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ABSTRACT

Understanding the links between remote conditions, such as tropical sea surface temperatures, and regional
climate has the potential to improve streamflow predictions, with associated economic benefits for reservoir
operation. Better definition of land surface moisture states (soil moisture and snow water storage) at the beginning
of the forecast period provides an additional source of streamflow predictability. The value of long-lead predictive
skill added by climate forecast information and land surface moisture states in the Missouri River basin is
examined. Forecasted flows were generated that represent predictability achievable through knowledge of climate,
snow, and soil moisture states. For the current main-stem reservoirs (90 3 109 m3 storage volume) only a 1.8%
improvement in hydropower benefits could be achieved with perfect forecasts for lead times up to one year.
This low value of prediction skill is due to the system’s large storage capacity relative to annual inflow. To
evaluate the effects of hydrologic predictability on a smaller system, a hypothetical system was specified with
a reduced storage volume of 36 3 109 m3. This smaller system showed a 7.1% difference in annual hydropower
benefits for perfect forecasts, representing $25.7 million. Using realistic streamflow predictability, $6.8 million
of the $25.7 million are realizable. The climate indices provide the greatest portion of the $6.8 million, and
initial soil moisture information provides the largest increment above climate knowledge. The results demonstrate
that use of climate forecast information along with better definition of the basin moisture states can improve
runoff predictions with modest economic value that, in general, will increase as the size of the reservoir system
decreases.

1. Introduction

Better understanding of the links between remote con-
ditions, such as tropical sea surface temperatures, and
climate over the continental United States has facilitated
improved land surface hydrologic predictability, man-
ifested especially in more accurate streamflow forecasts,
especially for lead times longer than are achievable
through traditional methods (Wood et al. 2002; Baldwin
2001; Hamlet and Lettenmaier 1999; Garen 1998). In
addition to these climate teleconnections, better defi-
nition of the land surface moisture state at the time of
the forecast, through macroscale hydrologic modeling
and remote sensing provides additional opportunities for
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improved hydrologic forecasting (e.g., Walker and
Houser 2001; Pauwels 2001; Rango et al. 2000; Carroll
et al. 1999).

Remote climate forcing signals and initial land sur-
face states have been shown to provide a measure of
predictability of runoff over the Mississippi River basin
(Maurer and Lettenmaier 2003), with considerable spa-
tial variability in the degree of predictability, its sources,
and the lead times at which it is significant. Studies of
the predictability of streamflow and/or of related cli-
matic forcing variables, and implied benefits to water
resources systems are numerous (e.g., Goddard et al.
2001; Hu and Feng 2001; Fennessy and Shukla 2000;
Cayan et al. 1999; Dracup and Kahya 1994; Kahya and
Dracup 1993). However, studies that have made quan-
titative evaluations of the economic value of land sur-
face hydrologic predictability are more rare (e.g., Ham-
let et al. 2002; Yao and Georgakakos 2001; Yeh et al.
1982; Castruccio et al. 1980).

The National Research Council (2002a) identified the
key to operational implementation of research findings
related to hydrologic predictability as communication
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FIG. 1. Missouri River main-stem dams. Size of circle at each point
is scaled according to the ratio of the active storage volume to the
river flow at that point.

TABLE 1. Ratio of the total volume and active volume for each dam
(the reservoir volume minus the permanent pool storage) to the av-
erage annual flow at each site.

Dam
Total vol/

avg annual flow
Active vol/

avg annual flow

Fort Peck
Garrison
Oahe
Big Bend
Fort Randall
Gavins Point

3.0
1.6
1.4
0.1
0.4
0.03

1.8
1.0
0.8
0.02
0.2
0.01

and strong linkages between research institutions and
operational programs. However, an essential component
of operational implementation of new techniques or data
products (such as satellite-derived land surface char-
acterizations) to improve predictability is a demonstra-
tion of the benefits that the improved predictability may
bring. Hornberger et al. (2001) assert that ‘‘improved
information systems and prediction methods can lead to
large benefits for water, land, and biological resource
management . . . ’’ In this study we build on previous
work by Maurer and Lettenmaier (2003) that identified
levels of predictability due to climate and land surface
sources throughout the Mississippi River basin, and in-
vestigate how large an effect long-lead predictability can
have on a water resource system, in comparison to that
predictability already available.

Specifically, this study evaluates the impact of
streamflow predictability at long lead times (months to
a year) on reservoir operation in the main-stem Missouri
River system, which includes six dams managed by the
U.S. Army Corps of Engineers (COE; Fig. 1). The Mis-
souri River basin was selected due to the demonstrable
long-lead runoff predictability in the basin (Maurer and
Lettenmaier 2003) and the extensive network of water
management facilities that allow water managers to re-
spond to monthly and seasonal forecast knowledge. We
develop a simplified simulation model of the system of
reservoirs, and use this reservoir simulation model to
evaluate the bounding cases of perfect predictability and
no prediction skill. We then use estimates of realistically
achievable streamflow predictability determined by
Maurer and Lettenmaier (2003) to compute the value
of predictive skill associated with knowledge of remote
climate forcing impacts of Missouri River streamflow,
as well as knowledge of initial snow water content and
soil moisture over the basin.

