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Abstract. For singularly perturbed two-dimensional linear convection-diffusion problems,
although optimal error estimates of an upwind finite difference scheme on Bakhvalov-type
meshes are widely known, the analysis remains unanswered (Roos and Stynes in Comput.
Meth. Appl. Math. 15 (2015), 531–550). In this short communication, by means of a new
truncation error and barrier function based analysis, we address this open question for a
generalization of Bakhvalov-type meshes in the sense of Boglaev and Kopteva. We prove
that the upwind scheme on these mesh modifications is optimal first-order convergence,
uniformly with respect to the perturbation parameter, in the discrete maximum norm.
Furthermore, we derive a sufficient condition on the transition point choices to guarantee
that our modified meshes can preserve the favorable properties of the original Bakhvalov
mesh.
AMS subject classifications: 65L10, 65L12, 65L20, 65L70

Key words: singular perturbation, convection-diffusion, upwind difference scheme,
Bakhvalov-type meshes

1. Introduction

We consider an upwind difference method for solving the singularly perturbed convec-
tion-diffusion problem,

Lu :=−ε∆u−b1(x, y)ux−b2(x, y)uy+c(x, y)u = f(x, y) on Ω = (0, 1)2,

u = 0 on Γ = ∂Ω,
(1)

where ε is a small positive perturbation parameter, 0 < ε≪ 1. We assume that the
functions b1, b2, c and f are sufficiently smooth functions, and b1(x, y) > β1 > 0,
b2(x, y) > β2 > 0, c(x, y) ≥ 0 for all (x, y) ∈ Ω̄, and that they satisfy the com-
patibility conditions guaranteeing that problem (1) has a unique solution u in some
suitable normed space [8, Theorem 5.1]. Then, u typically exhibits two exponential
layers along the sides x = 0 and y = 0.
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It is well known that for higher-dimensional convection-dominated problems
like (1), uniform convergence analysis of finite-difference and finite-element methods
on Bakhvalov-type meshes is usually more challenging than on Shishkin-type meshes
(cf. [14, Section 4] for a precise definition of these layer-fitted meshes and for related
open problems). For example, in [13] and recently in [17, 18], new interpolation tech-
niques are derived to prove optimal convergence results on Bakhvalov-type meshes
when finite-element methods are applied to the one-dimensional analogue of (1); but
no similar result is known in 2D [14, Question 7]. For finite-difference discretiza-
tions applied on Bakhvalov-type meshes, while optimal error estimates and analysis,
proven by several different techniques (see, for instance, [3, 6, 10, 11, 16]), are well
known in 1D, the following question [14, Question 6] remains open in 2D for certain
Bakhvalov-type meshes:

For an upwind finite-difference method applied on a Bakhvalov-type
mesh to the convection-diffusion problem (1), can one prove a discrete
maximum norm convergence result

max
0≤i,j≤N

∣∣u(xi, yj)− uNij
∣∣ ≤ CN−1?

Here N mesh intervals are used in each coordinate direction, and uNij denotes the
computed solution at the point (xi, yj). From this point on, we use C to denote a
generic positive constant independent of ε and N .

The very first attempt to answer the above challenge problem is given in [12]
for which the Bakhvalov mesh [1] is considered. However, the construction of this
mesh results in an implicitly defined transition point which is a main drawback in
calculations. There are other modifications of the Bakhvalov mesh proposed in the
research literature to resolve this issue with more relaxed transition points, and
yet, the convergence order of the upwind scheme on these Bakhvalov-type meshes
remains the same.

Our goal in this short article is to address the aforementioned open question for
a mild generalization of Bakhvalov-type meshes of Boglaev [2] and Kopteva [3, 4].
These modifications replace an implicitly defined transition point of the original
Bakhvalov mesh with an explicitly predefined one. The advantage of our modified
transition point variants is the simplicity of calculation (and analysis as we shall
show), while the grid obtained still enjoys the favorable properties of the Bakhvalov
mesh.

In the next section, we list some preliminary facts about the solution u of problem
(1) and introduce the upwind scheme for discretizing the problem. We propose a
mild generalization of Boglaev and Kopteva’s Bakhvalov-type meshes and discuss a
sufficient condition to guarantee the grading properties for the proposed meshes in
Section 3. Then, in Section 4, we apply the novel error analysis given in [12], which
is specially tailored for the Bakhvalov mesh, to obtain the main convergence result.
Finally, we finish with a concluding remark in the last section.



