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Abstract 

As collaborative robots (cobots for short) become more prominent in industrial settings, 

intuitive ways of interaction between humans and cobots are essential for their success. In this 

Thesis, a novel framework that enables a human to easily guide a cobot to co-manipulate an 

extended object is presented. The developed framework enables a human to guide the object 

grasped by the cobot in all dimensions of motion (translation, rotation, and gripper actuation). 

To achieve this, a novel control has been developed that uses hand gestures and spatially-aware 

features of the operator (e.g. operator's location in space) with respect to the manipulated 

object and generates object-centric control commands. The generated object-centric control 

commands are then sent to an impedance controller for smooth object co-manipulation. Hand 

gestures are recognized by a deep learning model using vision data and human position estima­

tion is calculated using stereocamera. The proposed framework is implemented on a 7-degrees 

of freedom cobot equipped with a camera sensor which is used to estimate the operator's posi­

tion with respect to the robot. Additionally, a wearable camera is worn by the human teammate 

that monitors hand gestures. To evaluate the performance and usability of the proposed frame­

work, an experimental scenario is developed where a human is required to co-manipulate an 

extended object by guiding the robot to pick it up from the table and place it into four tubes 

with different orientations in different locations of the workspace. A user study of 16 partic­

ipants was conducted and the results are presented in this Thesis. The developed system was 

compared to the state-of-the-art motion capture system and had an average error of 0.0 I m 

which is acceptable for our application. Moreover, the system was evaluated positively by the 

participants in the study. 
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1 Introduction 

1.1 Background and Motivation 

For decades, robotic manipulators in industry have been operated in cages, independent of any di­

rect human interaction, with the robots performing repetitive tasks requiring high speed, accuracy, 

and power and performing tasks that are hazardous or challenging for humans (4, 5J. These types 

of tasks were unsafe for humans and, therefore, the robots stayed in well-defined workspaces with 

fences ensuring human safety. As robotic technology and Artificial Intelligence (Al) advance, 

robotic manipulation has started to move outside the cages and to become "collaborative" [6J. 

Collaborative robotic arms (cobots for short) are transforming the fields of automation and man­

ufacturing as they are easy to set up and use and can work alongside humans (7]. To ensure 

human safety and enable humans to work within their workspace, cobots work at lower speeds, are 

lightweight, and have built-in collision sensing. 

One important characteristic of cobots is that they can work alongside humans. Because 

cobots are easily set up, flexible, safe, and user-friendly, industry and manufacturing have started 

using cobots for applications, such as assembly, inspections, and cooperative manipulation (co­

manipulation) [8]. This enables the cobots to assist their human teammates with demanding tasks, 

such as lifting and manipulating heavy objects [9, 10). Therefore, seeing the advantages of cobots 

and their potential to support naive users, this Thesis focuses on developing an intuitive way for 

humans to guide an object through a collaborative manipulation task. 

However, as robotic technology advances, finding more human-like ways of interacting with 

cobots is important. For example, Ionescu & Schlund [ 11] used voice commands as a method for 

instructing cobots for manipulation tasks. Another human-like way of instructing robots is by using 



hand gestures. In the recent review paper on hand gesture recognition, Guo et al. [ 121 summarized 

different technologies that enable hand gesture recognition for human-machine interaction tasks. 

The authors identified different sensing technologies that can be used to identify hand gestures, 

such as vision sensors, ultrasound sensors, joysticks (e.g. Wii remotes), wearable gloves, and 

surface electromyography (sEMG) sensors. Wearable sensors typically require setup time and 

must be adjustable so that they can have the right fit for different users. On the other hand, vision 

sensors, such as cameras, do not require any setup from the user's perspective; however, they can 

lead to human data bias [ 13 ]. Moreover, with the recent advances in Artificial Intelligence (Al) 

and Deep Learning (DL), computer vision systems have become popular due to the easiness of the 

setup and their high accuracy [ 14-16). 

1.2 Related Work 

This section provides details on the related work on hand gesture-based cobot control using vision 

sensors and on human-robot co-manipulation. In this Thesis, the term cobot describes a collabora­

tive robotic arm. 

1.2.1 Related Work on Hand Gesture-based Cobot Control using Vision Sensors 

Hand gesture-based robot control is a method that maps hand gestures to robot motions. There 

is significant work on hand gesture-based control of mobile bases, as mobile bases move in two 

dimensions and require very few gestures (move forward, backward, left, right, rotate, and stop) 

[12, 17, 18] .. However, this Thesis focuses on the control of collaborative robotic arms (cobots) 

that have higher dimensionality for their motion (motion in 3D space, including translations and 

rotations) taking into consideration the user's position in the workspace. 
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Nuzzi et al. [ 19] developed a vision-based hand gesture recognition system, to ensure flexibility 

in the setup and mapped four hand gestures to specific commands of a robot arm (cobot), such as 

start, move left or right, and stop. The authors used a Faster Region Proposal Convolutional Neural 
. 

Network (F-RNN) to classify the four gestures from images and achieved accuracy in the range of 

92. 12 to 95.01 %. However, the four gestures provide a limited number of robot control actions, 

not enabling full control of a robotic arm with 6- or 7- Degrees of Freedom (DoF). Moreover, the 

authors did not integrate their gesture-based recognition with a real robot to evaluate the complete 

framework and did not enable object manipulation. Additionally, the proposed system did not take 

into account the spatial information of the operator. 

Papanagiotou et al. [ 1] used first-person camera data (i.e. egocentric view) to recognize hand 

gestures for a TV assembly. The authors first collected data from 13 users on gestures related to 

TV assembly. The dataset includes eleven classes (six gestures and five postures) captured in an 

egocentric view in front of a green background. For example, if the operator's left palm faces the 

camera, it means the assembly starts, if the operator holds a card with both hands, it means the 

card must be placed, and if the operator holds the card with the left hand and extended the index 

finger of the right hand, it means the card functions. The list of the classes is explained in Table 1. 

Subsequently, the authors trained a 3D Convolutional Neural Network (3DCNN) by splitting the 

data into 80% for training and 20% for testing. The accuracy of the testing set for the hand gesture 

recognition was 98.5%. The developed framework was evaluated with a cobot from Universal 

Robots (UR), the UR3 with 14 operators (ten men and four women, aged from 23 to 44 with little 

and medium experience in TV assembly). For the evaluation, a defined sequence of actions had 

to be followed by the co bot and the operator. The co bot was pre-programmed to fetch the cards, 

while the operator was responsible to check their functionality and inform the cobot if the cards 

function or not by using gestures. If the cards were functioning, the operator would place them 

3 



Table I: Gestures and postures of the TV assembly dataset collected in [I]. 

Gesture Gesture Explanation Posture ' Posture Explanation 

G 1 - Left palm facing the camera Start of the assembly 
G3 - Hold the green card 

Place green card 
with both hands 

G2 - Hold the green card with the left hand 
G4 - Hold the screw tool 

Green card functioning with the right hand Screw green card and extend the index finger of the right hand 
on top of the green card 
G5 - Hold the screw tool 

G6 • Right palm facing the camera End of the assembly with the right hand Screw gold card 
on top of the gold card 

GB • Hold the gold card with the left hand 
Gold card functioning G7 - Hands next to the body Waiting 

and extend the index finger of the right hand 
G 10 - Hold the green card with the left hand 

G9 • Hold the gold card 
and extend the index and middle fingers of Green card not functioning 

with both hands 
Place gold card 

the right hand 
G 11 • Hold the gold card with the lefl hand 
and extend the index and middle fingers of Gold card not functioning 
the right hand 

and screw them in the required location. The cobot would monitor the process by recognizing 

the gestures and then would provide the next card. The study showed that the assembly process 

was accelerated with gesture recognition and the cobot's assistance by 20% in comparison to the 

TV assembly without assistance. However, the framework was developed for the particular TV 

assembly and the cobot had a limited role that included fetching cards from specific locations 

to the human operator and monitoring what the operator was doing. For every new scenario or 

change to the existing TV assembly scenario (e.g. green card changes to a different color), new 

data collection, data labeling, and training of the 3DCNN will be required. Collecting data from 

different humans, getting the data labeled, and then training the network is a time-consuming 

process [20]. Additionally, the cobot is required to be programmed for new scenarios or changes 

in the current scenario, which does not provide the necessary flexibility. This framework does not 

connect the hand gestures to robot actions but rather uses the hand gestures as a monitoring method 

for the cobot to understand the operator's actions. 