2. Study site description

The Missouri River is one of the largest rivers in
North America, and in its virgin state exhibited highly
variable flows. A combination of the Great Depression
and the Dust Bowl of the early 1930s inspired the con-
struction of Fort Peck dam, one of the largest modern
structures on the planet (Reisner and Bates 1990), which
was completed on the upper main stem of the Missouri
River in 1940. A sequence of three large floods in 1943
compelled the COE to draft plans for five additional
large main stem dams, the last of which was completed
in 1964 (Reisner 1986). The motivation for drought and
flood protection resulted in the enormous system design
volume, which is intended to provide protection against
both a repeat of the 12-yr 1930s drought (Lund and
Ferreira 1996) and the 1881 flood of record (COE 1999).
The system is currently operated to provide hydropower,
flood control, navigation, water supply, recreation, and
environmental mitigation benefits, although evacuating
storage for spring runoff and releasing sufficient flow
for downstream navigation largely drive the annual sys-
tem operation. For example, the total annual require-
ments for irrigation, municipal, industrial, livestock, and
all water uses in tributary areas to the main-stem dams
averages less than 200 m3 s21 (COE 1998), or about
one-third of the required release for navigation, even in
drought years.

The Missouri River basin and the six main stem dams
are shown in Fig. 1. The three upstream main-stem res-
ervoirs are significantly larger than the three down-
stream reservoirs. Table 1 shows the relative abilities
of these reservoirs to regulate flow, expressed as the
total active reservoir storage volume (excluding the per-
manent pool storage) divided by the average annual
main-stem flow at the dam site. The most upstream dam,
Fort Peck, has the largest ratio, with an active storage
capacity of 1.8 times the average annual inflow. The
overall dominance of the upper three dams for water
management purposes at time scales greater than one
month is clearly shown. Of the total annual flow at
Gavins Point (23.3 3 109 m3), 89% is generated up-
stream of Oahe Dam, which highlights the importance
of the upstream three reservoirs in regulating the annual
flow variations. The downstream reservoirs provide ad-
ditional hydropower generation and flow regulation over
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FIG. 2. (a) Monthly mean inflow to upper three reservoirs in the Missouri River main-stem system; (b) std dev of
the monthly inflows; (c) coefficient of variation.

shorter time spans. With these large storage capacities,
the Missouri River main-stem system is capable of re-
sponding to long-lead forecasts by adapting water stor-
age and release decisions to anticipated inflows months
to a year in advance.

Figure 2a shows the average annual cycle of inflow
to the upper three reservoirs, which is dominated by
snowmelt in the spring and early summer. The standard
deviation of the flows is shown in Fig. 2b, which in-
dicates that the variability is greatest in the spring and
early summer. Figure 2c shows the coefficient of vari-
ation (standard deviation divided by the mean), and il-
lustrates that, relative to the mean inflow, the greatest
variability in streamflow occurs in spring, meaning that
predictability of spring and early summer flows can be
expected to have the greatest impact on system opera-
tion.

3. Methods

The potential seasonal predictability of runoff iden-
tified by Maurer and Lettenmaier (2003) for the Mis-
sissippi River basin implied an inherent benefit to water
resources management. In order to quantify this benefit
for the Missouri River main-stem reservoir system, and
to reveal the impact of increased predictability at long
lead times on water resources management, a simulation
model of the system of reservoirs was developed. The
methods used in developing and applying the model are
explained below.

a. Predictability for contributing areas

Maurer and Lettenmaier (2003) computed for each
season the r2, representing predictability, associated
with a multiple linear regression between selected initial
conditions (i.e., different combinations of knowledge of
climate or land surface conditions) and the seasonal av-
erage runoff at each of 1532 0.58 grid cells in the Mis-
sissippi River basin. The 51-yr (1950–2000) time series
of derived seasonal soil moisture, snow, and climate
indices were regressed against the corresponding sea-
sonal average runoff data for the specified lead time at

each grid cell. All data were used in the developing the
regression relationships; for example, all 51 yr of spring
runoff values at a single grid cell were correlated with
the values of the climate indices, soil moisture, and snow
at that grid cell at the specified lead time. The r2 values
were computed for seasons at leads of 0–4 seasons
(where lead 0 would be a forecast of a season’s runoff
using initial conditions of the first day of the season, or
an average of 1.5-month lead time). These r2 values
were computed independently for each grid cell. Stream-
flow forecasts were not produced per se, rather the spa-
tially distributed characteristics of runoff predictability
and its sources were assessed. The r2 associated with
any correlation is numerically equal to the coefficient
of prediction, Cp, defined in the appendix, and we use
these terms interchangeably throughout.

The climatic indicators used by Maurer and Letten-
maier (2003) are the Southern Oscillation index (SOI),
which is an indicator of the state of the El Niño–South-
ern Oscillation, in combination with an Arctic Oscil-
lation (AO) index. Both of these climate indices are
published in near–real time, and hence are currently
available to water managers. Although the evolution of
these indices through the forecast period is not consid-
ered, Maurer and Lettenmaier (2003) show that the pre-
dictability of runoff achieved using their states at the
time of forecast are comparable to what is obtained by
considering the evolution of climate state indicators in
the Missouri and Mississippi River basins.

Seasonal average soil moisture and snow (as snow
water equivalent) data at each grid cell were derived
using a hydrologic model driven by gridded observed,
and derived from observed, meteorology as summarized
by Maurer et al. (2002), and hence represent a ‘‘perfect’’
knowledge of the soil moisture and snow state at the
time the forecast is made (because this same hydrolog-
ical model simulation produced the runoff value at each
grid cell for the forecasted month).

For the present study, these Cp values (e.g., Fig. 6 in
Maurer and Lettenmaier 2003) are averaged over each
of the contributing areas for the upstream three Missouri
River reservoirs, weighting by the average runoff for
each grid (Fig. 5 in Maurer and Lettenmaier 2003).
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TABLE 2. Seasonal weighted average Cp values for the contributing
area to Fort Peck dam, derived from Maurer and Lettenmaier (2003)
for the cases of different predictors (see text). Leads indicate the
number of intervening seasons between the forecast date and the
forecasted seasonal average runoff. Seasons are winter (DJF), spring,
(MAM), summer (JJA), and fall (SON).