On Bakhvalov-type meshes 123

2. Preliminaries

The following decomposition of u [5, Lemma 1] is often used in error analysis of
finite-difference methods for (1):

u = S + E1 + E2 + E12,

where, for all (x, y) ∈ Ω̄, we have

∥S∥2 ≤ C, (2)∣∣∣∣∂k+ℓE1

∂xk∂yℓ
(x, y)

∣∣∣∣ ≤ Cε−ke−β1x/ε, (3)∣∣∣∣∂k+ℓE2

∂xk∂yℓ
(x, y)

∣∣∣∣ ≤ Cε−ℓe−β2y/ε, (4)

and ∣∣∣∣∂k+ℓE12

∂xk∂yℓ
(x, y)

∣∣∣∣ ≤ Cε−(k+ℓ)e−(β1x+β2y)/ε, (5)

for 0 ≤ k + ℓ ≤ 3, and ∥ · ∥2 denotes the supremum norm in C2(Ω). Furthermore,

|LE1(x, y)| ≤ Ce−β1x/ε, (6)

|LE2(x, y)| ≤ Ce−β2y/ε, (7)

and
|LE12(x, y)| ≤ Ce−(β1x+β2y)/ε. (8)

Let N be an even positive integer and let ΩN = {(xi, yj) : i, j = 0, 1, . . . , N} be the
discretization mesh, where the mesh-point coordinates xi and yj satisfy

0 = x0 < x1 < · · · < xN = 1 and 0 = y0 < y1 < · · · < yN = 1.

We denote ΓN = Γ
⋂
ΩN , and also set hx,i = xi −xi−1, ~x,i = (hx,i+1 +hx,i)/2 and

hy,j = yj − yj−1, ~y,j = (hy,j+1 + hy,j)/2. We set gij = g(xi, yj) for any function g,
while gNij denotes an approximation of g at the point (xi, yj). Given a mesh function

{wN
ij } on ΩN , we discretize problem (1) by the standard upwind scheme as follows:

LNwN
ij :=

(
−ε(D2

x +D2
y)− b1,ijD

+
x − b2,ijD

+
y + cij

)
wN

ij = fij on ΩN\ΓN ,

wN
ij = 0 on ΓN ,

with

D2
xw

N
ij =

1

~x,i
(
D+

x w
N
ij −D−

x w
N
ij

)
, D2

yw
N
ij =

1

~y,j
(
D+

y w
N
ij −D−

y w
N
ij

)
,

D−
x w

N
ij =

wN
ij − wN

i−1,j

hx,i
, D+

x w
N
ij =

wN
i+1,j − wN

i,j

hx,i+1
,

D−
y w

N
ij =

wN
ij − wN

i,j−1

hy,j
, D+

y w
N
ij =

wN
i,j+1 − wN

i,j

hy,j+1
.
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We split LN into LN
x + LN

y , where

LN
x w

N
ij =

(
−εD2

x − b1,ijD
+
x + cij

)
wN

ij and LN
y w

N
ij =

(
−εD2

y − b2,ijD
+
y

)
wN

ij .

The matrix associated with the discrete operator LN is anM -matrix. Therefore, the
discrete comparison principle holds true [5, Lemma 6]. We also need the following
standard truncation-error bounds for the discrete operator LN .

Lemma 1 (see [5], Lemma 8). Let g(x, y) be a smooth function defined on Ω. Then
the following estimates for the truncation error hold:∣∣∣LN

x gij − (Lxg)ij

∣∣∣ ≤ C (ε+ hx,i + hx,i+1) max
ζ∈[xi−1,xi+1]

∣∣∣∣∂2g∂x2
(ζ, yj)

∣∣∣∣ ,
and ∣∣∣LN

x gij − (Lxg)ij

∣∣∣ ≤ C

(
ε

∫ xi+1

xi−1

∣∣∣∣∂3g∂x3
(ζ, yj)

∣∣∣∣ dζ + ∫ xi

xi−1

∣∣∣∣∂2g∂x2
(ζ, yj)

∣∣∣∣ dζ
)
,

for 0 < i, j < N , with analogous estimates for
∣∣∣LN

y gij − (Lyg)ij

∣∣∣.
3. Bakhvalov-type meshes

The mesh-generating function λ of Bakhvalov [1] is defined as follows:

λ(t) =

{
ψ(t) := aεϕ(t), t ∈ [0, α],

ψ(α) + ψ′(α)(t− α), t ∈ [α, 1],
(9)

with ϕ(t) := − ln(1− 2t) for t ∈ [0, 1/2), where a is a fixed positive mesh-parameter
and ψ′(0) < 1, which is equivalent to aε∗ < 1/2. The transition point α is defined
implicitly by

ψ(α) + ψ′(α)(1− α) = 1.

