomly partitioned from the database to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Combining multiple decision trees to reduce overfitting. Multiple decision trees 

are grown from random subsets of the database. A one represents a prediction of bound, and a 

zero represents a prediction of unbound. All of the predictions are averaged to give a 

probability of binding. If the probability is greater than or equal to five, the prediction is 

considered bound. 
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train the model, leaving 10% of the data to test the model. (3.) 10,000 random bootstrap samples 

of size log(n) were drawn from the testing partition and a decision tree was grown from each 

sample, (4.) The predictions produced by each tree were aggregated and used to classify proteins 

as PC or non-PC based on the majority vote between the trees. (5.) This process was repeated 50 

times, each time with a newly selected random database partition to avoid bias. Majority voting 

between trees reduces the risk of overfitting as the decision trees containing outliers and noise 

will be outnumbered by the rest of the decision trees during the voting process. 

 

 

 
 

 

Figure 5: Graphical depiction of the data partitioning scheme and model structure. 
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2.6) Dimensionality Reduction 

 

To remove noise from the dataset Recursive Feature Elimination and Cross-Validation was 

employed (RFECV) using the criteria of mean decrease impurity. The mean decrease impurity is 

defined as the weighted probability of reaching a node in a decision tree averaged over all of the 

10,000 trees.  

RFECV is an adopted dimensionality reduction algorithm based on the idea of recursively 

constructing a model, choosing the least important variable (based on average decrease 

impurity), removing the variable, and reconstructing the model. At each iteration, 5-fold cross-

validation is conducted to determine the predictive power of the model. The iteration with the 

best power contains the optimum number of features to train the model. 

 

2.7) Model Validation 

 

To give a clear and un-bias validation of our model, several validation metrics common in the 

fields of biostatistics and machine learning were employed. These metrics include precision, 

recall, F1-score, area under the receiver operating characteristic curve (AUROC),27-30 and 

accuracy. In a binary decision problem, a classifier labels data as either positive or negative. In 

this case, positive means that a protein will be part of the PC, and negative means the protein will 

be Non-PC. This gives our classifier four possible outcomes: (1.) A protein is properly classified 

as PC (True positive). (2.) A protein is improperly classified as PC (False Positive). (3.) A 

protein is properly classified as Non-PC (True Negative) (4.) A protein is improperly classified 

as Non-PC (False Negative). These four possible outcomes can be counted and summarized 

using our validation metrics. Recall is the number of true positives divided by the total PC-

proteins in the dataset. Precision is the number of true positives divided by the sum of true 

positives and false positives produced by the model. The F1-Score is simply the harmonic mean 

of precision and recall. Accuracy is the number of true positives and true negatives divided by 

the total number of classifications made by the model. The ROC curve shows how the number of 

true positives varies with the number of false positives produced by the model at different 
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cutoffs. The AUROC is the area under the ROC curve, AUROC is typically reported as it gives a 

normalized score between 0 and 1 produced by the ROC curve. 

 

2.8) Comparison to other Algorithms 

Support Vector Machines (SVM)31 and Logistic Regression (LR)32 were employed along with 

the RFC algorithm on the dataset to produce a well-rounded understanding of the predictive 

power that could be generated from database. SVM and LR were chosen due to their extensive 

use in the fields of biostatistics and machine learning. SVM was employed for classification with 

a radial basis function kernel known as the Gaussian kernel [equation 2], and binary LR was fit 

with a logit model [equation 3]. Both models performed well on the dataset suggesting that 

future work may benefit from the use of several machine learning algorithms in ensemble 

fashion. 

 

 

iablefeaturebinaryx
cutoffNSAFonbasedbindingofyprobabilitpi

x
p
p

parameterSpread

vectorssettrainingbetweencedisEuclideanSquaredxx

xx
xxK

i
i

i

var

]3[
1

log

2

tan'

]2[
2
'

exp)',(

1

10

2

2

2

2

ββ

σ

σ

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−= !

 

 

 

 

2.9) Assessing feature importance with random forests 

A measure of variable importance was calculated as the mean decrease impurity in the 10,000 

implemented decision trees.33  
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3.0) Results and Discussion 
 

3.1) Database  

 

A proteomics produced database of yeast protein enrichment on silver (Ag) ENMs was used for 

the machine learning model because of the ubiquity of yeast in the environment, widespread use 

of Ag ENMs in consumer products, and extensive set of proteins characterized in the database. 

The Ag ENM PC database includes 1414 yeast proteins characterized for enrichment on Ag 

ENMs as detailed in Eignheer et al. Protein enrichment was evaluated by the log of the ratio of 

protein abundance in solution and on an Ag ENM, resulting in enrichment factors that are 

positive for proteins enriched on Ag ENMs and negative for those enriched in solution. A total of 

3012 protein enrichment values were recorded. Within the Ag ENM PC database used for this 

study, the majority of proteins show weak enrichment in solution or on ENMs and few are 

strongly enriched in either population. Logarithmic Enrichment factors across all the particles 

were plotted as a histogram (Figure 6). Across the entire dataset, the enrichment data forms a 

relatively Gaussian distribution. This is as expected, since the majority of proteins are not 

expected to have strong enrichment in PC or solution. Yet, there are many proteins still present 

in the tails of the distribution with strong enrichment in PC or solution. Importantly, when the 

histogram is plotted for each individual sample, trends are clearly visualized. For example, the 

histogram for positively and negatively charged Ag ENMs with no cysteine or NaCl are 

significantly different, where the positively charged Ag ENMs have a smoother distribution of 

enrichment than those with a negative surface coating. Yet when solvent conditions are changed, 

the distribution of the negatively charged ag ENMs become more similar to the positively 

charged Ag ENMs. 

