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[1] Understanding the space-time variability of runoff has important implications for
climate because of the linkage of runoff and evapotranspiration and is a practical concern
as well for the prediction of drought and floods. In contrast to many studies investigating
the space-time variability of precipitation and temperature, there has been relatively
little work evaluating climate teleconnections of runoff, in part because of the absence of
data sets that lend themselves to commonly used techniques in climate analysis like
principal components analysis. We examine the space-time variability of runoff over
North America using a 50-year retrospective spatially distributed data set of runoff and
other land surface water cycle variables predicted using a calibrated macroscale hydrology
model, thus avoiding some shortcomings of past studies based more directly on
streamflow observations. We determine contributions to runoff variability of climatic
teleconnections, soil moisture, and snow for lead times up to a year. High and low values
of these sources of predictability are evaluated separately. We identify patterns of runoff
variability that are not revealed by direct analysis of observations, especially in areas of
sparse stream gauge coverage. The presence of nonlinear relationships between large-
scale climate changes and runoff pattern variability, as positive and negative values of the
large-scale climate indices rarely show opposite teleconnections with a runoff pattern. Dry
soil moisture anomalies have a stronger influence on runoff variability than wet soil.
Snow, and more so soil moisture, in many locations enhance the predictability due to
climatic teleconnections. INDEX TERMS: 1833 Hydrology: Hydroclimatology; 1860 Hydrology:

Runoff and streamflow; 1866 Hydrology: Soil moisture; 1863 Hydrology: Snow and ice (1827); 3322

Meteorology and Atmospheric Dynamics: Land/atmosphere interactions; KEYWORDS: runoff, snow, soil

moisture, teleconnections, predictability

Citation: Maurer, E. P., D. P. Lettenmaier, and N. J. Mantua (2004), Variability and potential sources of predictability of North

American runoff, Water Resour. Res., 40, W09306, doi:10.1029/2003WR002789.

1. Introduction

[2] To advance the ability to predict floods and droughts,
a better understanding is needed of the nature of hydrologic
predictability, especially as related to climate. This requires
better knowledge of the variability of water cycle compo-
nents at continental and global scales, which Hornberger et
al. [2001] identified as a major research need in the coming
decade. One common technique used to examine the
variability of earth system variables over large regions is
principal components analysis (PCA). In hydrological appli-
cations, the earliest uses of PCA were for reducing a set of
correlated predictors in regression analysis to a minimum
number of uncorrelated variables that are linear combina-

tions of the original variables [e.g., Rice, 1967; Snyder,
1962; Wallis, 1965; Wong, 1963]. The earliest applications
of PCA were to atmospheric fields, and it follows that
interpretation of principal component (PC) loadings, repre-
senting uncorrelated modes of variability, also were first
developed for these variables [e.g., Grimmer, 1963]. For
variables directly related to land surface hydrology, spatial
PC loading plots were first evaluated for meteorological
variables such as precipitation [Kutzbach, 1967], while the
application of spatial analysis using PCA to other land
surface variables appeared later.
[3] The usefulness of PCA for both reducing the dimen-

sionality of large data sets and providing a graphical display
of spatially coherent modes of variability has motivated the
use of PCA in more recent analyses of streamflow [Piechota
et al., 1997; Lins, 1997; Guetter and Georgakakos, 1993;
Bartlein, 1982], soil moisture [Wittrock and Ripley, 1999],
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snow water equivalent [Derksen et al., 1997; Cayan, 1996],
drought indices [Cook et al., 1999], and for all components
of the land surface water budget [Famiglietti et al., 1995].
[4] Lins [1997] (hereinafter referred to as L97) identified

11 dominant regions of streamflow variability, using PCs of
monthly streamflow derived from gauge records. Region-
ally coherent patterns were examined to identify their
evolution and decay, giving an indication of the potential
predictability of these patterns at monthly lead times based
on their persistence from month to month.
[5] With respect to streamflow, one of the main difficul-

ties in the use of PCA is that as opposed to point measure-
ments of soil moisture, snow, or precipitation, for example,
streamflow represents an integrated quantity from a con-
tributing basin. Thus streamflow variability detected at a
stream gauge does not identify the source of that variability.
Furthermore, as discussed by L97, the inherent asymmetry
in the location of the stream gauges that collect the data, and
the widely varying areas they represent, lead to some
uncertainty in the interpretation of the resulting plots of
PC loadings. Guetter and Georgakakos [1993] note that
another shortcoming of using streamflow observations in
PCA is that, for many rivers, streamflow observations
reflect the effects of regulation and diversions that distort
the natural patterns of variation. While L97 used a data set
of unimpaired observed streamflows, where the effects of
regulation and diversion are minimal, the L97 data set does
exhibit the other complications noted above.
[6] It has been well known for many decades that soil