Lead 0 Lead 1 Lead 2 Lead 3 Lead 4

Predictors: Climate indicators
DJF
MAM
JJA
SON

0.046
0.039
0.064
0.031

0.041
0.044
0.075
0.046

0.065
0.038
0.08
0.038

0.076
0.049
0.083
0.03

0.04
0.04
0.096
0.033

Predictors: Climate indicators 1 snow water content
DJF
MAM
JJA
SON

0.124
0.113
0.346
0.048

0.045
0.116
0.185
0.06

0.078
0.038
0.176
0.059

0.092
0.062
0.127
0.067

0.093
0.055
0.141
0.034

Predictors: Climate indicators 1 snow water content 1 soil moisture
DJF
MAM
JJA
SON

0.672
0.276
0.393
0.179

0.311
0.271
0.203
0.12

0.187
0.099
0.196
0.091

0.145
0.091
0.14
0.096

0.148
0.089
0.15
0.062

While, as mentioned above, streamflow forecasts were
not produced (at either grid cells or along rivers) by
Maurer and Lettenmaier (2003), by aggregating these
Cp values spatially in this manner, the overall predict-
ability of runoff due to the considered climatic and land
surface moisture indicators for each contributing area
can be assessed. These values of weighted average Cp

were developed for each season and each lead time of
0–4 seasons. A grid consisting of all values of 1 rep-
resents perfect predictability, and all 0 values indicates
no predictive skill. In addition to these bounding con-
ditions, Cp values were estimated for three scenarios:
1) for the case of known climatic indicators; 2) for the
case where perfect knowledge of snow water equivalent
is added to the knowledge of climate signals; and 3) for
the case where perfect soil moisture knowledge is also
assumed, in addition to snow water content and climate
signals. As discussed by Maurer and Lettenmaier
(2003), these three scenarios are arranged as ‘‘tiers’’ in
accordance with how well defined the variables are with
current technology. The climate indices are best known,
as they are available in real time. Snow state is less well
known, although ground surveys and remote sensing
provide a basis for estimates that are available to water
managers. Soil moisture is essentially unobserved, and
hence is least well known. The difference between the
Cp values for each scenario represents the incremental
variance explained beyond that already achieved with
better known variables, hence, the variances explained
by correlated variables (such as soil moisture and snow)
are only counted once, and are attributed to the better
known variable.

The seasonal Cp values for Fort Peck are shown in
Table 2 for each of the three cases. The table indicates
the runoff variance explained by each tier of variables,

by correlating the seasonal average runoff with the ini-
tial state conditions of the indicated set of predictors for
the corresponding lead time. For example, the Cp value
for predicting December–January–February (DJF; here-
after all three-month units will be abbreviated by the
first letter of each month) seasonal average runoff at
lead 0 indicates the predictors were specified on 30 No-
vember. The table shows the general decrease in pre-
dictability with increasing lead time, the high levels of
predictability identified by Maurer and Lettenmaier
(2003) for winter runoff at short lead times (attributable
primarily to knowledge of soil moisture), and the im-
portant role of knowledge of snow water content for
summer runoff predictability. Though not shown in the
table, for the contributing areas to the Garrison and Oahe
dams, snow is of less importance for summer runoff
prediction, and is of greater importance for spring runoff
prediction, although only at lead times less than about
three months.

Maurer and Lettenmaier (2003) developed the Cp pre-
dictability indices at the seasonal average scale, and the
water resources system simulation model developed in
this study for the Missouri River basin operates on a
time step of one month, so as to capture the essential
subseasonal operational water management decisions.
The seasonal Cp values were interpolated to monthly
values for lead times of 0–11 months, where a lead time
of 0 months indicates a forecast of a month’s average
runoff on the first day of the month. A 12 3 12 grid
represents these monthly Cp values for each incremental
area, with one row for each month for which flow is
being predicted, and one column for each lead time from
0 to 11 months.

b. MOSIM Missouri River main-stem system model

COE operates a series of six reservoirs along the main
stem of the Missouri River. The operation of the res-
ervoirs is governed by a master water control manual
(COE 1979), which has been under review for several
years to adapt the management of the main-stem system
for ecological and other concerns (National Research
Council 2002b; COE 2001). As part of the review, ex-
tensive studies by the COE have been made on the
operation of the system, using a system simulation mod-
el at a monthly time step (COE 1994a). In addition to
COE efforts, other researchers have developed Missouri
River main-stem reservoir operation models (Hotchkiss
et al. 2000; Jorgensen 1996; Lund and Ferreira 1996)
though none were suitable for the goals of this study.
Our need was to use a monthly time step, incorporate
forecast information in operating decisions, and to pro-
duce hydropower benefits. We constructed a system
model, MOSIM, using the Extend simulation software
(Imagine That, Inc. 2001). MOSIM uses the physical
reservoir data and minimum releases for hydropower
and environmental constraints from the long-term study
model described by the COE (1994a), which are shown
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TABLE 3. Dam release constraints and key elevations for the COE main-stem Missouri River project used in the MOSIM model.

