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ABSTRACT

Recent advancements in Information Retrieval (IR) and machine learning have signif-

icantly improved ranking and search system performance. However, these data-driven

approaches often suffer from inherent biases present in training datasets, leading to

unfair treatment of certain demographic groups and contributing to systematic discrim-

ination based on race, gender, or geographic location. This research aims to address the

fairness and bias issue in ranking and search systems by proposing innovative frame-

works that mitigate data bias and ensure equitable representation and exposure across

diverse groups.

We introduce two novel frameworks: the Meta-learning based Fair Ranking (MFR)

model and the Meta Curriculum-based Fair Ranking (MCFR) framework, both designed

to alleviate dataset bias through automatically-weighted loss functions and curriculum

learning strategies, respectively. These approaches utilize meta-learning to adjust rank-

ing loss, focusing particularly on improving the fairness metrics for minority groups

while maintaining competitive ranking performance. Additionally, we conduct an em-

pirical evaluation of Large Language Models (LLMs) in text-ranking tasks, revealing



biases in handling queries and documents related to binary protected attributes. Our

analysis offers a benchmark for assessing LLMs’ fairness and highlights the necessity for

equitable representation in search outcomes.

Furthermore, we explore the challenge of data selection bias in multi-stage recommen-

dation systems, particularly in online advertising contexts like Pinterest’s multi-cascade

ads ranking system. Through comprehensive experiments, we assess various state-of-

the-art methods, and our findings demonstrate the effectiveness of a modified version of

unsupervised domain adaptation (MUDA) in mitigating selection bias.

Collectively, our work contributes to the development of fairer ranking and search sys-

tems. By addressing bias at its source and employing meta-learning and curriculum

learning techniques, we pave the way for more equitable and transparent IR systems

that serve diverse user bases without discrimination.
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Chapter 1

Introduction

1.1 Motivation

The quest for fairness in information retrieval (IR) systems is gaining unprecedented

attention, as the digital era demands equity across all platforms and services. Central

to this pursuit is the challenge of mitigating systematic biases within data-driven rank-

ing models. These biases, often a reflection of historical discrimination, manifest as

unfair treatment towards underrepresented groups, leading to disparate exposure and

unequal opportunities in various real-world applications such as expert search and job

recommendations. The essence of fairness in IR extends beyond mere algorithmic ad-

justments; it is about ensuring that all demographic groups have equal visibility and

representation in the outcomes of search and recommendation systems.

16
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To address the inherent biases in datasets used for training machine learning models, we

developed a few novel frameworks. These frameworks, including Meta-learning based

Fair Ranking (MFR) and Meta Curriculum-based Fair Ranking (MCFR), represent sig-

nificant strides towards achieving equitable treatment across protected attributes. By

re-weighting ranking losses and incorporating curriculum learning into meta dataset

construction, these models aim to balance exposure between advantaged and disadvan-

taged groups, offering a more nuanced approach to fairness that transcends traditional

mitigation strategies.

The integration of Large Language Models (LLMs) in ranking tasks further complicates

the landscape of fairness in IR. Despite their superior performance in understanding and

processing natural language, LLMs are not immune to fairness concerns. The empirical

scrutiny of these models against fairness benchmarks reveals a pressing need to evaluate

and fine-tune them with a focus on equity, ensuring that their deployment does not

perpetuate existing biases.

Lastly, the realm of online advertising, particularly in multi-stage recommendation sys-

tems like those used in ad retrieval, underscores the pervasive challenge of selection bias.

While this area might seem tangential, it shares the core issue of bias mitigation with

broader IR systems. Efficiently managing the diversity and quality of ads in the upper

funnel stages without succumbing to biases is crucial for maintaining the integrity and

fairness of digital advertising ecosystems.

In summary, the motivation for this thesis stems from the urgent need to address and
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rectify fairness issues in IR systems. Through a comprehensive exploration of innova-

tive frameworks, meticulous evaluation of LLMs, and consideration of selection bias in

online advertising, this work aims to contribute meaningful solutions to the overarching

challenge of ensuring fairness in the digital information landscape.

1.2 Overview

This thesis presents a comprehensive exploration of fairness in ranking and search sys-

tems, addressing the multifaceted challenge of bias in information retrieval (IR) through

a series of innovative approaches and methodologies. Across four distinct but intercon-

nected studies, we delve into the complexities of data bias, selection bias, and the ethical

implications of Large Language Models (LLMs) in text ranking, providing a holistic ex-

amination of fairness in the digital information landscape.

We firstly introduces the Meta-learning based Fair Ranking (MFR) model, an advanced

framework designed to mitigate data bias by re-weighting ranking losses through a bilevel

optimization process. This model not only enhances fairness metrics but also maintains

competitive ranking performance, offering a scalable solution for equitable IR systems.

Building on this foundation, we proposes the Meta Curriculum-based Fair Ranking

(MCFR) framework, which further addresses data bias by integrating in-processing and

pre-processing techniques with curriculum learning. MCFR demonstrates remarkable
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versatility and effectiveness in improving fairness metrics across various ranking loss

functions, showcasing its potential as a generic framework for fair ranking.

We then focus the evaluation of fairness in LLMs for text ranking, establishing a bench-

mark that incorporates listwise and pairwise evaluation methods focused on binary

protected attributes. Through extensive experimentation, we reveal inherent fairness

issues in LLMs and propose a fine-tuning strategy using Low-Rank Adaptation (LoRA)

to mitigate these issues, marking a significant step towards more equitable LLM-based

ranking systems.

Finally, we tackles the selection bias in multi-cascade advertisement recommendation

systems, surveying state-of-the-art modeling strategies and introducing a Modified Un-

supervised Domain Adaptation (MUDA) approach. MUDA outperforms both contem-

porary models and the existing production model in online settings, highlighting its

effectiveness in addressing selection bias and enhancing the fairness and efficiency of

recommendation systems.

1.3 Contributions

The contribution of thesis can be summarized as follows:

• We introduce the Meta-learning based Fair Ranking (MFR) model, a novel ap-

proach that addresses data bias in ranking systems by automatically adjusting

ranking losses. The MFR model, framed as a bilevel optimization problem and
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solved through an innovative gradients-through-gradients technique, demonstrates

its robustness and effectiveness in real-world datasets. Our results highlight MFR’s

capacity to achieve competitive ranking performance while significantly enhancing

fairness metrics, marking a critical advancement in the pursuit of fair information

retrieval systems.

• We present the Meta Curriculum-based Fair Ranking (MCFR) framework, an

innovative approach that mitigates data bias by blending in-processing and pre-

processing techniques with curriculum learning. MCFR, formulated as a bilevel op-

timization problem solved via gradients-through-gradients, proves versatile across

various ranking loss functions and fairness metrics. Our empirical studies across

public datasets affirm MCFR’s effectiveness in matching existing ranking perfor-

mances while significantly advancing fairness metrics. Notably, MCFR enhances

fairness more efficiently, requiring less data and achieving fast convergence, posi-

tioning it as a highly adaptable and impactful framework in promoting fairness in

ranking systems.

• We create a benchmark for evaluating the fairness of Large Language Models

(LLMs) in text ranking, focusing on binary protected attributes through listwise

and pairwise methods. Our extensive experiments on real-world datasets reveal

fairness issues in LLMs, prompting us to propose a fine-tuning strategy using Low-

Rank Adaptation (LoRA) specifically designed to address these concerns. This

dual approach of identifying and mitigating fairness problems marks a significant

advancement in improving LLMs’ performance in ranking tasks.
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• We address the selection bias in advertisement recommendation systems by char-

acterizing the issue and evaluating various modeling strategies. Our exploration

leads to the development of a Modified Unsupervised Domain Adaptation (MUDA)

approach, which stands out for its superior performance in online settings, out-

performing both contemporary models and the existing production model. This

study advances the mitigation of selection bias, showcasing MUDA’s effectiveness

in enhancing recommendation fairness and efficiency.

1.4 Outline

This thesis is structured as follows, Chapter 2 reviews the existing literature on fairness

in information retrieval, highlighting the significance of addressing biases in ranking

models and the evolving strategies to mitigate these challenges. Chapter 3 details the

Meta-learning based Fair Ranking (MFR) model, focusing on its innovative approach to

enhance fairness by adjusting training losses for improved minority group exposure and

its validation through real-world datasets. Chapter 4 discusses the Meta Curriculum-

based Fair Ranking (MCFR) framework, which integrates meta-learning with curricu-

lum learning to counteract data bias and showcases its effectiveness over traditional

fairness models. Chapter 5 explores the fairness of Large Language Models in ranking

tasks, presenting an empirical study on biases and introducing a mitigation strategy

via LoRA fine-tuning to promote equitable outcomes. Chapter 6 investigates selection

bias in Pinterest’s advertising system and proposes the Modified Unsupervised Domain
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Adaptation (MUDA) model, demonstrating its capacity to improve recommendation

performance and advertising efficiency. Chapter 7 concludes the thesis by summarizing

the key contributions, reflecting on the impact of this work on fairness in search and

ranking, and suggesting future research directions to further advance the field.



Chapter 2

Related Work

2.1 Fairness on Ranking

Zehlike et al.[92] categorized fair ranking models into score-based and supervised learn-

ing models. Score-based models modify score outcomes or distributions for enhanced

fairness. Notable contributions include works by Yang et al.[86, 87], Celis et al.[18],

Stoyanovich et al.[72], Kleinberg et al. [47], and Asudeh et al.[5].

Supervised fairness models in ranking span pre-processing, in-processing, and post-

processing approaches. Pre-processing models, exemplified by Lahoti et al.[49], work on

deriving fair training data. In-processing models, such as Zehlike et al.’s DELTR[89],

address fairness during training, focusing on exposure bias. Similarly, Beutel et al.[9]

introduced a pairwise ranking loss function with fairness regularizer, while Ma et al.[52]

23
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tackled fairness in query generation. Haak et al.[39] aimed at search query bias iden-

tification, and Chu et al.[23] highlighted biases in neural architecture search evalua-

tions. Importantly, Chen et al. [20] proposed a meta-learning-based debiasing frame-

work for recommendations. Post-processing models, conversely, refine model outputs

post-training for fairness. Among these, Zehlike et al.’s works [90, 91] like FA*IR ensure

representation of protected groups and offer continuous fairness interpolation. Addi-

tionally, Biega et al. [10] developed an algorithm optimizing the equity of user attention

through relevance loss function.

2.2 Meta-Learning on Fairness

Meta-learning is a field of study that aims to improve the learning ability of models by

adapting to new tasks or environments, and it could be divided into two main categories:

model-based [30, 3] and learning algorithm-based [4]. In addition to tasks such as few-

shot learning [43], continual learning [60], and hyperparameter optimization [32], fairness

is an important field.

Zhao et al.[98] presented the Follow the Fair Meta Leader (FFML) that learns an online

fair classification model’s primal, delivering both accuracy and fairness. In a subse-

quent work, Zhao et al.[97] emphasized the Primal-Dual Fair Meta-learning, targeting

the optimal initialization of the base model’s weights to rapidly adjust to new fairness

tasks. They further advanced their research in [96], creating a few-shot discrimination
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prevention model for unbiased multi-class classification, rooted in the MAML frame-

work. Concurrently, Slack et al.[71] introduced Fair-MAML, designed to derive fair

models from minimal data for emerging tasks. This model, like Zhao’s, is built upon

the MAML framework but incorporates fairness regularization and a specific fairness

hyperparameter. On recommender systems, Chen et al.[20] applied meta-learning prin-

ciples on the AutoDebias framework.

2.3 Fairness in LLMs

Research on fairness in LLMs has gained considerable traction, driven by the realization

that biases present in pretraining corpora can lead LLMs to generate content that is not

only harmful but also offensive, often resulting in discrimination against marginalized

groups. This heightened awareness has spurred increased research efforts aimed at un-

derstanding the origins of bias and addressing the detrimental aspects of LLMs [68, 13].

Initiatives like Reinforcement Learning from Human Feedback [58] and Reinforcement

Learning for AI Fairness [6] seek to mitigate the reinforcement of existing stereotypes

and the generation of demeaning content.

Beyond existing literature, FaiRLLM [95] critically evaluates RecLLM’s fairness, high-

lighting biases in ChatGPT recommendations by user attributes. Concurrently, efforts

to refine LLM fairness assessments are gaining traction within the NLP community

[22, 66]. Studies like [12] and [1] expose biases in GPT-3’s content generation, with the
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latter noting a violent bias against Muslims. Benchmarks such as BBQ [61], CrowS-

Pairs [54], RealToxicityPrompts [34], and holistic evaluations [50] further this analysis

across various LLMs. DecodingTrust [77] extends this to a detailed fairness exploration

in ChatGPT and GPT-4.

2.4 Selection Bias

Research on selection bias in recommendation systems is increasing, exploring methods

to reduce bias and enhance system performance. One of the approaches is through

re-sampling techniques. This includes methods such as undersampling [63, 42] and

SMOTE (Synthetic Minority Over-sampling Technique) [19, 14] which aims to balance

out the distribution of data across different classes. Another popular approach is the

use of cost-sensitive learning methods, which assign different costs to different types of

errors in order to balance the trade-off between different types of bias. For example, the

method of adversarial learning [94, 24] aims to minimize bias by adding an adversarial

term to the loss function that encourages the model to produce fair predictions. Another

area of research focuses on the use of debiasing techniques in the representation learning

process, such as Fair Representation Learning [93] which learns representations that are

invariant to certain sensitive attributes. There are also other recent studies that address

selection bias by using counterfactual data augmentation (CFDA) [81], which creates

new, hypothetical data points to increase the diversity of the training set. This can be

done by generating synthetic data points that are similar to the original data points,
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but with different sensitive attributes. In addition, meta-learning [21, 78] have been

applied to debiasing recommendation systems. For multi-stage cascade systems, Qin et

al. [64] proposed the RankFlow to solve the selection bias in the joint-training system,

but it could be expensive to deploy in the production system. Our work aims to solve

the selection bias issue for independent-training models in the cascade system.



Chapter 3

A Meta-learning Approach to Fair

Ranking

3.1 Introduction

Recently, the fairness in information retrieval (IR) system has attracted more and more

attention [92, 86, 87]. The ranking models aim to give the relevant scores for the items

under the query, and the top items with the highest scores will be delivered to the

users. These ranking models are generally data-driven, which means the models will

observe particular patterns in the training dataset and make predictions based on them.

However, when the subject of the ranking problem is about the expert search or the

job recommendation, the systematic biases from the dataset – usually stemming from a

biased data distribution – will introduce unfairness in the trained model. For example,

28
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(a) Law Students (race) (b) Law Students (gender)

Figure 3.1: Illustration of the predicted rankings distribution of the protected groups
(female students, African American students) on the two different datasets. We report
Kendall’s Tau as the ranking metric. The proposed MFR model ranks the items from
the protected groups higher compared to ListNet [17], which indicates that the MFR
improves the protected attribute’s exposure with unbiased ranking performance.

the traditional LTR model such as ListNet [17] will “discriminately" assign lower weights

to the minority group due to the data bias (see Fig. 3.1). As addressed by Friedman

[33], the historic discrimination to the socially underrepresented group in the dataset

will make its way into the model as the pattern will be observed during the training

process. The unfairness problem could be summarized as the disparate exposure [89]

as the disadvantaged protected group is not treated as equally as the advantaged group

in the dataset. This disparate exposure could lead to a negative impact on many real-

world ranking problems, such as the unequal opportunity in the job market for the

underrepresented group.

To solve the unfairness problem, tremendous research efforts have been made in de-

signing fairness-aware algorithms, among which, the fairness ranking models can be

categorized as the score-based and supervised ones. For score-based models, there are
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the Rank-aware proportional representation [86], the Constrained ranking maximization

[18], etc. Some score-based models aim to correct the bias in the training data, and the

others aim to adjust the prediction scores for better fairness. There are also supervised

models, such as DELTR [89], FA*IR [90], etc, which could learn a fair model from the

biased dataset. In general, the ranking models focus on different mitigation points such

as the post-, in-, and pre-processing of the model training. Although the in-processing

models have achieved good performance on the fairness metric, there is still the limi-

tation as the model is learned from the biased dataset. Thus, the meta-learning could

benefit the aforementioned problem by training a meta-learner on a meta-dataset. The

meta-dataset is collected uniformly without any bias, which would train a fair meta-

learner so that the ranking model could learn from it. For general fairness problems

such as training the classification model on a biased dataset, researchers have applied

the Model-Agnostic Meta-Learning (MAML) [31]. For example, the Meta-Weight-Net

[69] proposed to explicitly learn a weighting function from the meta-dataset which is up-

dated simultaneously with the classifier. However, meta-learning is still under-explored

for the fairness-aware ranking problems.

