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The structural properties of as-grown and rapid thermal oxidized Si12x2yGexCy epitaxial layers
have been examined using a combination of infrared, x-ray photoelectron, x-ray diffraction,
secondary ion mass spectroscopy, and Raman spectroscopy techniques. Carbon incorporation into
the Si12x2yGexCy system can lead to compressive or tensile strain in the film. The structural
properties of the oxidized Si12x2yGexCy film depend on the type of strain~i.e., carbon
concentration! of the as-prepared film. For compressive or fully compensated films, the oxidation
process drastically reduces the carbon content so that the oxidized films closely resemble to
Si12xGex films. For tensile films, two broad regions, one with carbon content higher and the other
lower than that required for full strain compensation, coexist in the oxidized films. ©2000
American Institute of Physics.@S0021-8979~00!08201-3#

I. INTRODUCTION

It has been demonstrated that epitaxial Si12xGex /Si het-
erostructures have provided impressive results for Si-based
band-gap engineering.1 The heterostructures have created a
great deal of interest as it can be readily incorporated into
standard integrated circuit fabrication processes. For in-
stance, high speed~75 GHz! electronic circuits have been
fabricated with heterostructure Si12xGex /Si bipolar
transistors.2 Other devices fabricated using Si12xGex /Si het-
erojunction technology include infrared detectors3,4 and high
electron mobility structures.5

The electronic properties of the heterostructure devices
are very sensitive to the band alignment at the heterointer-
face and the band gap of Si12xGex which in turn depends on
the elastic strain in the epilayers. The strain is metastable and
high-temperature processing steps can cause the strain relax-
ation. This will create misfit dislocations and can degrade the
electronic properties of the heterostructure devices.6,7

The incorporation of carbon~C! in Si12xGex layers al-
lows the growth of heterostructures with well-controlled mis-
fit strain. Si12x2yGexCy epilayers have been formed by
molecular-beam epitaxy8,9 and rapid thermal chemical vapor
deposition ~RTCVD!10 techniques. The growth of
C-containing epitaxial alloy layers is, however, difficult due
to the high mismatch between the C and Si lattices, low
solubility of C in Si, and the tendency of silicon carbide
~SiC! precipitation.

Rapid thermal processing as a low thermal budget tech-
nique is widely used in the manufacturing of advanced semi-

conductor devices.11 For a thin Si12xGex strained layer, a
short high-temperature process may be desirable as it creates
less misfit dislocations.6,12 For this reason, there are reports
on rapid thermal oxidation13,14 or annealing15 of strained
Si12xGex layers. So far, no report is available in the rapid
thermal oxidation of epitaxial Si12x2yGexCy films. In this
work, we present the structural results of as-prepared and
rapid thermal oxidized Si12x2yGexCy alloy films grown by
RTCVD technique.

II. EXPERIMENT

The Si12x2yGexCy samples were epitaxially grown on
n-type ~100! Si substrates by RTCVD. Details of the growth
procedure can be found elsewhere.10 Before epitaxy growth,
an in situ hydrogen bake at 1050 °C for 30 s was performed
to remove the native oxide and other impurities from the Si
surface. During growth, the substrate was heated with a bank
of halogen lamps and the growth temperature and pressure of
the alloy layers were 550– 600 °C and 1.5 Torr, respectively.
The process gases were silane (SiH4), germane (GeH4), me-
thylsilane (SiCH6), and hydrogen (H2). A Si buffer layer
~200 nm! was grown at 900 °C, followed by the growth of
the alloy layer. In this work, we report mostly the structural
results of Si0.8872yGe0.113Cy ~i.e., 11.3 at. % of Ge and 0
<y<0.0184) samples. The results of two 20 at. % Ge
samples (Si0.8Ge0.2 and Si0.784Ge0.2C0.016! have also been in-
cluded for comparison. The alloy thickness was in the range
of 95–130 nm.
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Rapid thermal oxidation~RTO! was carried out in dry
oxygen ambient with an AST SHS 10 rapid thermal proces-
sor. The system consists of double-sided tungsten halogen
lamp heater with independent top and bottom lamp bank
control. A quartz reactor chamber is installed in a highly
reflecting, gold-plated reactor block. The Si12x2yGexCy

samples were placed on top of a 4 in. wafer. The oxidation
temperature control was obtained with the help of a pyrom-
eter. RTO was performed at 1000 °C for 270 s in dry oxygen
ambient. The oxide thickness was found to be between 10
and 16 nm.