Dynamic gesture commands were used by Chen et al. [21] for cobot control to enable flexibility 
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and fluidity in the interaction. Dynamic gestures are defined by Shi et al. [22) as hand motions 

captured over a continuous period of time. The hand positions and gestures are not required to 

stay in a particular pose but move over time. Chen et al. had to answer the following ~ritical 

question: "how to make cobots understand the dynamic gestures from different human users, and 

react with handling operations that meet humans' expectation?" [21]. To address this question, 

the authors developed a Conditional Collaborative Handling Process (CCHP) to model a context­

aware cobot handling policy for a furniture assembly task. The policy was learned from a dataset 

of human-human (i.e. user-handler) collaboration from 15 users with their handlers. After the 

model's training was completed another study was conducted with IO participants for the furniture 

assembly task. At the beginning of the study, five-minute demonstration data were collected from 

each participant. Then, the participants familiarized themselves with the procedure. When they 

were ready, the participants assembled the furniture once with two cobot policies, one encoded with 

CCHP and one with a fixed rule-based policy. The cobot was responsible for fetching tools to the 

operator when the operator would point at the tool or for holding a part of the furniture in place. 

The study used a Wilcoxon signed-rank test to show that a cobot is a significantly better helper 

using the CCHP policy rather than the fixed rule-based policy. The results of the Wilcoxon signed­

rank test showed that the CCHP-enabled robot understands better the user input (test statistic W=2, 

p-value=.006) and enables better collaboration (W=3, p-value=.0 I 0). Therefore, since the p-values 

are less than 0.05 and the test statistic is less than 6, the hypothesis that CCHP-enabled cobots help 

significantly better than the fixed rule-based cobots is valid. Therefore, dynamic gesture commands 

have the potential to improve context-aware cobots; however, the proposed method relied on the 
- . 

human-human collaboration dataset. Additionally, the operator was expected to sit in a chair in 

front of the cobot and the workstation was a desk that was shared by the cobot and the operator. 

The cobot had only two tasks, either fetching tools or holding a part of the furniture in place, which 
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is not easily extendable to other scenarios/tasks and also limits the cobot's capabilities. 

It is clear that the methods discussed in this section are mainly focused on a particular applica­

tion, such as assembly, it is not easily transferable to other applications without a data collection 

process and additional training process. Furthermore, the cobots are used for tasks that are specific 

to the applications they are deployed (e.g. fetching objects or holding objects), which means that it 

is application specific. Therefore, there is a need for a hand gesture-based interface that enables the 

operator to manipulate an object with the cobot's help in all dimensions, providing better flexibility 

and being able to get deployed in a variety of tasks. Enabling the operator to freely move around 

the cobot's workspace is also an important aspect as not all tasks can be completed on a desk. 

1.2.2 Related Work on Human-Robot Co-Manipulation 

Physical Human-Robot Interaction is defined by Selvaggio et al. [23] as proximal when the human 

and the robot are in direct contact, which may be mediated by another object (e.g. a human 

and a robot grasping the same object). Selvaggio et al. [23] identified shared control schemes as 

one approach to human-machine co-manipulation. Shared control is the control architecture in 

which the robot is controlled by a combination of autonomy algorithms and direct user commands 

[24]. Another approach for human-robot co-manipulation is admittance control [25, 26], which is 

a control scheme that automatically calculates robotic parameters, such as position, velocity, etc. 

based on applied external forces. For this method, accurate measurements of external forces are 

needed by using force/torque sensors on the robotic system. 

Shared control has been extended to shared autonomy, which consists of additional information 

from the user, such as human intent, human skills, or human muscle activity [23]. For example, Pe­

ternel et al. [27] used electromyography (EMG) sensors to monitor human muscle activity during 
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human-robot collaborative sawing and polishing. The authors used a KUKA Lightweight Robot 

equipped with a Pisa/HT Softhand, which provides position and force feedback. The authors pro­

posed a framework based on hybrid impedance control that adapts the robot's behavior based on 

the muscle activity from EMG data and the position and force feedback from the robot. To eval­

uate the framework, four male participants collaborated with the robot in the two collaborative 

tasks (sawing and polishing). For the sawing task, the average muscle activity for the four male 

participants without the robot was 19.2± 11.2% and after the robot took over the average muscle 

activity was 6.0±2.7%. Similarly, for the polishing task, the average muscle activity without and 

with the robot was 17.2±1.7% and 4.6±1.1%, respectively. Therefore, it is clear that the robot 

collaboration reduced the muscle activity required for the tasks. However, additional evaluation 

with more participants is required and the framework assumes that the human and the robot will 

always be in contact. 

Van der Spaa et al. [28] focuses on the co-manipulation of a large object between a human and 

a bimanual mobile robot (a mobile base equipped with two Kuka robotic arms). The human wore 

an XSENS motion capture suit which is equipped with inertial measurement units (IMUs) and the 

Rapid Entire Body Assessment (REBA) scores were calculated to assess the ergonomic posture of 

the human. According to Hignett and McAtamney [29] REBA is defined as "a postural analysis 

system sensitive to musculoskeletal risks in a variety of tasks". Van der Spaa et al. conducted a 

study of four participants for the task of collaboratively rotating the box 180 degrees, clockwise 

and counterclockwise. Based on the ergonomics scores, the robot's planner adapts to improve the 

REBA score. However, a full wearable suit requires setup time and it requires to be adjustable to 

different body types and heights. 

Co-manipulation of extended objects is also an interesting problem in human-robot collabora­

tion. Mielke et al. [30, 31] collected data from human-human interactions of moving an extended 
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planar object and then developed an algorithm that enables human-robot co-manipulation of the 

same object. The collected data were from sleeves with markers worn by the. humans (e.g. mark­

ers to track human pose), handles with force/torque sensors on the object, and infrared markers 

mounted on the object. The robotic platform was the Baxter, a dual-arm robot, mounted on a 

mobile base. The proposed method was an extended variable impedance control that generated 

the robot's actions based on the sensors on the object and the sleeves on the operator, and it is 

called Neural Network Prediction Control (NNPC). A study with 16 participants was conducted to 

evaluate the feasibility of the proposed solution. Metrics such as minimum jerk, minimum torque 

change, and completion time were measured. The pair of a human and the NNPC-enabled robot 

showed better results in almost all metrics in comparison to human-human interaction. However, 

this approach requires handles with force/torque sensors to be added to the manipulated planar 

object, and the NNPC method is limited to performing translation or rotation in the horizontal 

axis only, while the object is parallel to the horizontal axis. Therefore, this approach is difficult to 

implement in the real world and is not extendable to translations or rotations in all the dimensions. 

Another aspect of human-robot co-manipulation is to resolve conflicts between who leads, the 

robot or the human (32]. The authors built an experimental setup with a Universal Robot 5 (URS) 

that grasps a box-shaped object made of plexiglass equipped with two force/torque sensors. The 

users are required to move the box-shaped object to different locations on a table based on the 

visual feedback that they received from a computer screen. Machine learning (ML) methods were 

used to detect if the human and the robot work in harmony or if they are in conflict (e.g. the robot 

has a different goal position than the user) based on the force/torque data. The ML classifies if 

the human and the robot work in harmony (WH), if there is a conflict in movement direction (CD) 

(e.g. the new target location requires a change in the moving direction), and if there is a conflict 

in parking location (CP) (e.g. the target location changes from point A to point B). If conflict 
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is detected by the ML models, then the robot will follow the user. Nevertheless, having sensors 

mounted on the objects is not realistic. 

Solanes et al. [33] developed a hybrid framework that uses visual and force sensing in order to 

enable a robot and a human to co-manipulate objects. A camera was used to estimate the motion of 

the human's hand and a force sensor mounted on the arm of a Sawyer cobot was used to estimate 

the external force. The operator physically grasps and manipulates the cobot's end-effector that 

has grasped the object and does not get in contact with the manipulated object. Based on these 

inputs, the hybrid framework was able to generate the desired robot motion for controlling the 

cobot's end-effector that manipulates the object. To demonstrate the framework in the real world, 

a glass with liquid was positioned on a flat surface that was mounted on the robot's end-effector 

and a user moved, pushed, and pulled the end-effector of the robot in the workspace. The liquid 

remained in the glass through the demonstration. However, the framework was not evaluated in a 

study and no metrics were defined for its validation. Additionally, the operator's position in space 

or the manipulated object information (e.g. size, dimensions, etc.) are not taken into accou~t as 

only their hand and applied force on the end-effector are considered. 