Fort Peck Dam;
Fort Peck Lake

Garrison Dam;
Lake Sakakawea

Oahe Dam;
Lake Oahe

Big Bend
Dam;

Lake Sharpe

Fort Randall
Dam;

Lake Francis
Case

Gavins Point
Dam;

Lewis and
Clarke Lake

Release (m3 s21)
Max releasea

Max winter releaseb

Max hydropower
Min hydropowerc

Min tern and ploverd

Min spawning, irrigation, and water supplyd

708
425
453

85
241

85

1700
708

1189
227
566
453

1925
708

1670
28

0
170

2265
708

3115
0
0
0

2265
708

1303
28

793
142

2265
708
991
142
821
170

Elevation (m)
Max flood control
Max multiple use
Max carryover
Max permanent pool
Avg tailwater

686.0
684.8
681.1
658.5
620.1

565.2
564.0
560.2
541.2
511.0

493.9
493.0
490.1
469.5
434.5

433.8
433.5
432.9
431.4
412.5

419.2
416.2
411.6
402.4
376.5

368.9
368.3
367.2
367.1
354.0

Volume at given elevation (106 m3)
Max elev flood control
Max elev multiple use
Max elev carryovere

Max elev permanent pool

23 050
21 850
18 500
5190G66

29 380
27 550
22 340

6140

28 540
27 180
23 230

6630

2290
2220
2070
1740

6680
5470
3850
1870

580
510
400
380

a Values of 2265 indicate no defined maximum in the COE (1994) report.
b Max flows are reduced in winter (DJF) due to channel ice formation.
c Min hydropower is the sustained flow set to meet the Mid-Continent Area Power Pool (MAPP) requirements in the COE Long-Range Study

(LRS) model.
d Min flows [from both COE (1994) and input files for the COE LRS model] applied May–Aug.
e As the base of the multiple use zone, this is the target volume for 1 Mar in COE (1994).

TABLE 4. Total system storage category definitions and navigation
flow targets, adapted from COE (1994a) and Jorgensen (1996).

High Medium Low

System storage definition (106 m3)
Dec–Feb
Mar–Apr
May
Jun–Nov

77 710
67 230
69 080
72 780

71 540
56 740
59 210
62 290

67 840
49 340
49 340
49 340

Service level flow (release target at Gavins Point)* (m3 s21)
Dec–Feb
Mar–Nov

708
991

425
821

255
566

* Releases are based on the total system storage, as defined for the
three categories of high, medium, and low. For system storages
between the threshold values, flow targets are interpolated.

in Table 3. We include the simplification used by Jor-
gensen (1996) and COE (1991) that combines local in-
flow to Big Bend and Fort Randall reservoirs. The small
contributing area between Big Bend Dam and Oahe
Dam justifies this assumption.

The three upstream reservoirs contain about 90% of
the total system storage, and therefore provide the ma-
jority of the capacity to operate the system by draining
during the fall and winter and refilling during spring.
Therefore, in our system model the downstream three
reservoirs are operated in a run-of-river mode, where
for each month the inflow is equal to the outflow. The
model determines the release from each reservoir at each

time step in a two-step process. The first step consists
of meeting the minimum and maximum flow release
requirements in Table 3, and the release needed to evac-
uate reservoir storage in the winter to prepare for spring
inflow volumes, which is set to match the current op-
erational goal of draining each reservoir to the base of
the multiple use zone by 1 March (COE 1994a). Short-
falls in meeting environmental targets up to 10% are
permitted to occur in the model when the total system
storage is below the top of the carryover storage zone.
This process is run from the most upstream dam (Fort
Peck) downstream to Gavins Point. The second step
involves checking the release at Gavins Point to see if
the navigation target, which is a function of date and
system storage (COE 1994a) as shown in Table 4, has
been met by the releases determined in the first step. If
a supplemental release is needed to meet the navigation
flow at Gavins Point, this is allocated to the upper three
reservoirs with the supplemental release drawn from
each reservoir in proportion to its current volume. This
helps to balance the levels of the three upstream res-
ervoirs, which is an operational goal with the Missouri
River main-stem system, described by COE (1994a).
These supplemental releases are passed through the sys-
tem to determine the final releases at each dam.

Figure 3 compares the historic systemwide monthly
storage for 1968–97 with that simulated by the system
model, MOSIM, using the historic monthly reservoir in-
flows. The mean monthly bias is 2557 3 106 m3, or
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FIG. 3. Monthly simulated and historic Missouri River main-stem system volumes: 1968–97.

FIG. 4. Monthly energy generation of Missouri River main-stem dams, historic and simulated.
(a) Time series of monthly values; (b) average annual cycle for the 50-yr period, 1968–97.

0.8% of the average historic system storage. The root-
mean-square error of monthly storage volumes is 3.458
3 109 m3, or 4.8%, and the Pearson correlation coeffi-
cient of the historic and simulated monthly volumes is
0.92, which reflects the good correspondence between
the model and historic system simulation seen in Fig. 3.

MOSIM includes a computation of system energy ca-
pacity and generation for each dam. System energy ca-
pacity is a function of reservoir elevation [tables relating
elevation to capacity used in MOSIM are those used by
COE (1994a)], and is an indication of the ability of the
system to generate peak power. Maintaining high res-
ervoir levels increases the potential peak power gen-
eration capability, thus increasing the system capacity
benefits. Energy generation is a function of discharge
and water surface elevation at each reservoir, and is the
energy produced when water is released from a reservoir
through its turbines. Historic and simulated (using
MOSIM with observed historic reservoir inflows) en-
ergy generation (in GW h) for each month for 1968–
97 are shown in Fig. 4. The annual average historic
energy generation is 10 187 GW h, and the simulated
value is nearly identical at 10 158. Although Fig. 4a
shows that MOSIM overpredicts the peak generation
during the low system storage period during the late
1980s and early 1990s (when MOSIM has higher res-
ervoir elevations than historic values), Fig. 4b shows
that the model captures the seasonal average cycle ac-
curately.

c. Forecasted inflows representing predictability
levels

To contrast the effects of different levels of predict-
ability on the system operation, it was necessary to de-
velop forecasted inflow sequences that reflect each pre-
determined level of predictability. This was accom-
plished by stochastically adding error to observed sys-
tem inflow sequences, with larger errors reflecting lower
levels of predictability, and perfect predictability re-
sulting in forecasted flows equal to observed. The meth-
od used, based on Lettenmaier (1984), is outlined in the
appendix. In order to extend this analysis further into
the past, we used as a surrogate for the historic record
the 100-yr reconstructed historic reservoir inflows de-
veloped by COE (1994a), which remove the effects of
upstream water management and set a constant deple-
tion level at the relatively low level present in 1949.

