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ABSTRACT 

 

The task of video prediction is to generate unseen future video frames based on the past 

ones. It is an emerging, yet challenging task due to its inherent uncertainty and complex 

spatiotemporal dynamics. The ability to predict and anticipate future events from video 

prediction has applications in various prediction systems like self-driving cars, weather 

forecasting, traffic flow prediction, video compression etc. Due to the success of deep 

learning in the computer vision field, several deep learning Artificial Intelligence (AI) 

architectures such as convolutional neural networks (CNNs), long short-term memory 

(LSTMs), convolutional LSTMS (ConvLSTMs) and transformers have been explored to 

improve prediction accuracy. The internal representation, mainly the spatial correlations 

and temporal dynamics of the video, is learned and used to predict the next frames in deep 

learning-based video prediction. Several state-of-the-art deep learning methods have 

achieved superior video prediction accuracy at the expense of huge computational cost. In 

the light of recent wide popularity of Green AI which aims for efficient environment 

friendly solutions alongside accuracy, this research concentrates on efficient methods for 



 vi 

video prediction. Such methods are suitable for memory-constrained and computation 

resource-limited platforms, such as mobile and embedded devices. We focus on 

CNN/LSTM methods and transformer-based architectures with fewer parameters for our 

lightweight efficient environment-friendly video prediction techniques. We conducted 

experimental studies on popular video prediction datasets and compared to existing 

methods, our proposed methods achieved competitive frame prediction accuracy with 

significantly reduced model size, trainable parameters, and computational complexity. 
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CHAPTER 1 
 
Introduction 
 
 
1.1 Overview of Video Prediction 

With the increasing advent of powerful graphics processing units (GPUs), deep learning is 

the foremost option of many artificial intelligence (AI) applications, and it has been a 

crucial part in the advancement of several computer vision (CV) algorithms. In this work, 

we focus on the task of video frame prediction utilizing efficient deep learning 

architectures. A video frame prediction model generates future frames from the past 

existing frames, by learning the complex spatiotemporal content and dynamics of the video 

data. It aims to predict both the content and motion in the subsequent frames in a video, by 

analyzing and extracting spatial information and temporal content in the previous sequence 

of frames. Figure 1. illustrates an example of a few frames from a video of a swinging 

woman from Davis dataset [1]. Leveraging the first three frames  a video 

prediction model can accurately generate the subsequent frames , capturing 

the woman’s upward motion. 

 

   

 

    

t0 t1 t2  t3 t4 t5 t6 

Fig. 1.1: The future frames  are generated from the existing 

frames  
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The task of video prediction finds significance in various real-world applications such as 

video coding [2], [3], autonomous vehicles [4,5], traffic flow prediction [6], weather 

forecasting [7] and anomaly detection [8]. The anticipation of a future event and real-time 

decision making are the keys of an intelligent decision-making system[5]. Fig. 1.2 [5] 

shows an example of a real-world scenario of an intelligent decision-making system in 

autonomous driving. In the figure, the autonomous car observes a pedestrian intending to 

cross the road (context frames).  The car anticipates  and predicts the future position and 

movements of the pedestrian (predicted frames), deciding whether to apply braking for 

safely accommodating pedestrian movements and thus, avoid collision. 

 

Fig. 1.2: Pedestrian crossing the road and the autonomous car predicts the position 

of pedestrian to apply braking. Copyright [5] 

 
 

1.1.1 Problem Statement 

The task of video prediction can be formulated as follows. Consider the video prediction 

process at time slot . The network takes a 4D tensor as input, which 

represents successive video frames with frame indices here 

each frame has  channels, height  and width . The problem of video prediction is to 
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predict the  frames with frame indices  

given   and can be formulated as follows: 

      (1.1) 

 where  is the collection of trainable model parameters. represents the frame 

prediction network. 

 

1.2 Motivation of the Research 

Many existing video prediction models are based on 2- dimensional convolutional neural 

networks (2D CNNs) [4]– [10], or recurrent neural networks (RNNs) [13]–[15]. Studies 

show the potential of 3D CNNs in learning spatio-temporal dynamics better than 2-D 

CNNs and RNNs and it has been used in various video representation learning tasks 

[14,19]. Additionally, transformers have also emerged successful in various video 

processing applications. However,  few research has been made to find efficient models 

for predicting future frames, where efficiency encompasses both accuracy and computation 

complexity. Recently, researchers across the NLP and CV communities [43], [44] 

advocated to shift the focus to Green Artificial Intelligence (AI) [66] with energy- efficient 

deep learning solutions, rather than continuously pushing red AI methods to reach state-

of-the-art (SOTA) results using massive computational power. Our work focuses on 

developing an efficient video frame prediction model with reduced model size, fewer 

parameters, and low computational complexity, while achieving competitive prediction 

accuracy.  
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1.3 Research Questions 

In our research, we aim to address a spectrum of questions vital to the field of video 

prediction. Our research questions include: 

 Efficiency and energy reduction: How can we attain efficiency and  reduce 

energy consumption of deep learning models while preserving accuracy? We 

seek to explore neural network methodologies which can reduce the memory 

consumption and model complexity, paving the way for sustainable AI 

solutions. 

 Architectural combinations: How can we devise a methodology by 

combining various deep learning architectures (2D/3D CNNs, LSTMs, 

transformers) to accurately learn the spatio-temporal relations among video 

frames? By examining hybrid combinations and integrating other deep learning 

models, we aim to devise optimal frameworks to predict video frames 

accurately. 

 Trade-offs between efficiency and accuracy: What trade-offs exist between 

model complexity, computational efficiency and prediction accuracy, in the 

context of Green AI? We closely examine the balance required between these 

factors to achieve resource-efficient solutions. 

  Real-world applications: What is the real-world application of efficient video 

prediction models? Furthermore, we conduct experiments to validate the 
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generalization ability of our model and also discuss the scenarios suitable for 

lightweight video prediction models. 

  

1.4 Outline of the Dissertation 

The dissertation is organized as follows: 

Chapter 2 introduces existing methods for video prediction methods and the problems 

associated with these. 

In Chapter 3, we discuss the principles of 2D and 3D depthwise separable convolutions 

which plays an important role in our research and  the rationale behind its usage. We also 

introduce the training loss function evaluation metrics used to compare the state-of-the-art 

(SOTA) methods. 

Chapter 4 presents a lightweight method incorporating 3D separable convolution-based 

LSTM for predicting future frames. It drastically improves the computational complexity 

of the prediction process by maintaining competitive accuracy. 

In Chapter 5, we introduce another approach for video prediction with separable 

convolutions. A hybrid transformer-LSTM method is proposed to extract long-range 

dependencies in video, along with parallelizing the computation with self-attention 

mechanism. 

Chapter 6 concludes the dissertation and discusses future research directions.  
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CHAPTER 2 

Review of Existing Video Prediction Methods 

Existing video prediction methods can be broadly classified into four categories: CNN-

based methods, RNN-based methods, generative adversarial network (GAN)-based 

methods, and transformer-based methods.  

 

2.1 CNN-based Methods 

CNNs efficiently capture the spatial structure of the images (video frames), but lack the 

ability to model time dimension efficiently in video processing. Many 2D CNN-based 

video prediction approaches [9], [10], [11], [12] were devised to model spatiotemporal 

dynamics in video data. In [9], the content encoder and motion encoder focused on the 

static scene information and the temporal dynamics of consecutive frames, respectively. 

The deep multi-branch mask network (DMMNet) [10] proposed a future appearance 

synthesizer to synthesize RGB pixels of the future frame, and a future flow synthesizer to 

generate optical flows.  In [11], a convolutional encoder-decoder network was proposed to 

explicitly incorporate a time-related input variable to model temporal correlations. 

Deformable convolutions were used to fuse features from previous frames in [12].  

Certain 2D CNN-based frame prediction schemes were proposed for inter-frame prediction 

[2],[13],[14] in traditional video coding such as the high efficiency video coding (HEVC) 

[15] and versatile video coding (VVC) [16], or in learning-based video coding. For 

example, a 2D CNN-based deep network was proposed for both uni-directional and bi- 

directional frame prediction in HEVC and avoided coding additional motion information 
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[2]. Another CNN-based multi- resolution video prediction network (VPN) [13] utilized 

two sub-VPN architectures in cascade to generate virtual reference frame from previously 

coded frames in HEVC. Further, recurrent and bi-directional in-loop prediction modules 

were proposed in [14] as part of a deep learning-based video compression system.  

3D CNN is another way to extract spatiotemporal features. It was used along with optical 

flow images to predict future frames based on a single image in [17]. Spatially displaced 

convolution network (SDC-Net) [18] utilized a 3D CNN for video prediction, conditioning 

on both past frames and past optical flows.  

2.2 RNN and ConvLSTM-based Methods 

Using CNNs alone can only consider local structures or short-range dependencies in video 

data due to the limited size of convolution kernels. To effectively capture long-range 

correlations in a video sequence, methods based on RNNs [19], [20] were proposed to 

predict future frames. For example, an LSTM-based encoder-decoder network was 

developed in [19]. It used an encoder LSTM to map an input video sequence into a fixed 

length representation, which was then decoded using single or multiple decoder LSTMs to 

predict future frames. Folded recurrent neural network (FRNN) [20] presented a recurrent 

auto-encoder with state sharing between the encoder and the decoder. It utilized stacked 

double-mapping gated recurrent unit (GRU) layers to enable bidirectional information flow 

between the input and the output.  