moisture and snow play key roles in predicting the hydrologic
response of the land surface [e.g., Linsley and Ackerman,
1942; Church, 1937]. Advances in understanding the tele-
connections of sea surface temperature (SST) and persistent
or predictable climate anomalies to the land surface have
provided opportunities for improving predictability of runoff
in some regions [e.g.,Hamlet and Lettenmaier, 1999;Garen,
1998]. Thus understanding teleconnections of remote SST
and climate conditions to runoff variability and the contribu-
tion of soil moisture and snow to this variability will allow an
assessment of the opportunities for improving runoff predict-
ability in different regions (for example, where better defini-
tion of antecedent soil moisture conditions can provide a
substantial benefit to runoff prediction, and where and when
it may be less important).
[7] In this study, we address three questions: (1) Do

different patterns of runoff variability emerge with spatially
distributed runoff data as compared to the irregularly
spaced gauge data of L97? (2) What are the SST and
climatic teleconnections to the patterns of runoff variabil-
ity? (3) Where and at what lead times are the soil moisture
and snow conditions significantly related to the runoff
variability?
[8] To address the first question, we analyze a spatially

distributed runoff data set derived from a macroscale
hydrology model for the continental United States. The
model is calibrated using observed streamflow from large
river basins in the continental United States [Maurer et al.,
2002]. By using the gridded runoff data from the data set
(described in detail by Maurer et al. [2002] and summarized
in section 2) each grid cell represents a comparable area, so
the asymmetry of streamflow observations will not affect
the PCA results. Further, because runoff from the derived

data set, when routed through the channel network to
specified stream gauges reproduces observed streamflows
(adjusted for management effects where necessary) reason-
ably well, the derived modes of variability arguably are
representative of the natural variability in the hydrologic
system.
[9] To address the second question, we derive statistical

relationships between each of our identified seasonal runoff
variability patterns and large-scale climate indices that
capture the anomalous states of sea surface temperature
(SST) and surface atmospheric pressure. The persistence of
these signals and their teleconnections to land surface
hydrologic response can provide valuable runoff predict-
ability. To address the third question, we determine the
statistical significance of connections between land surface
variations (soil moisture, SM and snow water equivalent,
SWE) at each grid cell in the domain and variations in each
defined runoff pattern.
[10] Potential predictability of runoff could be explored

by evaluating the sources of predictability of the main
driving mechanism for runoff, precipitation, which might
then be related to the runoff variability. While this would
reveal locations where precipitation and runoff are out of
phase, it would be of less value as a predictive tool, since
for example, many of the climate indices affect both
precipitation and temperature, both of which affect runoff.
Our aim is in this study is to evaluate observable states
that are, to varying extents, available to forecasters (SST
anomalies, atmospheric conditions, land surface water
storage) at different lead times, and to evaluate their
predictive capability for regional runoff. For this study,
we have chosen to compare directly the variability of
runoff to a suite of SST, atmosphere, and land surface
state variables, which reflects the ability to use these
predictors directly for runoff forecasting.

2. Data and Methods

2.1. Runoff, Snow, and Soil Moisture Data

[11] The runoff, snow, and soil moisture data used in this
study are the derived products archived by Maurer et al.
[2002], which cover the period 1950–2000 for that portion
of North America between latitudes 25�N and 53�N at
1/8 degree spatial resolution. The data were derived using
the Variable Infiltration Capacity (VIC) land surface
hydrology model [Liang et al., 1994] driven by observed
and observationally based meteorological forcing data at a
three hour time step. The observed precipitation and tem-
perature are station observations throughout the domain
(see Maurer et al. [2002] for the details on derivation of
other forcing variables and model parameterization). The
derived runoff was routed through defined stream networks
and was shown to produce streamflows that compared
favorably with observations at the outlets of river basins
across the continental United States. The SWE and SM data
used in this study were also produced by the model, and
were shown by Maurer et al. [2002] to be plausible values
when compared with available observations. Maurer et al.
[2002] present comprehensive comparisons of the simulated
data (runoff, soil moisture, and snow); for basins varying in
size from 7000 km2 to over 1,400,000 km2. They show that
simulated runoff has an average absolute bias of 3.1%, and

2 of 13

W09306 MAURER ET AL.: RUNOFF VARIABILITY W09306



an RMSE of 34.5% (based on monthly simulated and
observed streamflow values for a 10-year period), when
compared with observations. The average monthly hydro-
graphs are shown to correspond well to observations in
basins throughout the domain. With forcing meteorology
based on observations, reasonable reproduction of observed
streamflow and the physically based model VIC structure we
assert that derived variables are also realistically simulated,
an assertion that is borne out by favorable comparisons of
model output to observed soil moisture fluxes in Illinois and
satellite observed snow extent (see Maurer et al. [2002] for
details on the data derivation and output comparisons).
[12] For this study we aggregated the original 3-hourly

runoff values to seasonal averages (seasons are defined by
3-month sequences as winter, December–February (DJF);
spring, March–May (MAM); summer, June–August (JJA);
and fall, September–November (SON)) and aggregated
spatially from the 1/8 degree native spatial resolution of
the data set to 1=2 degree spatial resolution (resulting in 5051
individual grid cells), in order to reduce array sizes and
produce a more computationally tractable data set.