In this study, we propose a meta-learning framework to formulate the fairness-aware

ranking task as a bilevel optimization problem, where the upper-level is the meta-trainer

and the lower-level is the ranking model. That is, we can train a meta-learner on

the meta-dataset which could help the ranking model to learn fairly on the biased

dataset. The meta-dataset is a small unbiased dataset, which is collected by uniformly

sampling from the training dataset under all queries for both the protected group and
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the unprotected group. In detail, at each training iteration, we use the ranking model

and the ranking loss function to compute the loss values for each data sample from the

training dataset. Then we train a multi-layer neural network as the weighting function

to re-weight the loss values, and the weighting function is optimized by the weighted

loss values on the meta-dataset. Since the weighting function which is the meta-learner

is subject to the ranking models, our goal is to optimize the loss’ weights (given by

the meta-learner) to achieve fairness on the training dataset. Intuitively, we can see

the loss’ weight as the hyperparameter which could be learned, and we train a meta-

learner to tune the hyperparameter on the meta-dataset. Such the training process could

also be referred to as the bilevel optimization as the learned parameters of the ranking

model depend on the parameters of the meta-learner. To the best of our knowledge, we

propose the first meta-learning approach to fair ranking. In summary, this work makes

the following contributions:

• We propose a general meta-learning framework for the fairness ranking called

Meta-learning based Fair Ranking (MFR) that addresses the data bias by auto-

matically re-weighting the ranking losses.

• We formulate the MFR as a bilevel optimization problem and solve it using gra-

dients through gradients.

• Experiments on the real-world datasets demonstrate that the proposed method

achieves a comparable ranking performance and significantly improves the fairness

metric compared with state-of-the-art methods.
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unbiased

unprotected group
protected group

biased

Figure 3.2: MFR learning algorithm flowchart (steps 4 and 6 in Algorithm 1). Note
that f(·;w) is the ranking model, g(·; θ) is the meta-learner, b is the batch size for the
training dataset, d is the batch size for the meta-dataset, and α and β are the learning
rates. At each iteration, we firstly update θ in the meta-learner using Eq. (8) with
the meta-dataset, and then we update w in the ranking model using Eq. (9) with the

training dataset.

3.2 Meta-learning Based Fair Ranking

We aim to train a fairness-aware ranking model that could achieve good performance on

both utility and fairness metrics. To do that, we tune the ranking model’s loss weights

values to make the model emphasize more on the protected group than the unprotected

one during the ranking inference. Instead of using the fixed weights, we utilize a meta-

dataset which is sampled from the original training dataset with an unbiased distribution

and smaller size to train a meta-learner as a weighting function. The meta-learner could

guide the ranking model to learn fairly.

Given the training dataset with a set of queries Qtrain with |Qtrain|= m and a set of

items Dtrain with |Dtrain|= n. Each query q from Qtrain is associated with a list of

item candidates d(q) from Dtrain, and each item is represented as a feature vector x(q)
i .

For each query q, the feature vector x(q) is associated with the relevance score y(q). Let

f(x(q);w) be the ranking model and w represent all the learnable parameters in f . Then
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the output of the ranking model could be denoted as ŷ(q) = f(x(q);w). Generally, we

learn the optimized parameters w∗ by minw
1
m

∑m
i=1 L(y(q)i , ŷ

(q)
i ) and L could be used as

any ranking loss functions. However, equally treating L to each sample could lead the

ranking model f unfair to minority groups since the heavy data bias issue in the training

dataset. To address this challenge, we introduce a meta-learner g(·; θ), parameterized

by θ, to adaptively tune loss weights for each sample to achieve a fair exposure over

diversity. Thus, we rewrite the training loss as the following:

Ltrain(w; θ) =
1

m

m∑
i=1

φiLi(w) =
1

m

m∑
i=1

≺iL(y(q)i , ŷ
(q)
i ), (3.1)

where ŷ
(q)
i = f(x

(q)
i ;w) represents the model output, and φi ∈ [0, 1] represents the i-th

sample’s loss weight given by the proposed meta-learner g(·; θ). Notably, Ltrain(w; θ)

governed by the meta-learner’s output weights is conditioning on a fixed θ and used

for updating the ranking model’s parameter w. For convenience, we denote Li(w) as

the original loss value of the i-th training data sample output from the ranking loss L.

Following [69], we develop the meta-learner g as a multi-layer neural network, which

takes as input a loss value, and instantiate g as

φi = g(Li(w); θ) = g
(
Li(y

(q), f(x(q);w)); θ
)
, (3.2)

where i could be a sample from either the training dataset or the meta-dataset. We set

the last-layer’s activation function in g as a sigmoid so that the range of the output
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Algorithm 1: The MFR Learning Algorithm
Input: Training dataset Qtrain,Dtrain, meta-dataset Qmeta,Dmeta, batch size b, d, max

iterations T .
Output: Classifier network parameter w(T )

1: Initialize ranking model’s parameter w(0) and the meta-learner’s parameter θ(0).
2: for t = 0 to T − 1 do
3: {xqmeta , yqmeta} ← SampleMiniBatch(Qmeta,Dmeta, d).
4: {xqtrain , yqtrain} ← SampleMiniBatch(Qtrain,Dtrain, b).
5: Update ŵ(t)(θ) by Eq. (3.4) with {xqtrain , yqtrain}.
6: Update θ(t+1) by Eq. (3.9) with {xqmeta , yqmeta}.
7: Update w(t+1) by Eq. (3.10) with {xqtrain , yqtrain}.
8: end for

lies between 0 and 1. Eventually, we define a meta training loss function as

Lmeta(w(θ)) =
1

s

s∑
i=1

Li(w(θ)). (3.3)

Here we update the parameters of the ranking network by doing the gradient decent on

a batch of a training data with the loss function in Eq. (3.1), and we can define w(θ)

as:

ŵ(t)(θ) = w(t) − α
1

b

b∑
i=1

g(Ltrain
i (w(t)); θ)∇wLtrain

i (w) (3.4)

To train the meta-learner, we need to sample a small meta-dataset with Qmeta and

Dmeta. The meta-dataset represents the meta-knowledge of the true distribution of the

protected group and the other group, where |Qmeta|= s� m and |Dmeta|= r � n. In the

meta-dataset, we denote the feature vector of each item as x(qmeta) and the relevance score

as y(qmeta) given a query qmeta from Qmeta. Similar to Ltrain
i (w), we denote Lmeta

i (w(θ))

as the loss value for each meta-dataset sample. The goal of the meta-learner g(·; θ) is to

leverage the unbiased meta-dataset to learn how to re-weight the loss values to train the
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model f(·;w) on the biased dataset. Since w is a function of θ, we naturally formulate

the proposed MFR as a bilevel optimization problem and give the objective function as

min
θ
Lmeta(w∗(θ))

s.t. w∗(θ) = argmin
w

Ltrain(w; θ).

(3.5)

Loss Functions. The proposed MFR jointly considers utility and fairness metrics by

developing a listwise ranking loss with an exposure term following the DELTR loss [89],

given by

L(y(q), ŷ(q)) = �(y(q), ŷ(q)) + γU(ŷ(q)), (3.6)

where U(ŷ(q)) is a listwise fairness measurement, �(y(q), ŷ(q)) is a listwise loss based on

Cross Entropy [17], and γ > 0 is a balancing parameter. To obtain optimal parameters

w∗ and θ∗, we minimize the training loss by

w∗(θ) = argmin
w

Ltrain(w; θ) =
1

m

m∑
i=1

φiLtrain
i (w), (3.7)

and the loss for the meta-learner by

θ∗ = argmin
θ

Lmeta(w∗(θ)) =
1

s

s∑
i=1

Lmeta
i (w∗(θ)). (3.8)

Parameters Update. At each step t, we compute the weighted loss values with θt

and wt, and update θ with the loss of the ranking model on the meta-dataset as the
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following:

θ(t+1) = θ(t) − β
1

d

d∑
i=1

∇θLmeta
i (w(t)(θ)), (3.9)

where β is the learning rate, d is the batch size of the meta-dataset. After we have the

θ(t+1), we update w as the following:

w(t+1)(θ) = w(t) − α
1

b

b∑
i=1

φi∇wLtrain
i (w), (3.10)

where α is the learning rate and b is the batch size of the training dataset. We adopt

an alternating optimization strategy [69, 75, 88] to implement Eq. (3.9) and Eq. (3.10)

instead of using nested optimization loops. The whole training process is summarized

in Algorithm 1.

Although we consider the DELTR loss as the objective function of the ranking model,

we could also use other fair ranking losses here. Besides the disparate exposure, there

are other biases in the common ranking dataset such as selection bias and position bias.

The model aims to provide a general meta-learning framework that can handle any fair

ranking problems.

3.3 Experiments

In the experiments, we train and evaluate the model on the three real-world datasets

used in DELTR [89]. We study both the ranking and fairness metrics of our approach

compared to other baseline models. The baseline models include the following: (i)
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ListNet [17]; (ii) Lambdamart [16]; (iii) the DELTR model with γsmall and γlarge which

is the same setting as in [89]; (iv) the FA*IR [90] pre-processing approach that creates

the fair dataset and trains on it; (v) the FA*IR post-processing approach that reorders

the prediction results to ensure the fairness; (vi) MFR with different γ on a different

dataset; (vii) MFR with the ListNet loss (MFR-ListNet). The code is available at

https://github.com/ywang4/A-Meta-learning-Approach-to-Fair-Ranking.

For a fair comparison, we follow the same settings1 as described in DELTR [89] to split

the dataset and generate the item features. We use the following datasets: (i) W3C

Experts (gender); (ii) Engineering Students (high school); (iii) Engineering Students

(Gender); (iv) Law Students (gender); (v) Law Students (race). In the W3C Experts

dataset, the task is the expert search originated from TREC 2005 Enterprise Track [26].

The protected attribute is female, and there are 200 items per query with an average

of 21.5 items from the protected group. In the Engineering Students dataset, the task

is the academic performance prediction, and the dataset contains anonymized historical

information of college students. For the high school dataset, the protected attribute

is public high school, and there are 480.6 items per query with 167.6 items from the

protected group on average. For the gender dataset, the protected attribute is female,

and there are 480.6 items per query with 97.6 items from the protected group on average.

In the Law Students dataset, the task is also the academic performance prediction. For

the gender dataset, the protected attribute is female, and there is a total of 21791

items with 9537 items from the protected group. For the race dataset, the protected
1https://github.com/MilkaLichtblau/DELTR-Experiments
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attribute is black, and there is a total of 19567 items with 1282 from the protected

group. The queries are technical topics for the W3C dataset and academic years for the

other datasets. For a fair comparison, we adapt the same evaluation metrics as [89].

To split the datasets, we have 50 queries for training and 10 queries for testing in the

W3C dataset, 4 queries for training and 1 query for testing in the Engineering Students

dataset, and 80% for training and 20% for testing in the Law Students dataset. We

use Precision@10 (P@10) for the W3C dataset and Kendall’s Tau for other datasets to

evaluate the ranking performance. To measure fairness, we compute the exposure ratio

between the protected and the non-protected group. Thus, in the fairness metric, values

greater than 1.0 indicate greater visibility for the protected group and vice versa. As

described in Sec. 3.2, the meta-dataset is required for our approach. Since the protected

attribute in all datasets is binary, we perform random uniform sampling to collect the

meta-dataset. Specifically, we randomly sample the same amount of data for the items

from each query for each protected group and non-protected group.

Settings. In general, for the weighting function, we set the update frequency of the

parameter θto be per 2 steps, the optimizer to be SGD, the momentum to be 0.98, the

learning rate to be 0.02, the hidden layer dimension to be 30, and the number of hidden

layers to be 3. For the ranking model, we set the learning rate for all datasets to be

0.005 except for W3C data to be 0.0005, the optimizer to be SGD, the momentum to

be 0.95, and the weight decay to be 0.005. The values of γ and training epoch vary for

different datasets: W3C dataset uses γ = 500 and 100 epochs, Engineering Students

(high school) uses γ = 5000 and 500 epochs, Engineering Students (Gender) uses γ =
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W3C Experts
(gender)

Engineering Students
(high school type)

Engineering
Students (gender)

Law Students
(gender)

Law Students
(race)

P@10 Fairness K. Tau Fairness K. Tau Fairness K. Tau Fairness K. Tau Fairness
ListNet [17] 0.178 0.759 0.390 1.070 0.384 0.858 0.202 0.931 0.184 0.853

Lambdamart [16] 0.095 0.738 0.355 1.002 0.326 0.907 0.199 0.979 0.156 0.847
DELTR γsmall [89] 0.178 0.785 0.390 1.075 0.384 0.860 0.201 0.958 0.173 0.874
DELTR γlarge [89] 0.180 0.827 0.391 1.075 0.370 0.976 0.188 0.993 0.130 1.014
FA*IR post [90] 0.178 0.824 0.390 1.070 0.384 0.886 0.182 0.965 0.140 0.944
FA*IR pre [90] 0.180 0.770 0.374 1.020 0.360 0.942 0.203 0.931 0.161 0.895
MFR-ListNet 0.115 0.775 0.385 0.990 0.385 0.855 0.225 0.901 0.182 0.848

MFR 0.126 0.830 0.391 1.086 0.352 1.052 0.225 1.015 0.184 1.654

Table 3.1: Experimental results. To measure fairness, we compute the exposure ratio
between the protected and the non-protected group, so the values greater than 1.0 in-
dicate greater visibility for the protected group and vice versa. For the ranking metric,
higher Kendall’s Tau / Precision@10(P@10) scores indicate better performance. The
bold text indicates the model with the best performance, and the results show that
the MFR model is better on the fairness metrics with comparable performance on the

ranking metrics against other state-of-the-art models.
500 and 100 epochs, Law Students(gender) uses γ = 1200 and 3000 epochs, and Law

Students (race) uses γ = 50000 and 100 epochs.

Results Analysis. As shown in Tab. 3.1, our approach performs better in terms of

the fairness metrics on all datasets than both the DELTR γsmall and DELTR γlarge. The

DELTR γsmall and DELTR γlarge models use different scales of γ values to weight the

exposure measure in the loss function. With the meta learner, we can achieve higher

fairness metrics by re-weighting the loss distribution during the training process. The

intuition behind the observation is that the imbalanced pattern among the training

data is observed and corrected by the meta learner. For the ranking metrics, we have

similar or better results on all datasets except the W3C dataset. Since ListNet and

Lambdamart do not consider any fairness measure during the training, the results are

as expected that the fairness metrics are worse than the fairness ranking models. In

addition, we train the MFR-ListNet that has the standard listwise ranking loss in the

framework. The evaluation results show the worse performance on both the ranking
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(a) Engineering Students (high school)

(b) Law Students (gender)

Figure 3.3: The plot of the variation of learned weight over the two training datasets.
The weight difference is computed as φt

diff = 1
m

∑m
i=1 φ

t
i − φt−1

i , and we plot the φt
diff

over the training epochs. As shown in the plot, the weighting function is converging
as the different values of weights between each epoch are decreasing to 0.0.

and fairness metrics. As listwise loss does not consider the exposure measure, the meta-

dataset that has a different data distribution as the training dataset has a negative

effect on the meta-learner during the re-weighting process. Thus, we conclude that the

meta-learning approach could help the model to further improve the fairness metrics

compare to the model with only the DELTR loss function.

In Fig. 3.1, we plot the histogram of ranks on the protected attributes from the dif-

ferent models. From the plot, we can see the distribution of the predicted ranks shifts

from right to left, which indicates the MFR model generally ranks the items from the

protected group higher compared to ListNet. Note that at the plot, 1 means the top

rank, so when more data samples fall in the bins at the left, the items receive higher

ranks. The plot also agrees with the evaluation results. As we see that there is a large

difference in Fig. 3.1b, the fairness metric of MFR on Law Students (race) dataset is

about two times than that of ListNet.
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In Fig. 3.3, we plot the variation of the learned weight for the training data. The

plots show that the weighting function is converging as the different values of weights

between each epoch are decreasing to 0. As suggested in Meta-Weight-Net [69], we use

the multi-layer neural network as the weighting function because the multi-layer neural

network is known as a universal approximator for the most continuous functions. The

convergence shown in the plots indicates the successful learning process on the weighting

function.

3.4 Conclusion

In this work, we have proposed a Meta-learning based Fair Ranking (MFR) model to

improve the minority group’s exposure. Our experiments on the real-world datasets

demonstrate that our approach could achieve better fairness metrics compared to the

fair ranking model without the meta-learning part.



Chapter 4

A Unified Meta-learning Framework

for Fair Ranking with Curriculum

Learning

4.1 Introduction

Fairness in search engines is an important topic, which focuses on training an unbiased

ranking model towards protected attributes. Typically, when a user query is given, the

ranking model predicts relevant scores among candidate items and returns items with

the highest scores to users. The data-driven ranking model is usually trained with large

datasets, and thus the ranker will learn user/item patterns from the training dataset

and make predictions based on them. However, in many cases, the systematic biases

42
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(a) African
American

(b) Female (c) African
American

(d) Female

Figure 4.1: Illustration of the predicted rankings distribution of two protected at-
tributes on four datasets – (a) Law Student (gender) [82], (b) Law Student (race) [82],
(c) COMPAS [7], and (d) Engineering Student [89]. We report Kendall’s Tau [48]
as the ranking performance. MCFR and MFR [80] improve the protected attributes’
ranking while realizing competitive ranking performance compared with ListNet [17],

demonstrating that our approach could increase the exposure of the minority.

such as exposure bias [70] in the dataset will cause unfairness to the ranking model.