The infrared~IR! measurements were carried out using a
Fourier transform infrared spectrometer~Nicolet Magna
IR750!. The x-ray photoelectron spectroscopy~XPS! mea-
surements were performed using a VG ESCALAB MKII
spectrometer. A MgKa source was used with the analyzer
mode set at a constant analyzer energy of 20 eV. The x-ray
source was run at 120 W and a takeoff angle of 75°. All the
XPS spectra were fitted with Gaussian functions and the
background was removed by the Shirley subtraction method.

The x-ray diffraction~XRD! measurements were carried
out on a Philips high-resolution x-ray diffraction system. The
system is equipped with optical coding and Bartel’s crystal
@Ge~220!# which ensures fine precision~0.0001°! and high
monochromatic beam~peak broadening of 12 arcsec! for the
rocking curve scans. TheV–2u scans were performed
around the symmetrical planes of~004! with the silicon sub-
strate giving a peak at a Bragg angle of 34.5959°. The Ra-
man measurement was performed at room temperature in the
backscattering configuration at the~100! face using a 488 nm
line from an Ar1 laser. The spectra were recorded using a
SPEX Raman spectrometer equipped with a double mono-
chromator and observed with a multichannel detector.

III. RESULTS AND DISCUSSION

A. As-prepared samples

Figure 1~a! shows the IR absorption spectra of all the
as-prepared Si0.8872yGe0.113Cy samples. the carbon absorp-
tion peak at 607 cm21 was absent for sample Si0.887Ge0.113

as no carbon was introduced into the film during growth.
The spectra of Si0.8811Ge0.113C0.0059 and Si0.8738Ge0.113C0.0132

show sharp carbon peak. This means that carbon is in-
corporated substitutionally into the films. The carbon peak
of Si0.8811Ge0.113C0.0184 is shifted to 616 cm21 and is
broader than that of samples Si0.8811Ge0.113C0.0059 and
Si0.8738Ge0.113C0.0132. We believe the shift and the broaden-
ing of the peak is closely related to the carbon concentration
in the film. This will be discussed in the next paragraph. It is
important to note that we observed no SiC precipitate forma-
tion in all the as-prepared samples as the SiC stretching
mode is absent in all the spectra in Fig. 1~a!. The XPS analy-
sis on the as-prepared samples gave the silicon, germanium
concentrations agreed with that obtained from secondary ion
mass spectroscopy~SIMS! experiments.10 The XPS mea-
surements, however, cannot provide accurate estimation for
the rather low carbon concentration in the films.

Figure 2 shows the~004! reflection x-ray rocking curves
of the Si0.8872yGe0.113Cy alloy films. The peak of

Si0.887Ge0.113 shifts to 2du, indicating compressive perpen-
dicular strain in the layer. The incorporation of C atoms into
the Si0.887Ge0.113 layer decreases the average lattice constant
and relaxes the strain. This is clearly shown by the shift of
the diffraction peak towards the substrate Si peak in
Si0.8811Ge0.113C0.0059. Table I lists the strain of the samples
calculated from the lattice constant obtained from the XRD

FIG. 1. Infrared absorption spectra of~a! as-prepared and~b! rapid thermal
oxidized Si0.8872yGe0.113Cy and Si0.82yGe0.2Cy layers formed by rapid ther-
mal chemical vapor deposition technique.

FIG. 2. ~004! x-ray rocking curves of Si0.8872yGe0.113Cy and Si0.82yGe0.2Cy

layers formed by rapid thermal chemical vapor deposition technique.
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results. The Ge and C concentrations in Table I were also
estimated from the XRD measurements using Vegard’s law.
Table I clearly shows that the strain of the as-prepared
samples decrease with increase in the C concentration. Simi-
lar results are observed for samples Si0.8Ge0.2 and
Si0.784Ge0.2C0.016 in that a 1.6 at. % C has partially compen-
sated the strain of the 20 at. % Ge film.