2.2. Climate Indices

[13] At seasonal to interannual scales, the El Niño–
Southern Oscillation (ENSO) is the best known and
most prominent predictable climate signal [Rasmussen
and Wallace, 1983]. Many studies have documented tele-
connections of ENSO [Trenberth, 1997] to land surface
variables affecting hydrologic variability including temper-
ature [Higgins et al., 2000], precipitation [Kahya and
Dracup, 1993; McCabe and Dettinger, 1999], and stream-
flow [Cayan et al., 1999]. These documented teleconnec-
tions have been used to investigate potential improvements
in predictability of runoff by incorporating knowledge of
ENSO phase [Wood et al., 2002; Baldwin, 2001; Garen,
1998]. To characterize the state of the ENSO in this study,
the Niño 3.4 index was obtained from: ftp://ftp.ncep.noaa.
gov:/pub/cpc/wd52dg/data/indices/. The Niño 3.4 index
characterizes the tropical Pacific SST anomalies between
latitudes 5S and 5N and longitudes 170W and 120W, a
region defined to capture ENSO-related SST anomalies
[Barnston et al., 1997].
[14] The Pacific Decadal Oscillation (PDO) [Mantua et

al., 1997] has received considerable attention in recent
years, and has been shown to be a predictor for Columbia
River streamflow [Hamlet and Lettenmaier, 2002] in the
Pacific Northwest. Incorporation of PDO state in water
supply forecasts has been shown to produce significant
value for water management [Hamlet et al., 2002]. The
PDO index, which is defined as the leading PC of monthly
SST anomalies in the North Pacific Ocean north of latitude
20N, was obtained from ftp://ftp.atmos.washington.edu/
mantua/pnw_impacts/INDICES/PDO.latest.
[15] Recent studies show that additional predictability of

air temperature and precipitation, particularly in winter,
can be obtained over portions of the United States by
accounting for the modes of the Arctic Oscillation (AO)
[Thompson and Wallace, 1998], which some have argued
is more or less equivalent to the North Atlantic Oscillation
(NAO) [e.g., Higgins et al., 2000; Rohli et al., 1999]. To
characterize the state of the AO, an AO index was obtained
(from http://www.atmos.colostate.edu/ao/Data/ao_index.
html; see Thompson and Wallace [1998, 2000] for details).

This AO index is the leading PC of the sea level pressure
anomalies north of latitude 20N. Higgins et al. [2000] show
that incorporation of the AO into climate prediction schemes
shows promise, especially in winter.
[16] The NAO, encompassed by the AO, is the normal-

ized pressure difference between two stations, one in the
Azores and one in Iceland [Hurrell, 1995].The NAO index
used in this study was obtained from http://www.cgd.ucar.
edu/�jhurrell/. The NAO has been shown to be related to
changes in Northern Hemisphere temperatures and precip-
itation, including North America [Hurrell et al., 2003; Lin
and Derome, 1998], especially on the East Coast [Wettstein
and Mearns 2002]. Higgins et al. [2000] present the
argument that the AO encompasses the NAO, and hence
are closely related. Although the NAO and AO are closely
related, there is evidence that some regional teleconnection
signatures of the AO and NAO are distinct [e.g., Rogers et
al., 2001], and therefore both are retained in this study.
[17] The North Pacific (NP) index [Trenberth and

Hurrell, 1994] is the area-weighted sea level pressure
over the region 30�–65�N, 160�–140�E. This is an
indicator of the intensity of the Aleutian low pressure,
which was indicated by L97 to be connected to regional
streamflow variability in the western United States. His-
torical values for this index were obtained from http://
www.cgd.ucar.edu/�jhurrell/np.html. The NP can also be
considered a sea level pressure-based index depicting the
Pacific-North American Index (PNA) pattern, which is
based on 500 hPa atmospheric pressure patterns [National
Research Council, 1998], and is essentially a mirror
image of the PNA [Hare and Mantua, 2000].
[18] The Atlantic multidecadal oscillation (AMO) has

recently been found to be correlated with predictable
patterns of rainfall across the United States [Enfield et al.,
2001]. The AMO is derived from the sea surface tempera-
ture anomalies in the Atlantic Ocean north of the equator.
Historical values for the AMO index were obtained from
http://www.cdc.noaa.gov/ClimateIndices/.