The historical discrimination against the socially underrepresented group [33] will make

its way into the model as the pattern will be observed during the training process. Such

an unfairness problem could be summarized as the disparate exposure [70], leading to

a negative impact on many real-world ranking problems.

Disparate exposure is prevalent in information retrieval. For instance, expert search and

job recommendation systems historically underrepresented minority groups like females

and African Americans. Consequently, traditional learning to rank (LTR) models, such

as ListNet [17], often rank these groups lower due to data biases. Fig. 4.1 shows ranking

scores from different models on four datasets, highlighting this unfairness. Disparate

exposure implies uneven group visibility in algorithm outcomes, especially linked to

attributes like gender or race, distinct from biases like selection or conformity, which

challenge algorithmic fairness and efficiency.



Chapter 4: A Unified Meta-learning Framework for Fair Ranking with Curriculum
Learning 44

To reduce disparate exposure in a ranking context, many research works have been

proposed recently by designing fairness-aware algorithms, which can be divided into

two categories: 1) the score-based models and 2) the supervised-learning models. The

score-based models [86, 87, 18, 72, 5, 47] compute the ranking scores on the fly for

a given candidates list and return the sorted candidates as the model outcome. The

supervised-learning models generally solve ranking as a prediction problem and focus on

different mitigation strategies, such as the post- [49], in- [89, 9, 52, 39, 23, 27, 20], and

pre-processing [90, 91, 10] in model training. Although the in-processing models have

achieved promising performance on both fairness and ranking metrics, learning on biased

datasets is still under-explored and challenging, due to the unbalanced distributions of

protected attributes in the public training datasets.

One possible way to alleviate system discrimination inherited from data bias is dynam-

ically re-weighting the minority groups to contribute more penalties in computing a

ranking loss. To this end, meta-learning [31] emerges as an effective way to enable a

learning-to-weight approach by leveraging a small, unbiased dataset – meta dataset.

For the fairness-aware ranking problem, we propose to mitigate the exposure issue in

the biased dataset by learning a weighting model (meta-learner) to re-weight the loss

of the ranking model on the biased dataset. The meta-learner will be optimized on the

meta dataset (unbiased), and the weighted loss on the training dataset (biased) will be

used to optimize the ranking model. However, due to the distribution shift between

the biased and unbiased datasets, it is non-trivial to directly train the meta-learner and

base learner on these two datasets where a large training loss may impair ranking utility
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and burden convergence speed.

We propose to adopt curriculum learning to gradually increase the difficulty of training

meta-learners to address the above challenge. Specifically, we define the difficulty as the

exposure of the protected groups in a dataset. We first randomly sample a meta dataset

that has the same exposure as the training dataset. Then, we continually increase the

protected groups’ exposure in the meta dataset by sampling more candidates from this

group at each ongoing epoch until a uniform distribution (equal exposure) is achieved

over sensitive attributes. Intuitively, this incremental concept learning [8] is a good fit

to solve the distribution shift problem, because meta-learners are trained with samples

from the biased dataset at the early epochs, which means there is less distribution shift

between the meta-dataset and training dataset. The experimental results demonstrate

the effectiveness of curriculum learning and the improved data efficiency during training.

In this study, we propose a unified meta-learning framework with curriculum learning to

formulate the fairness-aware ranking task as a bilevel optimization problem where the

upper level focuses on learning-to-weight to mitigate the biased exposure of protected

attributes, and the lower level solves learning-to-rank with a dynamic loss governed by

a meta learner. Specifically, we alleviate the data bias issue for the protected groups

through an automatically weighted loss. The contributions of this work are as follows.

• We propose a novel Meta Curriculum-based Fair Ranking framework, namely

(MCFR), which addresses the data bias by automatically re-weighting the ranking
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losses. The proposed MCFR is formulated as a bilevel optimization problem and

solved using gradients through gradients.

• The proposed fair ranking algorithm marries in-processing methods with pre-

processing techniques by seamlessly incorporating curriculum learning into the

construction process of meta datasets.

• We develop MCFR as a general framework applicable to various ranking loss

functions and fairness metrics. A systematic empirical study has been provided to

show the versatility of the proposed framework over different ranking and fairness

criteria.

• Experiments on public datasets show our method matches existing ranking per-

formance and enhances fairness metrics. Additionally, evaluations confirm MCFR

improves fairness with less training data and achieves comparable convergence

times.

This work offers the first fair ranking framework to utilize both pre-processing and

in-processing methods. This new approach enhances the model’s adaptability and ro-

bustness by allowing for a broader range of loss functions and dynamically adjusting

meta-datasets during training. Additionally, our framework demonstrates data efficiency

in comparative experiments. We’ve also conducted more comprehensive tests, incorpo-

rating additional baseline models and performing an ablation study on various fairness

terms and ranking losses. Lastly, we’ve updated the manuscript to include more recent

related works, providing a fuller understanding of fairness in ranking.
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Curriculum Sampling

Single Step Scheduler

Easier: 
 biased distribution 

unprotected group
protected group

Mini Batch Sampling
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unbiased distribution 
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RankMSE

RankNet
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Figure 4.2: MCFR learning algorithm flowchart (steps 4 and 6 in Algorithm 1).
Note that f(·;w) is the ranking model, g(·; θ) is the meta learner, b is the batch size
for the training dataset, c is the batch size for the meta-dataset, and α and β are the
learning rates. At each iteration, we firstly update θ in the meta learner using Eq. (8)
with the meta-dataset sampled from the curriculum sampling with update of sampling
difficulty at each epoch, and then we update w in the ranking model using Eq. (9)

with the training dataset.

4.2 Meta Curriculum-based Fair Ranking

In this section, we will explain the proposed Meta Curriculum-based Fair Ranking frame-

work in detail. In the MCFR framework, we will train an unbiased ranking model by

using a meta-leaner to re-weight the ranking losses. We formulate it as a bilevel op-

timization problem and solve it using gradients through gradients. We also show that

the framework could be trained with various ranking loss functions and fairness terms.

Finally, we describe the design of the curriculum sampling strategy for meta dataset.

To address bias in datasets, traditional methods have utilized pre-processing, in-processing,
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or post-processing techniques [92, 28]. Our model combines pre-processing and in-

processing, introducing the Meta Curriculum-based Fair Ranking framework. We de-

rive a smaller dataset for meta-learner training, which assigns weights to emphasize the

protected group during training. Curriculum learning adjusts this dataset’s distribution

ratio over epochs, facilitating smoother meta-learner training. This integrates rank-

ing loss with fairness regularization, using the meta-learner to guide model training, as

depicted in Fig. 4.2.

4.2.1 Problem Setting

We denote the set of queries in the training dataset as Qtrain with the size |Qtrain|= m

and the set of items Dtrain with |Dtrain|= n. Each query q in the Qtrain has a list

of item candidates d(q) from Dtrain. Each pair of query and item is represented as a

feature vector x(q)
i and is associated with the relevance score y

(q)
i . In the dataset, the

candidates D have a binary attribute that specifies whether the candidate d belongs

to the protected group or the non-protected group. For example, the binary attribute

could represent gender or race, and systematic bias exists during the dataset collection.

4.2.2 A Unified MCFR Framework

To address the fairness problem, we train a meta learner on the meta-dataset which

could help train a fair ranking model with the biased training dataset. We have the

ranking model f(x(q);w) and w is the learnable parameters of f , and we denote the
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output of the model as ŷ(q) = f(x(q);w). Generally, the model parameter w is optimized

by minw
1
m

∑m
i=1 L(y(q)i , ŷ

(q)
i ) which could minimize any given ranking loss function L

such as pairwise loss and listwise loss. However, these loss functions treat L of each

sample equally so that the ranking model will be unfair as there is a heavy data bias

issue towards minority groups in the training dataset. To mitigate this problem, we

introduce a meta learner g(·; θ) with the learnable parameters θ to adaptively tune loss

weights for each sample to achieve a fair exposure over diversity, and we could rewrite

the training loss as the following:

Ltrain(w; θ) =
1

m

m∑
i=1

φiLi(w) =
1

m

m∑
i=1

≺iL(y(q)i , ŷ
(q)
i ), (4.1)

where ŷ
(q)
i = f(x

(q)
i ;w) denotes the model output, and φi ∈ [0, 1] denotes the i-th sam-

ple’s loss weight given by the aforementioned meta learner g(·; θ). Notably, Ltrain(w; θ)

governed by the meta learner’s output weights depends on a fixed θ and is used for

updating the ranking model’s parameter w. In short, we write Li(w) as the original loss

value of the i-th training data sample output from the ranking loss L. For the meta

learner g, we use a multi-layer Perceptron network as proposed in [69], which takes loss

values as input and output weighted loss as

φi = g(Li(w); θ) = g
(
Li(y

(q), f(x(q);w)); θ
)
, (4.2)
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Algorithm 2: Parameter update algorithm of MCFR
Input: A batch of training data xqtrain , yqtrain , a batch of meta-dataset xqtrain , yqtrain ,

ranking model’s parameter w(t), and the meta learner’s parameter θ(t).
Output: Ranking model’s parameter update w(t+1)

1: Update ŵ(t)(θ) by Eq. (4.5) with {xqtrain , yqtrain}.
2: Update θ(t+1) by Eq. (4.8) with {xqmeta , yqmeta}.
3: Update w(t+1) by Eq. (4.9) with {xqtrain , yqtrain}.

where i is the sample from the training dataset or the meta-dataset. We use sigmoid

as the last-layer’s activation function. Then we define a meta training loss function as

Lmeta(w(θ)) =
1

s

s∑
i=1

Li(w(θ)), (4.3)

where s = |Qmeta|. The goal of the meta learner g(·; θ) is to leverage the meta-dataset to

learn how to re-weight the loss values to train the model f(·;w) on the biased dataset,

indicating the relationship that the meta-learner plays a pivotal role in directing the

tuning of the ranking model’s parameters, inherently making w a function of θ. Since w

is a function of θ, we naturally formulate the proposed MCFR as a bilevel optimization

problem and give the objective function as

min
θ
Lmeta(w∗(θ)) s.t. w∗(θ) = argmin

w
Ltrain(w; θ). (4.4)

As illustrated in Fig. 4.2, our proposed MCFR model takes advantage of the sampled

meta-dataset to learn an unbiased ranking model. The meta-dataset guide the meta

learner to reweight the training loss, which helps the ranking model to focus on the

candidates from the protected group.
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Type Formula

Fairness
Hinge Exposure [89] U(ŷ(q)) = max(0,Exposure(G0|P )− Exposure(G1|P ))2

Squared Exposure U(ŷ(q)) = (Exposure(G0|P )− Exposure(G1|P ))2

Ranking

RankMSE [11] �(y(q), ŷ(q)) = 1
n

∑n
i=1(y

(q)
i , ŷ

(q)
i )2

RankNet [15] �(y(q), ŷ(q)) = 1
n

∑n
i=1

∑n
j=i log(1 + exp−(y

(q)
i −ŷ(q)j ))

ListNet [17] �(y(q), ŷ(q)) = −∑n
i=1 Py(q)(i) logPŷ(q)(i)

Table 4.1: Summary of ranking and fairness terms used in the loss function. The
loss function used in the framework is L(y(q), ŷ(q)) = �(y(q), ŷ(q)) + γU(ŷ(q)), and we
can insert the above exposure terms and ranking loss terms as needed. Note that n

denotes the number of candidates per query.

4.2.3 Parameter Update

Since we formulate the framework as a bilevel optimization problem, it could be chal-

lenging as calculating the optimal parameters requires two nested loops of optimization.

Following the well-known MAML works [69, 75, 88], we adopt an online strategy with

a single optimization loop to update the ranking model and meta-learner parameters to

guarantee the training efficiency.

We update the parameters of the ranking network using the gradient decent on a batch

of a training data with the loss function in Eq. (4.1), and we define the update of w(t)

as:

ŵ(t)(θ) = w(t) − α
1

b

b∑
i=1

g(Ltrain
i (w(t)); θ(t))∇wLtrain

i (w(t)), (4.5)
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where t is each step of the update, and w(t) is the ranking model parameters at the step

t. To obtain optimal parameters w∗ and θ∗, we minimize the training loss by

w∗(θ) = argmin
w

Ltrain(w; θ) =
1

m

m∑
i=1

φiLtrain
i (w), (4.6)

and the loss for the meta learner by

θ∗ = argmin
θ

Lmeta(w∗(θ)) =
1

s

s∑
i=1

Lmeta
i (w∗(θ)). (4.7)

Then given ŵ(t)(θ) from Eq. (4.5), we update θ with the loss of the ranking model on

the meta-dataset as the following:

θ(t+1) = θ(t) − β
1

c

c∑
i=1

∇θLmeta
i (ŵ(t)(θ)), (4.8)

where β is the learning rate, and c is the batch size of the meta-dataset. Then we update

w as the following:

w(t+1)(θ) = w(t) − α
1

b

b∑
i=1

φi∇wLtrain
i (w(t)), (4.9)

where α is the learning rate and b is the batch size of the training dataset. We adopt

an alternating optimization strategy [69, 75, 88] to implement Eq. (4.8) and Eq. (4.9)

instead of using nested optimization loops. The one step update algorithm is summarised

in Alg. 2.
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4.2.4 Ranking and Fairness Loss

The proposed MCFR serves as a unified framework that aims to improve both the

ranking and fairness metrics, given any ranking and fairness objectives. To achieve this

goal, we propose to include two terms in the loss functions similar to some in-processing

fairness methods such as DELTR [89], and we develop our loss functions with the ranking

term and fairness term given by:

L(y(q), ŷ(q)) = �(y(q), ŷ(q)) + γU(ŷ(q)), (4.10)

where U(ŷ(q)) is the fairness term, �(y(q), ŷ(q)) is the ranking loss term, and γ > 0 is a

balancing parameter.

4.2.4.1 Ranking Terms

For the ranking loss, we use the following loss functions in the experiments: RankMSE [11],

RankNet [15], and ListNet [17]. RankMSE is a pointwise loss which is based on least

mean squared regression. RankNet proposed the first pairwise cross entropy loss which

consider the preference relationships between documents. However, it is not possible to

correctly predict the document order in all cases. ListNet aims to directly compute

the ranking loss with each query and their candidates list instead of computing pairwise

loss one pair by one pair.
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It is worth noting that other ranking losses are also applicable in MCFR as we provide

a general framework to improve the ranking metrics.

4.2.4.2 Fairness Terms

In this work, we focus on disparate exposure for the fairness term. For candidates D,

there are two different groups: the non-protected group G0 and the protected group G1.

The candidates from G1 belong to a discriminated group such as female and African

American and have significant disadvantages in the datasets. Then following the defi-

nition of Singh, et al [70], the exposure of a candidate d in a ranked list generated by a

probabilistic ranking P is given by:

Exposure(x(q)
i |P ) =

n∑
a=1

Pi,a · va, (4.11)

where va is the position bias of position a. We then follow the implementation of Zelike,

el al [89] to only consider the position bias of position 1 with v1. Then the average

exposure of candidates in each group G could be written as:

Exposure(G|P ) =
1

|G|
∑

x
(q)
i ∈G

Exposure(x(q)
i |P ). (4.12)

With the exposure term defined above, we can introduce the fairness measure by mini-

mizing the difference between the Exposure(G0|P ) and Exposure(G1|P ). In the exper-

iments, we use two exposure measurements. Hinge Exposure calculates hinge squared
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Figure 4.3: Curriculum sampling strategy illustrated on the Engineering Student
(Gender) dataset. We use the same ratio between the unprotected group and protected
group in the meta-dataset as the training dataset at the beginning training epoch. We
gradually decrease the ratio as the training epoch increase until the ratio becomes 1

which shows a balanced meta-dataset.

loss from the exposure difference between two groups, while Square Exposure computes

the squared exposure difference.

The ranking loss terms and exposure terms could be used in an arbitrary combination,

and our framework could improve both the fairness and ranking metrics given different

combinations. The ranking terms and fairness terms are summarised in Table 4.1.

4.2.5 Curriculum Sampling

The training data shows systematic bias, with fewer candidates from protected groups

than unprotected ones. To address this issue, we trained a meta learner using an un-

biased meta-dataset since real unbiased data is rare. While AutoDebias [20] previously
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tackled a similar issue for recommendation systems, it does not fit our ranking-focused

needs. Another approach, used in MFR [80], equally samples candidates from each

group. However, this method creates a meta-dataset that may fall short of accurately

capturing the real biased data. For tasks like ranking, where the order and relevance

of items are crucial, this mismatch in the data distribution can significantly hinder the

model’s ability to provide fair and effective rankings in practical applications, biased

situations. To this end, we adopt curriculum learning [8], a method that starts with

easier, less biased samples and gradually introduces more complex ones. This mimics

natural learning, helping the model adapt better and become more robust. It’s designed

to ease the model into understanding and correcting biases, ensuring it performs well

and fairly in real-world applications, even with the underlying biases in the data it was

trained on.