 

For each yeast protein evaluated for enrichment, nine physiochemical features/parameters were 

recorded, along with solvent features (2 levels) and Ag ENM (2 levels) characteristics. The 

experimental variables comprised in the nine training features are listed in Table 2 with the 

corresponding range of each feature. Because of the large number of proteins examined 

(N=3013) it can be assumed that the logarithmic enrichment factors and other protein properties 
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are randomly-distributed across the experimental database. By comparison to protein features, 

ENM and solvent properties are underrepresented in the model training features. Variations in 

ENM and solvent. properties are more difficult to explore, because expansion of these variables 

in the experimental matrix requires a new protein-ENM reaction and proteomics runs.  

 

 

 

 
 

 

 
 

 

a b 

c d 
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Figure 6: Histogram of logarithmic enrichment factors for all proteins across the range of 

ENMs and solution conditions within the database. The histogram is shown with 50 bins. The 

enrichment from all datasets is shown in (a). The enrichment distribution for each individual 

sample is shown as follows: (b) cationic branched polyethyleneimine coated 10 nm Ag ENMs in 

10 mM sodium phosphate pH 7.4, (c) anionic citrate coated 10 nm Ag ENMs in 10 mM sodium 

phosphate pH 7.4, (d) anionic citrate coated 100 nm Ag ENMs in 10 mM sodium phosphate pH 

7.4, (e) anionic citrate coated 10 nm Ag ENMs in 10 mM sodium phosphate pH 7.4 with 0.1 mM 

cysteine, (f) anionic citrate coated 10 nm Ag ENMs in 10 mM sodium phosphate pH 7.4 with 0.8 

mM sodium chloride, and (g) anionic citrate coated 10 nm Ag ENMs in 10 mM sodium 

phosphate pH 7.4 with 3.0 mM sodium chloride. 

e f 

g 
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Table 1 Domain of physicochemical features within the training and target dataset used for 

the machine learning effort. 

 

3.2) Dimensionality Reduction 

To remove features with no predictive value from the dataset, recursive feature elimination and 

cross-validation was employed (RFECV). Although originally included in the model in response 

to suggestions from Rihn and Joubert34, protein InterPro numbers were eliminated from the 

model by the RFECV analysis Figure 7. With this elimination, data dimensionality was reduced 

from thirteen to twelve dimensions, including biophysicochemical features of the proteins, 

ENMs, and solvent (vide infra).  
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Figure 7: RFECV Results. Categorical variables were represented as dummy variables, 

increasing dimensionality to 50. Variables of least importance were deleted iteratively. The best 

performance was found with 13 dummy variables. 

 

3.3) Model Validation 

 

To validate the model, standard machine learning metrics were used, including precision, recall, 

accuracy, and the F1-score. Validation metrics are summarized in Table 2 along with a raw 

confusion matrix Figure 8. Precision and recall are widely used performance metrics that offer a 

well-rounded evaluation of predictive performance. Model precision is 0.77 ± 0.02, indicating 

that 77 % of the PC assignments made by the model were truly PC proteins. Recall is 0.85 ± 

0.02. In other words, 85% of the PC proteins in the dataset were predicted as PC.  The F1-Score, 

the harmonic mean of precision and recall, was 0.81 ± 0.02 for this model. With an accuracy of 

0.76 ± 0.02, the model has a good predictive power for both PC proteins and non-PC proteins. 



 18	

 

To further model validation, a receiver operating characteristic (ROC) curve was plotted with 

302 decisional thresholds based on the models outputted probability of binding (Figure 9a). 

Generally, the convex shape of the ROC curve indicates a higher true positive rate at the expense 

of relatively lower false positive rate. In other words, the likelihood of correctly classifying a 

protein as PC is high, while incorrect classifications of PC are low. The area under the receiver 

operating curve (AUROC) for the resulting model is generally considered indicative of the 

predictive power of the model27–29 and can be interpreted as the model’s ability to correctly 

classify proteins as PC or non-PC. With an AUROC of 0.83, the model performs significantly 

higher than the value of 0.5 for a random guess curve. More specifically, AUROC scores are 

evaluated relative to the complexity of the classification task. As the first to test this approach on 

ENM PC predictions, this work establishes a baseline of AUC performance for future predictive 

models. To provide a comparative metric for a problem of similar complexity, protein-protein 

binding predictions, Sain et al35 report an AUCROC score of 0.7, which is typically considered 

strong for problems of this complexity. Related, the Youden index defines the threshold in the 

ROC curve that gives the best performance (Figure 9b). The optimum threshold was found to be 

0.5, as seen by the maximum Youden index value. In other words, our ensemble method 

performs as expected, where the most proteins are properly assigned as PC when 50% or more 

decision trees assign the protein as PC. 
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Table 2: Validation metrics, scores, and accompanied equations. 