In [3, 4], Kopteva replaces α with α̃ = 1/2− aε, which yields λ(α̃) = aε ln [1/(2aε)].
In this article, we consider a mild generalization of the Bakhvalov-type meshes

of Boglaev [2, 13] and Kopteva which can be described jointly as below. Define the
mesh points:

xi = λ̂(ti) =

{
aεϕ̂(ti), i = 0, 1, . . . , N/2,

λ̂(α̂) + 2(ti − 1/2)
(
1− λ̂(α̂)

)
, i = N/2 + 1, . . . , N,

(10)

with a positive constant κ satisfying κ ≥ ε, ϕ̂(t) = − ln [1− 2(1− ε/κ)t] for t ∈
[0, 1/2], ti = i/N , and

α̂ = 1/2, λ̂(α̂) = xN/2 = aε ln(κ/ε). (11)

When κ = 1, it gives Boglaev’s transition point. In particular, when we are in the
singularly perturbed regime, the value of α̃ is very close to 1/2. Thus, we relax
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Kopteva’s transition point in the t-coordinate to α̂ = 1/2, but we keep the same
transition point of Kopteva in the x-coordinate, which is attained when κ = 1/(2a).
That is, our variant shrinks the very first mesh point in the x-coordinate in the
regular region to be equal to λ(α̃), whereas the function ϕ̂(t) re-distributes (N/2+1)
mesh points, x0, . . . , xN/2, in such a way that the desirable properties of the original
Bakhvalov mesh (with the function ϕ(t)) can be preserved as shown in the following
lemma.

Lemma 2. The mesh widths of the Bahkvalov-type mesh defined by (10) and (11)
satisfy

hx,i−1 ≤ hx,i ≤ 2aκN−1, i = 2, 3, . . . , N/2, (12)

hx,i ≤ aε, i = 1, 2, . . . , N/2− 1, (13)

and in particular

hx,i−1 ≤ hx,i ≤ 2N−1, i = 2, 3, . . . , N, when κ ≤ 1/(2a). (14)

Furthermore,

e−β1xN/2−1/ε =
(
ε/κ+ 2(1− ε/κ)N−1

)aβ1 ≤ C
(
ε+N−1

)aβ1
(15)

and
e−β1xN/2/ε = (ε/κ)

aβ1 ≤ (ε)
aβ1 . (16)

Proof. By the definition of ϕ̂(t), we have ϕ̂′(t) =
2(1− ε/κ)

1− 2(1− ε/κ)t
, thus ϕ̂(t) is mono-

tonically increasing for t ∈ [0, 1/2]. Therefore, hx,i−1 ≤ hx,i, i = 2, 3, . . . , N/2 − 1,
and

hx,N/2 = aε

∫ tN/2

tN/2−1

ϕ′(s) ds ≤ aε

N
ϕ′(tN/2) =

aε

N
· 2(1− ε/κ)

1− 2(1− ε/κ)tN/2

≤ aε

N
· 2κ
ε

= 2aκN−1,

which gives (12).
For the estimate in (13), we have

hx,i = aε

∫ ti

ti−1

ϕ′(s) ds ≤ aε

N
max

t∈[ti−1,ti]
ϕ′(t) =

aε

N
· 2(1− ε/κ)

1− 2(1− ε/κ)ti

≤ aε

N
· 2

1− 2tN/2−1
≤ aε

N
·N = aε,

whereas estimate (14) results from (12) and the fact that N−1 ≤ hx,i−1 ≤ hx,i ≤
2N−1, i = N/2 + 2, . . . , N, by mesh definition (10). It is an easy calculation to get
inequalities (15) and (16).

Remark 1. The user-chosen parameter κ allows the mesh to preserve the reason-
able properties of the original Bakhvalov mesh and Kopteva’s modification as shown
in (14); that is maxi hx,i = O(N−1) and hx,i−1 ≤ hx,i for all i, see [4, page 181].
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4. Error analysis

The numerical solution uNij of the upwind finite-difference discretization is decom-
posed analogously to its continuous counterpart:

uNij = SN
ij + EN

1,ij + EN
2,ij + EN

12,ij ,

for which

LNSN
ij = (LS)ij , LNEN

1,ij = (LE1)ij , LNEN
2,ij = (LE2)ij ,

LNEN
12,ij = (LE12)ij on ΩN \ ΓN ,

and
SN
ij = Sij , E

N
1,ij = E1,ij , EN

2,ij = E2,ij , E
N
12,ij = E12,ij on ΓN .