Ambauen (34) developed a robot-assisted manipulation of extended objects utilizing tactile 

sensing and spatial hand tracking to recognize user intent. The developed framework consists of 

a pair of force-sensing gloves, an industrial robotic manipulator SCARA, and an external motion 

capture system to track the positions of the robot, the human, and the extended object. The forces 

measured from the glove were classified into four gestures per hand (i.e. push, pull, grip, and 

squeeze) and a robot controller was developed that translated the gestures to translations in X­

and Y-directions and rotation around the Z-axis taking into account the hand position from the 

motion capture system. The proposed framework with gloves was evaluated with a user study of 

five participants and compared to a joystick-based control. The user study demonstrated that the 
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glove-based interface received higher scores in the adjective ratings of usable, repeatable, intuitive, 

natural, efficient, and accurate interface compared to the scores from the joystick-based interface. 

This Thesis was inspired by this work and extended to enable robot motion in all three dimensions 

(X, Y, and Z) and three rotations (roll, pitch, yaw). 

As it is clear from the prior work presented in this section, accurate force sensing and accurate 

gesture recognition are critical components in the development of a natural way of interaction 

between a human and a robot for co-manipulation tasks. Force sensing requires additional sensors 

that have to be mounted either on the object or on the cobot's end-effector may not be realistic 

or add additional cost. Additionally, none of the above methods focus their control scheme on the 

manipulated objects but mainly on the cobot's end-effector. Therefore, in this Thesis, we propose a 

framework that inherently enables human-robot co-manipulation by using as inputs the operator's 

hand gestures and the operator's spatial information (e.g. pose) with respect to the manipulated 

object without the use of force/torque sensors. 

1.3 Problem Statement 

In human-robot co-manipulation, a cobot assists its human teammate by bearing the weight of 

the manipulated object while the human guides the cobot through the task. In cases of complex 

tasks, the human may be required to be in contact with the manipulated object or to freely move 

around the workspace to provide better guidance to the cobot. Human-robot co-manipulation can 

improve working conditions for workers who are required to lift, transport, and manipulate objects, 

especially heavy or extended objects. By augmenting human skills, the cobots can improve safety 

and enhance productivity at the workplace. 

For the cobots to be accepted in the workplace, an intuitive way of interaction for object co-



manipulation is essential. Several researchers have proposed hand gesture-based interaction with 

a cobot for human-robot co-manipulation of objects, as presented in detail in Section 1.2). Hand 

gestures require very little training by humans to be able to control the robot, making them an 

intuitive and easy-to-use interface. Moreover, recognizing gestures via vision sensors provides a 

contactless interface for robot interaction. However, in the available hand gesture-based interfaces, 

gestures are mapped to predetermined robot motions for a defined application, without providing 

the flexibility of manipulating an object in all dimensions of motion (translation, rotation, and 

gripper actuation). 

Moreover, most available interfaces do not consider that a human teammate may be required to 

move within the workspace and may require the gestures to have an adjustable mapping to cobot 

motions based on the human position. For example, if a human teammate stands on the left side 

of the cobot and performs a pull gesture so that the object moves toward them, the cobot will be 

required to move the object to its left. However, if the human stands on the right side of the cobot 

and performs the same gesture as before, the robot should not move to the left but to the right, 

taking into account where the human stands. Therefore, there is a need for an intuitive and easy­

to-use robotic framework that enables naive users to guide a cobot through object co-manipulation 

tasks and includes adaptive mapping of robot motion using gestures and human position as inputs. 

1.4 Thesis Contributions 

This Thesis proposes a novel object-centric spatially-aware gesture-based motion specification 

technique for robot manipulation systems and has the following contributions: 

• Development of a framework that enables the human to guide an object that is grasped by a 

cobot in all dimensions of motion (translation, rotation, and gripper actuation), 
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• Development of an adaptive mapping algorithm, which is called Object-centric Spatially­

Aware Gesture-based control (OSAG for short), that takes into account the human's position 

in the workspace and the performed hand gestures with respect to the manipulated object, 

• Implementation of impedance control for smooth object co-manipulation. 

To the best of the Author's knowledge, this is the first control method that uses hand gestures 

and spatially-aware features of the operator (e.g. operator's location in space) with respect to 

the manipulated object and generates object-centric control commands. The developed method is 

generic and does not depend on a specific application. Additionally, as it is object-centric, it is 

not specific to a robotic arm and it can be easily implemented for any collaborative robotic arm. 

To evaluate the performance and usability of the proposed framework, an experimental scenario is 

developed where a human is required to co-manipulate an extended object by guiding the robot to 

pick it up from the table and place it into four tubes with different orientations in different locations 

of the workspace. A user study of 16 participants is conducted and the results are presented in this 

Thesis. 

1.5 Reader's Guide 

This Thesis is organized as follows. Section 2 provides an overview of the proposed object-centric 

spatially-aware gesture-based motion for robot manipulators and Section 3 provides a detailed 

explanation of the implementation of the proposed vision-based framework for human-robot co­

manipulation and its components. Section 4 described the system's validation and the experimental 

results from the user study for evaluating the framework. Last, Section 5 concludes the Thesis and 

discusses future directions of research. 
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2 Object-Centric Spatially-Aware Gesture-Based Motion Spec­

ification of Robotic Manipulation Systems 

Disclaimer: This chapter was mainly written by the advisor, Dr. Christopher Kitts, and adapted 

by the author. 

This Thesis explores a novel approach to object manipulation by a cobot using a gesture-based 

"object guiding" approach. Cobots can be programmed by kinesthetic teaching, which is a method 

that enables an operator to physically move the cobot's end effector to specific waypoints that be­

comes the part of a learned trajectory. Kinesthetic teaching is considered an interactive, simple, 

and natural way for operators to "program" the cobot without requiring writing code. This The­

sis advances the current research in the field of object manipulation by proposing an interactive 

operator-based "object guiding" which is referenced to the object being manipulated by the cobot. 

Therefore, the operator is not required to consider the cobot's movements but is solely focused on 

the object's motion in space. 

The developed approach extends prior work, which is discussed in Section 1.2), in the following 

two ways. First, the operator uses dual hand gestures to define the object's motion instead of the 

cobot's end-effector motion. Second, the spatial knowledge related to the relative hand positions 

with respect to the object is used to develop an object-centric motion command. The important 

benefit of the developed approach in this Thesis is that it allows the operator to naturally control the 

object in all dimensions (translations and rotations) without requiring them to consider the cobot's 

motion. Another benefit of the proposed approach is that it does not require additional retraining 

for extended objects of different dimensions that need to be co-manipulated and is independent of 

the application. 
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While the developed approach is generic, as a proof of concept, a long beam-like object that is 

grasped at one end by a robotic arm is selected, as is shown in Figure l. A Six degree-of-freedom 

motion control for the object is implemented that enables pure translational (along the x-, y-, or 

z-axis) or rotational commands (about the object's pitch, roll, or yaw axis) in the object frame. 

In order to achieve all the rotations, the operator is required to move in space. For example, if 

the operator desires to move the object in the roll axis with respect to the object frame, they are 

required to stand in front of the object (center position as shown in Figure 2). However, if the 

operator is positioned on the left or right of the extended object, then the roll rotation with respect 

to the object frame is not possible. 

Finally, it is worth noting that the proposed approach is limited within the cobot's workspace 

and the range and quality of the perception system for which it was developed, as described in 

Chapter 2. While various implementations of the overall strategy are possible, the spatial gesturing 

command specification capability that has been designed and implemented in this project relies on 

a three-step perception process, as described in the next sections. 

2.1 Dual Hand Gesture Recognition 

The first element of the proposed method is to recognize dual hand gestures by observing the op­

erator's two hands. To do this, an operator-referenced head-mounted camera is used, and a gesture 

recognition algorithm is employed, as described in Section 3.2. At the start of the interaction, the 

operator performs a gesture that defines the velocity of the manipulated object (slow or fast). Next, 

the operator performs the gestures necessary to move the object to the desired location. These 

gestures and associated commands are illustrated in ·Table 2. Three pairs of gestures specify object 

translational motion in each of the three operator-specific reference frame directions as shown in 
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X-axis -.. 
UP 

Y-aKis -Operator 
Z-axis -

.. pull 

l Rotate CW/CCW 

Down 

Figure I: Possible Motion commands in Object frame relative to operator (not to scale) 

Figure I: Push/Pull ( +/- x-axis motion), Right/Left (-/+ y-axis motion, and Down/Up ( +/- z-axis 

motion). Two pairs of commands specify rotational motion in the form of a pivot point and the 

sense of rotational direction: Rotate Up/Down ( +/- roll motion) and Rotate Counter-Clock Wise 

(CCW) I ClockWise (CW)(+/- yaw motion). 