In detail, we want to downsample the meta-dataset with the similar distribution as

the training dataset at the early training epochs, and we gradually change the ratio

of the number of candidates from the protected and unprotected groups to 1.0. Since

we could not collect a real unbiased dataset, we define 1.0 to be the unbiased ratio of

the number of candidates from the two different groups (d(q)unprotected vs d
(q)
protected), which

means there is an equal number of candidates from each group. Here the downsampling

ratio is defined as r = |d(q)unprotected|/|d(q)protected|. The underlying assumption behind this

curriculum sampling strategy is that it is easier to train the model when the meta-

dataset and training dataset have similar distribution and that it is difficult to optimize
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Algorithm 3: The MCFR Learning Algorithm
Input: Training dataset Qtrain, Dtrain, batch size b, c, max iterations T .
Output: Ranking model’s parameter w(T )

1: Initialize ranking model’s parameter w(0) and the meta learner’s parameter θ(0).
2: for t = 0 to T − 1 do
3: {xqmeta , yqmeta} ← CurriculumSampling(Qtrain,Dtrain,

b, t).
4: {xqtrain , yqtrain} ← SampleMiniBatch(Qtrain,Dtrain, c).
5: Update w(t+1) by Alg. 2
6: end for

the parameters in the ranking model when the meta learner sees a very different meta-

dataset compared to the training dataset. As shown in Fig. 4.3, we illustrate the change

in the distribution of two groups in the meta-dataset at different training epochs.

To train the meta learner, we use the curriculum sampled data {xqmeta , yqmeta}. The

meta-dataset represents the meta-knowledge of the true distribution of the protected

group and the other group, where |Qmeta|= s � m and |Dmeta|= o � n. In the meta-

dataset, we denote the feature vector of each item as x(qmeta) and the relevance score

as y(qmeta) given a query qmeta from Qmeta. Similar to Ltrain
i (w), we denote Lmeta

i (w(θ)) as

the loss value for each meta-dataset sample. Thus we define CurriculumSampling(Qtrain,Dtrain,

b, t) as the following:

r(t) = r − t× (r − 1.0)/T, (4.13)

where r(t) is the ratio of sampled candidates for each group for each query. Note that

this is a single step scheduler as the ratio r(t) is updated at each epoch. After executing

CurriculumSampling at each epoch, the sampling meta-dataset {xqmeta , yqmeta} should

have the property that |d(q)unprotected|/|d(q)protected|= r(t). Intuitively, the CurriculumSam-

pling decreases the ratio epoch by epoch from the biased ratio to 1.0.
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As described in Section 4.2.2, the meta-dataset is an important part of the model train-

ing as it is the key data to guide the meta learner. Since the meta learner aims to

reweight the loss for the ranking model, how well the meta learner is trained determine

the performance of the ranking model. With the curriculum sampling, we decrease the

training difficulty of the meta learner compared to MFR [80] which only uses one sam-

pled unbiased dataset. The meta learner could progressively be trained with a more

unbiased meta-dataset as the epoch increases, which could improve the meta learner’s

performance and lead to a better overall performance for the ranking model. The whole

training process is summarized in Algorithm 3.

W3C Experts Engineering Students Engineering Law Students Law Students COMPAS
(gender) (high school type) Students (gender) (gender) (race) (race)

#items/query 200 480.6 480.6 21791 19567 6889
#protected/query 21.5 167.6 97.6 9537 1282 3528

Table 4.2: Summary of dataset statistics. We report the average counts of total and
unprotected items per query for the W3C Experts and Engineering Students datasets.
We provide the exact item counts for the Law Students and COMPAS datasets, each

of which contains only one query.

Our framework provides flexibility to solve different ranking problems as ListNet [17]

may not work for all ranking problems. In other cases, the fairness terms could also

be switched by using different fairness metrics or a different formula to compute the

disparate exposure. As the exposure issue is not the only fairness problem, the MCFR is

capable of being optimized with other fairness terms such as position bias and conformity

bias.
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4.3 Experiments

In the experiments, we train and evaluate the model on four real-world public datasets.

We study both the ranking and fairness metrics of our approach compared to other base-

line models. We also conduct an ablation study for the effectiveness of our framework

by changing the ranking loss term and the disparate exposure term. We repeat the ex-

periment on the same datasets with different settings of loss functions, and we evaluate

the proposed framework by comparing it with the baseline models. In the analysis, the

following questions are answered:

• What is the proposed MCFR’s performance compared to the baseline models?

• Could MCFR improve both the ranking and fairness metrics in different loss func-

tions?

• What are the effects of the curriculum sampling?

4.3.1 Experimental setting

We train and evaluate the model on four real-world public datasets: (i) Engineering

Student; (ii) Law Student, (iii) W3C Experts; (iv) COMPAS (Correctional Offender

Management Profiling for Alternative Sanctions). The statistics of each dataset are

summarized in Table 4.2.
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W3C experts Dataset This dataset originates from TREC 2005 Enterprise Track [26].

It involves searching for experts based on a topic, using features from their emails. We

designate gender as the protected attribute, with technical topics as queries. In this

context, females are the protected group, and males are non-protected. Each query has

200 items, averaging 21.5 from the protected group. Given that the original dataset

ranks retrieved experts equally, we adopt the DELTER experiments’ setting [89], cat-

egorizing expert candidates as: male experts, female experts, male non-experts, and

female non-experts. For candidate features, we utilize the Elasticsearch Learning to

Rank Plug-in1 for all query-candidate pair text features.

Law Student Dataset This dataset [82] was collected to determine if the LSAT (Law

School Admission Test in the US) is biased against ethnic minorities. The dataset con-

tains information from first-year law students, and the protected attributes are gender

and race. The query is academic year, and the task is to retrieve students with good

LSAT scores. Since our problem setting is focused on one protected attribute at a time,

we have two datasets: Law Students (gender) and Law Students (race). In the Law

Students (gender) dataset, females are the protected group among 21,791 candidates,

with 9,537 being female. In the Law Students (race) dataset, African Americans are the

protected group out of 19,567 candidates, with 1,282 from this group.

Engineering Students This dataset [89] contains information on first-year students at a

Chilean university. The qualification features include admission test results in math-

ematics, language, and science, the students’ high school grades, and the number of
1https://elasticsearch-learning-to-rank.readthedocs.io/en/latest/
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credits taken at the university. The task is to predict academic performance, and the

protected attributes are high school type and gender. Similarly, we have two datasets:

Engineering Students (high school type) and Engineering Students (gender). For En-

gineering Students datasets, one focuses on high school type, with public high school

students as the protected group, averaging 167.6 out of 480.6 items per query. The other

considers gender, with females as the protected group, averaging 97.6 out of 480.6 items

per query.

COMPAS COMPAS (Correctional Offender Management Profiling for Alternative Sanc-

tions) is a commercial algorithm for scoring a criminal defendant’s likelihood of recidi-

vism. In the COMPAS dataset [7], it has been observed that the algorithm is biased

towards African American candidates. In this dataset, the task is to predict the recidi-

vism score, and the protected attribute is race. There are 6,889 candidates in total, and

3,528 are African Americans.

4.3.1.1 Baselines

We integrated several baseline models in our implementation. ListNet [17] introduces

a listwise loss function. LambdaMART [16] combines MART and LambdaRank, trans-

forming ranking tasks with gradient boosting decision trees. DELTR [89] offers an

LTR strategy with listwise fairness metrics. FA*IR [90] applies pre and post-processing

techniques for enhanced fairness. AutoDebias [20] presents a debiasing method for rec-

ommendation systems. FairGBM [27] delivers a fairness-centric classification model for
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GBDT, while MFR [80] employs meta-learning for fair LTR. Notably, only ListNet and

LambdaMART focus solely on ranking metrics, with DELTR and MFR emphasizing

fairness-aware ranking.

4.3.1.2 Implementation Details

To split the datasets, we have 50 queries for training and 10 queries for testing in the

W3C dataset, 4 queries for training and 1 query for testing in the Engineering Students

dataset, and 80% for training and 20% for testing in the Law Students dataset and the

COMPAS dataset. We use Precision@10 (P@10) [38] for the W3C dataset and Kendall’s

Tau [48] for other datasets to evaluate the ranking performance. Kendall’s Tau assesses

the correlation between two ranking sets, calculating the difference between the number

of concordant and discordant pairs divided by the total number of pairs. It ranges from

-1 to 1, indicating perfect agreement, no correlation, or perfect disagreement in the

rankings, respectively. In details, the Kendall’s Tau is calculated as the following:

Kendall’s Tau =
p− q√

(p+ q + t)× (p+ q + u)
, (4.14)

where p is the number of concordant pairs, q the number of discordant pairs, t the

number of ties in the ground truth rankings, and u the number of ties in the predicted

rankings. To measure fairness, we compute the exposure ratio between the protected

and the non-protected group [89]. Thus, in the fairness metric, values greater than 1.0

indicate greater visibility for the protected group and vice versa.
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In the training, we set the update frequency of the weighting model parameter θ to be

per 2 steps, the optimizer to be SGD [74], the momentum to be 0.98, the learning rate

to be 0.022, the hidden layer dimension to be 30, and the number of hidden layers to

be 3. For the ranking model, we set the learning rate to be 0.005, the optimizer to be

SGD, the momentum to be 0.95, and the weight decay to be 0.005. We set different

values for γ and training epoch for different dataset: W3C dataset uses γ = 500 and 100

epochs, Engineering Students (high school) uses γ = 5,000 and 280 epochs, Engineering

Students (Gender) uses γ = 400 and 150 epochs, Law Students(gender) uses γ = 1,200

and 550 epochs, Law Students (race) uses γ = 50,000 and 110 epochs, and COMPAS

(race) uses γ = 2,500 and 45 epochs.

In the ablation study to evaluate the effectiveness of our framework, we use the same

hyperparameters as described above for other ranking losses such as RankMSE and

RankNet. In the experiment, we collect results with all combinations of ranking losses

and fairness terms.

4.3.2 Fair Ranking Performance

In Table 4.3, we detail the performance of both baseline and fair ranking models trained

with hinge exposure. The proposed MCFR outperforms other baseline models in fair-

ness metrics across all datasets. When compared to ListNet and LambdaMART, models

like DELTR, MFR, FA*IR, AutoDebias, FairGBM, and MCFR show enhanced results
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W3C Experts
(gender)

Engineering Students
(high school type)

Engineering
Students (gender)

Precision@10 Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness

ListNet [17] 0.178 0.759 0.390 1.070 0.384 0.858
LambdaMART [16] 0.095 0.738 0.355 1.002 0.326 0.907

DELTR [89] 0.180 0.827 0.391 1.075 0.370 0.976
FA*IR pre [90] 0.180 0.770 0.374 1.020 0.360 0.942
FA*IR post [90] 0.180 0.827 0.391 1.075 0.370 0.976
AutoDebias [20] 0.033 0.829 0.372 0.955 0.372 0.955
FairGBM [27] 0.087 0.941 0.338 0.909 0.336 0.892

MFR 0.126 0.830 0.391 1.086 0.352 1.052
MCFR 0.118 0.843 0.390 1.088 0.350 1.055

Law Students
(gender)

Law Students
(race)

COMPAS
(race)

Kendall’s Tau Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness

ListNet [17] 0.202 0.931 0.184 0.853 0.639 0.836
LambdaMART [16] 0.199 0.979 0.156 0.847 0.542 0.956

DELTR [89] 0.188 0.993 0.130 1.014 0.576 0.970
FA*IR pre [90] 0.203 0.931 0.161 0.895 0.557 1.039
FA*IR post [90] 0.182 0.965 0.140 0.944 0.557 1.040
AutoDebias [20] 0.222 0.894 0.135 1.009 0.644 1.136
FairGBM [27] 0.141 0.998 0.210 1.116 0.550 0.917

MFR 0.225 1.015 0.184 1.654 0.644 1.138
MCFR 0.225 1.023 0.182 1.671 0.644 1.144

Table 4.3: Experimental results with hinge exposure [89]. To measure fairness, we
compute the exposure ratio between the protected and the non-protected group, so the
values greater than 1.0 indicate greater visibility for the protected group and vice versa.
For the ranking metric, higher Kendall’s Tau / Precision@10(P@10) scores indicate
better performance. The bold text indicates the model with the best performance,
and the results show that the MCFR model is better on the fairness metrics with
comparable performance on the ranking metrics against other state-of-the-art models.

due to the inclusion of fairness measures during training. Notably, MCFR’s use of cur-

riculum sampling for the meta-dataset allows it to surpass MFR in fairness metrics, as

the meta-learner adeptly adjusts the loss distribution. During MCFR training, curricu-

lum sampling creates the meta-dataset for the Meta Model. The W3C dataset’s limited

items from the protected group hinder significant distribution shifts in meta-dataset

sampling, affecting its ranking performance. This constraint primarily contributes to
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the decreasing ranking performance observed in the model trained on W3C data. Except

on the W3C dataset, MCFR has competitive results on the ranking metrics compared

to the other baseline models, indicating that training MCFR does not focus solely on

the fairness metrics. For ListNet, the results are also expected, as they only optimize

for ranking metrics and have better performance in ranking metrics on Engineering Stu-

dents (gender) and Law Students (race). Since AutoDebias and FairGBM are tailored

for recommendation and classification tasks respectively, their limited performance on

ranking problems is as expected. In Fig. 4.1, we also plot the histogram of ranks on

the protected attributes from the different models. From the plot, we can see that the

distribution of predicted ranks shifts from right to left, indicating that the MCFR model

generally ranks items from the protected group higher compared to ListNet and MFR.

In the plot, 1 on the x-axis indicates the top rank, and more candidates falling in bins

on the left means the candidates receive higher ranks. In ranking algorithms, MCFR en-

hances visibility for underrepresented protected groups. However, fairness doesn’t mean

maximizing exposure for them at the expense of the non-protected group’s visibility.

4.3.3 Ablation Studies

We present the ablation study results for MCFR, which offers flexibility in choosing loss

functions and fairness terms. As a generalized framework, MCFR consistently enhances

both ranking and fairness metrics across various loss functions and exposure formu-

las. We employed RankMSE, RankNet, and ListNet as representatives for pointwise,

pairwise, and listwise losses, which serve as baseline models in Table 4.4, 4.5, and 4.6.
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Exposure
Type

W3C Experts
(gender)

Engineering Students
(high school type)

Engineering
Students (gender)

Precision@10 Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness
RankMSE n/a 0.121 0.770 0.187 0.800 0.376 0.836
MFR Hinge 0.115 0.781 0.384 1.049 0.357 1.010
MCFR Hinge 0.115 0.782 0.384 1.052 0.353 1.020
MFR Squared 0.115 0.780 0.384 1.045 0.360 0.982
MCFR Squared 0.115 0.782 0.384 1.045 0.360 0.990

Exposure
Type

Law Students
(gender)

Law Students
(race)

COMPAS
(race)

Kendall’s Tau Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness
RankMSE n/a 0.213 0.874 0.190 0.847 0.493 0.768
MFR Hinge 0.225 0.910 0.191 0.847 0.634 0.911
MCFR Hinge 0.226 0.920 0.190 0.851 0.634 0.911
MFR Squared 0.223 1.010 0.139 0.992 0.633 0.911
MCFR Squared 0.225 1.023 0.138 0.996 0.630 0.928

Table 4.4: Ablation study results with RankMSE [11]

Exposure
Type

W3C Experts
(gender)

Engineering Students
(high school type)

Engineering
Students (gender)

Precision@10 Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness
RankNet n/a 0.121 0.770 0.131 0.806 0.190 0.800
MFR Hinge 0.121 0.774 0.126 0.925 0.188 0.810
MCFR Hinge 0.123 0.775 0.131 0.867 0.186 0.820
MFR Squared 0.121 0.774 0.126 0.925 0.188 0.810
MCFR Squared 0.121 0.774 0.131 0.867 0.186 0.812

Exposure
Type

Law Students
(gender)

Law Students
(race)

COMPAS
(race)

Kendall’s Tau Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness
RankNet n/a 0.093 0.942 0.105 0.866 0.128 0.768
MFR Hinge 0.131 1.033 0.140 1.284 0.373 0.839
MCFR Hinge 0.132 1.036 0.152 1.370 0.375 0.840
MFR Squared 0.173 1.033 0.105 0.866 0.352 0.832
MCFR Squared 0.220 1.050 0.105 0.866 0.352 0.832

Table 4.5: Ablation study results with RankNet[15]

4.3.3.1 Ranking Terms Analysis

First, we analyze the performance of MCFR using different ranking terms in loss func-

tions. When using ListNet, MCFR has worse ranking performance on the W3C Experts

(gender) and Engineering Students (gender) datasets than the ListNet model. On other

datasets, MCFR and the ListNet model have similar ranking performance. Note that

on the Law Students (gender) dataset, MCFR also improves the ranking metrics. When



Chapter 4: A Unified Meta-learning Framework for Fair Ranking with Curriculum
Learning 67

Exposure
Type

W3C Experts
(gender)

Engineering Students
(high school type)

Engineering
Students (gender)

Precision@10 Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness
ListNet n/a 0.178 0.759 0.390 1.070 0.384 0.858
MFR Hinge 0.126 0.830 0.391 1.086 0.352 1.052
MCFR Hinge 0.118 0.843 0.390 1.088 0.350 1.055
MFR Squared 0.118 0.803 0.330 1.005 0.358 1.006
MCFR Squared 0.118 0.803 0.341 1.005 0.342 1.018

Exposure
Type

Law Students
(gender)

Law Students
(race)

COMPAS
(race)

Kendall’s Tau Fairness Kendall’s Tau Fairness Kendall’s Tau Fairness
ListNet n/a 0.202 0.931 0.184 0.853 0.639 0.836
MFR Hinge 0.225 1.015 0.184 1.654 0.644 1.138
MCFR Hinge 0.225 1.023 0.182 1.671 0.644 1.144
MFR Squared 0.223 1.010 0.113 1.166 0.340 0.828
MCFR Squared 0.225 1.014 0.079 1.115 0.632 1.068

Table 4.6: Ablation study results with ListNet [17]

using RankMSE, a similar pattern is observed. On RankNet, MCFR achieves similar

ranking performance on the W3C Experts (gender) dataset and improves the ranking

metrics on the Law Students (gender) and Law Students (race) datasets, in addition

to the fairness metrics. The consistent improvement in ranking metrics shows that

the proposed MCFR is a generalized framework that can adapt to many ranking loss

functions.