Let
LN (uij)− (Lu)ij = LN

(
uij − uNij

)
, 1 ≤ i, j ≤ N − 1,

be the truncation error of the upwind discretization of problem (1) on the Bakhvalov-
type mesh (10). We establish the upper bounds for the truncation error by using∣∣LN

(
uij − uNij

)∣∣ ≤ ∣∣LN
(
Sij − SN

ij

)∣∣+ ∣∣LN
(
E1,ij − EN

1,ij

)∣∣
+
∣∣LN

(
E2,ij − EN

2,ij

)∣∣+ ∣∣LN
(
E12,ij − EN

12,ij

)∣∣
≤θxij + θyij ,

where we set

θxij :=
∣∣LN

x

(
Sij − SN

ij

)∣∣+ ∣∣LN
x

(
E1,ij − EN

1,ij

)∣∣
+
∣∣LN

x

(
E2,ij − EN

2,ij

)∣∣+ ∣∣LN
x

(
E12,ij − EN

12,ij

)∣∣ (17)

and

θyij :=
∣∣LN

y

(
Sij − SN

ij

)∣∣+ ∣∣LN
y

(
E1,ij − EN

1,ij

)∣∣
+
∣∣LN

y

(
E2,ij − EN

2,ij

)∣∣+ ∣∣LN
y

(
E12,ij − EN

12,ij

)∣∣ .
Also, let

Ēx
ij =

i∏
k=1

(
1 +

β1hx,k
2ε

)−1

and Ēy
ij =

j∏
k=1

(
1 +

β2hy,k
2ε

)−1

.

We also make an assumption on the mesh parameter a such that min {aβ1, aβ2} ≥ 2
for the rest of our analysis. In the following lemmas, we follow the proof techniques
introduced in [12, Theorem 1] to obtain the truncation-error estimate, and [12,
Lemma 9] to form the appropriate barrier functions. It is worth noting that because
the mesh modification of Boglaev and Kopteva simplifies the original Bakhvalov
mesh by its explicit transition point, the analysis here can be significantly simplified
compared to that of [12].
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Lemma 3. The truncation error of the upwind discretization of problem (1) on the
Bakhvalov-type mesh defined in (10) and (11) satisfies the following:∣∣∣LN (uij)− (Lu)ij

∣∣∣ ≤ θxij + θyij ,

where for θxij and any j = 1, 2, . . . , N − 1, we have

θxij ≤


CN−1, i ≥ N/2,

C
(
N−1 + ε−1Ēx

ijN
−1
)
, i = N/2− 1 & hx,i+1 ≤ ε,

C
(
N−1 + h−1

x,i+1Ē
x
ijN

−1
)
, i = N/2− 1 & hx,i+1 > ε,

C
(
N−1 + ε−1Ēx

ijN
−1
)
, i ≤ N/2− 2,

whereas θyij, for any i = 1, 2, . . . , N − 1, can be bounded in the same way with Ēy
ij,

instead of Ēx
ij, and hy,j, instead of hx,i.

Proof. We shall prove the estimates for θxij only, since the bounds for θyij can be
proved analogously. From (17), we will bound each right-hand-side term separately.
Let 1 ≤ j ≤ N − 1 throughout the proof. By (2), (4), (12), and Lemma 1, we
easily get the bounds

∣∣LN
x

(
Sij − SN

ij

)∣∣ ≤ CN−1 and
∣∣LN

x

(
E2,ij − EN

2,ij

)∣∣ ≤ CN−1

for 1 ≤ i ≤ N − 1.
We consider cases for the indices i to bound the layer component E1. First, for

i ≥ N/2 + 1, we apply Lemma 1 to E1. Then we have∣∣LN
x

(
E1,ij − EN

1,ij

)∣∣ ≤ CN−1ε−2e−β1xN/2/ε ≤ CN−1,

where we have used (16) and aβ1 ≥ 2 in the last inequality.
For i = N/2, we consider two subcases, ε ≤ N−1 and ε > N−1. For ε ≤ N−1,

our approach is ∣∣LN
x

(
E1,ij − EN

1,ij

)∣∣ ≤ ∣∣LN
x (E1,ij)

∣∣+ ∣∣∣(LxE1)ij

∣∣∣ . (18)

Then, we can bound both
∣∣LN

x (E1,ij)
∣∣ ≤ CN−1 and

∣∣∣(LxE1)ij

∣∣∣ ≤ CN−1 by invok-

ing (3), (6), and (15). For ε > N−1, we get that hx,N/2 ≤ Cε because of (12).
Therefore, we use again Lemma 1 to get:∣∣LN

x

(
E1,ij − EN

1,ij

)∣∣ ≤ CN−1ε−2e−β1xN/2−1/ε ≤ CN−1ε−2e−β1xN/2/ε ≤ CN−1,

where (16) is used in the last step.
Next, we combine the cases when i ≤ N/2− 2 and i = N/2− 1 when hx,N/2 ≤ ε

together. Indeed, for i ≤ N/2− 1, we have hx,i ≤ aε because of (13). Hence,∣∣LN
x

(
E1,ij − EN

1,ij

)∣∣ ≤ CN−1ε−1e−β1xi−1/ε ≤ Cε−1N−1e−β1xi/2ε ≤ Cε−1N−1Ēx
ij .