For each month of the historic record for each con-
tributing area, 500 synthetic forecasts were made for
each of the following 12 months, reflecting the Cp values
for the current month. From this sequence, the 90th
percentile flow for each month was determined. (Since
the focus was on high-flow conditions, no adjustment
was necessary for the possibility of negative flows as
they do not occur at the 90th percentile level.) These
90th percentile flows represent the assumed level of risk
(10%) for this study [and the highest runoff conditions,
or ‘‘upper decile,’’ used in planning reservoir releases
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FIG. 5. Accumulated inflow to Fort Peck Dam for a 12-month
forecast period under conditions of perfect and zero forecast skill.

TABLE 5. Energy and capacity values used in this study.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Energy [1023$ (kW h)21]
Capacity ($ kW21 month21)

21.00
13.26

21.00
9.62

19.00
5.33

19.00
0

19.00
4.01

27.00
18.44

27.00
30.10

27.00
26.73

19.80
12.99

19.80
1.36

19.80
7.32

21.00
12.99

in COE (1979)], where operational decisions are based
on these anticipated flow volumes for the following 12
months. An example of the generation of forecasted flow
sequences is shown in Fig. 5 for the case of no pre-
dictability (all Cp values set to 0). This shows the wid-
ening band of uncertainty as the forecast lead time in-
creases.

d. The value of added predictability

To compare the benefits associated with different lev-
els of predictability quantitatively, it is convenient to
compute system economic benefits under different al-
ternatives. The current COE system operation produces
many benefits, including flood control, navigation, hy-
dropower, water supply, and recreation. In addition, the
system is operated to provide environmental mitigation
benefits, including habitat protection for the least tern
and piping plover populations that nest along the river.
Among these benefits, hydropower dominates the total
(COE 1994a). For the MOSIM model developed for this
study, the remaining purposes for the reservoir system
were imposed as constraints, while differences in hy-
dropower generation under different alternatives pro-
vided the metric for the value of the predictability. Hy-
dropower benefits were calculated for system capacity
and energy production. COE (1994a) estimated that the
capacity has historically generated roughly two-thirds
of the total hydropower benefits. The economic benefits
of both capacity and energy vary through the year. A
set of monthly capacity and energy benefits were derived
based on COE (1994b), which are shown in Table 5.

The annual operation in MOSIM was based on COE
(1994a), which uses a target of draining all reservoirs
(in the case of MOSIM, the three upper reservoirs only,
as the lower three are ‘‘run of river’’) to the target el-

evation corresponding to the base of the annual flood
control zone (also referred to as the flood control and
multiple use zone) by 1 March. In order to permit the
use of long-lead forecast information, this rule was al-
tered to use two forecast volumes, both derived at the
90th percentile level as above. First, rather than fix the
1 March level to the base of the multiple use zone, the
level was set to allow storage of the forecasted volume
of spring and summer inflow (March–July) less than the
maximum amount that could be released through the
turbines, in order to minimize spill. Second, the fore-
casted inflow volume from the current month through
1 March was compared against the maximum volume
that could be released through the turbines by 1 March.
This allowed a decision each month as to whether the
evacuation needs to begin or not, and retained the res-
ervoir at as high a level as possible until lowering of
levels to meet the 1 March target must begin. Table 5
shows how maintaining higher water surface elevations,
especially in DJF and JJA, can result in increased system
benefits due to greater economic value of energy pro-
duction and capacity. Additional predictability, and
hence reduced uncertainty in anticipated flow volumes,
allows the maintenance of higher reservoir levels, which
translate into greater hydropower benefits, and provides
a quantitative estimate of benefits due to additional pre-
dictive skill.

With the addition of this capability of the system to
respond to different levels of predictability, the system
operation changes, as shown in Fig. 6 for the cases of
perfect and zero predictability. It is interesting to note
that even the zero predictability case has considerably
less drawdown of the system during the dry period of
the late 1980s to early 1990s. This illustrates that be-
cause the synthetic forecast technique adds noise to the
historic inflows, even a zero predictability scenario ef-
fectively incorporates some knowledge of future in-
flows, and does not represent a true ‘‘zero skill’’ fore-
cast, which would assume climatological inflows. This
also shows how a change in operation of a system may
produce additional benefits that can exceed those due
to increases in predictability.

4. Results and discussion

a. Current system configuration

As a bounding case, the annual systemwide hydro-
power benefits under a perfect forecast scenario (com-
plete knowledge of future flows) are compared to those
resulting from no predictability. The average annual hy-
dropower benefits for the no predictability scenario were
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FIG. 6. Monthly historic and simulated main-stem system storage, as in Fig. 3, but including
the system operation under the flexible rule curve adopted in this study to adapt operations to
different levels of predictability. MOSIM—no-forecast component corresponds to the MOSIM
model plotted in Fig. 3.

FIG. 7. Ratio of system volume to annual system inflow vs the
percent difference between perfect and no-forecast skill for past stud-
ies and the current study. Dotted symbols indicate sensitivity studies
for reduced volume systems (see discussion in text).