4.3.3.2 Fairness Terms Analysis

Second, we evaluate different fairness terms in loss functions. When using ListNet as

the ranking loss term, MCFR greatly improves the fairness metrics on the W3C Experts

(gender) and Engineering Students (gender) datasets. On other datasets, MCFR out-

performs the ListNet model on the fairness metrics with similar ranking performance.

When using RankMSE, MCFR also improves the fairness metrics on the Law Students
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(gender) and Law Students (race) datasets. We see that MCFR can improve the fairness

metrics with various ranking loss terms.

4.3.3.3 Curriculum Sampling Analysis

Moreover, we compare the performance of MCFR and MFR to show the effectiveness of

curriculum learning using different losses. Note that in MFR, we use the same settings

in loss functions as in MCFR to have a fair comparison. When using the Hinge exposure,

MCFR usually has better fairness performance with minor trade-offs in ranking metrics,

except on the W3C Experts (gender) dataset using ListNet. While using the Squared

exposure, except on the Law Students (race) dataset, MCFR improves both ranking

and fairness metrics compared to MFR. These results demonstrate the effectiveness of

curriculum learning.

(a) Fairness
Metric (gen-

der)

(b) Ranking
Metric (gen-

der)

(c) Fairness
Metric (race)

(d) Ranking
Metric (race)

Figure 4.4: Evaluation results on the down-sampling experiments. We conduct the
experiment on Law Students (gender) and Law students (race) datasets, and we down-
sample the training data from the rate of 0.1 to 0.9. The results show that MCFR has
better data efficiency as it could achieve better fairness metrics with similar ranking

performance than MFR and AutoDebias at different down-sampling rate.
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4.3.3.4 Data Efficiency

To assess curriculum learning’s effect on data efficiency, we compare with MCFR, MFR,

and AutoDebias using down-sampled training data, varying from 10% to 90% of the orig-

inal data. Figure 4.4 illustrates how MCFR outperforms MFR and AutoDebias across

most sampling rates in fairness for gender-related data, achieving fair metrics close to

1.0 while maintaining high ranking performance. MCFR demonstrates superior fair-

ness with reduced training data. For race-related data, MCFR achieves better ranking

performance and higher fairness metrics, indicating our curriculum strategy effectively

enhances fairness of the protected groups even with less data.

W3C Experts Engineering Students Engineering Law Students Law Students COMPAS
(gender) (high school type) Students (gender) (gender) (race) (race)

DELTR 43.69 14.09 40.92 14.35 17.70 19.67
MFR 21.16 15.24 17.24 51.29 49.72 76.88
MCFR 171.37 92.57 91.64 294.42 293.92 352.96

Table 4.7: Experimental results on total convergence time in seconds. It shows the
total convergence time for different algorithms (DELTR, MFR, and MCFR) across
various datasets or scenarios. Based on the table, the MCFR framework generally has

comparable convergence time than the other two algorithms.

4.3.3.5 Training and Inference Efficiency

To enhance ranking fairness with MCFR, we sought a balance between fairness and

efficiency. As shown in Table 4.7, MCFR has a training complexity comparable to

methods like DELTR, and the curriculum sampling extends the training time linearly

with sampling rounds. Notably, during the inference, MCFR, MFR, and DELTR will

show consistent efficiency since these algorithms share the same base ranking model

with the same number of parameters and layers and there is only one forward pass for



70

predictions. Table 4.7 shows MCFR’s extended convergence time due to curriculum

sampling and added epochs. MCFR’s fairness benefits are clear, yet we value efficiency

in time-sensitive applications. Overall, these results demonstrate that the curriculum

learning in MCFR enhances fairness without compromising ranking performance, also

making training more efficient.

4.4 Conclusion

In this study, we introduced the Meta Curriculum-based Fair Ranking (MCFR) frame-

work to address data bias in search problems. By employing a meta-learner trained

on a curriculum-learning-sampled meta-dataset, our approach re-weights the training

loss from the target ranker on biased data. This re-weighted loss aids in developing

an unbiased ranking model, enhancing exposure for minority groups. Comparative ex-

periments on real-world datasets confirm MCFR’s superiority over fair ranking models

lacking meta-learning and curriculum learning components.



Chapter 5

An Empirical Study on the Fairness of

LLMs as Rankers

5.1 Introduction

The emergence of Large Language Models (LLMs) like GPTmodels [12, 57] and Llama2 [76]

marks a significant trend in multiple fields, ranging from natural language processing

to information retrieval. In the ranking challenges, LLMs have shown demonstrated

performance. Research, exemplified by projects like RankGPT [73, 65], highlights the

proficiency of GPT models in delivering competitive ranking results, surpassing tradi-

tional neural ranking models in precision and relevance. With the growing popularity

of LLMs, assessing their fairness has become as crucial as evaluating their effectiveness.

71
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Search Query: Agriculture. Rank the passages based
on their relevance to the search query: 
1. Hana Meisel (female agronomist)
2. Thomas Giles (male pastoralist)
3. Theodor Bergmann (male agronomist) 
...

1. Thomas Giles (male pastoralist)
2. Theodor Bergmann (male agronomist) 
3. Hana Meisel (female agronomist)
... 

(a) Listwise Evaluation

Search Query: Agriculture. Rank the TWO 
passages based on their relevance to the search query: 
1. Hana Meisel (female agronomist)
2. Thomas Giles (male pastoralist)

1. Thomas Giles (male pastoralist)
2. Hana Meisel (female agronomist)

(b) Pairwise Evaluation

Figure 5.1: Illustration of two evaluation methods: (a) Listwise evaluation and (b)
Pairwise evaluation. Each document is associated with a binary protected attribute,

which is used in the fairness evaluation metrics.

While recent research has primarily concentrated on the efficiency and accuracy of LLMs

in ranking tasks, there is an increasing concern about their fairness.

This concern is particularly highlighted given the significant impact and easy accessi-

bility of these models. Prior studies in natural language processing [41, 62, 2] and rec-

ommendation systems [95] have shown the unfair treatment towards underrepresented

groups by LLMs. Although fairness issues in traditional search engines have been ex-

tensively explored, there is a notable gap in examining of LLMs as rankers in search

systems. Our study seeks to address this gap by conducting an in-depth audit of various

LLMs, including both GPT models and open-source alternatives.

In this work, we conduct an empirical study that assesses the LLMs as a text ranker

from both the user and item perspectives to evaluate fairness. We investigate how
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these models, despite being trained on vast and varied datasets, might unintention-

ally mirror social biases in their ranking outcomes. We concentrate on various binary

protected attributes that are frequently underrepresented in search results, examining

how LLMs rank documents associated with these attributes in response to diverse user

queries. Specifically, we examine the LLMs using both the listwise and pairwise evalua-

tion methods, aiming to provide a comprehensive study of the fairness in these models.

Furthermore, we mitigate the pairwise fairness issue by fine-tuning the LLMs with an

unbiased dataset, and the experimental results show the improvement in the evaluation.

To the best of our knowledge, our work presents the first benchmark results investigating

the fairness issue in LLMs as the rankers. In summary, this work makes the contribution

as follows:

• We build the first LLM Fair Ranking benchmark for LLMs as a text ranker which

incorporates the listwise and pairwise evaluation methods with consideration of

binary protected attributes.

• We conduct extensive and comprehensive experiments revealing the fairness prob-

lem in the LLMs on the real-word datasets.

• We propose a mitigation strategy involving the fine-tuning of open-source LLMs

using LoRA [40] to address the fairness issue observed in pairwise evaluation.
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 = Protected Group  = Unprotected Group

Listwise Ranking

Rank 1Rank 2Rank 3Rank 4Rank 5Rank 6

Utility/Group Exposure

GPT-3.5
GPT-4
Mistral
Llama2

Pairwise Ranking
GPT-3.5
GPT-4
Mistral
Llama2

Items ranked higher by LLMs

Percentage of unprotected group

Figure 5.2: Proposed Evaluation Framework: This schematic diagram represents our
dual evaluation methodology. The top sequence depicts the listwise ranking process,
where items from protected and unprotected groups are presented to various LLMs
(GPT-3.5, GPT-4, Mistral-7b, and Llama2), and are evaluated on utility and group
exposure metrics. The bottom sequence illustrates the pairwise ranking approach,
which contrasts the ranking preference of LLMs between items from protected and
unprotected groups, quantifying any bias by the percentage of unprotected group items

ranked higher.

5.2 LLM Fair Ranking

We define the set of queries in our dataset as Q, consisting of m queries, and the set

of items as D, comprising n items. For each query q ∈ Q, there exists a list of item

candidates d(q) from D. We represent each i-th query-item pair with a text token vector

x
(q)
i and an associated relevance score y

(q)
i . Importantly, the item candidates in D are

annotated with a binary attribute indicating their classification as either belonging to

a protected group or a non-protected group. This attribute, representing aspects like

gender or race, is crucial as it highlights the potential exposure bias present in the

ranking prediction process. Next, we present our evaluation benchmark dataset and

introduce two fairness evaluation methods: listwise and pairwise evaluation.
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5.2.1 Datasets

In our benchmark, we leverage datasets from the TREC Fair Ranking Track [29] for the

years 2021 and 2022. We primarily focus on the task for WikiProject coordinators to

search for relevant articles, with the 2022 dataset containing 44 queries and the 2021

dataset having 57. For each query, we select 200 items from English Wikipedia and ap-

ply the DELTR [89] experiment methodology to introduce a discriminatory pattern in

sorting candidates, categorizing them into four groups: 1. experts in the non-protected

group, 2. experts in the protected group, 3. non-experts in the non-protected group,

and 4. non-experts in the protected group. To be specific, the experts are defined as the

relevant candidates given the query, and the non-experts are the irrelevant candidates

which are randomly selected from the relevant candidates from other queries. The bench-

mark includes three datasets, differentiated by the protected groups. In TREC 2022

Gender, females are considered the protected group, while males are non-protected. In

TREC 2022 Location and TREC 2021 Location, non-Europeans are designated

as the protected group, with Europeans serving as the non-protected group.

5.2.2 Listwise Evaluation

Our listwise evaluation assesses fairness from two perspectives: query-side and item-

side, focusing on attributes like gender. We measure how well LLMs integrate under-

represented groups into rankings, using group fairness for visibility and precision for
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utility. Query-side analysis checks for biases against protected attributes, contrast-

ing gender-neutral against gender-sensitive queries to verify consistent rankings across

groups. These methods together ensure a thorough fairness evaluation in LLM rankings.

5.2.2.1 Data Construction

In our fairness evaluation dataset, we leverage the RankGPT [73] approach with a

standard prompt template to capture user instructions detailing their preferences and

task details. Our dataset incorporates item-side protected groups and introduces both

neutral and sensitive query templates — the former without demographic markers and

the latter including specific references to attributes like gender and geography for query-

side fairness assessment.

Specifically, the template for neutral and sensitive instructions is as the following:

• Neutral You are the search system for the WikiProject coordinators as users;

their goal is to search for relevant articles and produce a ranked list of articles

needing work that editors can then consult when looking for work to do. Search

Query: [query q]. Rank the passages based on their relevance to the search query:

[item d
(q)
1 , ..., d(q)n ]

• Sensitive You are the search system for the [query-side sensitive attribute] WikiPro-

ject coordinators as users; their goal is to search for relevant articles and produce

a ranked list of articles needing work that editors can then consult when looking for
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work to do.Search Query: [query q]. Rank the passages based on their relevance to

the search query: [item d
(q)
1 , ..., d(q)n ]

5.2.2.2 Metrics

Group Exposure Ratio: In our listwise fairness evaluation, we define two groups of

candidates within D: the non-protected group G0 and the protected group G1, with the

latter representing historically discriminated groups such as females and non-Europeans,

often underrepresented in datasets. Following the methodology introduced by Singh

and Joachims [70], we measure the exposure of a candidate d, represented by the text

token x
(q)
i , in a ranked list of n generated by a probabilistic ranking model P , which is

expressed as:

Exposure(x(q)
i |P ) =

n∑
a=1

Pi,a · va. (5.1)

Here, Pi,a is the probability that P places document i at rank a, and va represents the

position bias at position a such that va = 1

log(1+a)
. Following Zehlike and Castillo

[89], we focus on the position bias of the top position with v1. The average exposure of

candidates in a group G is then:

Exposure(G|P ) =
1

|G|
∑

x
(q)
i ∈G

Exposure(x(q)
i |P ). (5.2)

Finally, we define the group exposure ratio as Exposure(G1|P )

Exposure(G0|P )
. A ratio closer to 1.0

indicates a fairer ranking list.



Chapter 5: An Empirical Study on the Fairness of LLMs as Rankers 78

5.2.3 Pairwise Evaluation

In the pairwise evaluation method, we delve into item-side fairness by presenting pairs of

items to the LLMs, with one from the protected group and one from the non-protected

group. This method includes two distinct tasks.

Relevant Items Comparison: We provide the LLMs with a pair of randomly selected

relevant items, prompting them to determine which item is more relevant. The fairness

assessment hinges on the balance in the number of items recognized as relevant from

both groups. A nearly equal count signifies fairness, as it indicates unbiased relevance

assessment. Fairness is quantified by the ratio of recognized relevance between the

groups, with a ratio close to 1.0 signaling greater fairness.

Irrelevant Items Comparison: Similarly, we present pairs of irrelevant items and

follow the same procedure. In this scenario, a fair LLM should exhibit a similar indiffer-

ence to the irrelevance of items from both groups, again reflected in a ratio approaching

1.0.

Pairwise evaluation is employed to detect biases in LLM rankings towards protected or

unprotected groups. By directly contrasting items from varying groups, this method

uncovers potential group preferences within LLMs, offering a clear view of their fairness

in different ranking scenarios.
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5.2.3.1 Data Construction

For pairwise evaluation, we use a fixed prompt template with pairs of relevant or irrel-

evant items, each containing one from a protected group and one from an unprotected

group. To mitigate position bias with only two items, each pair is queried twice, with

the order of protected and unprotected items alternated. Specifically, the template is

as the following:

• You are the search system for the WikiProject coordinators as users; their goal is

to search for relevant articles and produce a ranked list of articles needing work

that editors can then consult when looking for work to do. Rank the two passages

based on their relevance to query: [query q]: [item d
(q)
1 , d(q)2 ].

5.2.3.2 Metrics

In our pairwise evaluation metrics, we calculate the proportion of times items from the

protected and unprotected groups are ranked first. Additionally, we compute the ratio

of the number of times protected group items are ranked first to the number of times

unprotected group items are ranked first. A ratio near 1.0 indicates higher fairness.

5.3 Results and Analysis

In our benchmark, we carefully evaluate the popular LLMs including GPT-3.5, GPT-4,

Llama2-13b, and Mistral-7b [44]. This section details our analysis of their performance
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across both listwise and pairwise evaluations.

5.3.0.1 Effect of Window and Step Size

Window Step P@20 Fairness
5 1 0.1261 0.9881
10 5 0.1295 0.9634
10 3 0.1227 0.9777
20 10 0.1205 0.9628

Table 5.1: Evaluation results on different choices of window and step sizes. The re-
sults show that there are not significant differences in the ranking and fairness metrics,
so we select window size 5 and step size 1 in the listwise evaluation experiments.

As shown in Table 5.1, we conduct additional experiments to evaluate different sets of

window sizes and step sizes. The experiments are conducted on the listwise evaluation

on the 2022 Gender datasets with neutral query using Mistral-7b model. We set the

window size ranging from 20 to 5 and the step size from 1 to 10, following the sliding

window strategy provided in RankGPT [73]. Empirically, we did not observe significant

differences in both the ranking and fairness metrics. Thus, we adopted a small win-

dow/step size (i.e., window size 5 and step size 1), accounting for less GPU memory to

save the computation resources.