Note that in Fig. 2 there is only one single peak for
Si0.8738Ge0.113C0.0132 and this peak coincides with the sub-
strate peak. The means that almost full strain compensation
is obtained in this sample. Our calculation shows that the
mismatch strain in this case is 0.017%. Ostenet al.9 have
calculated the amount of Ge to C for complete compensation
in Si12x2yGexCy system. According to their calculation, ap-
proximately 1.2 at. % C is required for full compensation of
strain in a 11.3 at. % Ge sample. This is in good agreement
with our XRD result of sample Si0.8738Ge0.113C0.0132.

For Si0.8686Ge0.113C0.0184, however, the peak appears at
the right side of the substrate peak. This is due to the in-
crease in C incorporation into the layer above complete com-
pensation. This would result in tensile strain in the film.9,10

The mismatch strain is estimated to be20.23%. Note that
large amount of C incorporation leads to a crystallographic
degradation of the layer. This may account for the shift and
the broadening of the carbon peak in the IR spectrum of
sample Si0.8686Ge0.113C0.0184 in Fig. 1~a!.

B. Rapid thermal oxidized samples

1. SiO2 /Si12x 2yGexCy interface

Figure 3~a! shows a montage of oxidized
Si0.8686Ge0.113C0.0184 sample. It can be seen from this figure
that at the surface of the SiO2 layer, there is a thin layer of
GeO2 ~at binding energy 1221.43 eV!. The existence of
GeO2 layer has been reported in the oxidation study of
Si12xGex with x.50 at. %,16 or at low temperature, high
pressure oxidation of Si12xGex

17 films. Figure 3~b! is the
XPS profile of the same sample as Fig. 3~a!. It is not possible
to see clearly the GeO2 in Fig. 3~b! due to the thin layer and
low concentration. No Ge can be found in the SiO2 layer and
there is a Ge pile-up at the SiO2/Si12x2yGexCy interface.
These results are similar to those reported by Nayaket al.13

on rapid thermal oxidized Si12xGex strained layers. They
reported a rejection of Ge in the oxide and a Ge-rich layer at
the SiO2/Si12xGex interface.

We have carried out electrical characterization18 of rapid
thermal oxidized SiO2/Si12x2yGexCy interface and found
that Ge segregation results in degradation of electrical prop-
erties of Al/SiO2/Si12x2yGexCy capacitors. The fixed oxide
charge and interface trap densities were found to be in the
range of 1.531012 cm22 and 231012 cm22 eV21, respec-
tively. These values are very similar to that reported by
Nayak et al.15 and LeGoueset al.19 on SiO2/Si12xGex

samples.

2. Structural characterization

The x-ray rocking curves of the rapid thermal oxidized
samples are shown in Fig. 4. Note that the peak positions of
Si0.887Ge0.113 and Si0.8Ge0.2 films remain unchanged after
oxidation. This means that no relaxation of the perpendicular
strain was observed in SiGe film. Note that Nayaket al.15

have also reported negligible strain relaxation in rapid ther-
mal oxidized Si0.8Ge0.2 sample.

The XRD behavior of the oxidized Si12x2yGexCy films
depends on the amount of C in the as-prepared films. For
films that were partially~i.e., show compressive strain! or
fully compensated, the oxidation process reduces the C con-
tent in the film such that the oxidized films are similar to
Si12xGex film. For instance, in Fig. 4, the peaks of oxidized
Si0.8811Ge0.113C0.0059 and Si0.8738Ge0.113C0.0132 samples and
Si0.784Ge0.2C0.016 shifted close to the Si0.887Ge0.113 and
Si0.8Ge0.2 peaks, respectively. Our calculation in Table I also

TABLE I. The lattice mismatch strain of the as-prepared and rapid thermal
oxidized Si0.8872yGe0.113Cy and Si0.82yGe0.2Cy layers calculated from the
x-ray diffraction results. The Ge and C concentrations of the as-prepared
samples were estimated using the Vegard’s rule.