Although RNNs effectively learn sequential representations, they fail to accurately learn 

spatial content [21]. To address this issue, convolutions were incorporated into LSTMs to 



 20 

form ConvLSTMs [21], where the internal fully connections in LSTM were replaced by 

convolution operations. For example, ConvLSTM was utilized in [9] for motion prediction 

and was used in [10] to generate appearance features of the next frame from two previous 

frames. In addition, the stacked ConvLSTM architecture was explored in the dynamic 

neural advection (DNA) module [22], which predicted the distribution of each pixel in the 

current frame based on the previous frame. E3D-LSTM [23] integrated 3D convolutions 

into LSTM to capture short-term frame dependencies and utilized a gate-controlled self-

attention module to perceive long-term correlations. The PredRNN [24] network proposed 

the popular spatiotemporal LSTM (ST-LSTM) structure. It adopted a temporal memory 

cell and a novel spatiotemporal memory cell to simultaneously memorize spatial and 

temporal information. Later, several video prediction methods adopted ST-LSTM as their 

building blocks [25]–[28]. For example, the memory-in-memory (MIM) [25] model 

improved PredRNN [24] by replacing the simple forget gate in the ST- LSTM block with 

two cascaded memory transitions, which more effectively captured non-stationary 

dynamics. CrevNet [26] used a reversible auto-encoder and stacked ST-LSTM blocks for 

future frame prediction and object detection. PredRNN-V2 [27] improved PredRNN [24] 

by introducing a memory decoupling loss to ST-LSTM to keep the memory cells from 

learning redundant features. Other ConvLSTM or convolutional GRU (ConvGRU) 

approaches such as TrajGRU [29], PredRNN++ [30], Conv-TTLSTM [31], STGRU [32] 

and ASTM [33] were also developed for the video prediction task.  

2.3 GAN-based Methods 

Due to the mean-squared error (MSE) loss adopted in model training, CNN-based video  
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prediction models tend to generate blurry predicted frames which are inconsistent with 

human perception. To overcome this limitation, GAN-based models adopt adversarial 

training such that the predicted frames are sharper and present more details than pure CNN-

based methods. In GAN-based methods, the generator produces future frames, and the 

discriminator tries to distinguish the generated frames and the ground truth as real or fake. 

BeyondMSE [34] was the pioneer in applying adversarial training for video prediction. It 

used a multi-scale architecture and an image gradient difference loss along with the MSE 

loss. Dual-Motion GAN (DM-GAN) [35] used a dual adversarial training mechanism with 

two pairs of generator and discriminator to generate future frames and future flows 

simultaneously. CycleGAN [36] adopted a forward-backward prediction scheme by 

training a generator to produce both future frames and past frames. Attention- based inter-

frame prediction method in [37] enhanced coding efficiency of VVC by incorporating 

GAN-based deep attention map estimation and deep frame interpolation methods.  

 

2.4 Transformer-based Methods 

In recent years, transformers have been developed for NLP and CV tasks. Compared with 

RNN-based methods, the transformer architecture can extract long-term dependencies 

more efficiently and get rid of the limitation of seriality. In particular, a few approaches 

combined transformers and CNNs for video frame prediction. For instance, 

ConvTransformer [40] used an end-to-end encoder-decoder transformer architecture for 

video interpolation and extrapolation tasks. It proposed multi-head convolutional self-

attention layers with 2D convolutions in both the encoder and decoder. The temporal 

convolutional transformer network (TCTN) [41] used a transformer-based encoder for 
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video prediction, where 3D convolutional layers were employed to extract short-term 

dependencies and masked self-attention layers were used to capture long-term 

dependencies. The video prediction transformer (VPTR) [42] proposed to separately 

perform spatial attention and temporal attention. First, spatial attention was performed 

locally on each feature patch using multi- head self-attention (MHSA), followed by a 2D 

separable convolution-based feed-forward neural network. Afterwards, a temporal MHSA 

was adopted to model the temporal dependency between frames.  

 

2.5 Challenges with Existing Methods 

Although the aforementioned SOTA methods achieved accurate video prediction results, 

their accuracy comes at a price of big model size, large amount of model parameters and 

heavy computational complexity. For example, the transformer-based models TCTN [41] 

and VPTR [42] have large model size and FLOPs due to standard 3D convolutions and 

complicated attention mechanisms, respectively. The ConvLSTM-based models E3D-

LSTM [23] and CrevNet [26] adopted standard 3D convolutions too. MIM [25] also has 

relatively larger model size and FLOPs since it adopted additional memory modules inside 

the original ST-LSTM blocks.  

For memory-constrained and computation resource- limited platforms, such as mobile and 

embedded devices, it’s difficult to deploy the huge models. Thus, we aim to produce 

efficient models with low complexity and competitive accuracy. 

Some of the research focusses on next-frame prediction, which predicts only the next frame 

which has seen profound advancements in the recent times. However, the long-term 
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predictions remain a challenge due to the modeling of interactions over extended time 

horizons. Additionally, while maintaining visual quality, several models lack the ability to 

accurately predict object movements in video frames. 

Furthermore, most research works do not demonstrate their success in generalization, i.e. 

testing on an unseen dataset different from the training dataset. Generalization is important 

in our task since the training datasets may not wholly represent the diversity of real-world 

scenarios.  

In our research, we aim at developing a lightweight video prediction network which still 

offers competitive frame prediction accuracy. Besides, while existing video prediction 

networks adopt 2D convolutions [9]–[14], [21], [24], [25], [27], [30] or standard 3D 

convolutions [17], [18], [23], [26] our proposed methods adopt the idea of 3D separable 

convolution. This not only leverages spatiotemporal correlations, but also effectively 

reduces model size, trainable parameters, and computational cost. We also demonstrate 

that our method possesses generalization ability to test on unseen videos. 
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CHAPTER 3 
 

Methodology to Improve Network Efficiency 

 

Separable convolution was first conceived in MobileNet [47] to develop lightweight 

models suitable for mobile and embedded devices. Later, 2D separable CNN was utilized 

for faster video segmentation [48], moving object detection [49], and violence detection 

[50]. To alleviate the computation burden of standard 3D convolution in deep networks, 

3D separable CNN was proposed for dynamic hand gesture recognition and video moving 

object segmentation [51],[52]. 

In this section, we explain the 2D, 2D separable, 3D and 3D separable convolutions and 

the rationale behind the usage of depthwise separable convolutions in our research. 

 

3.1 2D Convolutions vs 2D Separable Convolutions 

2D convolutions are computationally simpler than 3D convolutions as it takes only spatial 

dimension into consideration. Many video processing tasks explored 2D convolutions in 

the past. In this section we briefly go through the 2D convolutions and its decomposition 

to 2D separable convolutions.  Our proposed model utilizes 2D depthwise separable 

convolutions to learn the spatial dependencies in image patches (described in Section 

4.3.2). 

For an RGB image of size  where  is the number of channels,  is the 

height and  is the width of the image, 2D convolutions move in horizontal direction  

and vertical direction  across the image. number of 3D filters of size   

convolves in height and width dimension to produce feature maps of size  
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To alleviate its computational complexity, 2D convolutions are separated to 2D depthwise 

and 1D pointwise convolutions.  In 2D depthwise convolution, filters of size  

convolves with each input channel to produce an intermediate output  As the 

following step, we apply 1D pointwise convolutions with filters of original input channel 

dimension, .   

 

3.2 3D Convolutions vs 3D Separable Convolutions 

 

Video prediction needs a model to learn spatiotemporal information abundantly and deeply. 

To achieve this goal, prior arts adopted standard 3D convolutions [23], [26], [41], since it 

is better to learn the temporal dependencies among the input frames than the 2D 

convolutions. It takes  channels of 3D input , where  is the number of input 

  

C

 

(a) 

(b) 

 
  

C

 

 Step 1  Step 2 

Fig. 3.1: (a) The standard 3D convolution, and (b) the 3D depthwise separable 
convolution. 
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channels,  is the temporal length i.e the number of frames in time dimension,  is the 

height and  denotes the width.  Let be the 4D input to standard 3D convolution with 

size . 4D filters of size    (channel  time  height  

width) move in three directions (time, height, width) to generate a 3D output tensor   

of size ′  ′  ′ , where  , ′ and ′ are the length, height, and width of the output 

tensor, respectively. Such  filters would create the final output tensor   of size  

.  Mathematically, the output tensor  can be formulated as below: 

 

 

 
(3.1) 

where  and  are the dimensions of the filter  and input  respectively. 

The illustration of 3D convolution is given in Fig. 3.1 (a). The number of computations 

involved in the traditional 3D convolution is  

Video prediction is a low-level vision task, which needs a model to learn spatiotemporal 

information abundantly and deeply. Though 3D convolutions are amply used in many 

existing approaches [7], it has made their architectures much complex and model sizes 

bigger.  To reduce computational complexity, 3D standard convolution is separated to 3D 

depth-wise convolution and pointwise convolution, which is combined to term as 3D 

depthwise separable convolution. 