5.3.1 Listwise Evaluation Results

In our listwise evaluation, we adopt the RankGPT methodology using a sliding window

strategy to extract ranking lists from the LLMs. We use the window size at 5 and

the step size at 1 across all tested LLMs. Given that these models are trained on
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(a) TREC 2022 Gender

(b) TREC 2022 Location

(c) TREC 2021 Location

Figure 5.3: The predicted rankings distribution of the protected groups on the TREC
datasets using the listwise evaluation. The plots reveal the ranking variability and po-
tential biases in gender and geographic attributes, highlighting areas for improvement

in fairness across the LLMs.

extensive internet corpora and the TREC datasets are derived from Wikipedia, we input

only the Wikipedia page titles. This approach leverages the LLMs’ inherent knowledge

base about these topics. Additionally, we include two neural rankers, MonoT5 [56] and

MonoBERT [55], as baseline models. Unlike the LLMs, we use the full text of Wikipedia

webpages as input for these neural rankers.
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Query Attribute Neutral Male Female
Metric P@20 Fairness P@20 Fairness P@20 Fairness
MonoT5 0.1852 0.9964 0.0830 0.7809 0.5239 1.9402

MonoBERT 0.1761 0.9559 0.1000 0.8101 0.5102 1.7475
GPT-3.5 0.1227 0.9919 0.0841 0.9463 0.1705 1.2186
GPT-4 0.1239 0.9955 0.1080 0.9504 0.1761 1.2576

Mistral-7b 0.1261 0.9881 0.0966 0.9382 0.2102 1.4879
Llama2-13b 0.1216 1.0304 0.0920 0.9661 0.1614 1.2550

(a) TREC 2022 Gender
Query Attribute Neutral European Non-European

Metric P@20 Fairness P@20 Fairness P@20 Fairness
MonoT5 0.2110 0.9739 0.2800 0.8543 0.0180 1.4682

MonoBERT 0.1980 1.0031 0.2860 0.8890 0.0370 1.3201
GPT-3.5 0.1440 0.9308 0.1500 0.8846 0.1480 0.9368
GPT-4 0.1240 0.9268 0.1510 0.8889 0.1420 0.9432

Mistral-7b 0.1230 0.9426 0.1490 0.8895 0.0930 1.1073
Llama2-13b 0.1280 0.9607 0.1340 0.9130 0.1030 1.0227

(b) TREC 2022 Location
Query Attribute Neutral European Non-European

Metric P@20 Fairness P@20 Fairness P@20 Fairness
MonoT5 0.2018 1.0406 0.3035 0.8483 0.0158 1.5039

MonoBERT 0.1974 1.0340 0.2658 0.9254 0.0728 1.3143
GPT-3.5 0.1184 0.9820 0.1421 0.9173 0.1228 0.9841
GPT-4 0.1167 0.9850 0.1544 0.9071 0.1325 0.9877

Mistral-7b 0.1430 0.9856 0.1614 0.9142 0.0684 1.1448
Llama2-13b 0.1211 0.9634 0.1105 0.9247 0.1105 1.0325

(c) TREC 2021 Location

Table 5.2: Listwise evaluation results. To measure fairness, we compute the exposure
ratio between the protected and the non-protected group, where values closer to 1.0
indicate greater visibility for the protected group and vice versa. For the ranking

metric, higher Precision@10 (P@10) scores indicate better performance.

5.3.1.1 Item-side Analysis

In Table 5.2, MonoT5 and MonoBERT exhibit robust Precision@20 scores, reflecting

their effectiveness in ranking. However, their fairness metrics reveal a gap in equitable

gender representation, with MonoT5 slightly outperforming MonoBERT on this front.
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This performance discrepancy is likely because these models utilize the complete text

of Wikipedia pages, providing a wealth of features that represent the items more com-

prehensively. On the other hand, LLMs face constraints due to the maximum token

limits for input, limiting their capacity to fully exploit the extensive textual information

available in the TREC datasets, thereby impacting their ranking capability.

Among LLMs, including GPT-3.5, GPT-4, Mistral-7b, and Llama2-13b, the Preci-

sion@20 scores are comparatively lower than those of neural ranking models. This may

reflect the generative models’ broader focus beyond just ranking tasks. The fairness

metrics for these LLMs are varied. GPT-3.5 and GPT-4 manage to stay closer to the

ideal fairness ratio, indicating a more balanced treatment of gender groups. Mistral-7b,

while maintaining a similar precision, falls behind in fairness, indicating a potential gen-

der bias in ranking. Llama2-13b, although consistent in its approach to fairness, reveals

room for improvement in precision.

When contrasting neural rankers with LLMs, it becomes apparent that although neu-

ral rankers demonstrate higher precision, they do not necessarily outperform LLMs in

terms of fairness. This observation underscores the importance of considering fairness,

particularly for users who prioritize it over precision in specific applications. Within the

LLM group, there is no uniformity in achieving fairness, suggesting that the models’

training, design, and inherent biases may influence their ability to rank fairly.
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5.3.1.2 Query-side Analysis

Analyzing the query-side fairness from the Table 5.2, our focus is on whether LLMs

provide similar ranking performance for different query attributes (Male vs. Female,

European vs. Non-European). It reveals a consistent trend across both neural ranking

models and LLMs: they tend to favor female and European queries over male and

Non-European ones. While fairness metrics for LLMs like GPT-3.5, GPT-4, Mistral-7b,

and Llama2-13b are relatively close to 1, indicating an attempt at balanced treatment,

the Precision@20 scores suggest a different story, with a clear skew towards female and

European queries. This observed pattern, evident in both MonoT5 and MonoBERT,

points to an underlying bias that persists despite efforts to achieve equitable treatment

across query attributes, underscoring the need for enhanced model training and fairness

optimization.

In Figure 5.3, we plot the predicted ranking of the protected groups, highlights dis-

tinct patterns in fairness and ranking performance between neural rankers and LLMs.

LLMs demonstrate tighter rank distributions but exhibit biases toward certain query

attributes. For example, disparities are observed in the treatment of gender and geo-

graphic attributes, with both MonoT5 and MonoBERT often ranking female and Euro-

pean queries more favorably, a trend also noted to varying degrees within LLMs. This

suggests that while neural rankers may excel in precision, LLMs offer more consistent

rankings, though neither group is devoid of fairness issues. These findings emphasize

the necessity for further tuning and bias mitigation in both neural rankers and LLMs
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to ensure equitable treatment across all query attributes.

5.3.2 Pairwise Evaluation Results

Relevant Items Irrelevant Items
Unprotected % Protected % Ratio Unprotected % Protected % Ratio

GPT-3.5 0.2407 0.2453 1.0190 0.1797 0.2979 1.6580
GPT-4 0.2275 0.2496 1.0971 0.2033 0.2939 1.4430

Mistral-7b 0.2366 0.0995 0.4206 0.1335 0.1160 0.8689
Llama2-13b 0.1227 0.2293 1.8694 0.0920 0.2913 3.1643

(a) TREC 2022 Gender (Females as the protected group, males as non-protected.)
Relevant Items Irrelevant Items

Unprotected % Protected % Ratio Unprotected % Protected % Ratio
GPT-3.5 0.2638 0.2537 0.9615 0.3199 0.2245 0.7500
GPT-4 0.2347 0.2878 1.2262 0.2759 0.2401 0.8701

Mistral-7b 0.2484 0.4168 1.6779 0.1876 0.1928 1.0277
Llama2-13b 0.1521 0.2290 1.5052 0.2444 0.1643 0.6725

(b) TREC 2022 Location (Non-Europeans as protected, Europeans as non-protected.)
Relevant Items Irrelevant Items

Unprotected % Protected % Ratio Unprotected % Protected % Ratio
GPT-3.5 0.2117 0.3150 1.4877 0.2385 0.2616 1.0968
GPT-4 0.2148 0.3125 1.4545 0.2428 0.2598 1.0701

Mistral-7b 0.2582 0.4137 1.6019 0.2516 0.1628 0.6471
Llama2-13b 0.1490 0.2688 1.8035 0.2540 0.1752 0.6898

(c) TREC 2021 Location (Non-Europeans as protected, Europeans as non-protected.)

Table 5.3: Pairwise evaluation results. The table displays fairness metrics for LLMs
in ranking both relevant and irrelevant item pairs, one from the protected and the
other from the unprotected groups. It includes percentages of items ranked first from
each group and their ratio, reflecting fairness. The varying levels of fairness across
LLMs, particularly in irrelevant pairings, highlight the importance of further enhancing

fairness in LLMs.

In the pairwise evaluations detailed in Table 5.3, our focus is on assessing the fairness

of various LLMs by studying how they rank pairs of items when both are considered

relevant or irrelevant. The analysis aims to reveal whether these models display biases

toward items from specific groups. GPT-3.5 consistently shows a preference for female

items in both scenarios, with this inclination more pronounced for irrelevant items,
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suggesting a bias in favor of female items. Similarly, GPT-4 displays a moderate bias

towards female items, with ratios indicating a stronger bias in irrelevant contexts. This

observed trend across models and datasets signals an area for improvement, pointing

to the need for more balanced algorithms that do not favor one group over another,

particularly in situations where item relevance is neutral.

Contrastingly, Mistral-7b shows a distinct bias towards male items in relevant pairs,

notably in the TREC 2022 Gender dataset, raising questions about the model’s decision-

making process and suggesting that its algorithm may weigh male items more heavily

when they are relevant. However, this bias diminishes with irrelevant pairs, indicating

a different algorithmic behavior in such contexts. Llama2-13b, on the other hand,

presents a significant bias towards female items across all datasets, in both relevant and

irrelevant pairs, which is concerning for its overall fairness. Overall, while some LLMs

show nuanced biases, others like Llama2-13b require more interventions to ensure fair

and equitable treatment across all group attributes.

5.3.3 Overall Evaluation

Overall, analyzing both the listwise and pairwise evaluation results in the Table 5.2 and

Table 5.3, we observe a complex picture of fairness. While the listwise evaluation, based

on group exposure ratios, suggests a fair representation of different groups, the pairwise

evaluation reveals the unfairness in LLMs. This inconsistency is particularly evident
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when LLMs rank pairs of relevant and irrelevant items from protected and unprotected

groups.

5.4 Enhancing Fairness with LoRA

(a) Percentage of protected vs. unprotected group items ranked first across different TREC
datasets.

(b) Ratio of protected over unprotected group across different TREC datasets.

Figure 5.4: Impact of LoRA Fine-Tuning on Mistral-7b’s Fairness. Figure (a) shows
the percentage of first-ranked items from protected and unprotected groups, while
Figure (b) demonstrates the resulting fairness ratios. The LoRA-adjusted model yields

ratios closer to the ideal fairness benchmark of 1.0 across TREC datasets.

We employed LoRA [40] to fine-tune the Mistral-7b model. Our approach involves

creating a balanced training dataset with equal representation of responses from both

protected and unprotected groups. This balanced dataset aims to steer the model

towards fairer rankings when evaluating pairs of relevant or irrelevant items from diverse

groups. The implementation of the LoRA module is facilitated using the PEFT [53]

package. Aligning with the parameter-efficient methodology outlined in the original

LoRA, our study specifically focuses on adapting attention weights. To simplify and

enhance parameter-efficiency, we opted to freeze other parameters. In our case, we set

the optimal rank to 1, deeming a low-rank adaptation matrix as adequate. The chosen
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learning rate is 0.003, and the batch size is set at 4. These configurations were selected

based on considerations specific to our study. The dataset, comprising approximately

140,000 item pairs randomly sampled for each TREC dataset, facilitate comprehensive

training. The process, conducted on an NVIDIA A100 80GB, needs approximately 30

hours. We split the queries for training and testing, using 80% for training and the

remaining 20% for testing.

The results of fine-tuning Mistral-7b with LoRA are illustrated in Figure 5.4. Post-

tuning, there is a noticeable reduction in consistent responses from the model when

queried twice with reversed item orders. This indicates an increase in response variabil-

ity, which is a positive indicator of fairness, as less predictability in responses can miti-

gate systematic bias. The improvement in fairness is further supported by Figure 5.4b,

where the outcomes post-LoRA fine-tuning show ratios approaching 1.0, indicating a

more equitable treatment of protected and unprotected groups by the model.

5.5 Conclusion

In conclusion, our in-depth analysis reveals the intricate biases present in Large Lan-

guage Models when evaluated for fairness through listwise and pairwise methods. While

listwise evaluations painted a picture of relative fairness, a deeper investigation via pair-

wise evaluations uncovered subtler, more profound biases that often favored certain

protected groups. The implementation of LoRA fine-tuning on the Mistral-7b model
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yielded encouraging strides towards rectifying these biases, demonstrating an enhanced

fairness in the model’s output.



Chapter 6

An Empirical Study of Selection Bias

in Pinterest Ads Retrieval

6.1 Introduction

Pinterest is a visual discovery platform that allows users to discover and save ideas

for various interests such as fashion, home decor, and travel. It has become a popular

destination for users to search for and discover new products, ideas, and inspiration. As

a result, it has also become an attractive advertising platform for businesses looking to

reach and engage with their target audience. To support the growing demand for online

advertising, Pinterest has developed a large-scale advertisement serving platform using

the multi-cascade ranking system [51] to deliver the most relevant ads to users.

90
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Ads Targeting

Ads Retrieval

Ads Ranking

Auction

Ads  
Inventory
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Request

Auction  
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Ads Delivery Stack

Figure 6.1: The life cycle of online ads delivery. At high level, an ads request is
triggered when a user opens the Pinterest app or starts a new session, and the ads
request will be sent to the ads delivery system to query for a dozen of ads. In the ads
delivery backend, ad candidates in the inventory will flow through various stages like
Targeting, Retrieval, Ranking, and Auction, which sends the auction winners back to

the mobile app, where the selected ads will be visible to the user.

Like many other online advertising platforms, this multi-cascade recommendation sys-

tem contains several stages to filter and rank ads based on various business logic and

modeling signals. As shown in Figure 6.1, a typical ads serving system has four main

stages: Ads Targeting, Ads Retrieval, Ads Ranking, and Ads Auction.

• Ads Targeting is the very first stage. At this stage, it only selects the ads that

meet the targeting criterion preset by advertisers.

• Ads Retrieval is the second stage right after Ads Targeting. In this stage, various

mechanisms including Retrieval models (the models used in the Retrieval stage)

are used to select a smaller subset of ad candidates out of the millions of candidates

received from the Targeting stage. Selected ad candidates are passed down to the

Ads Ranking stage for more comprehensive scoring and ranking.
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• In the Ads Ranking stage, a set of sophisticated models is developed to accurately

score the specific objectives (i.e. CTR, CVR, Relevance etc.) of each ad candidate

selected at the Retrieval stage. The model prediction in this stage will directly

impact many key aspects, such as the quality of delivered ads. As a result, this

stage is only able to score a very limited number of ad candidates. This is because

it spends much more of the allotted time budget to score each ad candidate, using

very complex and performant models, to ensure the prediction accuracy.

• Ads Auction is the last stage in the serving stack. The main objective here is to

make the final decision of each auction candidate: 1) whether this candidate should

be delivered to the user; 2) which position in the targeting surface should this

candidate be inserted into. Afterwards, the winning candidates will be delivered

to the user’s device and inserted into the corresponding position, where the user

will see the ads and respond to these ads with various user actions.

As discussed above, the Ads Retrieval is the second stage of the delivery system, and it

is responsible for retrieving the most valuable ads from a large set of ad candidates for

each query. The goal of this stage is to retrieve all relevant ads, while also minimizing

the number of irrelevant or low-quality ones. This requires the use of machine learning

models that can efficiently predict the relevance and quality of ads candidate based on

a variety of features and signals. It has been a difficult problem for Retrieval stage to

efficiently fulfill this mission due to several key challenges:
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• The selected subset of candidates have to be of high quality to avoid wasting the

capacity of expensive full ads ranking on the low quality ads;

• The size of selected candidates has to be small enough such that subsequent com-

prehensive ranking at Ads Ranking stage can handle these ad candidates;

• Retrieval models are required to score and rank the post Targeting ad candidates

in the order of millions;

• Retrieval models will not be accessible to a lot of ML signals, especially the ex-

pensive real-time ones and will also not be able to leverage sophisticated model

architectures due to the scalability consideration discussed in the previous point.

As a result, building performant Retrieval models under these constraints is a challeng-

ing problem in the machine learning domain. Currently, the Retrieval models in most

ads platforms use the two-tower model architecture proposed by Covington et al. [25].

Among all the challenges associated with Retrieval model development and optimiza-

tion, selection bias in the training data has been a long-lasting problem impairing the

performance of these models.

In this work, we focus on the issue of data selection bias in the Ads Retrieval stage

of Pinterest’s multi-cascade ads ranking system. The training data used to train the

model reflects not only real user preferences, but it also includes the production model’s

personalized recommendations. This means that the training data is not representative

of the overall population of advertisements, which can lead to inaccurate results. In
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addition, the distribution discrepancy between the training data (with observed user

actions as true labels) and the inference data (composed by the ad candidates after the

Targeting stage) can further impact the model performance.

To address data selection bias in the Ads Retrieval funnel, we first investigated the data

distribution across various types of ad candidates datasets, and we further assessed var-

ious ML techniques including Unsupervised Domain Adaptation (UDA) [83] to improve

the performance of Retrieval models. As the number of ad candidates with real user

action is small, it will be beneficial for the model training to leverage the unlabeled ad

candidates data, particularly the ones with similar distribution as the inference data.