Given these gesture commands, it should be noted from Figure 2 that converting the command 

to object motion requires an understanding of the relative position and orientation of the operator 

with respect to the object. For example, in the scenario shown in Figure 2, the "Push" command 

would lead to object motion in the opposite direction if the operator was issuing that command 

from the other side of the object. Similarly, the pivot point of an object Pitch, Roll, or Yaw 

command depends on the location of the hand along the object's x-axis. Because of this, spatial 

sensing is required, thereby motivating the tasks that are implemented in steps two and three of the 

perception process. 
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Table 2: Robot command generation based on gesture recognition and human position 

Position 
Gestures Left Right Center 

Motion Command axis (Object Frame) 
Push +Y-axis -Y-axis -X-axis 
Pull -Y-axis +Y-axis +X-axis 
left +X-axis -X-axis +Y-axis 

Right -X-axis +X-axis -Y-axis 
Rotate Up Y-axis-Counterclockwise Y-axis-Clockwise X-axis-Counterclockwise 

Rotate Down Y-ax.is-Clockwise Y-ax.is-Counterclockwise X-axis-Clockwise 
Rotate qoclwise Z-ax.is-Clockwise 

Rotate Countercloskwise Z-axis-Counterclockwise 
Up +Z-axis 

Down -Z-ax.is 
Ok Gripper Operation(Open/Close) 
Fast Fast Speed mode activated 
Slow Slow Speed mode activated 
Stop Motion Stopped 

2.2 Relative Operator-Object Orientation 

The second element of the perception process establishes the relative orientation of the operator 

with respect to the object. The developed system determines the correspondence of the operator 

frame with the object frame (see Figure 4 for frame references). So, for example, this knowledge 

allows a "push" gesture, which specifies motion away from the operator along the operator's X­

axis, to be interpreted as a motion command for the object to move along its appropriate axis in the 

indicated direction. Figure 2 describes this process for several "push/pull'' command scenarios. To 

achieve this adaptive capability for our system, a camera mounted on the cobot's end-effector and a 

human detection and tracking algorithm are used to determine the relative position of the operator 

with respect to the object, from the point of view of the cobot-mounted camera. The following 

assumptions are made: 

• The relative poses between the object, the cobot's end-effector, and the cobot-mounted cam-
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era are known. 

• The operator faces the object, which allows the relative alignment of the operator and object 

axes to be computed. This process is described in Section 3.3. 

center position X-axis -

Y-axis -

Z-axis -

Left position 
Right position 

'-~ ~ -Vy +Vy 
~ 

-Vy +Vy 

Figure 2: Motion generation for several "push/pull" command scenarios based on operators posi­
tion 

2.3 Pivot Point Position Sensing 

The third step of the perception process calculates the relative position of the operator's hands to 

be computed in the object's frame. This is critical for object rotation commands given that rota­

tion pivot points may be specified at arbitrary locations along the object's length. To do this, the 

manipulator-mounted camera is equipped with a depth sensor that is used to measure. the distance 
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of the operator's hand which is close to the camera along the object's long axis. Given the knowl­

edge of the relative poses of the object, the cobot's end-effector, and the cobot-mounted camera, 

the location of the pivot point along the object's length can be computed geometrically. For exam­

ple, Figure 3 illustrates an object yaw command using the calculations described in this section, 

and it indicates how this relates to the cobot's motion that must be implemented to produce the 

desired object motion. The overall process for the object motion control is detailed in Section 3.4. 

x.ac)(is -

Y-axls -

Z-axis -

Figure 3: Yaw command in operator frame and resulting End-effector motion 

2.4 Mathematical Formulation 

This section outlines the underlying mathematics supporting the computation of object transla­

tional and rotational velocity commands as a function of gesture-based commands. This transfor­

mation is based on a number of assumptions, as follows: 
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• gbi T: The relative transformation of the object frame { Obj} with respect to the cobot's 

end-effector frame { E} is known. 

• ~T: The relative transformation of the cobot-mounted camera { C} with respect to the 

cobot's end-effector frame {E} is known. 

• The relative orientation of the operator frame will be discretized such that its frame axes are 

assumed to align with the frame axes of the object; however, which operator axis is aligned 

with which object axis must be determined. 

• For rotational commands, one hand of the gesture command specifies a pivot point, which is 

assumed to be at a point along the long axis of the object that is the closest distance to that 

hand. 

Figure 4 depicts an example of the various frames associated with the transformation process. 

In particular, there are frames for the operator, the object, the cobot's end-effector, and the cobot­

mounted camera. 

In the first step of the 3-step perception process (Sections 2.1, 2.2, and 2.3), recognized gestures 

correspond to different motion commands, referenced to the operator's frame. The proposed work 

assumes constant jog velocities for the object to move (2-speed setpoints are supported in the 

current implementation). Therefore, the critical information produced by the gesture recognition 

process is the direction of translation or rotation with respect to operator frame axes {Op}. The 

output of this process for a recognized gesture is mapped to one of the velocity jog commands as 

shown in Table 3. 

The second step of the perception process calculates the relative frame rotation of the operator 

frame with respect to the object frame, g~R. This is determined by sensing the relative frame 
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OPiJ 

op-w 

Figure 4: Frames associated with the transformation process 

Table 3: Velocity Commands in Operator frame 

push pull right left up 
[+v, 0, O]T [-v, 0, O)T [O, -v, O]T [O, +v, O]T [O, 0, +v]T 
Rotation Rotation Rotation Rotation 
Down Up ccw cw 
[+w, 0, OJT [-w, 0, O)T [O, 0, +w)T [O, 0, -w]r 

down 
[O, 0, -v]T 

rotation of the operator frame via the cobot•mounted camera frame, gPR' and then using the known 

rotations jR and g,,jR. Given that the perception process established gPR, g~R is computed 

using the following equation: 

ObiR_ObJR.ER.c R-E R-1.ER.c R 
Op - E C Op ~ Obj C Op 

With the computation of the g~R, a gesture-based translational velocity command in the oper-
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ator frame can be transformed into a velocity command in the object frame based on the following 

equation: 

(2) 

Given this, for translational velocity commands, the cobot's end-effector velocity command 

can be computed as a Cartesian velocity command based on the following equation: 

Ev_ E R ObJv 
- Obj • (3) 

For rotational commands, the sense of object rotation can be computed by using the following 

equation: 

(4) 

However, the cobot's motion command requires knowledge of the pivot point for the rotation, 

which is determined in step 3 of the perception process. 

The third step of the perception process determines the location of the hand closest to the cobot­

mounted camera in object frame, ObjPp· The location of this point relative the object is calculated 

as follows: 

o~Jp _ Ob;T cp _ ObjT' ET cp _ E T-1 ET cp 
P - C • P - E • C • P - Ob; • C • P (5) 

where ~bjT represents the relative transformation of the end-effector frame { E} with respect to· 
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the object frame{ Obj}, cPP is the position of the hand 'relative to the cobot-mounted camera and 

~jT represents the relative transformation of the cobot-mounted camera { C} with respect to the 

object frame { Obj}. We only consider the distance of the pivot point along the length of the object, 

which is along the x-axis in the object frame. Therefore, to compute the pivot point in the object 

frame ObJPpivot we use the following equation: 

ObJ ( l O O ) ObJ 
Ppivot = 0 0 0 • Pp 

000 
(6) 

Next, to compute the required cobot arm motion, the distance of the pivot point from the end 

effector is required, in addition to the sense and axis of the commanded rotation. Therefore, EPpi~ 

is required, which is computed by the following equation: 

E - E T Obj 
Ppivot - Obj • Ppivot 

Finally, the required robot Cartesian commands for the commanded pivot are as follows: 

2.5 Summary 

Ew _ E R· Objw 
- Obj 

E E E 
V = Ppivot X W 

(7) 

(8) 

(9) 

This research proposes a novel gesture-based approach for controlling a cobot manipulator to per­

form object manipulation tasks. The system takes advantage of human intuition by allowing the 
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user to directly specify the desired object motion through hand gestures, instead of specifying the 

manipulator's endpoint motions. Spatial information regarding the relative positions of the hands 

and object are incorporated to translate the gestures into appropriate manipulator motions. This 

system simplifies the programming process for the user and enables more natural control of the 

object. 
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3 Implementation of the Proposed System 

This Thesis proposes a novel vision-based framework that enables human-robot co-manipulation 

of extended objects, such as pipes, iron bars, long sticks, etc. As the goal of this Thesis is to 

develop a robotic framework that adapts to different human positions in the workspace and enables 

control of a co-manipulated object by a cobot in three-dimensional space (translation, rotation, and 

gripper actuation), a complete system is developed. 