2.3. Principal Component Method

[19] On the basis of the success of past studies in
identifying physically meaningful spatial patterns of varia-
bles including runoff using PCA (see references cited in
section 1), we chose PCA to characterize the runoff vari-
ability for this analysis. By defining the runoff patterns with
PCA prior to the other analyses we are able to define
coherent, regional patterns for each season, against which
all climate signals and land surface states can be compared.
PCA was performed on the gridded seasonal runoff data,
arranged into a matrix with one column for each grid cell in
the domain and one row for each year (four separate
matrices were prepared: one for each season). The correla-
tion matrix was specified in the PCA to avoid loadings
being focused exclusively in regions with high runoff.
Following the derivation of the loading matrices, we applied
an orthogonal varimax rotation following Richman [1986],
similar to the approach used by L97. This PC rotation
concentrates the loadings for each PC onto the most
influential variables, while retaining the orthogonality of
the PCs. The number of PCs to rotate (10) was selected
using a Monte Carlo approach applying the Rule N tech-
nique [Preisendorfer and Barnett, 1977; Overland and
Preisendorfer, 1982]. The runoff data matrix was then
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projected onto the rotated PC loadings matrix to obtain a
time series for each rotated PC and each season.

2.4. Lead Times

[20] The relationship of each PC to each climate signal (or
soil moisture state) is established at different lead times.
Lead times are defined as by Maurer and Lettenmaier
[2003], where the lead time indicates the number of inter-
vening seasons between the date on which the climate signal
(or soil moisture or snow state) is established and the first
day of the season for which the PC time series is being
evaluated. Soil moisture, snow state, and climate indices are
all set to their values on the first day of the season at the
specified lead time. In other words, for a lead of zero and PC
of DJF runoff, the climate signals used are those occurring
on the first day of the season, 1 December. In this sense, the
utility of the climate signals as predictors of runoff variabil-
ity, at lead times up to four seasons, is assessed.

2.5. Climate Signal Teleconnections to Spatial Runoff
Patterns

[21] The significance of the teleconnections of each cli-
mate signal to runoff is established for each (rotated) PC for
each climate signal at each lead time. Since the climate
signals can exhibit strong terrestrial teleconnections in one
phase, and weak teleconnections in an opposing phase, a
direct linear correlation could fail to detect important signals.
For example, a time series of the first PC with the Niño 3.4
index is shown in Figure 1, which shows an apparent
tendency of low Niño 3.4 values to coincide with high PC
magnitudes, although the relationship for high Niño 3.4
values is less clear. For this reason, we evaluate the data as
shown in Figure 2, which plots the 10 highest and 10 lowest
values of a potential predictor of runoff, in this instance the
Niño 3.4 index, against the corresponding values of the time
series of one of the runoff PCs. Figure 2 is for illustration
only and shows that the PC magnitudes are different from
zero in one case and not in the other (as opposed to whether
the pattern itself is weak or strong in this particular case). In
this example, the stronger apparent correspondence between
PC magnitude and low Niño 3.4 values is shown (with 9 of
10 points exceeding zero), while the relationship is weaker
for high values (scattered around the horizontal zero line).
These two sets of 10 points are each evaluated separately to
determine if they are significantly different from zero, using
a t test at a 95% confidence level. In this manner both phases

are independently assessed for their teleconnection to each
mode of runoff variability. The technique described above
to determine the existence of a relationship between posi-
tive and/or negative phases of any climate signal and any of
the runoff patterns is a composite analysis, where the mean
of the PC magnitudes corresponding to the 10 highest and
10 lowest climate signal magnitudes are tested indepen-
dently. Therefore negative and positive phases of Niño 3.4
(or any climate index) may affect different spatial regions,
and it can be found significant in one phase regardless of its
significance in the opposite phase.

2.6. Snow and Soil Moisture Contribution to Runoff
Variability

[22] Since the SWE and SM data used in this study are
complete time series at each grid cell, each grid cell can be

Figure 1. Time series of PC1 for December–February (DJF) and the Nino 3.4 index for the period of
1950–2000.

Figure 2. Scatterplot of the 10 highest and 10 lowest Nino
3.4 values in the period 1950–2000 against the ordinate
values of the magnitude of PC1.
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evaluated individually for its contribution to the mode of
runoff variability represented by each PC loading pattern.
This is performed for each grid cell in a manner identical to
that used for the climate indices, where the PC magnitudes
associated with the 10 highest and 10 lowest SWE or SM
values at each grid cell are evaluated with a t test to
determine if they are significantly different from zero at a
95% confidence level.

3. Results and Discussion

[23] The results are presented below in a sequence
following their introduction above, namely, (1) the runoff
variability patterns, (2) the climate teleconnections to each
one, and (3) locally significant SWE and SM connections to
each pattern. In the text that follows, variability of runoff is
described as coherent patterns of runoff variability. Where a
particular phase of a climate signal shows a statistically
significant relationship to a pattern of runoff, it is referred to
as a teleconnection.