As shown in Fig. 3.1 (b) Step 1, depthwise convolution applies filters of size 1    

 to each of the  input channels to produce an intermediate output of size    ′  ′ 

 ′. This process has  number of multiplications. The 

intermediate feature map goes through pointwise convolution described in Fig. 3.1 (b) Step 
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2. Filters of size   1  1  1 are applied to along the channel direction to produce an 

output of size 1 ′ ′  ′.  The final 4D output tensor of size   ′  ′   is 

generated by applying  number of filters. Pointwise convolution involves 

number of multiplications. To compare the computational cost of 3D depthwise 

separable convolution with the standard 3D convolution, we compute the ratio of the 

number of multiplications involved in these two types of convolutions as follows: 

 

 

 

 =        (3.2) 

 

Hence this decomposition process can reduce the computational cost of the standard 3D 

convolution by , where  is the number of output channels and  is the filter size. 

 

3.3 Training Loss Function and Evaluation Metrics 

To train the network, we choose the widely used mean squared error (MSE) as the loss 

function. The MSE between the ground-truth frame  with time index  and the 

corresponding predicted frames is calculated as follows: 

 
                         (3.3) 
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To evaluate the model, we use the MSE as a metric in Chapter 4. Additionally, the quality 

of the predicted frame  compared to the original frame is evaluated using the peak-

signal-to-noise ratio (PSNR), which is defined as,  

  

         (3.4) 

 

Besides, the structural similarity index (SSIM) is also calculated. It is a metric consistent 

with human subjective opinion, which evaluates the structural similarity between two 

images and is a combination of three functions [58]:  

 

 ,                    (3.5) 

 

where  and  are the luminance, contrast and structure comparison measures between 

 and  and  and  are parameters to define the relative importance of these three 

components [58]. The final reported PSNR and SSIM are averaged over all  predicted 

frames. Higher PSNR and SSIM indicate that the predicted frames have higher quality. 

Besides the aforementioned accuracy metrics, the model efficiency is also evaluated by 

calculating the model size measured in megabytes (MB) and the number of trainable 

parameters measured in millions (M). We also use the evaluation metric giga floating point 

operations (GFLOPs) to infer the computational complexity of the model. GFLOPs 

calculate the total number of floating point operations, such as addition, subtraction, 

multiplication and division needed for model inference. Lower GFLOPs usually indicate 

less computationally expensive models. 
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CHAPTER 4 

Proposed Method Using 3D Separable CNN and LSTM  

 

4.1 Introduction 

Recent studies show the potential of 3D CNNs in learning spatio-temporal dynamics of 

videos better than 2-D CNNs and RNNs and it has been used in various video 

representation learning tasks [26,41]. One major challenge of the task of video prediction 

is its heavy computational intensity, due to their complex structures and large amount of 

model parameters along with the inherent uncertainty of the task. Hence, a lightweight 

approach for video prediction which significantly reduces the number of parameters while 

achieving similar prediction capability is proposed in this chapter. A lightweight deep 

networking model with 3D separable convolutions and 3D depth-wise separable ST-LSTM 

(spatio-temporal LSTM) is incorporated for the first time in literature for the task of video 

prediction. Section 4.2 elaborates the method which uses a reversible network [60, 61] as 

baseline. Section 4.3 demonstrates the effectiveness of the method through experimental 

setups and results compared with the current state-of-the-art models on the three datasets, 

which can be achieved with reasonable accuracy-complexity trade-offs.  

 

4.2 Proposed Method  

The network consists of a two-way auto-encoder (AE) and a reversible predictive module 

(RPM), both of which are built with 3D separable convolution layers. The proposed 

network was inspired by CrevNet [26], which uses the i-RevNet [61] architecture to 
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preserve information during the feature extraction process. Section 4.2.1 describes the 

reversible networks. 

4.2.1 Reversible Networks 

In a neural network, we need to store the activations in each layer in memory in order to 

calculate gradients during backpropagation, which in turn increases the memory 

consumption of neural networks. Reversible networks (RevNet) [60] were designed to 

resolve this issue. RevNet is composed of a series of reversible blocks. Each layer’s 

activations can be reconstructed exactly from the subsequent layer’s activations, using 

invertible operations. This enables the network to perform backpropagation without storing 

the activations in memory. Our proposed method utilizes i-RevNet [61] which extends 

RevNet by replacing the remaining non-invertible components of RevNet by invertible 

ones. 

 

4.2.2 Proposed Prediction Network 

Fig. 4.1 depicts the proposed video prediction architecture. The input of the network is a 

4D tensor  of shape  (channel  temporal length  height  

width), representing three consecutive video frames at time steps . The 

number of channels C is set as 1 and 3 for grayscale and RGB images, respectively. The 

output of the network is a 4D tensor , representing the predicted video frames at time 

steps  . 
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As shown in the upper branch of Fig. 4.1, the network input   is split channel-wise into 

two groups,   and  each with dimension . Each of these input 

groups goes through a forward pass of the AE, consisting of  layers of AE blocks. During 

the forward pass, one group passes through an AE block and is added to the other input 

group. This process continues in an alternating fashion, thus forming the two output groups 

 and  , each of size .          

Afterwards,   and  are fed to the separable RPM, as shown in Fig. 4.3. The 

separable ST-LSTM outputs two groups of feature maps , . They go through the 

backward pass of the two-way AE in an alternating manner similar to the forward pass, as 

- 

Fig. 4.1:  Proposed prediction architecture 
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shown in the lower branch in Fig. 4.1, to output the two predicted channel groups  and 

.  Finally, the two predicted groups are merged to form the final predicted video clip 

 (frames at time steps ).  

 

4.2.2.1 AE Block with 3D Separable Convolutions 

 

While the baseline model CrevNet [26] adopts standard 3D convolution to extract spatial-

temporal features, our proposed model adopts separable 3D convolutions to reduce model 

size and computational complexity. This subsection explains Fig. 4.2 (an AE block) along 

with the proposed 3D separable convolution. An AE block consists of three 3D separable 

convolutional layers, each of which is followed by batch normalization and ReLU 

activation function.   

 

 
 
 

Fig. 4.2: The AE block 
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4.2.2.2 ST-LSTM Block with 3D Separable Convolutions 

 

The proposed separable RPM as shown in Fig. 4.3 processes the output feature groups of 

the two-way AE. At time step , the input feature groups are  and . They go 

through  blocks, each consists of a separable ST-LSTM module (the blue rectangle in 

Fig. 4.3) and a separable attention module (the pink rectangle in Fig. 4.3). Both of these 

two modules are constructed by the proposed 3D separable convolutions. In particular, the 

Fig. 4.3: Separable RPM 
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attention module helps to form a weighted sum of the two groups, and it consists of one 

3D separable convolution layer followed by a sigmoid activation operation.  

 

In Fig. 4.3 the orange arrows denote the spatiotemporal memory flow , and the black 

arrows denote the temporal memory flow  and the hidden state transitions of ST-

LSTMs. The superscript  denotes the -th layer of ST-LSTM, , and  

denotes the time step. The outputs of the separable RPM at time step  are two feature 

groups  and , along with a spatiotemporal feature  that is taken as an input of the 

separable RPM at time step . The separable RPM processes the data in a similar way as 

that for time step  for every time step. 

 

4.3 Training and Evaluation Setup 

The models were trained with the PyTorch framework using an NVIDIA Tesla V100 32 

GB GPU. The ADAM optimizer was used to minimize the L2 loss between the input and 

Table 4.1. Configuration of the proposed 3D separable ST-LSTM -
based network 

 

Block Output 
tensor/tensors Size 

Input   

Input split ,   ,  

Forward pass ,     

Separable RPM ,     

Backward pass ,     

Output   
 



 35 

the predicted frames. The initial learning rate was set at 0.002 with an exponential decay 

factor of 0.2 for every 50 epochs.  

To evaluate the performance of our model, we calculated the mean squared error (MSE) 

and/or peak-signal-to- noise ratio (PSNR) and the structural similarity index (SSIM) 

between the ground-truth and predicted frames. Lower MSE and higher PSNR/SSIM 

indicates better predictions.  

 

4.4 Experiments and Analysis 

In this section, we demonstrate the effectiveness of the proposed method, through extensive 

experiments done on the synthetic Moving MNIST dataset [21], and two real-world 

datasets KTH action [53] and BAIR [63].  

 

4.4.1 Moving MNIST Dataset  

This is a widely used synthetic grayscale video prediction dataset, with a frame size of 

. The first dimension represents the grayscale channel. This dataset has two 

subsets: Moving MNIST-2 and Moving MNIST-3. Moving MNIST-2 consists of 

sequences of 20 frames, in which two digits continuously move with constant velocity and 

angle, bouncing inside a black 64  64 frame, potentially overlapped and occluded. 