Panda 

~~I~) 

ZED Mini 
Camera 

Headband 

Figure 5: Hardware Setup: ZED Mini (stereo) camera; Headband Webcam; Franka Emika Panda 
Cobot. 

The hardware of the system (see Figure 5) consists of a collaborative robotic arm (cobot), 

a computer that runs the developed framework and two cameras; one mounted on the cobot's 

end-effector to calculate the operator's position and the hand distance from the end-effector and 

one worn on the human's head to detect the operator's hand gestures. On the software side, a 
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framework using Robot Operating System (ROS) [35] was developed. ROS is a widely used open­

source middleware suite for robotics. The developed framework, which is shown in Figure 6, 

has the following components; vision-based hand gesture recognition, human and hand position 

detection, object-centric spatially-aware gesture-based (OSAG) control, and cartesian impedance 

controller. The system works as follows. 

Headband Camera 

--------------------------------, RGS I Hol'!J/ Gfiture I 

D<1to 
I 

Vision-Based Hand -------. -----.• 
Gesture Recognition ;: 

Object-Centric 11 
Spatially- End-Effect 
Aware Pose Cartesian 

Gesture-based ...--........ Impedance 
(OSAG) Controller 

Control 
Human and Hand 

End•effector Camera 

Position Estimation .....,. __ _ 
I.._ _____ ___, 1-iumon Relative 
I Position & Hand 
I Distonce Robot State --------------------------------• Workstation 

Figure 6: Overview of the proposed framework for human-robot co-manipulation. 

• The camera mounted on the user's headband takes images of the user's hands at a rate of 

30 frames per .second and using the vision-based hand gesture recognition module, the rec­

ognized gesture is outputted. In order to recognize the gesture, Google Hand Detection 

Mediapipe is used which outputs 21 distinct landmarks for each hand, which are then con­

verted into features. The features are then fed into a deep learning model that predicts the 

user's gesture command by using the current hand features and the stored trained model. In 

total, 14 gestures that require both hands are selected, as shown in Figure 7, which enables 

the user to guide the robot in all dimensions (rotation, translation, and gripper actuation) 

and also toggles its speed (slow or fast). Section 3.2 provides details about hand gesture 

recognition. 
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Push 

left 

Ok 

Pull 

Rotate Up 

Stop 

Up 

Rotate 
counterclockwise 

Slow 

Down 

Rotate 
clockwise 

Figure 7: Dual Hand Gestures 

Right 

Rotate Down 

Fast 

• The camera that is mounted on the cobot's end-effector is used to detect the human's position 

in the workspace with respect to the robot's end-effector, i.e. if the human is on the left, 

right, or in front of the end-effector. Additionally, the stereoimages are used to compute 

the distance of the hand with respect to the camera, which is considered the hand position. 

Section 3.3 provides a detailed description of the human and hand pose estimation. 

• The recognized gesture together with the human and hand position estimation are used as 

inputs by the OSAG control module, which is a novel algorithm that generates a new Carte-
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sian pose for the manipulated object based on the inputs. This algorithm provides an adaptive 

mapping between the performed hand gestures and the robot's motion based on the human's 

position. For example. if the human performs the "pull" gesture based on where the human 

stands with respect to the robot (i.e. left, right, or center), the algorithm will generate differ­

ent motions for the manipulated object. If the user stands to the left or the right side of the 

manipulated object and has selected a gesture that requires robot rotation, then the closest 

hand to the end-effector's camera acts as the pivot point of the rotation. To the best of the 

author's knowledge, this is the first system that adapts the mapping of manipulated object 

motion to the human position in the workspace. Complete mapping of motion based on the 

gestures and position is described in Section 3.4. 

• The new cartesian pose that is desired for the manipulated object that is generated from 

the OSAG control is then sent to the cartesian impedance controller that regulates the joint 

torques of the robotic arm to achieve the desired pose for the manipulated object. The Carte­

sian controller runs as an attractor with constant damping and stiffness and _has a frequency 

of l 00 Hz. The controller is described in detail in Section 3.5. 

The following sections discuss in detail each component of the framework. 

3.1 Multi-Camera and Robotic System 

The multi-camera system consists of two cameras; one RGB camera from Logitech and one ZED 

Mini Stereo camera from Stereolabs. The Logitech is a USB Webcam C6 l 5 Full High Definition 

(HD) camera with a resolution of 1080p and provides 30 frames per second (fps). Table 4 sum­

marizes the camera's characteristics. It is mounted on an adjustable headband, which enables the 

camera to be easily worn and adjusted by adults. Figure 5 shows a user wearing the web camera. 
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Table 4: Specifications of the Logitech C615 Webcam (adapted from [2]) 

Resolution & frames per second (fps) Full HD 1080p/30fps; HD 720p/30fps 
Diagonal Field of View 7go 

Autofocus Yes 
Auto Light Correction RightLight 2 
Connection USB 

The ZED mini stereo camera outputs RGB and depth information and is a popular sensor for 

robotic applications that require images and depth information [36-38]. The ZED mini is mounted 

on the end-effector of the robotic arm, as shown in Figure 5. During the collaborative tasks, the 

ZED mini camera is moved by the robotic arm in a way that can observe the human. Table 5 

provides the specifications of the ZED mini camera. 

The robotic system is a collaborative robotic arm (cobot) from the Franka Emika company. The 

cobot is called Panda and is equipped with a 2-finger gripper, as can be seen in Figure 5. Panda 

has 7-Degrees of Freedom (DoF) and is equipped with torque sensors in all 7-axis. According to 

the datasheet [39], the maximum Cartesian velocity of the end-effector is 2 mis and the maximum 

payload is 3 kilograms. The 2-finger gripper can apply a continuous force of 70 N and a maximum 

force of 140 N. 

Table 5: Specifications of the ZED Mini Camera (adapted from [3]) 

RGBOutput 

Resolution 
Side by Side 2x (2208x1242) @15fps; 2x (1920xl080) @30fps; 
2x (1280x720) @60fps; 2x (672x376) @lO0fps 

Field of View Max. 90° (H) x 60° (V) x 100° (D) 
Connection USB 
Depth Output 
Depth Range 0.10 m to 15 m (0.3 to 49 ft) 

Depth Accuracy 
< 1.5% up to 3m 
<7% up to 15m 
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3.2 Vision-Based Hand Gesture Recognition 

This section explains the vision-based hand gesture recognition that is developed in this Thesis. 

As the goal of this Thesis is to develop an intuitive interactive method for extended object co­

manipulation, the user may wish to translate or rotate the object, adjust the speed (slow or fast), 

and actuate the gripper. Therefore, 14 gestures that require both hands are defined, as shown in 

Figure 7. 

In order to recognize the 14 gestures, a deep learning-based framework is developed. As input, 

the image (RGB) is used from the headband web camera. The image is given to the Google 

Mediapipe library [40) for detecting hand landmarks [41]. The hand landmark detection model 

is a two-step Convolutional Neural Network (CNN) and was evaluated on different skin tones, 

gender, and geographical regions to ensure its accuracy (42]. The hand landmark detection model 

outputs and tracks 21 landmarks per hand, as shown in Figure 8. Each landmark has 3 values, x, 

y, and z (dimensions in 3D with respect to the camera). Let us consider the left-hand landmarks 

as Li,k and the right-hand landmarks as Ri,k where i = 0, 1, 2, ... , 20 and k represents x, y, and z 

dimensions. 

Subsequently, the hand landmarks are used to extract the following features: 

• the Euclidean distance D LLi of each left-hand landmark i from the left-hand wrist point 0 

calculated by Equation ( 10). 

DLL; = (L- - Lo )2 + (L- - Lo )2 + (L- - Lo )2 
i,.x ,x 1,y ,y i,z ,z (10) 

• the Euclidean distance DRRi of each right-hand landmark i from the right-hand wrist point 
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Figure 8: Left and Right Hand Landmarks. 

0 calculated by Equation ( 11 ). 

(1 l) 

• the Euclidean distance DRLi of each right-hand landmark i from the left-hand wrist point 0 

calculated by Equation ( 12). 

(12) 

• the Euclidean distance DL~ of each left-hand landmark i from the right-hand wrist point 0 

30 



calculated by Equation (13). 

(13) 

The extracted features together with the hand landmarks are normalized from Oto 1 using min­

max scaling. The normalized features are used to train a 3-layer Recurrent Neural Network (RNN) 

to classify the gestures. For the training, 2000 samples per gesture (class) are used. Additionally, 

a null class with random gestures is created with 4000 samples and the stop gesture class requires 

4000 samples for improving accuracy. It is worth noting that all samples are collected by one 

person. In the Section 4, the accuracy of the system is discussed in a user study of 16 participants. 