3.1. Patterns of Variability

[24] The domain used in this study differs from that of
L97, extending beyond the conterminous United States, and
this study uses gridded runoff as opposed to streamflow
observations. The 11 regional patterns identified in this
study are shown in Figure 3. These patterns do not all
appear in each season, and vary somewhat from season to
season. Individual maps in Figure 3 for each region are only
shown for the seasons in which a coherent runoff pattern
exists in the region. The lack of a continental-scale runoff
pattern in a particular region and season indicates a lack of
large-scale coherent variability, and implies less influence
from large-scale forcing and more runoff variability due to
local, spatially heterogeneous factors, such as soil textures
and local weather patterns.
[25] Figure 3 reveals some different patterns of runoff

variability and extends some of the patterns identified by
L97 into Canada and Mexico. Because of the differing time
periods of the studies (1941–1988 for L97; 1950–2000 for
this study) there are difficulties in comparing the two
studies. However, the comparisons do hint at important
differences, which might be the basis for future studies with
expanded data sets.
[26] Note that as these regional runoff patterns vary in

space from season to season, they are not necessarily the
same PC in each season. In other words, the PC time series
between two consecutive seasons in any region may not be
strongly correlated, reflecting differing sources of variabil-
ity. For example, for the Mid-Atlantic region, the Pearson
correlation coefficient of 0.5 between winter and spring PCs
is highly significant, while between spring and summer the
two are uncorrelated. Where a pattern is referred to as
shifting spatially from season to season, this refers not to
a translating PC, but rather to a similar pattern of coherent
variability existing in the same general region in a subse-
quent season.
[27] One example of differences between L97 and this

study is the East/Mid-Atlantic/Gulf pattern, identified in this
study and also by L97, shown in Figure 3a. L97 identify
two separate patterns: one for the Mid-Atlantic that is
prominent in the winter and fades by late spring and one
for the Gulf that is strongest in summer and autumn. In this

analysis these are less distinguishable, appearing as one
form that migrates south in the spring and summer. Our
study identifies an additional runoff pattern that appears, in
part, because our study domain extends into Canada. There
is a northward shift in the center of the New England/
Quebec runoff pattern (Figure 3e) during fall and winter that
is absent in L97’s results. Since L97 bases streamflow
patterns of streamflow observations from 1941–1988, the
record lengths in L97 and this study are comparable,
indicating the differences are most likely attributable to
the use of gridded runoff rather than gauge station obser-
vations. While the differing periods of study may affect this
inference, with record lengths of 48–50 years there should
be stability in the patterns, and we note that 39 years of
record are common to the two studies.
[28] Our results suggest that the ability to identify pat-

terns of runoff variability using observations alone may be
limited in areas with sparse stream gauge networks. For
example, in the northern Great Plains the distributed runoff
values used in this study reveal variability not detectable
with the sparse gauge observations. Where L97 identified
an Upper Mississippi river pattern that persisted throughout
the year, in this study it is prominent only in winter
(Figure 3g). Two additional patterns appear to the north
and west, however: the Upper Missouri/Canada (Figure 3h)
and Lower Missouri (Figure 3k) patterns. The importance of
characterizing runoff variability in these regions is high-
lighted by the devastating impacts of recent events in this
area such as the 1993 Mississippi River flood [Parrett et al.,
1993] and the April 1997 Red River flood [Bell and
Halpert, 1998].

3.2. Potential Sources of Runoff Predictability

[29] The statistically significant climate teleconnections
for each of the 11 identified runoff patterns are summarized
in Table 1 for each season and each lead time and for each
phase of the climate signal. Note that Table 1 does not show
statistically significant correlations but, rather, PC magni-
tudes that are significantly different from zero at the given
significance level, as described in section 2.5. Table 1
clearly shows the general deterioration of climate signal
teleconnections to runoff with increasing lead time, with
most runoff patterns having fewer significant climate tele-
connections at higher lead times.
[30] One exception to this is climate teleconnections to

the northern patterns of runoff variability in DJF (New
England/Quebec and Upper Missouri/Canadian Prairie),
where the first significant climate teleconnection to DJF
runoff is at leads of two to three seasons. This can be
explained by the fact that the relatively small amount of
runoff produced during DJF in far northern regions is
mostly soil moisture-derived base flow (since most DJF
precipitation falls as snow, appearing as runoff in the spring
and summer), with the soil moisture resulting from mete-
orological forcing in prior seasons. A similar effect was also
identified by Lettenmaier et al. [1994] where up trends in
precipitation, occurring mostly in the autumn, accounted for
up trends in winter streamflow, especially across the north-
ern and midwestern United States. Trends existing in both
the runoff PC time series and the soil moisture would tend
to increase the correlation as well.
[31] Table 1 also shows the presence of many significant

climate teleconnections to DJF and MAM runoff for more
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southern regions, and to MAM and JJA runoff for northern
and high elevation (more snow-dominated) regions, where
the lag between climatic anomalies and runoff anomalies
tends to be greater. Another general feature shown in Table 1
is the general decline in Niño 3.4 as a significant influence on
runoff variability at lead times of two seasons or longer. This
is consistent with the observation of Barnston et al. [1999],
who note that ENSO events typically develop in spring to
early summer and have their greatest influence in winter. This
suggests that a lead of two seasons, corresponding to a
7.5 month lead time (2 intervening seasons plus 1.5 months

to the midpoint of the ‘‘forecasted’’ season) would be at the
outer limit of predictability of runoff using ENSO, at least
from a persistence analysis as used in this study. The
exception to this is for the Pacific Northwest pattern, where
the long delay between winter snowfall and summer snow-
melt effectively extends the forecast horizon by several
months.
[32] The AO and NAO are shown in Table 1 to be

significantly related to patterns of runoff variability at long
lead times and for patterns across the domain. This seems to
confirm the assertion by Higgins et al. [2000] that forecasts