 

                         
 

Figure 8: Raw confusion matrix with the average predicted result when the model runs 50 times. 
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Figure 9: Receiver operating curve (a) and Youden index curve (b) for the final model. The 

receiver operating curve for the model (a) is shown with a solid line, error bars are in light blue, 

and the random guess curve is shown with a dashed line. The area under the curve for the 

receiver operating curve (AUROC) is 0.83. The Youden index curve (b) for the model is shown 

with a solid black line and error bars in grey-blue. The threshold for the maximum Youden index 

is 0.5.  

 

3.4) Comparison with other models  

 

Two other well-established algorithms were employed to provide a comparative for the RFC 

approach. Logistic regression (LR) and support vector machines (SVM) were chosen because of 

their extensive use in the fields of artificial intelligence and biostatistics.28,29,30 The SVM and LR 

algorithms were trained and tested with the same method as the random forests. The F1-score for 

these methods are 0.80 and 0.75, respectively, as summarized in Table 3. A lower F1-score for 

LR is not surprising, as LR fits to data points as if they are along a continuous function and 

therefore doesn’t perform well when the feature space is too large and there is a large number of 

variables. Although SVM performed similarly to RFC, we still prioritize use of RFC in this 

context because it includes intuitive decision rules and is more readily accessible. It is possible, 

however, that future work with an expanded dataset, including significantly more features and 

observations, will perform better with the SVM algorithm. 



 21	

 
 

Table 3: The discriminatory capability of each model. Random Forest Classification and 

Support Vector Maches both have strong performance, Logistic Regression does not perform as 

well as the other classifiers.  

 

3.5) Feature Importance Results 

In addition to its ability to take into account variable interactions, RCF is useful because it can 

provide a measure of hierarchical variable importance. These feature weights give insight into 

the variables of importance in predicting and controlling ENM-protein interactions. Feature 

importance is shown in Figure 10. The pareto indicates that protein biophysical characteristics 

are more strongly weighted than solvent and ENM characteristics within the model and that   

protein characteristics dominate PC formation. The comparative sample for ENM and solvent 

characteristics is simply too small to derive conclusions across protein, ENM, and solvent 

features. Relative importance within each of these three feature sets, however, are useful to 

compare.  

 

Among protein features, factors contributing to protein charge, including pI and percent of 

positively and negatively charged amino acids, together make-up nearly 50 % of feature 

importance. This reinforces earlier studies qualitatively reporting the importance of protein 

charge in PC formation16,19: Long-range electrostatic interactions drive initial protein-ENM 

interactions  playing a significant role in the stability of the hard corona. The slightly higher 

weight of salt concentration over cysteine within solvent features again points to the importance 

of electrostatics in PC formation. Our data also supports that proteins with higher pI values tend 

to bind to ENMs, as seen in Figure 11. 
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Across ENM features examined, ENM size and surface charge are weighed nearly evenly. This 

result is somewhat surprising, given the importance of electrostatics within the array of protein 

features; however, it indicates the importance of contributions from other features in model 

accuracy. Notably, within protein features, percentage of hydrophilic and aromatic amino acids, 

along with cysteine, also contribute significantly at nearly 25 %, indicating that hydrophobic 

interactions and perhaps metal-thiol bonds play a secondary role in the stability of the hard 

corona. As previously discussed, there is some selectivity for molecular weight within the PC4,6. 

This data supports correlations between ENM and protein size and contributes to the hypothesis 

that decreased curvature of large ENMs may more easily support larger proteins.   

  

 
 

 

Figure 10: Weighted importance of each feature included in the final model. Protein features 

are shown in green, ENM features in blue, and solvent features in red. Error bards are shown 

with black lines. 
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Figure 11: Clustered pI and protein weight values over the entire database. Light proteins 

with a high pI tend to bind to ENMs, while light proteins with lower pI tend not to bind to 

ENMs. 

 

4.0 Conclusion and Future Efforts 

 
A machine learning model was developed that predicts the PC population using protein bio-

physicochemical characteristics, basic ENM properties, and solution conditions. The model was 

proven robust with a strong AUROC (0.83), Youden index (0.50)  evaluation, and has 

demonstrated high precision (0.77) and recall (0.85) in multiple test datasets (50). Mechanistic 

models of protein-ENM interactions have yet to be developed for ENMs within a complex 

mixture of proteins. A key feature of the machine learning method is the ability to provide a 

weighted list of feature importance in the model, and suggest factors mediating protein and ENM 

charge are most important, followed by secondary features such as protein and ENM size. 