Mismatch strain of films Concentration
as-prepared oxidized Ge C

Sample ~%! ~%! ~%! ~%!

Si0.887Ge0.113 0.46 0.41 11.14 0.00
Si0.8811Ge0.113C0.0059 0.25 0.41 11.14 0.60
Si0.8738Ge0.113C0.0132 0.017 0.41 11.14 1.30
Si0.8686Ge0.113C0.0184 20.23 0.51 11.14 2.04
Si0.8Ge0.2 0.83 0.82 19.92 0.00
Si0.784Ge0.2C0.016 0.23 0.82 19.92 1.74

FIG. 3. ~a! Montage of oxidized Si0.8686Ge0.113C0.0184 samples,~b! XPS
depth profiles of rapid thermal oxidized Si0.8686Ge0.113C0.0184 sample. The
carbon concentration is not shown here as it cannot be determined accu-
rately from XPS measurements.
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shows that for oxidized Si0.8872yGe0.113Cy samples withy
<0.0132 and Si0.784Ge0.2C0.016, the strain increases after oxi-
dation and reaches a value same as that of the SiGe. This is
reasonable as Bairet al.20 shown that wet oxidation of amor-
phous SiGeC at 950 °C for 5 h resulted in the oxidation of
carbon and the out gas of carbon from the bulk. Note that
out-diffusion of carbon by formation of CO or CO2 from
strained Si12yCy film during wet oxidation is also observed
by Garridoet al.21 We will further discuss this point when
we examine the SIMS results later.

For films with a higher C content which show tensile
strain, the explanation of the XRD results of the oxidized
sample is more complicated. For example, in Fig. 4, two
distinct regions are observed on the left and right sides of the
substrate peak for oxidized Si0.8686Ge0.113C0.0184sample. The
two regions suggest the existence of compressive and tensile
strain in the film. Comparing the ‘‘tensile’’~i.e., right side!
peaks of the as-prepared~see Fig. 2! and oxidized
Si0.8686Ge0.113C0.0184 samples, the peak seems to shift more
towards the Si peak in the oxidized sample in that no clear
peak can be observed in this sample. On the left side of the
Si peak of oxidized sample, there appears to be a small peak
at du;0.4° and a broadening region betweendu520.1 and
20.3°. The broadening of x-ray rocking curve may be
caused by an increase in defect density in the strained layer22

or interdiffusion.6,23 In Table I, a compressive strain of
0.51% was obtained for Si0.8686Ge0.113C0.0184 and this is
higher than that of the Si0.887Ge0.113.

Figure 1~b! shows the IR spectra of all the oxidized
samples. Note that the substitutional carbon peak is absent in
all the oxidized samples and a weak SiC stretching peak

(;850 cm21) can be seen in Si0.8686Ge0.113C0.0184. The
higher strain value of the oxidized Si0.8686Ge0.113C0.0184

sample may be due to the SiC precipitates in the film. The
SiC precipitation can increase the vertical lattice constant
due to the consumption of Si and C atoms during the forma-
tion of SiC precipitates. The increase of the vertical lattice
constant by 1% of SiC formation in SiGeC is effectively the
same as that by 8.3% of Ge incorporation.24

A SIMS experiment was performed on oxidized
Si0.8686Ge0.113C0.0184 sample to examine the possible exis-
tence of the ‘‘two regions’’ suggested in the previous para-
graph. Figure 5 shows the SIMS result~using Cs1) of
Si0.8686Ge0.113C0.0184sample before and after RTO. It can be
seen from this figure that before RTO, the carbon concentra-
tion is uniform throughout the Si0.8686Ge0.113C0.0184layer. Af-
ter RTO, the carbon concentration in the film has generally
reduced. The peak indicates the segregation of carbon to-
wards the oxide interface. It is also clear from Fig. 5 that the
loss of substitutional carbon is enhanced near the
SiO2/SiGeC interface. For depth 50–100 nm, the carbon
concentration is constant at;1.24 at. %. This layer may ac-
count for the tensile strain in the RTO film as shown in Fig.
4. The carbon concentration at the first 50 nm is character-
ized by a peak followed by a graded region. This rather
complicated distribution may be responsible for the compres-
sive strain in Fig. 4 of RTO Si0.8686Ge0.113C0.0184sample. The
results in Fig. 5 show clearly that high-temperature oxidation
reduces the carbon content in the Si12x2yGexCy system, in
good agreement with the suggestions of Bairet al.20 and
Garridoet al.21