Lastly, when i = N/2− 1 and hx,N/2 > ε, this means that max{ε, hx,N/2} = hx,N/2.

Then, ε ≤ CN−1 because of (12), and we can modify the approach in (18) and
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use (15) to get∣∣LN
x (E1,ij)

∣∣+ ∣∣∣(LxE1)ij

∣∣∣ ≤ Ch−1
x,N/2e

−β1xN/2−1/(2ε)e−β1xN/2−1/(2ε)

≤ Ch−1
x,N/2Ē

x
N/2−1,j

(
ε+N−1

)aβ1/2

≤ Ch−1
x,N/2Ē

x
N/2−1,jN

−1.

(19)

The proof is completed when we apply the above argument analogously to bound∣∣LN
x

(
E12,ij − EN

12,ij

)∣∣ by invoking (5) and (8).

Next, we form the barrier function

γij = γxij + γyij , 1 ≤ i, j ≤ N − 1,

with

γxij = C1(1− xi)N
−1 + C2Ē

x
ijN

−1 and γyij = C3(1− yj)N
−1 + C4Ē

y
ijN

−1,

where Ck, k = 1, 2, 3, 4, are appropriately chosen positive constants independent of
both ε and N .

Lemma 4. There exist sufficiently large constants Ck, k = 1, 2, 3, 4, such that

LNγij = LNγxij + LNγyij ≥ χx
ij + χy

ij ≥ θxij + θyij , 1 ≤ i, j ≤ N − 1,

where
χx
ij = C1N

−1 + C2[max{ε, hx,i+1}]−1Ēx
ijN

−1,

and
χy
ij = C3N

−1 + C4[max{ε, hy,j+1}]−1Ēy
ijN

−1.

Proof. We shall prove that LN
x γij ≥ χx

ij ≥ θxij . It is easy to verify that LN
x γij ≥ χx

ij

(see, for instance, [9, 15]). Therefore, by Lemma 3, we will show that θxij ≤ χx
ij , 1 ≤

j ≤ N − 1, for various values of the indices i.
Let 1 ≤ j ≤ N − 1 throughout the proof again. It is clear from Lemma 3 that

θxij ≤ CN−1 ≤ C1N
−1 ≤ χx

ij , i = N/2, N/2 + 1, . . . , N − 1.

We are left to prove that θxij ≤ χx
ij for i ≤ N/2− 1. For i ≤ N/2− 2, we have from

(13) that hx,i+1 ≤ aε and

θxij ≤ C
(
N−1 + ε−1Ēx

ijN
−1
)
≤ C1N

−1 + C2ε
−1Ēx

ijN
−1 ≤ χx

ij . (20)

It remains to consider i = N/2 − 1. If hx,N/2 ≤ ε, we have the same situation as
above and estimate (20) is achieved for i = N/2 − 1. On the other hand, when
hx,N/2 > ε, we apply a similar argument from (19) to get

θxij ≤ C
(
N−1+ h−1

x,N/2Ē
x
N/2−1,jN

−1
)
≤ C1N

−1+C2h
−1
x,N/2Ē

x
N/2−1,jN

−1≤ χx
N/2−1,j .

Analogous reasoning is used to show that LN
y γij ≥ χy

ij ≥ θyij , which completes the
proof.
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Combining Lemmas 3 and 4 together with the discrete maximum principle (cf. [5,
Lemma 6]), we get the main result.

Theorem 1. For the upwind finite-difference method applied on the Bakhvalov-type
mesh defined in (10) and (11) to the convection-diffusion problem (1), the error
satisfies ∣∣uij − uNij

∣∣ ≤ CN−1, for 0 ≤ i, j ≤ N.

5. Concluding remark

Our analysis fills an important theoretical gap for Bakhvalov-type meshes with ex-
plicitly defined transition points discretized by an upwind difference scheme of two-
dimensional convection-diffusion problems. The proposed mesh mildly generalizes
Boglaev and Kopteva’s choices of the Bakhvalov-type transition points in the sense
that the mesh not only enjoys the preferred mesh properties of the famous Bakhvalov
mesh, but also simplifies the computational effort theoretically and practically.
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