Moving MNIST-3 contains frames with 3 digits, potentially overlapped. The digits move 

in a constant velocity and angle, bouncing off the edges of the frame. Our model and the 

state-of-the-art models were trained on Moving MNIST-2 and tested on both Moving 

MNIST-2 and Moving MNIST-3.  
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The proposed prediction architecture for this dataset is composed of a two-way 

autoencoder with 12 AE blocks for both forward and backward pass and 8 RPMs. The 

batch size was chosen as 32 and model training was stopped after 250,000 iterations.  

Table 4.2 compares the prediction accuracy, model parameters, model size, and 

computational complexity of our proposed model with state-of-the-art methods PredRNN 

[24], PredRNN++ [30] and CrevNet [26]. The best and second-best results of each metric 

are highlighted in red and blue, respectively. Our proposed model is superior in terms of 

fewest model parameters, smallest model size and lowest computational complexity 

measured by giga floating point operations (GFLOPs). In terms of prediction accuracy, the 

proposed model achieves the second best MSE and SSIM values. 

From the visual results in Fig. 4.4 we observe that PredRNN[24] suffers from blurring and 

maintaining the shape of digits over time. For example, digit 3 for Moving MNIST-3 in  

Model 
MNIST-2 MNIST-3 

# Params 
Model 

size 
(bytes) 

FLOPs 
(G) 

 
 MSE SSIM MSE SSIM    

PredRNN [24] 55.4 0.879 83.6 0.838 23.86M  93 MB  115.9 

  PredRNN++ [30] 46.2 0.902 68.4 0.864 15.09M  57.42 MB 106.8  

CrevNet [26] 24.3 0.936 40.6 0.916 5M 60.2 MB 1.0 

Proposed 
Model 

44.1 0.916 63.1 0.891 368.96 
K 

 4.8 MB 0.08 

 

Table 4.2. Quantitative Results on Moving MNIST Dataset [21]. The best, and 
second-best results of each metric are highlighted in red and blue, respectively. 
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the right figure predicted by PredRNN[24] and PredRNN++[30] loses its shape with the 

passage of time. Though CrevNet produces sharper images, our proposed model     

successfully tracked the motion of the digits without blurring, yet requiring much smaller 

model size and less computational complexity.  

 

4.4.2 KTH Action Dataset 

KTH Action [53] is a grayscale dataset initially used for action recognition. It has 

sequences of 25 individuals doing six types of actions: walking, running, jogging, boxing, 

hand waving and clapping. Videos are shot with static camera at 25 fps in four settings, 

namely, outdoors, outdoors with scale variation, outdoors with different clothes, and 

indoors. Individuals 1-16 are used for training and individuals 17-25 are used for testing. 

The training strategy in [30] is followed and the frames were resized to a resolution of 

 pixels. 

The prediction architecture of our proposed model for this dataset consists of a two-way 

autoencoder with 14 AE blocks for both forward and backward pass and 16 RPMs. In the 

testing phase, the model observed the first 10 frames in each test sequence and predicts the 

next 20 frames. Table 4.3 summarizes the quantitative results of our model compared to 

the state-of-the-art models PredRNN [24], PredRNN++ [30], and CrevNet [26]. Again, our 

model achieves the best performance in terms of model size and complexity. Besides, our 

model easily outperforms PredRNN in PSNR and SSIM. Although our PSNR is ranked 

third, the SSIM of our proposed model is the second-best. Since SSIM is more consistent 

with human perception than PSNR, this indicates the predicted frames of our proposed  

model have better visual quality than PredRNN and PredRNN++. 
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Fig. 4.5  shows the predicted frames of all compared models. Due to space limitations, we 

included frames only from specific time steps. We observe that our model outperforms 

PredRNN and PredRNN++ by carrying motion information and protecting detailed 

structure of the person across longer time steps, while the prediction results of PredRNN 

Fig. 4.5: Qualitative results on KTH action dataset.  

Top row: the ground-truth frames to be predicted at time steps 
. Remaining rows: the predictions of a) PredRNN, b) PredRNN++, c) CrevNet, 

and d) our proposed model. 

 
 
a)  
 
 
b)  
 
 
c)  
 
 
d)  

 

                 

          

          

Ground truth 
 

Predicted frames 

          

Table 4.3 Quantitative Results on KTH dataset. The best, and second-best results 
of each metric are highlighted in red and blue, respectively. 

Model PSNR SSIM # Params Model 
size 

FLOPS 
(G) 

PredRNN [24] 26.23 0.839 23.86M 93 MB 123.9 

PredRNN++ [30] 28.41 0.865 15.09M 57.42 MB 115.8 

CrevNet [26] 28.70 0.8768 9.89M 70.9 MB 7.76 

Proposed Model 27.02 0.8671 727.26K 9.2 MB 0.6 
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and PredRNN++ become blurry over time. Though some of the detailed spatial features 

(e.g, the white line) are not preserved by the 25th frame, our model captures key information 

of the moving object. CrevNet [26] does produce better images, but we observe that at 

some time steps, our model is adept in learning features. For example, at  , the shape 

of legs is better shown in our model than in CrevNet. 

 

4.4.3 BAIR Dataset 

This is a popular color video dataset in video prediction literature, the BAIR towel-pick 

dataset [63], which has sequences of a robotic arm picking and placing objects like towels, 

shirts, and jackets. This is a challenging dataset due to the stochastic arm movements of  

the robot. The original frames were resized to a resolution of . The model’s 

prediction architecture and evaluation metrics are similar to those for the KTH Action 

Predicted frames 

 
 
a)  
 
 
b)  
 
 
c)  

 
                                    Groundtruth 

 

 

Fig. 4.6: Qualitative results on the BAIR dataset.  

Top row: the ground-truth frames to be predicted at time steps . 
Remaining rows: the predictions of a) SVG, b) CrevNet, and c) our proposed model. 
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dataset. The future 10 frames were predicted after observing 10 preceding frames. We 

compare our model’s efficacy to the state-of-the-art models SVG [64] and CrevNet [26]. 

As shown in Table 4.4, our model outperforms these two models in computational 

efficiency along with the second best PSNR and SSIM values. Fig. 4.6 demonstrates a few 

samples from a clip where a robotic arm moves above the objects on table. We observe 

that all the spatial features and colors of the objects are captured by our model till the 20th 

frame. While the movements of robotic arms are not all captured along time in SVG, we 

accurately predict it in the frame . Though the arms of the robot become blurry 

compared to CrevNet, we predict its positions accurately.  

 

 

4.5 Conclusion 

In this chapter, we propose a lightweight video prediction method based on 3D separable 

convolutions and LSTMs. Experimental studies demonstrate the efficiency of our model 

on both synthetic and real-world datasets. With significantly fewer model parameters and 

lower computational complexity, our proposed model is able to achieve reasonable 

prediction accuracy and visually pleasing results.  

Table 4.4 Quantitative Results on BAIR dataset. The best, and second-best 
results of each metric are highlighted in red and blue, respectively. 

 
Model PSNR SSIM # Params Model 

size 
FLOPS (G) 

 SVG-LP  [64] 19.13 0.7742 22.8M 91.5 MB 123.9 

CrevNet [26] 23.16 0.8139 9.89M 70.9 MB 7.76 

Proposed Model 22.92 0.7963 727.26K 9.2 MB 0.6 
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Chapter 5 

Proposed Method Based on Hybrid Transformer-LSTM 

Network 

5.1 Introduction 

While CNNs can extract local features, RNNs are specifically used to learn sequential 

representations. To benefit from both CNNs and RNNs, other approaches [23]–[28] 

proposed to combine CNN and RNN and learn spatiotemporal features from video data. 

Among these works, many adopted the long short-term memory (LSTM) as their RNN 

structure, which led to the family of ConvLSTM models.  

Transformers which have primarily demonstrated success in natural language processing 

(NLP) [36] and several vision tasks [37]–[39] were also recently utilized for video 

prediction [40]–[42]. Transformer models are capable of capturing long-range dynamics 

without the vanishing gradient problem of recurrent networks and have the advantage of 

parallelism with the self-attention mechanism [36]. However, the accuracy of transformer 

models usually comes at the price of huge computational cost [43].  

Recently, researchers across the NLP and CV communities [44], [45] advocated to shift 

the focus to Green AI with energy-efficient deep learning solutions, rather than 

continuously pushing red AI methods to reach state-of-the-art (SOTA) results using 

massive computational power. Our work focuses on developing an efficient video frame 

prediction model with reduced model size, fewer parameters, and low computational 
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complexity, while achieving competitive prediction accuracy. Since both transformer and 

ConvLSTM models have achieved superior accuracy in predictive learning, in this chapter, 

we propose a hybrid transformer-LSTM (3DTransLSTM) model to predict future video 

frames. To learn spatiotemporal dynamics from video data, the proposed 3DTransLSTM 

network adopted 3D separable convolutions to extract features along the temporal, height, 

and width dimensions. Our main contributions can be summarized as follows:  

 For the first time in the literature, we proposed a hybrid transformer-LSTM 

(3DTransLSTM) network for the video prediction task. On one hand, the 

transformer module can leverage long-range correlations among multiple 

successive video frames, and parallelize the computation with its self-attention 

mechanism. On the other hand, the LSTM module can enable spatiotemporal 

information flow vertically within each time step and horizontally among multiple 

time steps.  