After the RNN model is trained, it is stored in the TensorFlow Keras model so it can detect the 

,~ i, 

Predicted 
GNtUN 

Hand 
Detection 

L 

► 

NO 

NO 

-♦ 

RNNModel .. 

collect hand 
landmarks 

Feature 
Extraction 

Figure 9: Flowchart of the proposed vision-based hand gesture recognition 

performed gestures. Figure 9 presents the flowchart of the vision-based hand gesture recognition. 
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The detected (predicted) gestures are used by the OSAG control. 

3.3 Human and Hand Position Estimation 

This section presents the human and hand position estimation by using the RGB and Depth data 

from the ZED mini camera that is mounted on the cobot's end-effector. The human's position with 

respect to the robot is important to ensure that the robot has a better understanding of the human's 

input for the co-manipulation. 

Human Position Estimation. The ZED mini camera has an API (Application Programming 

Interface) that enables 3D object detection [43] including humans. The API outputs the bounding 

box of the detected objects and their ID (person, vehicle, etc.). In our application, the interest is 

on the person who stands in front of the robot; therefore, when a human is detected within the 

workspace of the robot, the detected person's bounding box is used for further processing. The 

bounding box consists of the following four points; top left point Pa, top right point Ptr, bottom 

left point Pbl, and bottom right point Pbr, as shown in Figures 10 and 11. It is important to note 

that the developed framework assumes that only one person collaborates with the cobot for a co­

manipulation task. 

Figure 10: Bounding box of human standing on the left (left image) and on the right (right image) 
of the cobot. 
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Figure 11: Bounding box of human standing in front of the cobot and the defined x and y axis of 
the image. 

The next step is to determine the relative position of the person with respect to the robot, i.e. 

if the person stands on the right/left or in front of the cobot's end-effector (as shown in Figures 

10 and 11 ). As the ZED mini q1mera is mounted on the cobot's end-effector, the relative position 

of the human can be estimated with respect to the camera coordinate system. The RGB image 

consists of pixel points that each have an assigned x and y value that represents the position in the 

image. The top left pixel of the image has x and y values equal to 0, as shown in Figure 11. The 

most right pixels of the image have x value equal to N, where N represents the total number of 

pixels in the x direction. 

To estimate if the person stands on the left or right or in front of the cobot's end-effector, it is 

sufficient to estimate if the person's bounding box is in the center of the image, or at the left or 

right. Therefore, the pixel distance PX L in the x direction between the left side of the bounding 
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box and the left side of the image is calculated based on Equation ( 14). Similarly, the pixel distance 

PX R in the x direction between the right side of the bounding box and the right side of the image 

is calculated based on Equation ( 15). 

PXL = Pt1,x -0 

PXR = N - Ptr,x 

(14) 

( 15) 

If PXL is less than PXR and PXL value is less than a threshold value a then the person stands 

on the left of the cobot's end-effector. Similarly, if PXL is greater than PXR and PXR value is 

less than a then the person stands on the right of the cobot's end-effector. If the PXL and PXR 

values are greater than a, then the person stands in front of the end-effector (center of the image). 

The threshold value a is selected empirically as 50 cm. The estimated position of the person (Left, 

Right, or Center) is sent to the OSAG control (Section 3.4). 

Hand Position Estimation. It is also important to estimate the hand position with respect to 

the cobot's end-effector in order to recognize the point at which the user would like to rotate the 

object. The images of ZED mini are processed by the Google Mediapipe library [40) for detecting 

hand landmarks [ 41]. Figure 8 shows the hand landmarks. ZED mini camera also provides depth 

data, and each pixel of the RGB image has a depth value that represents the distance from the 

camera. Therefore, to estimate the distance of the hand that is closer to the ZED mini camera, the 

average depth value of the landmark 9 for the hand and its 8 neighboring pixels is calculated. The 

hand position estimation is then sent to the OSAG control (Section 3.4). Figure 12 provides the 

flowchart of the human and hand position estimation process described in this section. 
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Figure 12: Human and Hand Position Estimation 

3.4 Object-Centric Spatially-Aware Gesture-based (OSAG) Control 

This section describes the Object-Centric Spatially-Aware Gesture-based (OSAG) control (OSAG 

control for short) that is developed in this Thesis. The OSAG control uses four inputs: gesture, 

representing the detected hand gesture (described in Section 3.2); position, indicating the current 

human position ("left", "right", "center") (described in Section 3.3); distance, providing informa­

tion about the user's hand distance to the robot's end-effector (described in Section 3.3), and the 
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current robot pose published by ROS. Table 2 presents the mapping between the robot commands 

and the inputs from the human (gesture recognition and human position). 

The OSAG control algorithm uses the current robot pose as one of its inputs. The current robot 

pose, which contains the 3-dimensional position of the end-effector and the four quaternion values 

that represent the rotation, is separated into two 3-dimensional vectors, one is denoted as 8 v that 

represents the translation of the robot's end-effector with respect to the robot base B and one is 

denoted as 8 r that represents the rotation as Euler angles (i.e. roll, pitch and yaw) of the robot's 

end-effector with respect to the robot base B. The robot base frame is shown in Figure 13. The 

Euler angles are calculated using the four quaternion values using the equations proposed in [ 44]. 

Next, based on the human's inputs, the human's position with respect to the robot, and the human's 

distance to the robot, the OSAG control algorithm takes the following action: 

Figure 13: Franka Emika Panda robot with end-effector and robot base frames. Red, Green and 
Blue represent the X, Y and Z-axis, respectively. 

Speed Control: The algorithm selects between two speeds (slow or fast) based on the user's 
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gesture (gestures slow and fast are shown in Figure 7). The default speed if the user does not 

select a speed is slow. The slow and fast speeds for translation are equal to 0.02 mis and 0.04 mis, 

respectively. The slow and fast speeds for rotation are equal to 2° per second and 4° per second, 

respectively. The user can change the speed at any time by performing one of the two gestures (i.e. 

slow or fast). Additionally, there is the stop gesture, which stops the robot's motion. 

Control in Translation: When the user performs one of the following gestures, push, pull, left, 

right, up, and down, the algorithm will take into account the user's position (left, right, or center) 

to define in which direction the robot moves. For example, if the user makes the gesture "push" 

and stands on the right of the robot's end-effector, the robot will move in the negative direction of 

the Y-axis of the end-effector. However, if the user stands at the center, then the end-effector will 

move in the negative direction of the X-axis. Table 2 represents all the robot commands based on 

the gesture and the position of the human with respect to the robot's end-effector. Before the robot 

starts moving, the end-effector is at position Ev = [O, 0, o]r in the end-effector's coordinate system 

E (shown in Figure 13). The new position of the end-effector is defined based on the user's gesture 

and position and the selected speed, e.g. if the user's gesture is right and stands at the left of the 

end-effector and speed is selected as 0.02 mis, then the algorithm adds a step of 0.002 m every 1/10 

of the second in the positive X-axis and therefore the new end-effector position is [0.002, 0, op with 

respect to the end-effector's original position. In another example, if the user stands on the center 

of the end-effector and performs the right gesture, then the algorithm will subtract 0.002 m every 

1/10 of the second in the Y-axis and therefore the new end-effector position is [0, -0.002, oJr with 

respect to the end-effector's original position. 

Let Ev new represent the new end-effector position with respect to the end-effector frame E. In 

order to control the robot, the OSAG controller is required to output the desired robot translation 

with respect to the robot base not with respect to the robot's end-effector. Therefore, the manipula-
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tor's kinematics :T is used, which represents the transformation of the robot's end-effector frame 

E with respect to the robot's base frame B. The new end-effector pose 8 v 11~ with respect to the 

robot base will be calculated by the following equation: 

B BT E 
Vnew = E • Vnl!w ( 16) 

The output of the OSAG controller is denoted as x d and calculated by Equation 17. The xd is 

then sent to the Cartesian Impedance controller (Section 3.5). 

(17) 

Control in Rotation: When the user performs one of the following gestures, rotate up, rotate 

down, rotate clockwise, and rotate counterclockwise, the algorithm will consider the user's position 

(Left, Right, or Center) and the position of the hand that is closer to the camera (as explained in 

Section 3.3) in order to calculate the desired robot movement.First, the position of the hand relative 

to the cobot mounted camera is projected onto the object to location of the desired pivot point 

and the distance from the pivot point to the current end-effector position, ds.Then, the algorithm 

calculates the desired step using the following equation: 

step= 2 * dE * sin(¢/2) (18) 

where </J is equal to 0.2 degrees if slow speed is selected or 0.4 degrees if fast speed is selected (as 

explained in Section 3.3). 