Note that conventional annealing of partially strain com-
pensated Si12x2yGexCy films at high temperature
(.800 °C) resulted in a total loss of substitutional C due to
the formation of SiC.24–28 Warren et al.28 reported various
degree of SiC formation during high-temperature rapid ther-
mal annealing of SiGeC films in N2 ambient. This is, how-
ever, vary different from our case in that our ambient was

FIG. 4. ~004! x-ray rocking curves of rapid thermal oxidized
Si0.8872yGe0.113Cy and Si0.82yGe0.2Cy samples. The rapid thermal oxidation
process was carried out at 1000 °C for 270 s in dry oxygen ambient.

FIG. 5. SIMS profile of carbon in Si0.8686Ge0.113C0.0184 sample before and
after rapid thermal oxidation.

195J. Appl. Phys., Vol. 87, No. 1, 1 January 2000 Choi et al.



dry oxygen. The carbon atoms in the SiGeC film would react
with oxygen to form CO or CO2, thus reduce the chances of
forming SiC. This may account for the fact that we can only
observed weak SiC peak in the IR spectrum of oxidized
Si0.8686Ge0.113C0.0184sample.

The Raman spectra of our samples show a strong Si
substrate peak at 520 cm21. The weaker peaks at 430, 408,
and 300 cm21 are the two Si–Ge and the Ge–Ge modes of
the alloy. The peak at 610 cm21 is due to substitutional C in
Si. Figure 6 shows a typical Si–Si Raman spectrum of the
Si0.8811Ge0.113C0.0059samples. Note that the Si–Si line can be
deconvoluted into two components, i.e., from the Si substrate
and from the Si0.8811Ge0.113C0.0059 layer. The peak at lower
energy side corresponds to the Si–Si mode from the alloy
layer.

Figure 7 shows the separation between the Si–Si peaks
of the alloy and Si substrate as a function of the C concen-
tration in Si12x2yGexCy films before and after oxidation. It
can be seen for both the 11.3 and 20 at. % Ge samples, the
distance between the two Si–Si peaks of the as-prepared
samples increases with increase in C concentration. This is
expected as the addition of C in the Si12xGex layer leads to

a partial relaxation of the Si–Si bonds towards their geo-
metrical arrangement in the bulk Si.29

It is interesting to note that RTO process reduces
the separation between the two peaks of samples
Si0.8811Ge0.113C0.0059and Si0.8738Ge0.113C0.0132to that close to
Si0.887Ge0.113. Note these are partially~compressive! or fully
compensated samples, the Raman results are in good agree-
ment to our discussion of XRD results of Fig. 4. For
Si0.8686Ge0.113C0.0184 ~tensile! sample, the reduction is only
partial and this is basically due to the higher carbon concen-
tration in this sample.

IV. CONCLUSIONS

In summary, the structural properties of as-prepared and
rapid thermal oxidized RTCVD grown Si12x2yGexCy alloy
films have been investigated using the XRD, XPS, SIMS,
and Raman spectroscopy techniques. Incorporating C into
the Si12x2yGexCy system can either partially, fully or over
compensates the strain in the layers.

The structural properties of the oxidized Si12x2yGexCy

films depends on the C content of the as-prepared films. For
films with C content equal or below fully compensation,
RTO reduces the C content such that the oxidized films re-
semble close to that of the Si12xGex film. For film with C
content that gives tensile strain, RTO will reduce the C con-
tent such that two broad regions exist in the film. The region
with C content higher than that required for full strain com-
pensation~albeit less than original concentration! accounts
for the broad tensile peaks in the XRD results. The other
region with lower C content is responsible for the broad
compressive peaks. The results from Raman spectroscopy on
the Si–Si strain confirm qualitatively our XRD observation.
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