 The proposed 3DTransLSTM adopts 3D convolutions to effectively learn 

spatiotemporal dynamics. To reduce computational cost, the standard 3D 

convolution is decomposed into a 3D depthwise convolution and a pointwise 

convolution, which reduced model size, trainable parameters, and floating-point 

operations (FLOPs). To the best of our knowledge, this is the first time that 3D 

separable convolution is utilized in a hybrid transformer-LSTM network.  

 Qualitative and quantitative experimental results on popular video prediction 

datasets show that, compared to SOTA methods, the proposed model achieves 

competitive video frame prediction accuracy with significantly smaller model size, 

fewer model parameters, and less computational cost. Further, we demonstrated the 
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generalization ability of the proposed model by testing the model on video 

sequences completely unseen in the training dataset.  

The chapter is organized as follows. In Section 5.2, we describe the preliminaries on 

vision transformer architecture, previous hybrid transformer-LSTM on NLP tasks and 

explain the rationale behind our proposed model. Section 5.3 elaborates on our 

proposed 3DTransLSTM model in detail. Section 5.4 presents experiments on four 

video prediction datasets and comparison studies with prior arts.  

 

5.2 Preliminaries 

 

 

Vision Transformer (ViT) [46] introduced the computer vision world to the arena of 

transformers, which was initially created for NLP tasks. ViT splits images to non-

overlapping patches as tokens and then embeds it into a set of encoded vectors. The 

embeddings are added with the positional encodings to preserve positional identity and are 

Fig. 5.1: Transformer architecture 
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sent to  layers of transformer encoder blocks, as depicted in Fig. 5.1. Transformer-based 

video prediction methods are further discussed in Section 2.4.  

 

5.3 Proposed Method 

In this section, we elaborate our algorithm in detail. Fig. 5.2 shows the overall framework 

of the proposed architecture for three time steps t − 1, t, t + 1. The proposed video frame 

prediction network enables temporal information flow indicated by the four arrows 

connecting adjacent time steps.  

5.3.1 Algorithm Overview 

As shown in the middle column of Fig. 5.2, at time step , each frame in the 4D video 

tensor  is spatially split into a sequence of  patches, forming a 

tensor ,where  is the resulting number of patches, and 

 is the length of each flattened patch. Next, is processed by spatial embedding and 

positional encoding to generate an output tensor , where  

is the embedded dimension.  is then passed through six 3DTransLSTM blocks, which 

leverage transformers and LSTM to extract spatiotemporal features and generate an output 

tensor . It is then processed by the prediction head to generate 

the predicted patches , which is reshaped to form the final 

output frames . Table 5.1 summarizes the configuration of the 

proposed network. In the following subsections, we elaborate the proposed network 

components in detail.  
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Fig. 5.2: The overall architecture of the proposed network for three time steps 

 and  

 
Table 5.1. Configuration of the proposed network 

 

Block Output 
tensor Size 

Frames  patches   

Spatial embedding   

Pos +    

3D TransLSTM   

3D separable predictor   

Patches frames   
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5.3.2 Spatial Embedding and Positional Encoding  

The proposed 2D separable embedding module processes the input patches 

 to produce the embedded feature maps. It adopts two 2D depthwise 

separable convolutional layers. As shown in (5.1), 2D depthwise separable convolution  

is adopted to output intermediate feature map and another 2D 

depthwise separable convolution  outputs . Both G and S of 

the 2D separable convolutions are applied frame by frame. and are then added and 

passed through the  layer to produce the embedded feature maps  

. 

 
 

  

 (5.1) 

 

In (5.1), is the 2D depthwise operation, and * is the 1D pointwise convolution operation.  

 adopts a 2D depthwise convolution with  filters of size  followed by a 

1D pointwise convolution with   filters of size  Similarly,  

adopts a 2D depthwise convolution with  filters of size   followed by a 

1D pointwise convolution with   filters of  size  . 

 

To preserve the positional information of the input sequence, fixed positional encoding 

 is calculated via (5.2) [41], where  represents the channel 
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index, , is the temporal index,  are the spatial indices,  and 

. 

  even 

  odd  (5.2) 

 is added to the embedded feature maps  to generate the output 

 by  

 

. (5.3) 

 

5.3.3 3D Transformer-LSTM 

The stack of six 3DTransLSTM blocks across three time steps  as shown in 

Fig. 5.2 are described in detail in Fig. 5.3. Take time step  as an example: the proposed 

3D Sep ST-LSTM2

3D Sep ST-LSTM3

3D Sep ST-LSTM4

3D Sep ST-LSTM1

Branch 2

3D Sep ST-LSTM2

3D Sep ST-LSTM3

3D Sep ST-LSTM4

3DSep ST-LSTM1

Branch 2

3D Sep ST-LSTM2

3D Sep ST-LSTM3

3D Sep ST-LSTM4

3D Sep ST-LSTM1

Branch 2

3D Sep ST-LSTM2

3D Sep ST-LSTM3

3D Sep ST-LSTM4

3D Sep ST-LSTM1

Branch 2

3D Sep ST-LSTM2

3D Sep ST-LSTM3

3D Sep ST-LSTM4

3DSep ST-LSTM1

Branch 2

3D Sep ST-LSTM2

3D Sep ST-LSTM3

3D Sep ST-LSTM4

3D Sep ST-LSTM1

Branch 2

Fig. 5.3. The stack of six 3DTransLSTM blocks for time steps . Each 
3DTransLSTM block consists of Branch 1 (blue arrow) and Branch 2 (green arrow). Branch 
2 further consists of 4 3D separable convolution-based ST-LSTM (3D SepST-LSTM) layers 
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network takes the positioned feature maps   as input and passes 

it through a stack of six 3DTransLSTM blocks to output   In each 3DTransLSTM 

block, the input is processed by two parallel branches. Branch 1 is indicated by the blue 

arrow. It extracts features within time step t through transformers, and outputs  . 

Branch 2 enables information flow across three time t steps t − 1, t , t + 1 through ST-

LSTM structures, and outputs . In the following we give detailed descriptions of 

Branch 1 and Branch 2.  

 

Branch 1  

Its network structure is separately depicted in Fig. 5.4. It adopts two sub-blocks: 1) 3D 

separable convolution-based self-attention (3DSepSA), and 2) 3D separable convolution-

based feed-forward network (3DSepFFN). Layer normalization (LN) is applied before each 

sub-block, and residual connection is applied after each sub-block.  

 

3DSepSA 

As shown in Fig. 5.4 (a), first, the input tensor  goes through an LN layer by 

 

, (5.4) 

  

As shown in Fig. 5.4 (b) the module then takes  

 as the input and then calculates three tensors  with 

dimension using 3D separable convolutional kernels 

, as follows: 
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 (5.5) 

  

where denotes 1D pointwise convolution and denotes 3D depthwise convolution.  

To calculate the attention of the above tensors, we first transpose the tensors and  

to dimension  . Let be the batch size, then the 

batch has  samples and each sample is a tensor of size  , denoted 

by, ,  , and .  

 

 

 

Fig. 5.4.  (a) Branch 1 of the 3DTransLSTM block, (b) 3DSepFFN module (top), 3DSepSA 
module (bottom). 
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Within each sample, the self-attention  among  temporal elements is 

calculated as,  

 
                     

(5.6) 

We use a single-head masked self-attention where the masking mechanism only allows a 

position to look at the previous tokens and prevents the leaking of information to future 

tokens [41]. We mask out the attention to future tokens by setting their attention scores to 

, which generates zero weights after they are passed through the Softmax function. 

Next, the self-attentions of all samples in the batch are grouped and transposed to form the 

output self-attention which is then processed by 3D 

depthwise separable convolution WA and a Dropout layer as shown in (5.7),  

 

 (5.7) 

Afterwards, a residual connection from the input is applied to  to produce the final 

output of the attention module  as 

 

 

3DSepFFN 

The second sub-block of Branch 1,  takes the layer normalized  as 

the input 

  (5.9) 

 (5.8) 
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As shown in Fig. 5.4 (b), inside the 3DSepFFN sub-block, there are two 3D depthwise 

separable convolutional layers and  each followed by a Dropout layer, consists 

of the two 3D depthwise separable convolutional layers and transformations inside this 

sub-block can be formulated as follows: 

  

   

  (5.10) 

The residual connection from the 3DSepSA sub-block   

and the output from  the 3D separable feed-forward sub-block 

  are added to form the final output 

of Branch 1. 

. (5.11) 

  

Branch 2 

At time step , Branch 2 shown by the green arrow in Fig. 5.3 enables spatiotemporal 

information flow. It contains four layers of 3D separable convolution- based ST-LSTM 

(3DSepST-LSTM), and outputs .

As shown in Fig. 5.3, at the -th 3D SepST-LSTM layer, , the inputs are the 

temporal memory cell and hidden state  delivered horizontally from the same -

th layer in the previous time step , as well as the spatiotemporal memory  and 
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the hidden state  delivered vertically from the th 3D SepST-LSTM layer of 

the current time step  The outputs are the spatiotemporal memory cell , the hidden 

state , and the temporal memory cell  . While is delivered vertically to the 

th 3D SepST-LSTM layer,  is delivered horizontally to the -th time step, 

and  is delivered both vertically and horizontally. It is noteworthy that when the 

input spatiotemporal memory cell  = , which is the output spatiotemporal memory 

cell of the 4-th 3D SepST-LSTM layer of the previous time step , and the input 

hidden state  , which is the positional feature input of the entire stack of six 

3DTransLSTM blocks.  