One difficulty with this model training strategy is determining how to effectively use

these unlabeled data points, which have more consistent distribution as compared to the

model inference data. In this work, we have leveraged various state-of-the-art (SoTA)

methods to incorporate unlabeled data in training Retrieval models. Additionally, we

developed a modified version of UDA (MUDA) to improve the performance of naive im-

plementation of UDA in the Retrieval model training. Our online experimental results

show that a couple of methods could potentially improve the performance of the ads

ranking system, as compared to the knowledge distilled model in the current production

environment and a few other methods. Thus, our contribution could be summarized as

the following:

• We identified and characterized the selection bias issue in the upper funnel of the

multi-cascade advertisement recommendation system.
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• We surveyed a series of SoTA modeling strategies and evaluated their performance

in both offline and online settings.

• We further proposed a modified version of Unsupervised Domain Adaptation

(MUDA) that provides the best online performance among all the modeling strate-

gies we have examined, and the online experiments show that MUDA also outper-

forms the current production model.

Ads inventory

Training Pipeline

post-Targeting 
candidates

Targeting

Retrieval  
model

Ranking &  
Filtering

post-Retrieval 
candidates

Auction 
candidates

Auction 
winners

Auction

Training 
Data

(a)

(b) (c) (d)

Figure 6.2: Distribution of features and labels across three ads datasets related to
Retrieval modeling. (a) shows the flow of major ad candidates along the ads delivery
funnel. (b) shows the distribution of Empirical vtCVR (one of key Retrieval model’s
features) across three datasets for Retrieval training/serving. (c) shows the distribu-
tion of Empirical Good Click Rate (one of key Retrieval model’s features) across three
datasets for Retrieval training/serving. (d) shows the distribution of the Ranking
model predictions (used as the pseudo label in Retrieval model training) across three
datasets. Note that the exact values on x-axes are hidden for confidentiality reasons.
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6.2 BIAS IN PINTEREST ADS

As illustrated in Figure 6.1, Pinterest’s ads serving system consists of four stages: Ads

Targeting, Ads Retrieval, Ads Ranking, and Ads Auction. Each stage scores and/or

filters ad candidates based on the request and ads content features. Given an ad request,

Ads Retrieval narrows down millions of ad candidates to a couple of thousands. These

candidates are then sent to Ads Ranking for further accurate prediction of user action

as well as filtering. Finally we run Ads Auctions on survivors and determine auction

winners based on a predefined utility function and advertiser’s bid.

In the Retrieval stage, the latency limit is crucial because of the large number of ad

candidates in the database. We adopt a two-tower DNN structure [25], where candidate

embedding could be computed offline. During serving, the model will produce the score

of each ad candidate by calculating the dot-product between the precomputed candidate

embedding and the query embedding computed on-the-fly for each request.

6.2.1 Datasets and Training Pipeline

As mentioned earlier, the ads serving system consists of Targeting, Retrieval, Ranking,

and Auction. As shown in figure 6.2a, millions of candidates in the ads inventory

will flow through various stages across the ads delivery funnel, and only a small set of

valuable ads will survive and be delivered to users. Specifically, the initial ads inventory

candidates will be selected through Ads Targeting to refine the set of ad candidates (a.k.a
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post-Targeting candidates), which will then be scored and ranked by Retrieval models.

After being selected by Retrieval models, the survivors (post-Retrieval candidates) will

be further filtered or selected by various business logics and models in the Ranking

stage. This leads to a new set of ad candidates (a.k.a Auction candidates), which will

be evaluated in the Auction stage. The Auction stage will pick a dozen of winners out

of the auction candidates and deliver these final survivors (a.k.a Auction winners) to

Pinterest’s users. For existing Retrieval models, two types of training data are collected

— Auction candidates and Auction winners. The latter dataset includes observed user

actions as true labels, and the former one includes ranking model predictions as pseudo

labels.

The Ranking model predictions are used in the Auction stage to determine the winning

ads from the auction candidates pool. Currently, we use these Ranking model predictions

as pseudo labels to train Retrieval models, with the aim to maximize the funnel efficiency

to deliver the most valuable ad candidates to Pinterest users. To ensure the model

freshness, Retrieval models are continuously trained and evaluated on a daily basis.

Specifically, the model snapshot trained on day X − 1 data is loaded to train on day X

data, and the newly trained model is evaluated on day X + 1 data. This daily training

setup enables the model to capture the most recent patterns, keeping it responsive

to new trends. The second-day evaluation allows for detection of possible overfit and

abnormal behavior before serving production traffic.
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6.2.2 Selection Bias

As mentioned above, Retrieval models are currently trained on both Auction candidates

and Auction winners, where the Ranking model predictions are used as pseudo labels.

Such setup inevitably introduces the data with selection bias, particularly the inconsis-

tency in the dataset between training and serving [79]. In serving time, however, the

model needs to make predictions on the post-Targeting ad candidates. As Auction can-

didates and winners are a small subset of post-Targeting candidates (generated through

various business logics and Ranking models), the distribution of these datasets will be

inconsistent between model training and serving.

Figure 6.2a illustrates the concept of inconsistency on the ads datasets used in training

and inferencing in the cycle of the Retrieval models. To further demonstrate the bias, we

analyzed the distributions of pseudo labels and two important Retrieval model features

across three different datasets: post-Targeting candidates, Auction candidates, Auction

winners. Figure 6.2b, 6.2c, and 6.2d demonstrates that the distributions are different

across all three datasets, and this distribution difference is much more significant be-

tween the two datasets used in current Retrieval model training and the one used in

Retrieval model serving.

For simplicity, in the rest of this work, we will interchangeably use the following terms:

post-Targeting candidates, serving datasets for Retrieval models, and unbiased dataset.
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6.2.3 Problem Formulation

For simplicity, we represent each data record as a tuple of three elements: (u, a, y):

• u: the feature of a request, containing user profile features and context features

(e.g., search term if from Search surface),

• a: the advertisement candidate features,

• y: the groundtruth label, i.e., observed user actions.

Additionally, let <U, A> represent distribution of request features, advertisement fea-

tures in inventory and D = U × A represent the full distribution of all request and ad

candidates pairs. Finally, let Fθ and l represent the model with trainable parameter θ

and the loss function we want to minimize:

• F(u, a)→ R: a model maps the request and candidate features to a numeric value,

• l(y, y)→ R: a function maps two numeric values to a scalar (the loss value).

Ideally we want to minimize the training loss on unbiased data, i.e.,

min
θ
Lideal(Fθ) =

1

|D|
∑

(u,a)∈D
l(y,Fθ(u, a)). (6.1)

In reality, it is impossible to calculate the above loss function on the unbiased dataset,

as the true labels are not available. As a result, we have to leverage the biased dataset
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whose true labels are available to us. In the next section, we will describe a series

of methods to use both biased and unbiased datasets to build a model to score the

post-Targeting ad candidates in our system.

6.3 Solution

6.3.1 Naive Method: Binary Classification

The naive method is to train a simple classification model in the common way, i.e.,

training a click classification model based on the dataset with observed user actions,

where the ones with user clicks are treated as positive examples and the ones with no

clicks are treated as negatives. In this naive method, we will optimize the following loss

function:

min
θ
Lnaive(Fθ) =

1

|O|
∑

(u,a)∈O
l(y,Fθ(u, a)). (6.2)

The dataset O denotes the set of request and auction winners pairs, where there are

observed user actions.

6.3.2 In-batch Negative Classification

Similar to the naive classification method, we will build a classification model based

on the biased dataset with observed user actions as the true labels. In the real-world
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advertising system, the viewed ads without user clicks are not necessarily reliable neg-

ative examples, Users could still find these ads to be valuable even if they did not take

actions on them at that moment. Different from the naive classification method, we

generate negative examples by introducing ad candidates from the other requests in the

same training batch as the current request following the common setup [35, 45, 84, 85].

Specifically, only the delivered ads with user clicks are included in training data, and

clicked ads in different requests in the same batch are treated as negative examples.

6.3.3 Knowledge Distillation

Ranking models are trained with complex architectures and numerous input features.

In contrast, Retrieval models have to limit the architecture to two-tower DNN as well

as available features due to the demanding requirement of scalability and low serving

latency. To minimize the performance loss, knowledge distillation (kd) [37] is adopted,

which means Retrieval models are trained with Ranking model’s predictions as pseudo

labels. Formally, with R denoting the Ranking model, we optimize the following loss

function:

min
θ
Lkd(Fθ) =

1

|O|
∑

(u,a)∈O
l(R(u, a),Fθ(u, a)). (6.3)

6.3.4 Transfer Learning

The core idea of transfer learning is to train a model on source domain data and then

fine tune part of its parameters on the target domain. Particularly for a DNN model, the
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early layers are usually fixed during fine tuning as they are shown to represent primitive

and general features [59]. In our case, the Retrieval model is a two-tower DNN, and the

data distribution discrepancy across different datasets is only from the ad candidates.

As a result, we use the unbiased data to fine tune the ad’s embedding tower, and keep

the query tower unchanged.

6.3.5 Adversarial Regularization

Another view of bias issue is that the representation learned from biased data is not

general enough to be applied to the unbiased dataset, leading to a performance degra-

dation. We can therefore add regularization on the learning so that the intermediate

output of the model has no information indicating its data source, a technique known

as Adversarial (adv) Learning [36].

For a DNN model, we can split it into two parts. The former one takes the raw input

and gives the intermediate output. The latter one takes the intermediate output and

gives the final prediction. The Adversarial regularization trains a data source classifier

from the intermediate output, the negative of whose loss function is then added to the

original one as regularization.

Formally, let F1 and F2 denote such two parts of DNN, while the H denotes the classifier.

The loss function of data source classifier is defined as Equation (6.4).

Lcls(u, a) = −1(u,a)∈D log H(F1(u, a))− 1(u,a)∈O log [1− H(F1(u, a)] (6.4)
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The final loss function for adversarial regularization is shown in Equation (6.5):

Ladv = Ltarget(F2(F1(u, a)), y)− λLcls(u, a), (6.5)

where the Ltarget is the original loss function that trains the target model and the λ is

hyper parameter weighting the regularization.

The goal is to minimize the Ladv with regarding to F1, F2 and the Lcls with regards to

H.

6.3.6 Unsupervised Domain Adaptation

UDA (Unsupervised Domain Adaptation) is a technique to train a model that works well

on the target domain with unlabeled data by only using labeled samples on the source

domain. UDA method has been applied to the situation where the feature distribution

and the data labeling are different between the source and target domains. In Pinterest

Ads system, the source domain is the biased dataset with labels and the target domain

is the unbiased dataset without labels. As a result, this data selection bias could be

formulated as a UDA problem[83].

6.3.6.1 Naive UDA

The naive method is to directly train the model on the unbiased dataset so that there

will be no inconsistency between training and serving. As the ground truth labels of
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the unbiased dataset are missing, the pseudo labels will be generated from a separate

model that is trained on the biased dataset from the source domain where the ground

truth label is available. Following the same annotation scheme as above, let R denotes

the Ranking model that is used to generate the pseudo labels for the unbiased dataset

from source domain. The optimization goal becomes the following:

min
θ
LnaiveUDA(Fθ) =

1

|D|
∑

(u,a)∈D
l(R(u, a),Fθ(u, a)), (6.6)

where D is the data in the source domain.

However, this method has many drawbacks. In reality, the unbiased data is only a

sampling, and the volume is small due to infra cost. This might lead to performance

degradation. Additionally, the high-quality candidates might not be sufficiently repre-

sentative in this training data from the source domain. We will discuss the performance

in the experiment section.

6.3.6.2 Modified UDA

In UDA, the quality of pseudo labels is critical to the performance of trained models.

In the above naive UDA, there is no mechanism to guarantee the quality of the pseudo

labels, especially when the pseudo label generating model remains not sufficiently ac-

curate. Previously, Saito et al. [67] proposed to use an asymmetric tri-training method

where two separate pseudo label generating models are used as the mechanism to en-

sure the pseudo label quality. However, the requirement to maintain a second pseudo
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label generating model with reasonable performance will be too costly for the real-world

advertising system where tens or even hundreds of Retrieval models are needed and

retrained on a daily basis. Additionally, it will be inhibitively costly when a pseudo

label has to be derived from a set of models, and then a second set of several models

will be required to be developed and maintained to leverage the tri-training method.

To address the pseudo label quality issue for real-world ads retrieval, we transform the

original numeric pseudo label (prediction of Ranking model) to a binary classification

label based on carefully chosen thresholds. Formally, let δl and δh denote the two

thresholds with δl < δh. As shown in Equation 6.8, numeric pseudo labels lower than

the first threshold are treated as negative, those higher than the second threshold are

treated as positive. Data records with numeric pseudo labels falling between these two

thresholds are removed from the training dataset.

The rationale behind this is to only keep the records that the Ranking model is confident

about and discard the ones that are close to the hyperplane of the Ranking classifier.

Now, the optimization goal of training the Retrieval model becomes the following:

(6.7)min
θ
LMUDA(Fθ) =

1

|O|·|D|
∑

(u,a)∈O∪D∧(R(u,a)≤δl∨R(u,a)≥δh)
l(Φδh

δl
(R(u, a)),Fθ(u, a))
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where Φδh
δl
(·) is a pseudo classification label indicator, converting ranking model predic-

tions to binary label according to given thresholds, as shown in the equation below:

Φδh
δl
(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if y ≥ δh

−1, if y ≤ δl

. (6.8)

To select the thresholds, we adopt a data driven method. Particularly, we bucketize

the Ranking model prediction and check the corresponding empirical click rate for each

bucket. Thresholds are chosen when there is sudden change of empirical click rates.

6.4 Experiments and Results

In this section, we will first describe the model training details and introduce the eval-

uation settings and metrics. We will then present and discuss the results from offline

and online experiments to compare the performance of the proposed solutions.

6.4.1 Datasets

As described in Section 6.2.1, the two existing training data sources are the Auction can-

didates and Auction winners (both are biased datasets). In Section 6.2, we introduced

an unbiased dataset randomly sampled from the post-Targeting dataset. This unbiased

dataset is required to be scored and ranked by Retrieval models in the production sys-

tem. Taking into consideration the infrastructure cost and the volume of the resulting
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dataset, we sample 100,000 queries and 6,000 advertisement candidates for each query

to create the unbiased dataset every day.

6.4.2 Experimental setting

To examine the performance of de-biasing methods on the Pinterest’s ads dataset, we

implement the models and conduct systematic experiments to collect evaluation results

on the real-world production system. The binary classification models are trained on

Auction winners with real user actions as the true labels, which aims to provide supple-

mental evidence to indicate the reason why the current production model is not directly

trained with real user actions. The following describes the details of the baseline models:

• Binary Classification: Since the regression model is trained on the pseudo labels

generated by the Ads Ranking models, the performance of the classification model

directly trained on the user actions is worth examining. To train this model, we use

the Auction winner as the training dataset with labels defined in Section 6.3.1 and

binary cross entropy (BCE) as the loss function.

• In-batch Negative Classification: We also train a classification model with in-

batch negative sampling which uses other candidates from the same batch of data as

negative samples for a given query. We use 1000 as the batch size and use the batch

size as the number of hard negatives in the loss function. The model is trained with

only the Auction winner dataset, and we only use the candidates with user clicks.
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• Knowledge Distillation: In the current production model’s training, we use the

Ads Ranking model’s output as the pseudo label and mean absolute logarithmic

error (LogMAE) as the loss function. For the production model, the training dataset

includes the Auction candidates and Auction winners. Besides this production model,

we also train another one with only Auction winners. In evaluation, we refer to the

first one as the Production model and the second one as the knowledge distillation

model.

We summarize the implementation details of the debiasing model as the following:

• Transfer Learning: For the transfer learning model, we use both the biased and

unbiased dataset. We also use Ranking model predictions as the pseudo labels and

LogMAE as the loss function to train the Retrieval model.

• Adversarial Learning: For the adversarial learning model, we implement the data

source discriminator as a one-layer MLP with sigmoid as the activation function.

Both the biased and unbiased datasets are used to train the Retrieval model, and the

Ads Ranking model is used to generate pseudo labels for the training datasets.

• Naive Unsupervised Domain Adaptation (UDA): To train the naive UDA

model, we only use the unbiased dataset with pseudo labels generated from the Ads

Ranking model predictions and LogMAE as the loss function.
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• Modified Unsupervised Domain Adaptation (MUDA): Here we use the unbi-

ased dataset with pseudo labels derived as discussed in Section 6.3.6.2 by transforming

the Ranking model predictions into binary classes and BCE for the loss function.

For model training hyper-parameters, we use 6144 as the batch size and 0.0001 as the

learning rate unless defined specifically. In the two-tower model, we use four fully

connected layers, and the final layer’s output dimension is 32. We use sigmoid as the

activation function for the output layer and use selu [46] for the other layers.

6.4.3 Evaluation Metrics

For offline evaluation metrics, we use AUC-ROC score for both the classification and

regression models. We evaluate the models on one day of the Auction winners dataset.