Next, the algorithm has to calculate the new pose of the end-effector. The starting position 
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-Effector Pose 

Figure 14: Calculation of translation and rotation step based on user input. 

of the end-effector is considered as Ev = (0, 0, o]r and the starting rotation of the end-effector is 

Er = (0, 0, o]r. Based on the user's selection of rotation (either around the X, Y, or Z-axis), the 

new pose of the end-effector is calculated as follows: 

• If rotation is around the X-axis: EV new = [0, 0, op and Er new = [±4>, 0, O]T 

• If rotation is around the Y-axis: EVnew = [0, 0, step]T and Er new= [O, ±4>, O]T 

• If rotation is around the Z-axis: Ev new = [0, step, op and £ r new = [0, 0, ±¢,Jr 

where ± denotes that if rotation is in the positive direction, it will be plus ( + ), and if it is in the 

negative direction, it will be minus ( - ). The output of the OSAG controller xa is calculated by the 

equation ( 19) and it is sent to the Cartesian Impedance controller (Section 3.5). 

(19) 

Gripper Operation: When a robot has to manipulate objects, it is also important to actuate 

the gripper. Therefore, the gesture "OK" shown in Figure 7 is used to enable the gripper to grasp 
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or release an object. As the gripper has only two states (open and close), the gesture "OK" is used 

for the transition from the open to the close state and vice versa. 

3.5 Cartesian Impedance Controller 

The OSAG control outputs the desired end-effector pose. The Cartesian impedance controller 

takes as input the desired end-effector pose and the current state of the joint space of the robot 

and calculates the required torques in the joint space to enable the robot to move to the desired 

end-effector pose. 

The Cartesian impedance controller developed in this Thesis was inspired by Mayr & Salt­

Ducaju [45). The Panda robot is a 7-DoF robotic manipulator and its joint space is denoted by 

0 E lR7. The gravity-compensated dynamics of the Panda robot can be described by the following 

equation [45,46): 

M(0)0 + C(0, 0)0 = r(0} (20) 

where !v/(0} E IR7
x

7 represents the generalized inertia matrix, C( 0, 0) E IR7
x: represents the effects 

of Coriolis and centripetal forces and r( 0) E IR7 is the vector of the actuator torques. The torque 

,(0) is calculated by adding two joint-torque signals, as shown in the following equation: 

r(0) = Tca(0) + Tns{0) (21) 

The TC4](0) is the torque required to achieve a Cartesian impedance behavior based on the error 
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eca E IR.6 in Cartesian space in the frame of the robot's end-effector [ 45, 47): 

(22) 

with J(0) E IR,5x7 is the Jacobian matrix relative to the robot's end-effector, Kea E IR.6x6 is the 

virtual Cartesian stiffness matrix, Dea E IR6x6 is the virtual Cartesian damping matrix and error 

eca is the difference between the desired Cartesian pose xd and the current Cartesian pose Xe, i.e. 

1 • - - carte;i;Tmpe~e·c;,;oi - ·, 
-9 
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Figure 15: Control diagram of the Cartesian Impedance Controller 

The Tns(0) is the torque required to achieve a joint impedance behavior with respect to a desired 

configuration and projected in the null space of the robot's Jacobian in order to have a smooth 
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Cartesian motion of the robot's end-effector (45,48): 

(23) 

where Kns E JR7x7 is the virtual joint stiffness matrix, Dns E ]R7x7 is the virtual joint damping 

matrix, error ens is the difference between the desired joint space configuration 0null and the current 

joint space configuration 0, i.e. ens = 0null - 0, and JT(0))f is the Moore-Penrose pseudoinverse 

matrix (45, 49, 50) which is calculated by the following equation: 

(24) 

The calculated torque from Equations (21 ), (22) and (23) is then sent to the robot joints using 

ROS. Figure 15 shows the Cartesian Impedance control diagram. 

3.6 ROS Implementation 

For the implementation of the developed system, the Robot Operating System (ROS) is selected 

as it is a middle-ware that enables communication between different hardware and software com­

ponents. Figure 16 shows an overview of the ROS implementation for the developed system. ROS 

acts as a middle-ware framework, streamlining how different parts of the robotic system interact. 

ROS has several components, such as nodes, topics, messages, services, etc. The proposed system 

uses nodes and topics. Nodes are Python or C++ scripts of specific functionality and topics are 

used by nodes to transmit data. 

Several ROS nodes are depicted in the block diagram shown in Figure 16. One such node, the 

Hand Gesture Node, is responsible for capturing and interpreting hand gestures from the Operator. 
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Figure 16: ROS Architecture 

Another node, the Human Pose Estimation Node, focuses on estimating a human's pose (Left, 

Right, or Center) based on visual input from a camera and also estimates the distance of the closest 

gesturing hand to the camera. 

The OSAG Control node plays a crucial role in controlling the cobot and the gripper. It achieves 

this by subscribing to topics published by the Hand Gesture and Human Pose Estimation nodes. 

By interpreting the information from these topics, the OSAG Control node determines the desired 
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pose for the cobot's end effector. This desired pose information is then published on another ROS 

topic. 

The Robot State node keeps the OSAG node updated by publishing data about the cobot's 

current state, such as the position of its various joints and end-effector position. This information 

is crucial for calculating the next desired end-effector Pose. The Robot Controller subscribes to 

two topics: one that publishes the desired end-effector pose from the OSAG Control node and 

another that publishes the robot's state information from the Robot State node. By combining 

these inputs, the Robot Controller calculates the control commands necessary to move the robot 

toward the desired pose. These calculated commands are then sent to the robot's actuators. 

Figure 16 showcases how ROS facilitates communication and coordination between various 

software components for the developed system. This allows the cobot to respond to human ges­

tures, interpret human poses, and ultimately perform actions based on the perceived information. 

As it is ROS-based architecture, it can easily be implemented in other cobots that are ROS-enabled. 

The software code for the complete Object-Centric Spatially-Aware Gesture-based motion con­

trol in ROS can be found in the following GitHub repositories: 

https://github.corn/Rehan080374/thesis_code.git 
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4 Experimental Results 

Cobots are designed to work alongside humans; therefore, new methods of interaction with cobots 

are important to be evaluated by humans. To evaluate the proposed vision-based framework for 

human-robot co-manipulation, a user study is conducted. The study was approved by the Insti­

tutional Review Board (IRB) at Santa Clara University with the IRB protocol #23-09-2017. This 

Section provides details on the experimental setup and protocol, user study, and system evaluation. 

\ 
\ 

UIJ J 
ti 

) 

Figure 17: Robot Setup for the User Study 

4.1 Experimental Setup & Study Protocol 

This section explains the experimental setup that is used to evaluate the proposed framework and 

the study protocol approved by the IRB (Study protocol #23-09-2017). 

Experimental Setup. The experimental setup is shown in Figure 17. The Panda cobot is 
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mounted on a table and four white tubes (boxes) with different orientations are mounted on two 

stands, as shown in Figure 17. An extended object, which is positioned on the table is the object 

that requires to be moved to each of the white tubes. The extended object is a meter-long light 

object (foam). The user has to control the robot using hand gestures while having the freedom to 

move around the cobot's workspace in order to complete the co-manipulation task. 