All the gates and the input , hidden  and memory states and  are 4D tensors of 

size , where  is the channel,  is the temporal length, and  

and  are the height and width, respectively. 

Fig. 5.5 The structure of the -th 3D SepST-LSTM layer at time step . 
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Fig. 5.5 shows the structure of the l-th 3D SepST-LSTM layer at time step   . One set of 

input gate , forget gate , and input modulation gate   are generated by processing hidden 

states  and  by separable 3D convolution as shown in (5.12). Here  denotes the 

3D depth-wise convolution, is the 1D pointwise convolution, is the sigmoid function 

and   is the tanh function. 

 

               (5.12) 

 

An extra set of input gate  forget gate , and input modulation gate  are generated by 

processing the hidden state  and spatiotemporal memory  using 3D separable 

convolution, as shown in (5.13). 

 

                     (5.13) 

 

Afterwards, the output temporal memory cell  and spatiotemporal memory  are 

generated by (e3) and (e4), respectively, where  represents the Hadamard product. 

                         (5.14) 

                     (5.15) 

The output gate  is generated by processing , , , and again by 3D separable 

convolution, as shown in (5.16). 
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(5.16) 

Finally, the hidden state  is generated by 

                             (5.17) 

 

where [ is the channel concatenation of and  in equations (5.12), (5.13) and 

(5.16), the depthwise 3D convolutional kernel size is set as  and pointwise 

convolutional kernel size is set as   .  

  

Branch 1 + Branch 2: As shown in Fig. 5.3  the output from Branch 1 and the 

output from  from Branch 2 are added together to form the output of one 

3DTransLSTM block, . Six such 3DTransLSTM blocks are 

stacked to generate the final output . 

 

Prediction Head 

As shown in Fig. 5.2, this final output of the 3DTransLSTM blocks  is processed by 

a prediction head using pointwise convolution  with filters to output the predicted 

frame patches as 

 (5.12) 

These frame patches are reshaped to generate the  predicted frames 

 with frame indices .  
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5.4 Training and Inference Strategy 

As described in Section 5.3, in each time step, our proposed network takes  frames as the 

input (for example, frame  to frame ), and generates  predicted frames (for 

example, frame  to frame ), with one-time index shift. It is noteworthy that the 

video sequence length  can be different during the training and inference stages, and  

can also vary during the inference stage, while the dimensions of the trained filters are 

fixed.  

We trained our model   to predict the next frames  

 by learning from the previous  frames   in three 

successive iterations. In iteration 1,  is used to predict . In iteration 2,   is used 

to predict  . In iteration 3,  is used to predict 

. Since there are three iterations and each iteration has  predicted frames, 

the MSE loss used to train the network is averaged over  predicted frames.  

During inference, the model takes the previous frames  

  as the input, and predicts the future frames 

 . The inference process is given in 

Algorithm 1.  
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As described in Algorithm 1, the inference process consists of  iterations. In -th iteration, 

the last predicted frame is concatenated with the current input video sequence to 

form a new input sequence  of  frames.   After  

iterations, a total of  future frames are predicted, denoted as 

. 

The input and output sequence length  during training, the input video frame number  

and the predicted future frame number  during testing are provided for each dataset in the 

following section 5.5. 

 

5.5 Datasets 

We conducted experimental studies on the synthetic MovingMNIST (MMNIST) dataset 

[21] and real-world datasets KTH Action [53], TaxiBJ [62], and Human 3.6m [54]. To 

evaluate the generalization ability of the proposed method, we also trained the model on 

the KITTI [55] dataset and tested it on an unseen Caltech Pedestrian [56] dataset.  

Algorithm 1: The Inference Process 
Input:  
Output:  

 =  
 do 
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5.5.1 Moving MNIST (MMNIST) 

Section 4.4.1 briefly introduces MMNIST dataset. Following TCTN [41], we used two 

subsets of this dataset for training: MMNIST-2K with 2,000 video sequences and 

MMNIST-10K with 10,000 video sequences. Each sequence has 20 frames. We trained 

one model on each subset and tested both trained models on another unseen MMNIST 

subset of 3,000 video sequences (MMNIST-3K). During training, the input and output 

sequence lengths were both L = 17. During testing, we used K = 10 previous frames to 

predict N = 10 future frames.  

5.5.2 KTH Action  

Details of the dataset are provided in Section 4.4.2. The training set contained 8,488 

sequences and the testing set had 5,041 sequences. Each sequence had 20 frames, and each 

frame was resized to 1 × 64 × 64, where the first dimension represented the grayscale 

channel. Similar to the MMNIST dataset, during training, the input and output sequence 

length was L = 17 frames. During testing, the previous K = 10 frames were used to predict 

N = 10 future frames.  

5.5.3 TaxiBJ 

This dataset represents the trajectory data derived from the GPS information of more than 

34,000 taxicabs throughout Beijing and meteorology data collected over 16 discrete 

months, from June 2013 to April 2016.  The city of Beijing is divided to 32 32 grids and 

the traffic flow information is reported in a time interval of 30 minutes, which generates 

20,904 traffic heat maps of size . The first dimension represents two channels 
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for the inflow and outflow traffic information. Following [27], the data of the last date 

interval was chosen for testing and the rest was used for training. The training dataset has 

19,560 sequences and the testing dataset has 1,344 sequences. Each sequence has 8 frames. 

During training, the input and output sequence lengths were both .  The testing was 

done using  input frames to predict the future  frames. 

5.5.4 Human 3.6m  

This is a complex human pose action dataset, originally with 3.6 million RGB images. It 

comprises of video sequences with humans performing different types of actions.  Each 

sequence has 8 frames. We followed the experimental setup in [27] and chose only the 

‘walking’ scenario. The original 1000 1000 resolution frames were resized to 

 resolution in our experiments, where the first dimension represents the 

RGB channels. Subjects S1, S5, S6, S7, S8 were used for training which made to 2,624 

sequences and subjects S9, S11 were used for testing with 1,135 sequences. For training 

we set the input and output sequence length as L = 5 and for testing we used the previous 

K = 4 frames to predict the future N = 4 frames.  

 

5.5.5 KITTI and Caltech Pedestrian  

The KITTI and Caltech Pedestrian datasets are two car-mounted camera video datasets 

with real-world scenarios, widely used for video frame prediction. We followed [32] to 

preprocess the datasets. The frames from both datasets were center cropped and resized to 

128 160, where the first dimension represents the RGB channels. The 30 fps frame 

rate of Caltech was changed to 10 fps to match the frame rate of the KITTI dataset. The 
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KITTI dataset was used for model training. It consists of 3,150 sequences and each 

sequence has 13 frames. A subset of the Caltech dataset was used for model testing, which 

had 1,983 sequences and each sequence had 11 frames. We followed [57] to preprocess the 

datasets. The frames from both datasets were center-cropped and resized to 3 × 128 × 160, 

where the first dimension represented the RGB channels. During training, we set the input 

and output sequence length to be L = 10. During testing, the previous K = 10 frames were 

used to predict the next N = 1 frames.  

 

5.6 Experiment Settings and Methods in Comparison 

The models were trained with the PyTorch framework using an NVIDIA Tesla V100 32 

GB GPU. The ADAM optimizer was used to minimize the MSE loss between the ground 

truth and the predicted frames. To prevent overfitting, dropout layers of the proposed 

network adopt a dropout rate of 0.05 during training. The model was trained for 200 epochs 

for MMNIST and KTH Action, and 300 epochs for Human 3.6m and KITTI. We set the 

patch size as p = 4 and the hidden dimension as  = 128 for MMNIST, KTH Action, 

and Human 3.6m. For KITTI dataset, we set the patch size as p = 2 and the hidden 

dimension as dmodel = 256. We used a stride of 1 for the depthwise separable convolutions 

in our network.  

We compared the performance of our proposed model to seven existing methods. They 

included three transformer- based models: ConvTransformer [40], TCTN [41], and VPTR 

[42], and four RNN-based models: FRNN [20], E3D-LSTM [23], MIM [25], and 

PredRNN-V2 [27]. All the models were implemented with the same experiment settings 

proposed in their original works. To verify the generalization ability of our proposed 
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model, we chose the following existing methods for comparison studies: the ConvLSTM-

based models DNA [22], CrevNet [26], the GAN-based DM-GAN [35], the transformer-

based VPTR [42], as well as the CNN-based BeyondMSE [34].  

 

 5.7 Experimental Results and Analysis 

 5.7.1 MMNIST 

Though the dynamics of MMNIST seem simple, the frequent occlusion and overlapping 

of the digits make the prediction complex. Table 5.2 compares the frame prediction 

accuracy performance between the proposed model and existing models on the MMNIST-

3K test set after the models were trained on the MMNIST-2K and MMNIST-10K datasets. 