Figure 3. Spatial plot of the runoff PC loadings, grouped into regions as defined. The number in the
lower left corner of each panel is the percent of total runoff variance explained by the exhibited pattern.
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of the AO could result in increased climate predictive skill,
in particular for runoff.
[33] In most cases one phase of a climate signal has a

significant teleconnection to runoff variability while its op-
posite does not. For example, Table 1 shows the PDO in its
negative phase being related to runoff variability in the Pacific
Northwest through two seasons, but no significant relation-
ship to PDO in its positive phase. Although Hamlet and
Lettenmaier [1999] note influence of PDO in both its positive
and negative phase on Columbia River streamflow (the
major component of the Pacific Northwest runoff pattern),
this is complicated by the nonlinear reinforcing of effects of
the PDO and ENSO, where their effects when in phase are
substantially more pronounced than when out of phase.
[34] One example of nonlinear climate teleconnections to

the regional runoff patterns is seen for the East/Mid-Atlantic/
Gulf runoff pattern: the negative Niño 3.4 phase is related to
DJF runoff, while the positive phase is related to MAM
runoff. The positive Niño 3.4 phase, corresponding to
El Niño conditions, has been found to correspond to wetter
and stormier winter conditions on the East Coast [e.g.,
DeGaetano et al., 2002]. Table 1 shows for the East/Mid-

Atlantic/Gulf pattern the positive Niño 3.4 phase is corre-
lated with MAM runoff at leads of zero and two seasons. In
other words, the positive Niño 3.4 phase on 1 March and
the previous 1 September are found to be statistically
related to MAM runoff. This illustrates how teleconnections
of SST anomalies to precipitation or temperature variability
can be translated at the land surface into runoff variability at
a later time.

3.3. Land Surface Connection to Runoff Variability

[35] The SWE and SM influences on the patterns of runoff
variability were determined for each season and lead time. Of
particular interest are areas where SWE and/or SM show a
significant relationship to a runoff pattern that does not benefit
from significant climate teleconnections. Because the array of
climate indices used in this study is not exhaustive, where we
found no significant relationship of a runoff pattern to climate
indicesbelow,thisresultisspecifictotheindicesweconsidered.
3.3.1. SWE Influence on Runoff Pattern Variability
[36] The influence of SWE on runoff variability must

follow the patterns of snowmelt. Since snowmelt generally
occurs in MAM and JJA, these are the only seasons for

Figure 3. (continued)
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which many grid cells exhibit significant correlation
with any patterns of runoff variability. Figure 4 shows
the patterns of variability influenced by SWE for MAM
at a lead of zero seasons and the grid cells where SWE
is significantly related to the runoff variability. For the
Far West pattern, Table 1 indicates that no significant
climate teleconnections were found among the suite of
climate indices included in this study, so the predict-
ability of runoff added by SWE is potentially of greater

importance. For the Great Lakes pattern, the AO
negative phase also provides predictability, but since
SWE influences runoff in both high and low conditions,
SWE adds a measure of predictability for this runoff
pattern in addition to that achieved by the climate
teleconnections. Figure 5 shows the connection between
SWE and JJA runoff in the Pacific Northwest, where
JJA runoff is essentially fully determined by the late
spring snowpack.

Table 1. Summary of Climate Signals Exhibiting 95% Significant Teleconnection to the Indicated Pattern of Runoff Variability for the

Designated Season and Lead Timea

Lead 0 Lead 1 Lead 2 Lead 3 Lead 4

East/Mid-Atlantic/Gulf
DJF Nino3.4(�) Nino3.4(�), PDO(�) AMO(+) AO(�), NAO(�)
MAM Nino3.4(+) Nino3.4(+)
JJA PDO(+) PDO(�)
SON AO(�) AO(�)

Far West/Great Basin
DJF NP(+)
MAM AO(�)
JJA AO(+) NAO(�), NP(+), PDO(�) Nino3.4(�), AMO(+)
SON AO(+) NP(�)

Ohio/Tennessee Basin
DJF NP(�) AO(�), AMO(+)
MAM PDO(�) Nino3.4(�)
JJA PDO(±) NP(+), PDO(�)
SON AMO(+) AMO(+) AO(+), AMO(+)