 

The results demonstrate that an applied machine learning approach (RFC) can enable prediction 

of a PC population with routine experimental data and easily accessed protein biophysical 
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characteristics; importantly, the model has proven robust without mechanistic insights or 

experimentally complex variables such as protein-protein interaction maps. As publicly available 

databases with quantitative protein enrichment data expand, the model can be readily tested on 

PC populations in other systems. Indeed, application to new datasets will enhance insights into 

the contribution of ENM and solvent properties in the model.    
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Appendix A: Source Code 
""" 
Matthew Findlay 
Santa Clara University 
Dr. Wheeler's Lab 
 
This Script predicts if proteins will be found in the protein corona on the surface of Engineered 
Nanomaterials. 
To achieve this we first experimentally isolate proteins that bind and do not bind to engineered 
nanomaterials 
under a variety of relevant biological conditions. We send these protein samples to Stanford's to 
LC-MS/MS facilities 
to identify the proteins and their associated spectral counts. We then mine online databases to 
create a database 
containing information about the proteins, particles, and solvent conditions. 
To make predictions from our database we use a random forest classification algorithm. 
We validate our classifications with several statistical methods including ROC curves. 
""" 
import math 
import numpy as np 
import pandas as pd 
import sklearn 
from sklearn.metrics import roc_auc_score, roc_curve, auc 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.feature_selection import RFECV 
from sklearn.grid_search import GridSearchCV 
import matplotlib.pyplot as plt 
from sys import argv 
import sys 
import json 
 
class RandomForestClassifierWithCoef(RandomForestClassifier): 
    """Adds feature weights for each returned variable""" 
    def fit(self, *args, **kwargs): 
        """Overloaded fit method to include the feature importances 
        of each variable. This is used for RFECV 
        """ 
        super(RandomForestClassifierWithCoef, self).fit(*args, **kwargs) 
        self.coef_ = self.feature_importances_ 
 
class validation_metrics(object): 
    """Several statistical tests used to validate the models predictive power 
    Takes True results of the test data and the models results as parameters for constructor 
    """ 
    def __init__(self, true_results, predicted_results): 
        self.true_results = true_results 
        self.predicted_results = predicted_results 
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    def youden_index(self, plot=1): 
        """Calculates the youden_index for each threshold 
        Takes no arguments except option to turn off plot 
        Unless Specified, outputs a plot of Youden Index vs. thresholds 
        """ 
        youden_index_values = [] 
        tpr = [] 
        fpt = [] 
        fpr, tpr, thresholds = set_threshold_roc_curve(self.true_results, self.predicted_results, 
pos_label=1, drop_intermediate=True) 
        print thresholds 
        for i in range(0, len(thresholds)): 
            YI=((tpr[i]+(1-fpr[i])-1))/(math.sqrt(2)) 
            youden_index_values.append(YI) 
 
        if(plot): 
            plt.figure(figsize=(12, 9)) 
            ax = plt.subplot(111) 
            ax.spines["top"].set_visible(False) 
            ax.spines["right"].set_visible(False) 
            ax.get_xaxis().tick_bottom() 
            ax.get_yaxis().tick_left() 
            plt.xticks(fontsize=19) 
            plt.yticks(fontsize=19) 
            plt.ylim([0.0, 0.5]) 
            plt.title('Optimal Accuracy Cutoff', fontsize=22) 
            plt.xlabel('Classification Cutoff Threshold',fontsize=20) 
            plt.ylabel('Youden Index',fontsize=20) 
            plt.plot(thresholds, youden_index_values, color="#800000", linewidth=2) 
            plt.show() 
 
    def roc_curve(self, plot=1): 
        """Plots the Reciever Operating Characteristic Curve 
        Takes no arguments aside from option to turn off plot 
        Unless specified, outputs a ROC curve 
        """ 
        roc = roc_auc_score(self.true_results, self.predicted_results) 
        fpr, tpr, thresholds = set_threshold_roc_curve(self.true_results, self.predicted_results, 
pos_label=1, drop_intermediate=True) 
 
        if(plot): 
            plt.figure(figsize=(12, 9)) 
            ax = plt.subplot(111) 
            ax.spines["top"].set_visible(False) 
            ax.spines["right"].set_visible(False) 
            ax.get_xaxis().tick_bottom() 
            ax.get_yaxis().tick_left() 
            plt.xlim([0.0, 1.01]) 
            plt.ylim([0.0, 1.01]) 
            plt.xticks(fontsize=19) 
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            plt.yticks(fontsize=19) 
            plt.plot(fpr, tpr, label='Area Under the Curve=%.2f' % roc, color="#800000", linewidth=2) 
            plt.plot([0, 1], [0, 1], 'k--', label = 'Area Under the Random Guess Curve=0.5') 
            plt.xlabel('1-specificity', fontsize=20) 
            plt.ylabel('Sensitivity', fontsize=20) 
            plt.title('Receiver Operating Characteristic Curve', fontsize=22) 
            plt.legend(loc="lower right") 
            plt.show() 
 
    def well_rounded_validation(self): 
        """Calculates a handful of important model validation metrics. I consider this a well rounded 
validation 
        Takes no arguments 
        Returns a Dict containing the AUROC, Recall, Precision, F1-score, Accuracy, and 
confusion matrix from the model 
        """ 
        classified_predictions = classify(self.predicted_results, 0.5) 
        conf_matrix = sklearn.metrics.confusion_matrix(self.true_results, classified_predictions, 
labels=None) 
 