The best, second-best, and third-best results of each metric are highlighted in red, blue and 

brown, respectively. Our proposed model 3DTransLSTM achieved the highest PSNR and 

SSIM scores when it was trained on MMNIST-2K, and it achieved the second highest 

PSNR and SSIM scores when it was trained on MMNIST-10K. It is superior in terms of 

model size and parameters, and it requires the second fewest GFLOPs for inference. When 

the models were trained on MMNIST-10K, PredRNN-V2 [27] achieved the highest PSNR, 

but our proposed model has 39.2% decrease in model size and 51.5% decrease in 

parameters, compared to PredRNN-V2. To visually demonstrate the effectiveness of our 

proposed model, Fig. 5.6 shows the qualitative results of models trained on MMNIST-10K. 

We observe that ConvTransformer [40] and VPTR [42] generated blurry results and E3D-

LSTM [23] failed to correctly predict the relative positions of the digits. The results of our 

proposed 3DTransLSTM model correctly captured the trajectory of moving digits and 
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looked similar to the ground truth without blurriness. MIM [25], PredRNN- V2 [27], and 

TCTN [41] produced good visual results at the expense of huge model size, parameters and 

computational complexity compared to our proposed model.  

5.7.2 KTH Action 

The KTH Action dataset has a similar frame size ( ) and input/output sequence 

length as the MMNIST dataset. The quantitative results are also summarized in Table 5.2.  

Input      

   

 

Target 

 

E3D-LSTM [23] 

MIM [25] 

PredRNN-V2 [27]] 

ConvTransformer 
[40] 

         VPTR [42] 

TCTN [41] 

3DTransLSTM 

Fig. 5.6. The visual results on the MMNIST-3K dataset for models trained on the MMNIST-10K 
dataset. 
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Obviously, the proposed 3DTransLSTM model achieved the third highest PSNR and SSIM 

values. Although the MIM [25] and VPTR [42] models achieved slightly higher PSNR and 

SSIM values than 3DTransLSTM, their model sizes were much larger, and they required 

much more parameters and GFLOPs. Fig. 5.7 shows the predicted frames of different 

models. We observe that the proposed 3DTransLSTM model predicted the motion of the 

hands correctly and it preserved the structure of the person. In contrast, the transformer- 

based models VPTR [42], ConvTransformer [40], and the ConvLSTM-based model E3D-

LSTM [23] generated blurry results and had missing arms. The visual results of MIM [25], 

TCTN [41], and PredRNN-V2 [27] are close to the proposed 3DTransLSTM, but they 

require much more computational cost.  

5.7.3 TaxiBJ 

This is a challenging dataset as the traffic flows are not uniformly varied over time and 

there are external factors such as weather which affects the traffic conditions [23]. We 

followed the experimental settings in [23] and predicted the next 4 frames, given the 

previous 4 frames. It can be observed from the quantitative results provided in Table 5.3 

that 3DTransLSTM shows the best model efficiency compared to the SOTA. methods, in 

terms of the smallest model size, fewest model parameters, and fewest FLOPs. Besides, it 

achieves the highest PSNR and the second-highest SSIM. Although E3D-LSTM [23] 

achieves the highest SSIM, compared to 3DTransLSTM, its model size is 3.61 times larger, 

its parameters are 3.33 times more, and it requires 3.4 times more FLOPs to performance 

inference. Fig. 5.8 shows the visual comparisons of the predicted flows of the different 

methods. High color intensity indicates higher traffic flow.  We can infer that unlike the 

pure RNN models like E3D-LSTM [23] where the predicted frames are more similar to the 



 66 

past input frames, our model’s predictions look very similar to the target future frames.  

The performance on the TaxiBJ dataset indeed demonstrates that the proposed 

3DTransLSTM is capable of predicting real-world scenarios as well.  

 

 

5.7.4 Human3.6m  

This human pose dataset has video frames of dimension , where the first 

dimension represents the RGB channels. Our proposed model predicted the future four 

frames based on previous four frames. Table 5.4 summarizes the quantitative results of the 

compared models. The proposed 3DTransLSTM achieves the smallest model size, fewest 

number of parameters and GFLOPs. In terms of prediction accuracy, it achieves the second 

highest PSNR and SSIM values. Although VPTR [42] achieves the highest frame pre- 

diction accuracy, it is 44 times the size of our model, and it requires 17 times more 

parameters than our model. Fig. 5.9 shows the visual quality of the predicted frames. We  

Table 5.3 Quantitative results on TaxiBJ. The best, second-best, and third-best 
results of each metric are highlighted in red, blue and brown, respectively. 

 
(4 4 FRAMES) 

Methods PSNR  SSIM  Model 
Size (MB) 

Params 
(M) 

FLOPs 
(G) 

VPTR [42] 37.97 0.961 1300 161.24 12.74 

TCTN [41] 39.6 0.963 345.4 32 30.75 

E3D-LSTM [23] 39.9 0.979 202.3 39.7 23.95 

MIM [25] 38.31 0.971 152.2 28.53 48.39 

PredRNN-V2 [27] 37.32 0.969 94.7 24.2 11.4 

ConvTransformer [40] 38.5 0.961 81 20.16 57 

3DTransLSTM 41.4 0.971 56.1 11.6335 6.94 
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observe that the proposed 3DTransLSTM model is able to preserve the structure of the 

person’s body and shape of arms. In contrast, the solely ConvLSTM-based models E3D-

LSTM [23], MIM [25] and PredRNN-V2 [27] produced vague results and had 

inconsistencies in the physical appearance of the person, especially the shape of arms. 

Besides, the transformer-based model TCTN [41] also generated blurry results. The 

quantitative and qualitative results show that our model works effectively for RGB video 

frames. 

 

Input frames 
     

Target  
     

E3D-LSTM [23]  

    

PredRNN [24] 

    

MIM [25] 

    

ConvTransformer [40] 

    

VPTR [42] 

    

TCTN [41] 

    

3D TransLSTM 

    
 

Fig. 5.8. Visual results on the TaxiBJ  
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Table 5.4 Quantitative Results on Human 3.6m Dataset. The best, second-best, and third-best 
results of each metric are highlighted in red, blue and brown, respectively.  

Methods PSNR SSIM 
Model 

size 
(MB) 

Params 
(M) 

FLOPs 
(G) 

VPTR [42] 29.31 0.893 2513.9 198.8 180.9 

TCTN [41] 27.63 0.839 344 32.1 492.4 

E3D-LSTM [23]* 19.79 0.73 263.5 40.9 395.7 

MIM [25]* 21.80 0.790 196.2 41.9 775.2 

PredRNN-V2 [27] 20.7 0.790 156 24.6 176.3 

FRNN [20]* 21.16 0.771 109.2 - - 

ConvTransformer[40] 20.97 0.798 81.0 20.1 228.7 

3DTransLSTM 28.6 0.875 56.2 11.6 107.0 

Input frames   
 

    
Ground truth 

 
    

E3D-LSTM [23] 

    
PredRNN-V2 
[27] 

    
MIM [25] 

    
VPTR [42]  

    
TCTN [41] 

    
3DTransLSTM 

    
 

Fig. 5.9. Visual results on the Human3.6m dataset 
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5.7.5 KITTI and Caltech Pedestrian  

Τo evaluate the generalization ability of video prediction models, we trained the models on 

the KITTI dataset [55] using the previous 10 frames to predict the next one frame and 

evaluated the trained models on the Caltech Pedestrian dataset [56]. Both the KITTI and 

Caltech Pedestrian datasets are complex datasets comprised of real-world scenarios with 

multiple moving objects in the background. We observe from Table 5.5 that the proposed 

3DTransLSTM achieved the best model efficiency in terms of model size, number of 

parameters, and GFLOPs. Besides, it achieves the third highest PSNR and SSIM values. 

Although CrevNet [26] has the highest PSNR and SSIM values, it required much larger 

model size, much more parameters and GFLOPs than our model did. Fig. 5.10 shows that  

our proposed model generated accurate visual results similar to CrevNet [26] and VPTR 

[42], producing clear objects and texts in the predicted frames.  

 

Methods PSNR SSIM 
Model 

size 
(MB) 

Params 
(M) 

FLOPs 
(G) 

BeyondMSE [34] ǂ 24.87 0.881 218.4 - - 

DNA [22]ǂ - 0.896 - >160 - 

STN [65] ǂ - 0.902 - >160 - 

DMGAN* [58] 26.29 0.899 - 113 - 

CrevNet* [26] 29.25 0.925 2700 - 350.4 

VPTR [42] 29.12 0.921 2513.9 208.69 201.56 

3DTransLSTM 28.81 0.915 207.2 43.05 55.94 

Table 5.5 Quantitative results on Caltech Pedestrian dataset.  The results are 
reported in [18]. † The results are reported in [59]. The best, second-best, and third-
best results of each metric are highlighted in red, blue and brown, respectively. 
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5.8 Ablation Study 

We conducted a series of experiments with various designs of the proposed TransLSTM 

network to validate the advantages of using 3D separable convolutions. The models were 

trained on the MMNIST-2K dataset and tested on the MMNIST-3K dataset. The results 

are summarized in Table 5.6.  