For online A/B experiments, we compare these models to the production model and

report the change of total impressions numbers (ΔIMP), click through rate (ΔCTR),

and 30 seconds click through rate (ΔgCTR30)

For ads evaluation, besides the user-side metrics mentioned above, we also report metrics

that relate to advertiser experience. These metrics are:

• Impression to Conversion Rate Ratio (iCVR) measures the effectiveness of an

ad campaign in converting impressions into conversions.

• Cost per Action (CPA) measures the cost to the advertiser for each positive user

action and is currently exclusively applied to the conversion ads.
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Due to information confidentiality, we only report the lift of these metrics compared to

the current production model.

6.4.4 Offline Evaluation

Models AUC-ROC
Production Model 0.895
Binary Classification 0.895
In-batch Negative 0.701

Knowledge Distillation 0.896
Transfer Learning 0.890

Adversarial Learning 0.896
Naive UDA 0.841
MUDA 0.844

Table 6.1: AUC-ROC on evaluation dataset. The models such as knowledge distilla-
tion, adversarial learning, binary classification trained with Auction Winners dataset

usually have better offline evaluation results.

For offline evaluation, we evaluate both the regression and classification models using

AUC-ROC. For the evaluation dataset, we use the Auction winners which contain real

user clicks. As shown in Table 6.1, compared to the production model, the models

such as knowledge distillation, transfer learning, binary classification, and adversarial

models have similar performance in terms of AUC-ROC score. The results are expected

because the training datasets include the Auction winners for these models. For the

in-batch negative model, it is trained with only the positive candidates in the Auction

winners dataset, so it does not perform well in the offline evaluation because the nega-

tive candidates were not included in the training dataset. For Native UDA and MUDA,

both models are trained with only the post-Targeting datasets, and the feature dis-

tribution discrepancy (Figure 6.2a) leads to the lower performance than other models.
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To summarize, the offline evaluation is as expected because we see models trained and

evaluated on the same source of data have better performance than those trained with

different sources of data. However, the offline evaluation could not necessarily reflect

the true model performance in the production system especially when the serving data

used in the online experiments are from a completely different distribution. Thus, in

the following sections, we conduct systematic online A/B experiments to compare the

performance of aforementioned models.

6.4.5 Online A/B Experiments

6.4.5.1 Overall evaluation

Table 6.2 shows the overall online evaluation results of all models. Among the metrics,

we will focus on the change of gCTR30 as our models are optimized towards this ob-

jective. The binary classification model has decreased gCTR30, indicating a significant

drop in the quality of user engagement with the recommended ads. It also shows the

largest decrease in CTR and highest increase in impressions, which means that while

more ads were delivered to users, fewer of them got clicked. In contrast, the in-batch

negative and knowledge distillation models have positive changes in gCTR30. However,

the decrease in impression could be the main reason for the gCTR30 increase because

less ads were shown to the users.

Although all three models (binary classification, in-batch negative and knowledge distil-

lation) suffer from selection bias in the training dataset, the latter two perform better.
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In the binary classification model’s training, the negative candidates are always from

the same query; whereas the in-batch negative classification model is trained with ran-

dom sampled candidates of different queries within the batch. The difference between

the source of negative candidates provides the model with more diverse and informa-

tive training data, which results in not overfitting to the specific query. For knowledge

distillation, the training data labels are the Ranking model predictions, whose values

contain richer information than raw binary click-or-not labels.

Models ΔIMP ΔCTR ΔgCTR30
Binary Classification 0.95% -5.51% -12.66%
In-batch Negative -2.25% 4.45% 4.68%

Knowledge Distillation -3.26% 0.25% 5.97%
Transfer Learning 0.43% -1.88% -4.35%

Adversarial Learning 0.28% -0.45% -0.66%
Naive UDA 0.45% -3.05% -4.80%
MUDA 0.92% 0.47% 5.07%

Table 6.2: Online lifts of impression (IMP), click-through rate (CTR), and good
long click (gCTR30) observed with various models on all types of ads. Both in-batch
negative and knowledge distillation methods improve gCTR30 at the cost of impression
drop, and MUDA is the only method to recommend more ads with higher quality, as

observed by the increased gCTR30 without impression drop.

The transfer learning model had a small increase in impressions, but also had a negative

change in gCTR30. With the warm start weights, the transfer learning model has

similar results with the decrease in user engagements. In our case, the problem of

the transfer learning model is the fine tuning on the unbiased dataset. Candidates in

unbiased dataset are randomly sampled for each query, where high quality ones might

be underrepresented.

The adversarial model has similar results with a decrease in gCTR30 and a slight increase

in impressions. Compared to the transfer learning model, the adversarial model has
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better performance in user engagements. In adversarial model, the classifier serves as a

regularizer to prevent the embedding tower from learning a domain specific embedding

for a certain log source. Unlike the transfer learning model, the debiasing technique

in the adversarial model does not rely on the quality of the unbiased training data.

The training of the classifier is unsupervised because we use the log source (i.e. Auction

winner, Auction candidates) as the ground truth label. When we are able to successfully

train a classifier to classify the log source, the classifier could be used as an adversarial

regularizer to help train an unbiased embedding model. However, compared to the

production model, the decrease in gCTR30 may indicate that the restriction on the

embedding learning makes the model drop the information that are critical in online

evaluations.

The Naive UDA model has an average performance compared to the other baseline

models. The Naive UDA model is trained on the unbiased dataset which contains

the pseudo label generated from the Ranking model. The reason why the Naive UDA

model performs badly is similar to the reason why the transfer learning model performed

poorly. Since the unbiased dataset is collected by random sampling of post-Targeting

ad candidates in addition to the existing queries, these sampled candidates are mostly

negative samples, which does not help to train a good Retrieval model.

In contrast, the Modified UDA (MUDA) model has a much higher gCTR30 than the

production model. When the number of impressions increases, the higher user engage-

ment suggests that the MUDA model delivers more ads with higher quality to users.

Compared to the Naive UDA model, the MUDA model transforms numerical pseudo
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labels generated by the Ranking model into binary classes determined by certain thresh-

olds. The model also uses BCE loss. The lift in user engagement metrics suggests that

such label transformation improves the quality of pseudo labels used in MUDA. By

transforming the numerical pseudo labels to binary ones, we prevented the model from

overly fitting into the Ranking model’s prediction of every single candidate, but to rank

those on which the Ranking model has high confidence.

6.4.5.2 Evaluation by ads objective type

Models Awareness Traffic Web Conversion
ΔIMP ΔCTR ΔgCTR30 ΔIMP ΔCTR ΔgCTR30 ΔIMP ΔCTR ΔgCTR30

In-batch Negative -8.70% 2.41% 13.74% 1.03% 1.16% 2.56% 1.31% 1.69% 0.39%
MUDA 0.32% 2.71% 1.97% 0.43% -4.28% -3.07% 3.15% 5.19% 8.88%

Table 6.3: Online lifts of impression (IMP), click-through rate (CTR), and good
long click (gCTR30) observed with two promising models on each type (awareness,
traffic, web-conversion) of ads. In-batch negative classification model works better on

the traffic ads, and MUDA model helps web-conversion ads the most.

In overall evaluation, the in-batch negative and MUDA are two methods that demon-

strate promising metrics. In Table 6.3 we show the evaluation results of the two methods

broken down by different ads objective types, i.e., awareness, traffic and web conversion

ads. Awareness ads aim to increase the visibility of a brand or product. Analyzing the

performance of awareness ads helps understand the effectiveness of a brand’s marketing

strategy. As shown in Table 6.3, the in-batch negative model has significant increase

on gCTR30 compared to other models for awareness ads. However such a boost might

be due to the huge decrease in impressions. In-batch negative model is trained only on

candidates with user long clicks. The awareness ads essentially have a lower chance of

being clicked than other types, since its main goal is to increase the visibility of a brand.
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As a result, the in-batch negative model could bias towards other ads types, leading to

the huge impression drop of awareness ads.

Traffic ads are designed to drive traffic to a specific website or landing page. They are

typically used to increase brand awareness, generate leads, or drive sales. By analyzing

metrics such as CTR and gCTR30, businesses can determine whether their ads are

resonating with their target audience and whether they are successfully achieving their

advertising goals. As can be seen, the in-batch negative model is the only ones that

yield an increase in both ads impression and gCTR30. Traffic ads aim to attract users to

click and could occupy a big portion of records with positive user actions. Therefore the

in-batch negative model’s training dataset, which only includes candidates with positive

user actions, may have a higher proportion of candidates that are well-suited for driving

traffic. As a result, the model could better identify candidates that are likely to drive

traffic, resulting in an improvement in the gCTR30 metric for traffic ads.

Web-conversion ads aim to drive users to take a specific action on a website, such as

making a purchase. These ads can provide insight for measuring the success of an online

advertising campaign. As shown in the Table 6.3, the MUDA model favors the web-

conversion ads objective type, as it has the highest improvement in CTR and gCTR30

among all models for this objective type. The in-batch negative model also performs well

for web-conversion ads, with improvements in both CTR and gCTR30. The MUDA may

favor web-conversion ads because pseudo labels generated by the Ads Ranking model

may favor web-conversion ads as they are designed to attract users to stay on target

websites longer for potential conversion behaviors. Additionally, the threshold selection
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strategy used in the MUDA model may be more effective at identifying high-quality

candidates for web-conversion ads, which could also contribute to its better performance

for this type of ad.

6.4.5.3 Conversion ads

Models ΔiCVR ΔCPA
In-batch Negative -2.55% 1.11%

MUDA 1.89% -4.40%

Table 6.4: Online metrics performance of in-batch negative classification and MUDA
models on web-conversion ads. In-batch negative classification model leads to lower
conversion probability on each ads impression (iCVR) and thus has a higher CPA cost
to advertisers. In contrast, MUDA model recommended ad candidates with higher

conversion rate and therefore a lower CPA cost.

In Table 6.4, we show the performance of in-batch negative and MUDA models with

regard to conversion related metrics as these two show good performance on web-

conversion ads. In general, the in-batch negative model has a decreased iCVR and

increased CPA. This is not favorable for the advertiser as it increases their costs as

measured by CPA. On the other hand, the MUDA model shows an opposite result with

increased iCVR and decreased CPA, reducing the ads campaign cost to advertisers.

These metrics indicate that while both increase the long clicks, MUDA model performs

much better by generating more conversions out of these increased long clicks.

One reason why the MUDA model performs better is that the model could improve the

performance of identifying the high-quality candidates that are more likely to lead to

conversions, and thus decrease the cost per action for advertisers. Additionally, the fact

that the MUDA model is trained on only unbiased data with pseudo labels generated
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from the Ads Ranking model could have an impact. The pseudo labels may capture

more relevant information about the users’ behaviors and preferences, leading to better

performance in terms of CPA.

6.4.6 Variants of MUDA

In the MUDA method, we believe different threshold selection mechanisms could impact

the quality of binary pseudo labels. As a result, we further investigate the impact of dif-

ferent thresholding mechanisms on the performance of trained Retrieval models. In the

unbiased dataset, we first bucketize the candidates according to their numerical pseudo

labels (gCTR30) predicted by the Ranking model, where we compute the percentile of

the labels and use the adjacent percentile to create buckets. Then for each bucket, we

adapt the following two strategies to calculate empirical gCTR30:

• compute the gCTR30 for candidates with the real user actions,

• divide the number of true good clicks by the number of candidates in the bucket.

Models ΔIMP ΔCTR ΔgCTR30
MUDA v1 -0.07% 11.26% 30.78%
MUDA v2 0.56% 3.52% 13.04%
MUDA v3 0.92% 0.47% 5.07%

Table 6.5: Online lifts of impression (IMP), click-through rate (CTR), good long
click (gCTR30) observed with various MUDA variants on all types of ads. MUDA v1
achieves the highest gain on ads engagement (both CTR and gCTR30), and MUDA
v3 achieves the most balanced gain across different metrics with good gCTR30 and

impression lift.
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We select the threshold by determining the elbow point of the graph. For example,

when there is a sudden drop of true good clicks or good clicks rate between two adja-

cent bins, we use one of the bins as the negative threshold. This means, in the label

transformation, we treat candidates with pseudo labels smaller than the threshold as

the negative samples. For positive labels, we check if there is a sudden increase of true

good clicks or good clicks rate between the bins. To study different threshold selection

strategy, we propose three variants of the MUDA models:

• v1: We train the MUDA model on both the biased and unbiased datasets with the

first threshold selection strategy.

• v2: We train the MUDA model on only the unbiased datasets with the first threshold

selection strategy.

• v3: We train the MUDA model on only unbiased datasets with the second threshold

selection strategy.

Models Awareness Traffic Web Conversion
ΔIMP ΔCTR ΔgCTR30 ΔIMP ΔCTR ΔgCTR30 ΔIMP ΔCTR ΔgCTR30

MUDA v1 -2.13% 2.77% 7.97% -5.22% 0.47% 17.34% 12.98% 21.52% 29.63%
MUDA v2 0.10% 1.72% 5.97% -1.53% -2.69% 1.18% 5.16% 11.14% 17.83%
MUDA v3 0.32% 2.71% 1.97% 0.43% -4.28% -3.07% 3.15% 5.19% 8.88%

Table 6.6: Online lifts of impression (IMP), click-through rate (CTR), and good
long click (gCTR30) observed with MUDA variants on each type (awareness, traffic,
web-conversion) of ads, where MUDA v3 shows best balanced impression gains among

them.

Table 6.5 shows the overall performance of three variants of the UDA models, as mea-

sured by several evaluation metrics: impression, and click-through rate (CTR). At first

glance, the v1 model may seem to work best, hugely increasing user engagement while
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keeping the impression neutral. However, if broken down by ad types, this mode actu-

ally leads to a large impression shift from awareness (-2.13%) and traffic ads (-5.12%)

toward web conversion ads (+12.98%), as shown in Table 6.6. This observation may

indicate that training UDA models on biased data would make the model favor web-

conversion ads more than others. Comparing v2 and v3 models, the latter one shows

a better balanced impression gains across all ad objective types. It could be due to

the second strategy of calculating the approximate gCTR30 for the unbiased dataset.

This strategy may better represent the true performance of the candidates and result

in a more accurate threshold selection, leading to improved performance in the MUDA

model.

Models ΔHDR ΔRPR
MUDA v1 4.80% 13.88%
MUDA v2 6.35% 4.43%
MUDA v3 -2.81% 1.43%

Table 6.7: Online lifts of ads hide rate (HDR), re-pin rate (RPR) observed with
MUDA variants on all types of ads. MUDA v3 achieves the most balanced performance

with fewer ads being hidden and more ads being repined by the users.

To better understand the performance of these MUDA variants, we also measure their

online performance on two other useful engagement metrics: hide rate (HDR) and re-

pin rate (RPR). Note that re-pin is a user action indicating if the user saves an ad to

a Pinterest board. In Table 6.7, we show the change of the two metrics compared to

the production model. Although the RPR is increased, both MUDA v1 and v2 models

recommend more ads that will be hidden by users, suggesting some of the recommended

ads from these models do not provide a good user experience. In contrast, MUDA v3

model generally has the most balanced improvement across all metrics, which shows
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positive lift in the user engagement and reduction in the unwanted user experience

(HDR).

6.5 Conclusion

In conclusion, this work has analyzed the impact of selection bias in Pinterest’s online

advertising system. We propose and evaluate several debiasing methods to mitigate

the negative impacts of selection bias on recommender’s performance. The results of

our experiments show that our proposed methods, specifically the MUDA model, can

effectively improve the performance of advertising systems by handling the selection

bias. Additionally, our online experiment shows that this model also improves the cost

efficiency of the ad campaigns. These findings demonstrate the importance of addressing

selection bias in recommendation systems and provide valuable insights for practitioners

in this field.



Chapter 7

Conclusion

The conclusions of the presented works collectively highlight significant strides in ad-

dressing fairness within ranking and search systems, alongside mitigating selection bias

in online advertising platforms. Through innovative approaches like the Meta-learning

based Fair Ranking (MFR) and the Meta Curriculum-based Fair Ranking (MCFR)

frameworks, we have demonstrated the potential to significantly improve fairness met-

rics and minority group exposure by re-weighting training losses and employing meta-

learning techniques with curriculum learning. These methods have shown promising re-

sults in real-world datasets, underscoring their effectiveness over traditional fair ranking

models. Furthermore, our exploration into Large Language Models (LLMs) has uncov-

ered biases that challenge fairness, prompting the development of fine-tuning strategies

such as LoRA to foster more equitable outcomes in ranking tasks. Our research also

121
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delves into the issue of selection bias in Pinterest’s multi-cascade advertising recom-

mendation system, presenting debiasing methodologies like the Modified Unsupervised

Domain Adaptation (MUDA) model, which not only enhances recommendation system

performance but also boosts ad campaign cost-efficiency.

Future directions for this body of work include refining meta-dataset collection methods

for meta-learning, expanding the applicability of fairness frameworks to accommodate

multiple protected attributes, and exploring diverse ranking tasks and datasets. More-

over, efforts will focus on balancing accuracy and equity in LLM applications through

improved ranking performance and fairness strategies. Additionally, the insights gar-

nered from mitigating selection bias in online advertising systems pave the way for

further innovation in addressing biases across recommendation systems, contributing to

the broader discourse on fairness and transparency in machine learning and AI applica-

tions.
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