Southern Plains
DJF PDO(�) Nino3.4(�), PDO(�), AMO(�) NAO(+)
MAM Nino3.4(+), PDO(�) Nino3.4(+), PDO(+) Nino3.4(+)
JJA PDO(�) AO(+) AO(�)
SON Nino3.4(�)

New England/Quebec
DJF NP(�)
MAM NAO(+) AO(�), NAO(�) NAO(�)
JJA NAO(�) PDO(�) PDO(�) NAO(�)
SON PDO(+) AO(+), Nino3.4(+) AO(+), PDO(�) AMO(+)

Southwest/Mexico
DJF NP(�) Nino3.4(�) PDO(�), AMO(+) PDO(�) PDO(�), AMO(+)
MAM Nino3.4(±), PDO(�) AO(+), NAO(�), Nino3.4(±) Nino3.4(�) Nino3.4(�), AMO(+) AMO(+)

Upper Mississippi
DJF PDO(�) NP(�) PDO(+)

Upper Missouri/Canadian Prairie
DJF NAO(�)
MAM PDO(+) PDO(+) PDO(+) AO(+)
JJA

Great Lakes
MAM AO(�), AMO(�) NAO(+) AMO(+)

Pacific Northwest
JJA PDO(�), AMO(�) PDO(�) Nino3.4(�), PDO(�), AMO(±) Nino3.4(±)

Lower Missouri
JJA AO(+) AMO(�) AMO(�)
SON AO(+)

Upper Mississippi
DJF AMO(�)

aSee text for definition of the climate signals. A (+) indicates the positive phase of this index is significantly related to the runoff pattern (see section 2.5
for a description of the significance test), a (�) indicates the negative phase, and (±) indicates both phases. Rows indicate runoff season, and columns
indicate lead time in seasons. DJF, December–February; MAM, March–May; JJA, June–August; SON, September–November; AMO, Atlantic
Multidecadal Oscillation; AO, Arctic Oscillation; PDO, Pacific Decadal Oscillation; NAO, North Atlantic Oscillation; NP, North Pacific index.
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[37] Figure 6 is the same as Figure 5 but for a lead of one
season (i.e., SWE determined on 1 March). It is evident that
SWE still explains much of the runoff variability for these
patterns, but more so for conditions of low SWE than high
SWE. One explanation for this is that high SWE years
replenish soil moisture with a portion of the snowmelt, thus
reducing the influence of SWE on the JJA runoff for the
current year. Low SWE anomalies will always affect the
following season’s runoff. Although not shown, this SWE
connection to runoff variability in this region persists
through two seasons.
3.3.2. SM Influence on Runoff Pattern Variability
[38] As observed by Maurer and Lettenmaier [2003],

runoff predictability due to soil moisture, at least in the
Mississippi River basin, tends to be highest in areas and
during periods with low runoff, at least partially because
any runoff tends to be derived from soil moisture drainage.
This is seen in Figure 7, which shows the runoff patterns
displaying SM connections at a lead of zero seasons. For the
Ohio/Tennessee Basin pattern, low SM is significantly
related to the variability of the runoff pattern, while high
SM is not. This indicates that dry soils on 1 December have
a greater impact on DJF runoff than wet soils in this region.

Table 1 shows the NP(�) index related to this pattern. A
negative NP index corresponds to a positive PNA index,
which is strongly correlated to (dry) below average precip-
itation anomalies in this region [e.g., Leathers et al., 1991].
This means that the SM information overlaps with the
knowledge already gained by the NP index. For the New
England/Quebec and Upper Missouri/Canadian Prairie pat-
terns, strong SM connection to runoff is apparent, while no
significant climate signal is shown in Table 1, indicating
SM state is potentially a more valuable predictor of DJF
runoff in these regions. As with the Ohio/Tennessee pattern,
the Southwest/Mexico pattern also shows many grid cells
with significant relationships to runoff variability with low
SM, but substantially fewer for high SM.
[39] MAM SM connections are shown in Figure 8, also

for a lead of zero seasons. For all patterns both high and low
SM values maintain connections to runoff variability, so for
those cases where one phase of a climate signal also has a
significant teleconnection to runoff variability, SM can be a
valuable predictor, adding unique information, since any
particular phase of a climate signal will be correlated with
one SM extreme state at most. Figure 9 corresponds to JJA
runoff variability. SM is significantly related to these runoff
patterns for both high and low SM values, and again where
only one phase of any climate signal is indicated in Table 1
as explaining runoff pattern variability, the SM augments
this information for improved predictability. Although not
illustrated, our results indicated that SM again explains
significant SON runoff variability for both high and low
values for a lead of zero seasons for the New England/
Quebec and Far West/Great Basin patterns.
[40] SM influence on runoff variability begins to decline

at a lead of one season. For MAM runoff, Figure 10 can be
compared to Figure 8 to illustrate the decline in the number
of grid cells showing a significant relationship to the pattern
of runoff variability. In Figure 10, SM may be the primary
source of predictability for MAM runoff variability for the
Far West/Great Basin pattern since there is no climate
teleconnection indicated in Table 1 nor is there a SWE
relationship for MAM at a lead of one season.
[41] The SM connection to JJA runoff variability at a lead

of one season is shown in Figure 11. Here the one season

Figure 4. For the indicated runoff patterns (identical to
those in Figure 3 for the specified season), shaded blocks
indicate grid cells with statistically significant relationships
of SWE with runoff pattern variability for the season
March–May (MAM) and lead time of zero seasons. This
relates the MAM runoff variability, expressed in the PC
time series, with the SWE anomalies at the prior time
indicated by the lead time.