        return { 
                "AUROC" : roc_auc_score(self.true_results, self.predicted_results), 
                "Recall" : sklearn.metrics.recall_score(self.true_results, classified_predictions, 
labels=None, pos_label=1, average=None, sample_weight=None)[1], 
                "Precision" : sklearn.metrics.precision_score(self.true_results, classified_predictions, 
labels=None, pos_label=1, average=None, sample_weight=None)[1], 
                "F1 Score" : sklearn.metrics.f1_score(self.true_results, classified_predictions), 
                "Accuracy" : sklearn.metrics.accuracy_score(self.true_results, classified_predictions), 
                "Confusion Matrix" : [conf_matrix[0][0], conf_matrix[0][1], conf_matrix[1][0], 
conf_matrix[1][1]] 
                } 
 
class visualize_data(object): 
    """Offers an easy way to create beautiful histograms for the input data 
    Takes a target value as constructor variable (enrichment values) 
    """ 
    def __init__(self, enrichment): 
        self.enrichment = enrichment 
        self.target = classify(enrichment, 1.0) 
 
    def continous_data_distribution(self, enrichment, particle): 
        """This function creates a dank histogram of given data 
        Takes a title and enrichment values as parameters 
        outputs aesthetic graph 
        """ 
        plt.figure(figsize=(12, 9)) 
        ax = plt.subplot(111) 
        ax.spines["top"].set_visible(False) 
        ax.spines["right"].set_visible(False) 
        ax.get_xaxis().tick_bottom() 
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        ax.get_yaxis().tick_left() 
        plt.xticks(fontsize=26) 
        plt.yticks(fontsize=26) 
        plt.ylim([0.0, 100]) 
        plt.xlim([-3.0,3.0]) 
        plt.hist(np.log10(enrichment), bins=25, color = "#3F5D7D") 
        #plt.title('Histogram of '  + str(particle), y=1.08, fontsize=22) 
        plt.ylabel('Frequency', fontsize=26) 
        plt.xlabel('Logarithmic Enrichment Factor', fontsize=26) 
        plt.tight_layout() 
        plt.show() 
 
    def visualize_by_particle(self): 
        """Visualizes all the particle types in the dataset 
        Takes no arguments 
        Outputs 7 graphs, one for each reaction condition 
        """ 
        self.continous_data_distribution(self.enrichment, 'Enrichment Factors on All Particles in 
The Database with 50 bins') 
        self.continous_data_distribution(self.enrichment[0:356], 'Enrichment Factors on the 
Positive 10nm Silver Nanoparticle \n with no Solute') 
        self.continous_data_distribution(self.enrichment[356:924], 'Enrichment Factors on the 
Negative 10nm Silver Nanoparticle \n with no Solute') 
        self.continous_data_distribution(self.enrichment[924:1502], 'Enrichment Factors on the 
Negative 100nm Silver Nanoparticle \n with no Solute') 
        self.continous_data_distribution(self.enrichment[1502:1989], 'Enrichment Factors on the 
Negative 10nm Silver Nanoparticle \n with 0.1mM Cysteine') 
        self.continous_data_distribution(self.enrichment[1989:2499], 'Enrichment Factors on the 
Negative 10nm Silver Nanoparticle \n with 0.8 mM NaCl' ) 
        self.continous_data_distribution(self.enrichment[2499:3013], 'Enrichment Factors on the 
Negative 10nm Silver Nanoparticle \n with 3.0 mM NaCl') 
        self.discrete_data_distribution() 
 
    def scatterplot(self, data, x, y): 
        """ 
        Takes in the dataframe and two columns of choice. 
        Outputs a 2-d scatter plot of the data 
        """ 
        bound_x = [] 
        bound_y = [] 
        unbound_x = [] 
        unbound_y = [] 
        for i, k in enumerate(self.target): 
            if k == 0: 
                bound_x.append(data[x][i]) 
                bound_y.append(data[y][i]) 
            else: 
                unbound_x.append(data[x][i]) 
                unbound_y.append(data[y][i]) 
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        line = plt.figure() 
 
        plt.plot(unbound_y, unbound_x, "o", color='r', alpha=0.5) 
        plt.plot(bound_y, bound_x, "o", color='g', alpha=0.5) 
        plt.ylim([0, max(data[x])]) 
        plt.xlim([0, max(data[y])]) 
        plt.legend(('Bound', 'Unbound'), fontsize=18) 
        plt.ylabel(str(x), fontsize = 26) 
        plt.xlabel(str(y), fontsize=26) 
 
def random_number(): 
    """This function imports the current time in nanoseconds to use as a pseudo-random number 
    Takes no arguments 
    Returns pseuo-random number 
    """ 
    from datetime import datetime 
    dt = datetime.now() 
    rnum = dt.microsecond 
    return rnum 
 