$530 million, while the perfect forecast scenario pro-
duced $540 million, representing an increase of 1.8%.
(For comparison, MOSIM without a forecast compo-
nent, which more closely follows the historic system
operation illustrated in Fig. 6, produces $510 million in
hydropower benefits.) This suggests a relative maximum
potential benefit in the Missouri River basin, due to
hydropower alone, with improved predictability that
amounts to several million dollars but is small on the
scale of the benefits already produced by the project.

This result is reasonable, given the scale of the ex-
isting project, where the total system storage (of the
COE main-stem projects) is 3 times the annual inflow
to the reservoirs. As illustrated in Fig. 5, the greatest
volume of water affected by the forecast in a month
(i.e., the maximum difference in slope between perfect
and zero predictability), is approximately 900 3 106

m3. This volume of water can be interpreted as an

amount that can be stored under perfect forecast knowl-
edge, while with zero predictability it would have to be
released to leave room to store anticipated inflow (that
would not ultimately occur). However, the extremely
large size of the reservoirs relative to the inflows results
in this volume representing an elevation difference, at
Fort Peck dam, of 1.0 m, or 1.5% of the total head
available for hydropower generation at Fort Peck. Sim-
ilarly, the large reservoirs impounded by the Garrison
and Oahe dams relative to their inflows dampen the
sensitivity to inflow forecasts, resulting in the relatively
small range of benefits under perfect and no skill fore-
casts.

To put this information in the context of past studies,
we compiled the results from five previous studies that
compared hydropower generation benefits under perfect
forecast (or under optimal operation) and with zero pre-
dictability (or with little accounting for forecast knowl-
edge). For each of these past studies, Fig. 7 shows the
ratio of system volume to annual inflow versus the per-
cent difference in hydropower benefits with the best
forecast as compared to least or no predictability. Al-
though the value of predictability is a function of many
factors such as the variability of inflows and demands,
and the studies employ a variety of assumptions, Fig.
7 shows that the ratio of system volume to average
inflow does provide some apparent limitation to the po-
tential of a system to benefit from forecast information.
As an extreme case (large storage relative to mean flow),
the Missouri River main stem falls within the trajectory
seen from past studies, showing that 12-month forecasts
in this study have a limited effect on this system, de-
signed for multiple year storage.

Given this inverse relationship between reservoir sys-
tem storage capacity and the hydropower benefits of
long-lead forecast information, we studied the benefits
of added predictability on a hypothetical reduced-vol-
ume system in the Missouri River basin. Hooper et al.
(1991) included this type of sensitivity study of the
effect of reducing system storage volume on the benefits
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TABLE 6. Data related to the sensitivity study with resizing of the
main-stem Missouri River system reservoirs.

Total
system
volume

(106 m3)

System (vol/
annual flow)

at Gavins Point

Avg elev range in
multiple use

zone (m)

Increase in benefits
with perfect
forecast (%)

90 520
58 240
45 420
36 450

3.0
1.9
1.5
1.2

3.0
5.4
7.3

15.2

1.8
4.2
5.8
7.1

TABLE 7. Total system hydropower benefits for reduced-volume
Missouri River main-stem dams under different levels of predictive
skill.

Scenario/forecast knowledge

Average annual
hydropower benefits
(millions of dollars)

Zero forecast skill
Climate state
Climate state and snow water content
Climate, snow, and soil moisture
Lag flow forecast
Perfect forecast skill

$359.8
$363.2
$364.5
$366.6
$363.5
$385.5

FIG. 8. Reliability of system for meeting environmental release
targets at the Fort Peck and Garrison dams, measured as the fraction
of time that the releases are met, and the averge magnitude of each
shortfall expressed as a fraction of the target release.

of forecast information. To simulate the effects of a
volume reduction due to system modification, Hooper
et al. reduced their simulated system storage capacity
by 17%, and the resulting difference between a perfect
and zero forecast increased markedly to 13.6% (the re-
duced capacity Salt River system is shown in Fig. 7 as
dotted symbols). The Salt River system Hooper et al.
analyzed may be more sensitive to changes in system
storage than the Missouri River main-stem system, be-
cause the Salt River system relies on costly groundwater
pumping to achieve water supply requirements not met
by surface runoff, and the pumping cost is included in
their analysis. However, it does show that a reduction
in total system capacity may result in greater forecast
value. In the present study, a similar sensitivity study
was performed for two purposes: 1) to identify a system
capacity at which the value of forecast information pro-
vides a greater marginal increase in benefits; and 2) to
examine the value of the climate, snow, and soil mois-
ture information within the bounds of perfect and zero
predictability.

b. Modified system configuration

Although the current storage capacity of the Missouri
River main-stem reservoirs is too large to show a sub-
stantial difference in hydropower benefits between dif-
ferent levels of predictability, for reasons discussed
above, a smaller system in the same geographical setting
is expected to show greater sensitivity. To investigate
this, the MOSIM model was altered by reducing the
total capacities of the carryover storage and permanent
pool zones of the three upstream reservoirs, resulting
in a hypothetical system with smaller reservoir storage
capacities that is more sensitive to changes in forecasted
inflows. The three reduced Missouri system configu-
rations are summarized in Table 6. The smaller system
sizes result in a greater range of elevations for the mul-
tiple use zone (which retained its original size for all
configurations), and the value of forecast information
relative to no forecast knowledge likewise increases.
The smallest system, with a volume-to-flow ratio of 1.2,
showed a difference of 7.1% in hydropower benefits
between the perfect and zero predictability alternatives,
representing a difference of $25.7 million in annual av-
erage hydropower benefits.