Figure 5. Same as Figure 4, but for season June–August
(JJA).

Figure 6. Same as Figure 4, but for season JJA and a lead
time of one season.
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lead time correlations are considerably weaker than those at
a lead of zero seasons (Figure 9). Also, since both of the
runoff patterns shown in Figure 11 also share SWE and
climate signal contributions to explaining runoff variability,
the SM plays a smaller role in predictability of JJA runoff at
a lead of one season. Figure 12 shows that for the Far West/
Great Basin runoff pattern, SM is significantly related to the
SON runoff variability, though this is a season of declining
runoff, so the predictive capability affects a small quantity
of runoff and therefore will have lessened value. Although
not shown, the level of SM connection to the runoff
variability in Figure 12 continues at approximately the same

level through a lead of two seasons, showing that the SM
levels the previous 1 March can be a significant predictor of
the following SON runoff variability in portions of this
region.

Figure 7. For indicated runoff patterns, shaded blocks
indicate grid cells with statistically significant relationship
of SM with runoff pattern variability for the season DJF and
lead time of zero seasons.

Figure 8. Same as Figure 7, but for season MAM.

Figure 9. Same as Figure 7 but for season JJA.
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[42] Figure 13 shows the SM influence on three DJF
runoff patterns at a lead of two seasons. Both the Ohio/
Tennessee and the Upper Mississippi patterns have no
significant climate teleconnections for DJF at this lead time
(see Table 1), so SM has the potential to provide valuable
information on runoff variability not available from other
sources, at least for the limited regions within each pattern
showing significant SM connection.

4. Conclusions

[43] We examined the space-time variability of runoff
over North America between latitudes 25 N and 53 N.
Comparison of the spatial runoff patterns we derived, using
gridded runoff data, with those derived by L97 using
spatially inhomogeneous streamflow observations, show
additional patterns of coherent runoff variability in areas
with sparse streamflow observations. While both our study
and L97 use periods of runoff of approximately 50 years,
the overlapping period is only 39 years, so the ability to
definitively attribute the differences to using gridded data as
opposed to observed data is limited.

[44] Statistically significant relationships were identified
between a variety of climate indices and to each of the
patterns of runoff variability in different seasons and at
different lead times. Where statistically significant rela-
tionships were identified, they are rarely associated with
both phases of any climate signal, but more typically to
either the positive or the negative phase. One implication
of this for runoff predictability is that exploring climatic
signals for potential sources of predictability requires a
nonlinear analysis to avoid missing important potential
runoff predictability.
[45] Characterization of the state of the land surface

moisture provides an additional degree of predictability of
runoff variability. Soil moisture and snow were each ana-
lyzed, using a similar technique as for the climate signals,
where composites of high and low soil moisture and snow
conditions were evaluated separately for their statistical
relationships to the runoff patterns. Snow influences runoff
as it melts, and its usefulness as a predictor is naturally
related to this. It was found that for shorter lead times (an
average of 1.5 month lead time) snow state provides
potential predictability beyond that already available

Figure 10. Same as Figure 7, but for seaosn MAM and a
lead time of one season.

Figure 11. Same as Figure 10 but for season JJA.

Figure 12. Same as Figure 10 but for season September–
November (SON).

Figure 13. Same as Figure 7 but for a lead of two seasons.
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through the climate signals in the Great Lakes, Far West,
and Pacific Northwest regions. The summer runoff patterns
in the Far West and Pacific Northwest regions are signifi-
cantly related to snow state one season earlier, with low
snow accumulation years providing greater runoff predict-
ability than high. Soil moisture provides widespread pre-
dictability of winter runoff variability at short lead times. As
with snow, it is more frequently a significant predictor in its
dry state than wet. Though with diminished strength, soil
moisture state provides predictive information for spring
and summer runoff through a one season lead; for summer
runoff this predictability is partially redundant, overlapping
with information already available from the snow state and
climate signals. At one season and longer, lead times soil
moisture state has a significant impact primarily in the
Midwest and Far West.
[46] On the basis of this analysis we conclude that for

predicting runoff variability, knowledge of the land surface
state, especially in its dry state, can provide valuable
predictability as a complement to climate information for
lead times of one to two seasons (i.e., up to 4.5 months
lead time). For lead times greater that this, persistent
climate anomalies provide the greatest opportunity for
runoff prediction.
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