def optimize(model, training_data, training_results): 
    """This function optimizes the machine learning classifier, returning the parameters that give 
the best accuracy 
    Takes the model, training data and training targets as arguments 
    Outputs the best Parameters 
    """ 
    #add whatever your heart desires to param grid, keep in mind its an incredibly inefficient 
algorithm 
    param_grid = { 
        'n_estimators': [1000], 
        'max_features': ['auto'], 
        'max_depth': [None], 
        'min_samples_split': [5], 
        'min_samples_leaf': [1], 
        'n_jobs': [-1], 
        'random_state' : [46, 0] 
    } 
    #5 fold validation 
    CV_est = GridSearchCV(estimator=model, param_grid=param_grid, cv= 5) 
    CV_est.fit(training_data, training_results) 
    print CV_est.best_params_ 
 
def recursive_feature_elimination(model, training_data, training_results): 
    """Runs RFECV with 5 folds 
    Takes model, training features, and targets as command line arguments 
    Outputs optimum features 
    """ 
    selector = RFECV(estimator=model, step=1, cv=5, scoring='roc_auc', verbose=1) 
    selector = selector.fit(training_data, training_results) 
    print selector.support_ 
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    print "\n" 
    print selector.ranking_ 
    print "\n" 
    print "Optimal number of features: " 
    print selector.n_features_ 
    print "\n" 
    print selector.grid_scores_ 
 
def get_dummies(dataframe, category): 
    """This function converts categorical variables into dummy variables 
    Takes pandas dataframe and the catefory name as arguments 
    Returns the dataframe with new dummy variables 
    """ 
    dummy = pd.get_dummies(dataframe[category], prefix=category) 
    dataframe = pd.concat([dataframe,dummy], axis = 1) 
    dataframe.drop(category, axis=1, inplace=True) 
    return dataframe 
 
def classify(proba, cutoff): 
    """This function classifies particles as bound or unbound 
    Takes unclassified data the cutoff as arguments 
    returns classified data in a list 
    """ 
    predicted_results = [] 
    for i in proba: 
        if i >= cutoff: 
            temp = 1 
        else: 
            temp = 0 
        predicted_results.append(temp) 
 
    return predicted_results 
 
def stable_cumsum(arr, rtol=1e-05, atol=1e-08): 
    """ 
    Taken From sci-kit learn documentation to help set_threshold_roc_curve 
    Altered to give a constant amount of thresholds for the roc curve 
    """ 
    out = np.cumsum(arr, dtype=np.float64) 
    expected = np.sum(arr, dtype=np.float64) 
    if not np.allclose(out[-1], expected, rtol=rtol, atol=atol): 
        raise RuntimeError('cumsum was found to be unstable: ' 
                           'its last element does not correspond to sum') 
    return out 
 
def set_threshold_roc_curve(y_true, y_score, pos_label=None, sample_weight=None, 
              drop_intermediate=True): 
    """ 
    Taken from sci-kit learn documentation 
    Altered to give a constant amount of thresholds for the roc curve 
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    """ 
    fps, tps, thresholds = _binary_clf_curve( 
        y_true, y_score, pos_label=pos_label, sample_weight=sample_weight) 
    if tps.size == 0 or fps[0] != 0: 
        # Add an extra threshold position if necessary 
        tps = np.r_[0, tps] 
        fps = np.r_[0, fps] 
        thresholds = np.r_[thresholds[0] + 1, thresholds] 
    if fps[-1] <= 0: 
        warnings.warn("No negative samples in y_true, " 
                      "false positive value should be meaningless", 
                      UndefinedMetricWarning) 
        fpr = np.repeat(np.nan, fps.shape) 
    else: 
        fpr = fps / fps[-1] 
    if tps[-1] <= 0: 
        warnings.warn("No positive samples in y_true, " 
                      "true positive value should be meaningless", 
                      UndefinedMetricWarning) 
        tpr = np.repeat(np.nan, tps.shape) 
    else: 
        tpr = tps / tps[-1] 
    return fpr, tpr, thresholds 
 
def _binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None): 
    """ 
    Taken from sci-kit learn documentation to help set_threshold_roc_curve() 
    Altered to return a constant amount of thrsholds for each roc curve 
    Calculate true and false positives per binary classification threshold. 
    """ 
    if sample_weight is not None: 
        sample_weight = column_or_1d(sample_weight) 
    # ensure binary classification if pos_label is not specified 
    classes = np.unique(y_true) 
    if (pos_label is None and 
        not (array_equal(classes, [0, 1]) or 
             array_equal(classes, [-1, 1]) or 
             array_equal(classes, [0]) or 
             array_equal(classes, [-1]) or 
             array_equal(classes, [1]))): 
        raise ValueError("Data is not binary and pos_label is not specified") 
    elif pos_label is None: 
        pos_label = 1. 
    # make y_true a boolean vector 
    y_true = (y_true == pos_label) 
    # sort scores and corresponding truth values 
    desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1] 
    y_score = y_score[desc_score_indices] 
    y_true = y_true[desc_score_indices] 
    if sample_weight is not None: 
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        weight = sample_weight[desc_score_indices] 
    else: 
        weight = 1. 
    # y_score typically has many tied values. Here we extract 
    # the indices associated with the distinct values. We also 
    # concatenate a value for the end of the curve. 
    distinct_value_indices = np.where(np.diff(y_score))[0] 
    threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1] 
    # accumulate the true positives with decreasing threshold 
    tps = stable_cumsum(y_true * weight)[threshold_idxs] 
    if sample_weight is not None: 
        fps = stable_cumsum(weight)[threshold_idxs] - tps 
    else: 
        fps = 1 + threshold_idxs - tps 
    return fps, tps, y_score[threshold_idxs] 
 