First, we designed Model A, which is the TransLSTM network with traditional 2D 

convolutions in the spatial embedding module, the self-attention and feed-forward layers 

of Branch 1, and in the ST-LSTM layers of Branch 2. It achieves an average PSNR of 

19.44 dB and an average SSIM of 0.844. Its model size is 745 MB. It has 78.7 M trainable 

parameters, and it requires 934.7 GFLOPs to conduct inference.  

To reduce the model size, parameters, and computational complexity of Model A, we 

designed Model B, which is the TransLSTM network with 2D separable convolutions. It 

apparently reduces the model size, parameters, and computation complexity to 50.9 MB,  

 

Input 
 

Target 
 

CrevNet [26] VPTR [42] 3DTransLSTM 

   

   
 

Fig. 5.10. Visual results on the Caltech Pedestrian dataset. Input is previous 10 
frames ( )  and the output is frame at   
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10.5 M, and 126.09 GFLOPs, respectively. Nevertheless, the video frame prediction 

accuracy has decreased to an average PSNR of 18.03 dB and an average SSIM of 0.791.  

To leverage temporal information in the video sequence, we further designed Model C, the 

TransLSTM with traditional 3D convolutions in self-attention and feed-forward layers of 

Branch 1 and ST-LSTM layers of Branch 2. The results in Table 5.6 showed that the 

prediction accuracy is significantly improved compared to traditional 2D convolutions 

(Model A), achieving an average PSNR of 21.48 dB and an average SSIM of 0.913. 

However, this comes at a price of dramatically increased model size (1,100 MB), number 

of trainable parameters (231.5 M), and GFLOPs (2,914.3). 

In contrast, our proposed model, 3DTransLSTM with 3D separable convolutions, 

significantly reduces the model size, number of parameters, and GFLOPs by 94.9%, 95%, 

Table 5.6. Ablation study on MMNIST. The best and second-best results of each 
metric are highlighted in red and blue, respectively. 

 
Model Method MMNIST-3K 

(Trained on 
MMNIST-2K) 

Model 
size 

(MB) 

Para
ms 
(M) 

FLOPs 
(G) 

PSNR SSIM 

A 
3DTransLSTM 
(traditional 2D) 

19.44 0.844 745 78.72 934.73 

B 
3DTransLSTM  
(2D separable) 

18.03 0.791 50.9 10.5 126.1 

C 
3DTransLSTM 
(traditional 3D) 

21.48 0.913 1100 231.49 2914.3
1 

 3DTransLSTM 21.03 0.893 56.6 11.6 140.1 
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and 95.2%, respectively, compared to Model C. Meanwhile, it only slightly decreased the 

prediction accuracy by 2.1% for the PSNR metric and by 2.2% for the SSIM metric.  

The above ablation studies thoroughly validate the benefits of the proposed 3DTransLSTM 

with 3D separable convolutions. This network architecture not only leverages the 

spatiotemporal correlations in the video to provide competitive frame prediction accuracy, 

but also significantly reduces model size, trainable parameters and computational 

complexity compared to traditional 3D convolutions. Therefore, it offers a good trade-off 

between model accuracy and model complexity.  

 

5.9 Conclusion 

In this chapter, we present a novel video prediction framework 3DTransLSTM, 

incorporating both transformer and LSTM structures with 3D separable convolutions. 

Extensive experimental results demonstrate the effectiveness of our proposed scheme on 

both synthetic and real-world datasets. Compared to existing approaches, our method is 

able to achieve competitive prediction accuracy with significantly reduced model size, 

number of parameters, and computational complexity. Hence, the results suggest that our 

model could be better suited for memory-constrained and computation resource- limited 

platforms, such as mobile and embedded devices.  
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CHAPTER 6 

Conclusion 

6.1 Summary of Major Contributions 

Video frame prediction is a challenging yet essential vision task in various real-world 

scenarios. which has demonstrated its applications in various spectrum of fields, from 

video coding to autonomous driving. Deep learning community has vastly explored 

computationally expensive models in the past few decades for improving model accuracy 

and surpassing state-of-the art results. In this era of Green AI [66], it is extremely important 

for machine learning models to offer both model efficiency and accuracy. Apart from such 

Red AI (Artificial Intelligence)-focused models, we focus on such Green AI methods by 

developing environment friendly solutions with reduced model complexity and 

competitive accuracy for video prediction. Extensive experimental results demonstrate the 

effectiveness of our proposed scheme on both synthetic and real-world datasets, as well as 

its generalization capability. Our model is more suitable for memory-constrained and 

computation resource- limited platforms, such as mobile, IoT and embedded devices. 

 

Addressing the research questions outlined in Chapter 1, our study yield significant insights 

and contributions, as mentioned below. 

 
Efficiency and Energy Reduction:  

 The proposed models adopted 3D convolutions to effectively learn spatiotemporal 

dynamics. To reduce computational cost, the standard 3D convolution is 
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decomposed into a 3D depthwise convolution and a pointwise convolution, which 

reduces the model size, trainable parameters, and floating-point operations 

(FLOPs).  

Architectural Combinations:  

 We propose a lightweight deep networking model with 3D separable convolutions 

for the video prediction. Spatiotemporal long short-term memory (ST-LSTM) 

based on 3D separable convolutions is proposed for the first time in literature for 

the task of video prediction. Our model based achieved more than 90% reduction 

in model size, FLOPSs, and number of model parameters when compared to several 

SOTA methods, on both synthetic and real-world, grayscale and colored datasets. 

 We propose a hybrid transformer-LSTM (3DTransLSTM) network for the video 

prediction task. On the one hand, the transformer module can leverage long-range 

correlations among multiple successive video frames and parallelize the 

computation with its self-attention mechanism. On the other hand, the LSTM 

module can enable spatiotemporal information flow vertically within each time step 

and horizontally among multiple time steps. Such a hybrid network consisting of 

transformer and LSTM is proposed in video prediction task for the first time in 

literature. Moreover, to the best of our knowledge, this is the first time that 3D 

separable convolutions is s utilized in a hybrid transformer- LSTM network.  

Trade-offs Between Efficiency and Accuracy:  

 Qualitative and quantitative experimental results on popular video prediction 

datasets show that, compared to SOTA methods using ConvLSTM-based 
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approaches and transformer-based approaches, the proposed 3DTransLSTM 

achieves competitive video frame prediction accuracy with significantly smaller 

model size, fewer model parameters, and less computational cost. 

Real-world Applications: 

 We demonstrate the effectiveness and generalization ability of the proposed model 

by testing the model on video sequences completely unseen in the training dataset. 

Additionally, we demonstrate the applicability of the method in color and grayscale 

videos, traffic flow prediction dataset and real-world pedestrian dataset. 

 The promising result of our models suggests a viable direction for memory- 

constrained and embedded devices. 

Despite these contributions, our research also faces certain limitations. For instance, 

usage of our models for critical applications such as autonomous vehicles, may pose 

challenges, as model’s accuracy is paramount in such scenarios. Additionally, while 

our models demonstrate effectiveness across synthetic and real-world datasets, further 

validation on larger and diverse datasets could provide deeper insights into the 

scalability and robustness of our approach. 

 

6.2 Future Research 

In this work, we demonstrate the 3D separable based LSTM and hybrid transformer LSTM 

models for efficient video prediction.  We also demonstrate the potential of integrating 

other low memory-consuming networks such as reversible networks (Chapter 4) in 

conjunction with our algorithm to improve the model efficiency.  
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As emphasized in Chapter 1, the applications of video prediction are vast and in order to 

adapt the task for many real-world scenarios, it’s crucial that the deep learning models need 

to keep improving the efficiency, while delivering accuracy. In future, we intend to upgrade 

our model by incorporating other efficient lightweight architectures and thereby achieve 

better prediction performance, while maintaining the lower number of parameters. 

Since our method is more suitable for resource-constrained environments, we can leverage 

our lightweight architecture for the new field of ‘Video Coding for Machines (VCM)’. It’s 

memory efficiency without much compromising the accuracy can focus on regions of 

interests with significant motion and optimize resource usage for applications for machines.  

The role of video prediction in video coding is crucial, where video prediction aims to 

achieve better compression by exploiting temporal and spatial redundancies. Particularly, 

inter-frame prediction, such bi-prediction where prediction is based on both preceding and 

subsequent frames plays an indispensable role in current video codecs such as HEVC. 

Novel deep learning methods for bi-prediction [14] were proposed to obtain accurate 

motion prediction and better coding performance. We plan to adopt our method in bi-

directional way to include it in video coding framework.  Replacing unidirectional 

prediction with bi-directional prediction can also reduce prediction errors, since it 

considers both past and current frames. This method can also be extended to frame 

interpolation, where intermediate frames are synthesized using neighboring frames which 

facilitates smooth motion in frames.  

 

Another possibility is that we can extend our methods to integrate with other optical-flow 

synthesizer methods. Optical flow techniques allow to estimate motion between 
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consecutive frames and thus can enhance the motion content in frames, thus leading to 

more realistic predictions.  Synthesizing optical flow between frames can provide a better 

vision to the models to accurately understand the motion patterns present in video, leading 

to better predictions. 
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