For this study, this reduced main-stem system was
used in the analysis of the value of forecast information
added by knowledge of the climate state and the initial
state of snow water and soil moisture, as developed by
Maurer and Lettenmaier (2003). The three cases of in-
cremental knowledge of climate and land surface state
identified in section 3a were applied to this reduced main
stem system. The total hydropower benefits of the proj-
ect using these three cases, bounded by the hydropower
benefits for perfect and zero predictability scenarios, are
summarized in Table 7. Figure 8 shows the system re-
liability in meeting the minimum environmental flow
releases for the least tern and piping plover habitat at
the Fort Peck and Garrison dams. Figure 8 shows that
the reliability of meeting these release targets is gen-
erally equal or better under greater predictability and
higher benefit alternatives. In addition, the maximum
winter releases are met 100% of the time at these points,
as are the navigation release targets at Gavins Point.
This illustrates that the increase in benefits between
these alternatives is not due to a reduction in reliability
in meeting some other system benefit.

Table 7 shows that for this reduced configuration of
the Missouri River main-stem reservoir system, the total
potential annual hydropower gain above zero predict-
ability accounting for the climate state, with perfect
knowledge of the snow water content and soil moisture,
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FIG. 9. Average annual hydropower benefits above a no-forecast skill
scenario with the specified level of predictability in the current season,
and no skill in other seasons. Seasons are as defined in Table 2.

amounts to $6.8 million annually, which is 26% of the
total difference between zero and perfect predictability.
Using currently available knowledge of the climate sig-
nal, with no knowledge of snow or soil moisture states,
provides $3.4 million in benefits above the no-predict-
ability case. The incremental benefit of perfectly know-
ing snow state, in excess of the benefit resulting from
knowledge of climate state, is $1.3 million. Although
soil moisture shows high predictability at lead times less
than three months and has its highest correlations for
predictability of winter runoff, when runoff is lowest,
the incremental benefit (above that already achieved
with snow and climate knowledge) due to perfect
knowledge of soil moisture state is $2.1 million. As
noted in section 3a, the predictability of summer runoff
attributable to knowledge of snow water is high at Fort
Peck, but lower at the more downstream projects; hence,
snow has an overall system impact less than that due
to soil moisture.

Using the SOI and AO climate indices, which are
published monthly (and are therefore available at fore-
cast time), the hydropower benefits obtained from 12-
month forecasts, in excess of those for the no-predict-
ability scenario, are approximately equal to that which
can be obtained using only past inflow observations (the
‘‘lag flow’’ forecast indicated in Table 7). When a per-
fect knowledge of the basin snow and soil moisture state
at the time the forecast is made is added to knowledge
of the climate indices, the total increase in hydropower
benefits (above a no-predictability scenario) double.

It should be emphasized that these results apply to
the entire (reduced volume) main-stem system. Other
projects in the basin would have different sources and
levels of predictability, and the dominance of these
sources in producing hydropower benefits would be dif-
ferent. Furthermore, as noted by Yao and Georgakakos
(2001), the response of a water resources system to fore-
cast information is highly dependent on the reservoir
operating rules imposed. Hence, the conclusions from
the present study, with system operations based on those
used by the COE long-term simulation model, would
be expected to change under different operating rules.

The results in Table 7 are also dependent on the order
in which the tiers of variables are introduced. As men-
tioned above, the best known variables are introduced
first, hence, any predictability associated with correlated
variables is assigned to the better known variables. The
implication of this on the results in Table 7 is that, for
example, if it were assumed that soil moisture could be
characterized using a hydrologic model to better ac-
curacy than snow water content is observed, soil mois-
ture would be introduced before snow in the develop-
ment of the Cp values in Table 2. This would attribute
a greater portion of the total variance explained to soil
moisture (because soil moisture and snow water are cor-
related), and therefore a greater proportion of incre-
mental benefits shown in Table 7 would be assigned to
soil moisture.

c. Seasonal distribution of predictability

The seasonal distribution of the value of this pre-
dictability was investigated by generating forecasts us-
ing different levels of predictability (either a lag flow
forecast, or some combination of knowledge of climate
state, snow water content, and soil moisture) in one
season, and no predictability in the remaining seasons.
The benefits determined for hydropower used the re-
duced volume system configuration. The resulting ben-
efits are shown in Fig. 9, where, for example, DJF in-
dicates the predictability level for forecasts made in win-
ter was set using the appropriate values for the level of
knowledge indicated, and zero predictive skill was as-
signed to the other three seasons. The ordinate values
indicate the average annual system hydropower benefits
above those obtained with no predictability.

Figure 9 shows several interesting features on the
seasonal scale. First, the benefits obtained from incor-
porating the known climate indices (labeled ‘‘climate
only’’ in Fig. 9) in the prediction scheme are very close
to the benefits obtained using correlation relationships
with historic observed flows (lag flow). The incremental
benefits (beyond those already obtained using climate
indices) obtained with perfect knowledge of snow state
throughout the basin has its major impact in spring,
when the high spring and summer flow volumes are
highly correlated with snowpack and soil moisture.
Even with the constraint of the system operation in this
study, where in MAM the next reservoir target is the
following 1 March, the volume of water affected by the
initial land surface conditions is large enough, and has
sufficient persistence, where there is considerable value
to the predictability.

In general, the value of predictability is greatest in
the spring, when interannual variability is greatest (Fig.
2c). The winter and spring are when the incremental
benefits due to soil moisture knowledge, above those
already obtained from knowledge of climate and snow,
are greatest. This illustrates the potential value of soil
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moisture knowledge in determining spring and summer
inflows. Knowledge of soil moisture also provides in-
cremental benefits during fall (though of a lower value
due to lower flows during this part of the year), since
the low winter inflows are dominated by soil moisture–
driven base flow.