def clean_print(obj): 
    """ 
    Prints the JSON in a clean format for all my 
    Biochemistry friends 
    """ 
    if type(obj) == dict: 
        for key, val in obj.items(): 
            if hasattr(val, '__iter__'): 
                print "\n" + key 
                clean_print(val) 
            else: 
                print '%s : %s' % (key, val) 
    elif type(obj) == list: 
        for val in obj: 
            if hasattr(val, '__iter__'): 
                clean_print(val) 
            else: 
                print val 
    else: 
        print str(obj) + "\n" 
 
def fetch_data(): 
    """ 
    Pulls the Data from CSV format. Returns 3012 measured protein-particle 
    interactions represented as vectors 
    """ 
    try: 
        data = pd.read_csv("train.csv") 
        target = pd.read_csv("class_result.csv") 
        enrichment = pd.read_csv("result.csv") 
    except: 
        "Error Fetching CSV Data" 
    #One hot encoding of categorical data 
    data = get_dummies(data, 'size') 
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    data = get_dummies(data, 'charge') 
    data = get_dummies(data, 'salt') 
    data = get_dummies(data, 'cysteine') 
    #Fill NaN's with average value in Abundance data 
    count = 0 
    total = 0 
    for val in data['Abundance']: 
        if not np.isnan(val): 
            count+=1 
            total+=val 
    data = data.fillna(total/count) 
    #Normalize the data 
    min_max_scaler = sklearn.preprocessing.MinMaxScaler() 
    np_scaled = min_max_scaler.fit_transform(data) 
    df_normalized = pd.DataFrame(np_scaled) 
    #Classify enrichment data, using enrichment ratio of 1 
    classed_enrich = [] 
    for i in enrichment.itertuples(): 
        if i[1] >= 1: 
            temp = 1 
        else: 
            temp = 0 
        classed_enrich.append(temp) 
    #split data into training and testing set. Use testing set to validate model at the end 
    training_data, test_data, training_results, test_results = 
sklearn.cross_validation.train_test_split(df_normalized, classed_enrich, test_size=0.1, 
random_state = random_number()) 
    training_results= np.ravel(training_results) 
    #Ravel those vectors 
    test_results = np.ravel(test_results) 
    enrichment = np.ravel(enrichment) 
    target = np.ravel(target) 
 
    return training_data, test_data, training_results, test_results, enrichment, target, data 
 
def main(): 
    training_data, test_data, training_results, test_results, enrichment, target, data = fetch_data() 
    #Visualize the data 
    vis = visualize_data(enrichment) 
    vis.visualize_by_particle() 
    #vis.scatterplot(data, 'Pi', 'Weight') 
    #Print Relevant information 
    print "Amount of Training data: " + str(len(training_data)) 
    print "Amount of Testing Data: " + str(len(test_data)) 
 
    est = RandomForestClassifierWithCoef( 
                                 #criterion='mse',             #mean squared error criterion 
                                 n_estimators=10000,             #number of trees used by the algorithm 
                                 oob_score=True,               #Out of box score 
                                 max_features='auto',          #features at each split (auto=all) 
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                                 max_depth=None,               #max tree depth 
                                 min_samples_split=5,          #minimum amount of samples to split a node 
                                 min_samples_leaf=1,           #minimum amount of samples a leaf can 
contain 
                                 min_weight_fraction_leaf=0,   #minimum weight fraction of samples in a 
leaf 
                                 max_leaf_nodes=None,          #maximum amount of leaf nodes 
                                 n_jobs=-1,                    #CPU Cores used (-1 uses all) 
                                 random_state=random_number()  #Initialize random seed generator 
                                 ) 
 
    est.fit(training_data, training_results)                  #fit model to training data 
    #Get prediction probabilities 
    probability_prediction = est.predict_proba(test_data)[:,1] 
    #Feature importance based on entropy calculations 
    features = dict(zip(list(data), est.feature_importances_)) 
    #Run validation Metrics 
    #val = validation_metrics(test_results, probability_prediction) 
    #val.roc_curve() 
    #val.youden_index() 
    return val.well_rounded_validation(), features 
 
if __name__ == '__main__': 
    results = {} 
    for i in range(0, int(argv[1])): 
        metrics = main() 
        results["Run_" + str(i)] = metrics[0], metrics[1] 
    print json.dumps(results) 
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Abstract: The use of engineered nanoparticles (ENMs) in consumer and 
commercial products is increasing rapidly (Figure 1). The small size and 
high surface reactivity of ENMs allows them to be easily incorporated into 
various materials, and gives them a range of properties including but not 
limited to bacterial resistance, semi-conductance, and UV ray resistance. 
These properties make ENMs very appealing to modern industry, but also 
make ENMs toxic, causing serious health and environmental concerns. As 
a result of the increasing release of ENMs into the global ecosystem, our 
team aims to ensure that ENMs are designed to minimize damage to the 
global ecosystem and human health. Protein absorption creates a surface 
corona on ENMs and plays a large role in ENM toxicity1. Despite the role 
of the protein corona in driving ENM behavior, the field is far from a 
model that offers predictive insight toward elucidating the protein corona 
composition of ENMs under the broad spectrum of relevant biological 
conditions. Using LC-MS/MS proteomics previously established 
procedures, the proteins enriched on the surface of silver ENMs can be 
characterized2. Specifically, a matrix of relevant protein-ENM reactions 
will be evaluated, including a range of particle sizes, surface coatings, and environmental 
conditions (e.g. salt concentrations). Machine learning (random forest) regression and 
classification will be applied to this protein enrichment data matrix to evaluate the competing 
roles of the biophysical properties of proteins, ENM properties themselves, and solution 
conditions, in mediating the formation of the ENM protein corona. The resulting model will aim 
to offer an accurate prediction of protein enrichment on the surface of ENMs across complex 
biological systems using the random forest classifier method. This statistical framework offers a 
crucial step forward in solving design concerns with engineering nanomaterials to minimize 
unintended interactions with biological and environmental systems while maximizing the 
efficiency of the ENMs engineered purpose. 
 
 
 
Ethical Ramifications: As the usage of ENMs by modern 
industry increases, harmful ENMs are released into our global 
ecosystem (Figure 2), when ENMs are manufactured and 
consumed, ENM waste is released into the environment. This 
waste compounds over time, and has an impact on our global 
ecosystem by entering waterways, soil, food, residential areas, 
and eventually humans. This range of ecological impacts 
motivates our labs to offer the framework to design products 
that are not only safer to humans, but to the environment that 
they contaminate. Nanotechnology is still a young field, but 
it is growing rapidly. Nanotechnology has the potential to 
mold the future by creating vast technological and medical 
advancements. While our labs understand that devastating, 
large-scale abuse of the global environment occurs on a 
daily basis, we stress that these large scale issues cause society to overlook small-scale 

Figure 2: A schematic of how ENMs are spread 
from industry into the ecosystem, impacting 
human and environmental health. (Modified 
from citation 4) 
 

Figure 1. This graphic 
shows the number of 
products (y-axis) that have 
incorporated ENMs from 
2007-14 (From citation 3). 
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pollutants, such as ENMs, that do tangible damage to our global ecosystem. The nanotechnology 
market is expected to grow at an exponential rate, and has the potential to revolutionize modern 
industry. It is important that steps toward safer products are taken while the nanomaterial 
industry is still young, as these steps will pave the way for the nanomaterial industry to grow in 
an ethical manner. Today, it is apparent that industry growth is often seen as more important than 
environmental, worker, and human safety, this is why it is crucial that the proper scientific 
research is conducted to educate the public and give environmental and human health the 
attention it deserves. 
 
Internal Funding Sources: 
Willem P. Roelandts and Maria Constantino-Roelandts grant ($3,000) 
 
Budget: 
Experiments Cost 
(-) Silver 10nm ENM proteomics experiment at Stanford using LC-MS/MS $900 
(+) Silver 10nm ENM proteomics experiment at Stanford using LC-MS/MS $900 
(-) Silver 100nm ENM proteomics experiment at Stanford using LC-MS/MS $900 
(+) Silver 10nm ENM with 3.0mM NaCl proteomics experiment at Stanford using LC-
MS/MS 

$900 

(-) Silver 100nm ENM with 3.0mM NaCl proteomics experiment at Stanford using LC-
MS/MS 

$900 

(-) Silver 10nm ENM with 3.0mM NaCl proteomics experiment at Stanford using LC-
MS/MS 

$900 

Total: $5,400 
 
Undergraduate Programs Funding: 
We are asking Undergraduate Programs to fund us up to $2,000. This in combination with the 
funding we have from the Willem P. Roelandts and Maria Constantino-Roelandts grant will pay 
the $5,400 necessary to complete our experimentation. Additional minor experimental costs 
necessary for publication of this work (e.g. TEM characterization of the nanomaterials) will be 
paid for by Prof. Korin Wheeler’s NIH AREA grant (Grant Number: 1 R15 ES025929-01A1); since 
MS proteomics is beyond the scope of the NIH funding, additional funds are necessary to cover 
these costs. 
Xilinx Funding: 
We are also looking for additional funding support from Xilinx. Addition support will allow our 
team to expand the scope of our project by giving us the opportunity to evaluate the proteins on 
the surface of uncharged ENMs. This will increase the robustness of our statistical model and 
offer deeper insight into the role of protein absorption on ENM toxicity. The ethical 
ramifications of showing protein affinity to neutral ENMs is significant and can lead to reduced 
environmental and human toxicity. We are requesting $1,800 to run experiments on 10nm and 
100nm uncharged ENMs. 
 
Experiments Cost 
Neutral Silver 10nm ENM proteomics experiment at Stanford using LC-MS/MS $900 
Neutral Silver 100nm ENM proteomics experiment at Stanford using LC-MS/MS $900 
Total: $1,800 
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