Using this technique to examine the seasonal value
of predictability has some counterintuitive results. One
illustration of this is seen for summer in Fig. 9, where
increasing information about the land surface moisture
state in summer (with no skill in all other seasons) re-
sults in a decrease in average annual benefits. This is
explained by the use of the flexible rule curve to set the
1 March system evacuation target, and the nonlinearity
of monthly benefits. For example, knowledge of soil
moisture in summer provides some predictability of up-
coming fall and winter inflows to the system. With the
added predictability in summer, anticipated inflows in
fall and winter might be low and releases limited ac-
cordingly. However, when the system returns to no skill
forecasts the following season, higher anticipated in-
flows will result, and reservoir releases will increase for
the fall. This would effectively shift releases from sum-
mer to fall with added predictability in only the summer
season. This timing shift in releases from summer to
fall would result in lower hydropower benefits, as shown
by the values in Table 5. This further illustrates the
complex interactions between not only the time-varying
predictability and the operating rules of the system, but
also the effect of the time value of energy, and how
these factors all play a role in the ultimate value of
hydrologic predictability in any particular setting.

5. Conclusions

The value of long-lead streamflow prediction skill
added by knowledge of climate teleconnection infor-
mation and land surface moisture state in the Missouri
River basin on the main-stem reservoir system was eval-
uated. The value was based on the hydropower gener-
ated by the main-stem dams for a simulated period of
1898–1996 using a monthly simulation model devel-
oped for this study. Simulated forecasted flows were
generated to represent the levels of predictability de-
termined in a previous study.

The configuration of the Missouri River main-stem
reservoirs, which have a total storage capacity 3 times
the average annual discharge at the downstream end of
the system, shows little sensitivity to streamflow pre-
diction skill at long lead times (months to a year)—only
a 1.8% difference in hydropower benefits between a zero
and perfect skill forecast. Modifications to the system
operation to allow ingestion of forecasted inflows had
a greater overall effect on hydropower benefits than the
added prediction skill.

To simulate the effects of predictability on a smaller
system, a hypothetical Missouri River main-stem system
was developed with reduced system storage. This re-

duced system showed a larger difference between the
zero and perfect predictability case of 7.1%, and allowed
the investigation of the levels of predictability due to
climate and land surface state knowledge to be inves-
tigated. With the reduced system, incorporating both a
knowledge of the climate state as well as perfect knowl-
edge of snow and soil moisture states in the forecast
resulted in an increase of 1.9% in system hydropower
benefits, representing $6.8 million annually. Of this $6.8
million, use of currently available climate indices pro-
vides the largest portion at $3.4 million, which is ap-
proximately the same as the value of predictability pro-
vided by historically observed inflows. Of the additional
benefits above that already provided due to climate
knowledge, soil moisture adds the greatest value, at $2.1
million. This provides an important context for opera-
tional implementation of hydrologic predictability,
where for large water resources systems the benefits of
added predictability may amount to modest sums, but
represent a small percentage of additional benefits.

A seasonal analysis indicates that, for the reduced
system, including climate knowledge alone provides a
level of benefits comparable to that obtainable using
historic system inflow observations. Benefits above
those obtainable using historic inflows can be obtained
with the addition of knowledge of snow water content
and soil moisture throughout the basin. Knowledge of
soil moisture provides the bulk of these increased ben-
efits, and has its greatest impact when knowledge is
provided of soil moisture state in the winter and spring.
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APPENDIX

Development of Forecast Reservoir Inflows

Lettenmaier (1984) defined an index of forecast skill,
the coefficient of prediction:

2˜E(X 2 X )t tC 5 1 2 , (A1)p 2s t

where X̃t is the forecasted flow at time t, Xt denotes the
recorded flow, and st is the standard deviation of the
recorded flows in period t. For the predictabilities de-
termined by Maurer and Lettenmaier (2003) using mul-
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tiple linear regression techniques, Cp is numerically
equal to the square of the correlation coefficient, that
is, the fraction of the runoff variance explained by the
predictors.

For a given level of forecast skill, forecasted flows
are developed from the ‘‘recorded’’ flows as follows.
As represented by Lettenmaier (1984), forecast flows
are equal to recorded flows plus an additive error com-
ponent:

X̃ 5 X 1 « ,t t t (A2)

where «t is an error term that grows as the forecasts
contain less skill. The forecast error is a function of the
forecast accuracy, with zero error associated with a per-
fect forecast and the maximum error associated with no-
forecast skill. In order to generate errors for different
scenarios of forecast skill, the following methodology
was used.

The error term, «t, is normally distributed with a mean
of zero and a variance computed by

2 2s 5 (1 2 C )s ,« p t (A3)

where st is the standard deviation of the recorded flows
in period t; in this case t represents months, so s t is the
standard deviation of the set of flows for month t. In
Lettenmaier (1984) the «t is assumed to have a lag-1
(using daily data) Markov correlation structure. The ef-
fective lag-1 correlation coefficient, r, of the recorded
flow is derived such that the established value of Cp is
reproduced. The lag-1 forecast error correlation, r« is
estimated, which is a function r and the length of the
forecast and observation periods. As illustrated in the
implementation of this technique by Datta and Burges
(1984), as well as in the example in Lettenmaier (1984),
even very large values of Cp and r produce relative low
correlation values of r«. In this implementation, r« was
estimated at below 0.1 for the range of Cp values re-
ported by Maurer and Lettenmaier (2003), and would
therefore have a negligible effect on the estimated fore-
cast values. Hence, the forecast errors were assumed
uncorrelated for this study. With these assumptions, this
method reduces to that used by Yeh et al. (1982) for
stochastic flow generation.
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