Table 6: Basic Questionnaire 

Questions Expected answers 
I. What is your age group? age 
2. Please indicate your gender(s). gender 
3. Please indicate your race-ethnicity(ies). ethnicity 
4. Are you Right-Handed, Left-Handed, or Ambidextrous? hand preference 
5. Can you move your hands and arms without any difficulties? arm mobility 
6. Can you move your body from the waist up without any diffi- upper body mobility 
culties? 
7. Do you use any assistive mobility devices? assistive device use 
8. Have you ever collaborated with a robot before to complete a robot collaboration history 
task? (1-5) 
9. I am familiar with Gesture Control gesture control history ( 1-

5) 
10. I am comfortable collaborating with robots comfort level( 1-5) 

Table 7: NASA Task Load Index Questionnaire 

Questions Average Score(0-10) Standard Deviation 
How mentally demanding was the task? 4.875 2.78 
How physically demanding was the task? 4.75 1.95 
How hurried or rushed was the pace of the task? 2.9375 1.88 
How successful were you in accomplishing 
what you were asked to do? 8.25 1.34 
How hard did you have to work to accomplish 
your level of performance? 5.5 2.45 
How insecure, discouraged, irritated, stressed, 
and annoyed were you? 2.6875 2.65 
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Table 8: Hurrian Robot Co-manipulation Questionnaire 

Questions Average score Standard Deviation 
(0-IO) 

Perceived Usefulness 
I accomplished the given tasks in• reasonable time. 7.625 1.89 
I accomplished the given tasks successfully. 8.5 1.62 
Perceived Safety and trust 
The robot's actions were predictable. 7.06 2.63 
I felt safe using the robot. 9.18 1.33 
I felt comfortable using the robot at lo\\'. speeds. 8.5 2.39 
I felt comfortable using the robot at high speeds. 7.25 2.19 
Perceived ease of use 
I found the robot easy to use. 7.68 1.48 
Being able to move around the robot made it I 

easier to manipulate the object. 7.37 2.49 
G~sture commands were intuitive. 7.93 1.67 
The robot met my expectations. 8.37 1.36 
Perceived Interaction 
I had to learn mote about robots in order to 
be able to interact with the system. 2.12 2.3 I 
My gestures were easily recognized by the system. 6.5 2.0 
It was easy to perform the gestures while looking 
at the object that was manipulated. 7.5 1.98 
I was able to switch between different 
commands rapidly. 7.82 2.50 
Ethical Consideration 
I am concerned about my privacy when 
using the robot. 1 1.41 
Open-ended Questions 
What additional functionalities should the robot have? n/a n/a 
What did you like about the robotic system? n/a n/a 
What frustrated you about the robotic system? n/a n/a 
Please provide any additional comments/feedback 
for the robotic system. n/a n/a 
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Table 9: System Usability Scale (SUS) Questionnaire 

Questionnaire Average Score Standard Devia-
(1-5) tion 

I think I would like to use this system frequently. 3.20 0.86 
I found the system unnecessarily complex. 2.00 1.07 
I thought the system was easy to use. 3.53 0.83 
I think that I would need the support of a technical 
person to be able to use this system. 2.07 1.33 
I found the various functions in this system were well 3.67 1.11 
integrated. 
I thought there was too much inconsistency in this sys- 2.13 0.83 
tern. 
I would imagine that most people would 
learn to use this system very quickly. 4.07 0.70 
I found the system very cumbersome to use. 2.27 0.96 
I felt very confident using the system. 4.00 0.53 
I needed to learn a lot of things before I could 1.93 1.03 

Study Protocol. To evaluate our framework, a user study was conducted. The study took place 

in one visit and the following procedure was followed: 

I. The participant read and signed the consent form approved by the IRB. 

2. The participant filled out a basic questionnaire that included questions about demograph­

ics, and experience with robots, and also confirmed that the participants have upper-body 

mobility. The basic questionnaire can be found in Table 6. 

3. The participant wore the headband with the camera. The headband was sanitized before and 

after every use. The participant also wore safety glasses. 

4. The participant had 15 minutes of training on the hand gestures and how the hand gestures 

are mapped to robot control. Then the participant took a 5-minute break and then he/she/they 

completed a task. The task required the user to control the robot using gestures to pick up a 
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meter-long light object (foam) and place it into 4 different tubes. This took approximately 

30 minutes. 

5. After the task is completed, the participant filled out the following 3 questionnaires: System 

Usability Scale (SUS) [51] (see Table 9), NASA Task Load Index [52] (see Table 7) and 

Human-Robot Collaboration Questionnaire (see Table 8). 

4.2 User Study and Results 

Sixteen adult participants were recruited as volunteers from faculty, students, and staff from the 

School of Engineering at Santa Clara University (SCU). The advertisement of the study was con­

ducted via e-mail. Of the 16 participants, twelve were male, two were female and two declined to 

answer. The age distribution of the participants can be found in Table IO. Half of the participants 

(8) had no prior experience collaborating with a robot to complete a task before, while six had 

prior experience and two declined to answer. 

Table I 0: Age distribution of the study participants 

Age group No. of Participants 
18-24 years old 8 
25-34 years old 5 
55-64 years old I 
Decline to answer 2 

AIi the participants were able to complete the task, which was to control the robot to move an 

extended object from the table to three of four white tubes (boxes) (see Figure 17). The completion 

time for each participant can be found in Table 11. The minimum completion time for the task was 

270 seconds ( ~ 4.5 min) while the maximum completion time was I 070 seconds ( ~ 18 min). The 

average time was 715.31 seconds ( ~ 12 min). 
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Table l l: Completion time for each participant, including average and standard deviation. 

Participant No Completion Time (sec) Participant No Completion Time (sec) 
l 1025 9 795 
2 680 10 730 
3 890 l l 570 
4 1070 12 530 
5 840 13 620 
6 880 14 595 
7 550 15 710 
8 690 16 270 

Average 715.31 Standard Deviation 201.33 

One of the metrics to evaluate a new system is the System Usability Scale (SUS) [51 J. SUS 

requires the participants to rate 10 sentences from l to 5, where l means strongly disagree and 

5 means strongly agree. The sentences can be seen in Table 9 and also the average score and 

standard deviation for each answer by the participants. The SUS score is then calculated based on 

the following formula [51 ]: 

where Qi represents the rate for the i th sentence of SUS and i = 1, 2, ... , 10. The SUS score 

is then a number between 0 and I 00. If the score is above 68, the perceived usability will be 

considered above average and if it is below 68, the perceived usability will be considered below 

average [53]. Table 12 shows the SUS score for each participant and also the average and standard 

deviation. Seven participants' SUS score is above 68 and eight participants' SUS score is below 

68. The average score is 67.67 which is very close to the 68 threshold value. These are promising 

results but it would be interesting to evaluate our system with workers in industry. Moreover, the 

NASA Task Load Index [52], which is presented in Table 7), required the participants to answer 
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six questions by rating from O to 10, where O means low and 10 means high. Table 7 shows that the 

average score for how mentally and physically demanding the task is 4.875 and 4.75, respectively. 

This means that the task was in a medium level of mentally and physically demanding. Similarly, 

the participants' responses were also in the middle level regarding how hard they had to work to 

accomplish their level of performance. Additionally, the participants did not find that the pace of 

the task was hurried or rushed (average score is ~2.94) and they were not insecure, discouraged, 

. irritated, stressed, or annoyed by what they had to do (average score is ~2.69). The participants 

felt they were successful in accomplishing what they were asked to do (average score is 8.5), which 

agrees with the fact that all participants were able to complete the task successfully. 

Table 12: SUS Score for each participant, including average and standard deviation 

Participant No SUS Score (0-100) Participant No SUS Score (0-100) 
l 47.5 9 52.5 
2 80 10 52.5 
3 75 11 87.5 
4 52.5 12 65 
5 62.5 13 55 
6 72.5 14 75 
7 97.5 15 75 
8 65 16 Decline to reply 

Average 67.67 Standard Deviation 14.14 

To evaluate further the developed system, a custom questionnaire was designed called Human­

Robot Co-manipulation Questionnaire, which was inspired by (54-561 and can be found in Table 

8. The Human-Robot Co-manipulation Questionnaire included 15 sentences that the participants 

had to score between O (which means strongly disagree) and 10 (which means strongly agree}, an­

swer 3 open-ended questions, and lastly provide any additional comments/feedback for the robotic 

system. The 15 sentences were grouped under the following five categories; perceived usefulness, 

perceived safety and trust, perceived ease of use, perceived interaction and ethical considerations. 
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It is worth noting that the average scores for perceived usefulness, safety and trust, and ease to use 

were above 7 as shown in Table 8. Additionally, the participants felt that they did not have to learn 

more about robots in order to be able to interact with the system (average score of 2.12), which 

demonstrated that the participants were comfortable interacting with the robot. One important 

point is that in the sentence "/ am concerned about my privacy when using the robot" and even if 

the system included cameras, the average score was 1 and the standard deviation was 1.41. This is 

an interesting finding that will be discussed further in Section 4.4. From the open-ended questions, 

interesting ideas were provided, such as using a body-mounted camera instead of a head-mounted 

camera, enabling the user to select which gesture corresponds to which robot command, having 

additional speed modes, and adding additional grippers to the robot for different tasks. 

From the presented results of the user study, it can be observed that the participants found the 

system potentially useful and easy to use and they perceived it as safe and comfortable. In the next 

section, the objective metrics of evaluating the developed system are discussed. 

4.3 System Evaluation 

To evaluate the developed system, it is important to compare it ·with a system that is considered 

State-of-the-Art (SOTA). The selected SOTA system is the OptiTrack motion capture system [57), 

which is available at the SCU's Robotic Systems Lab. The OptiTrack system consists of twelve 

Flex VI 00 cameras (see Table 13 for the specifications of Flex V 100) and it tracks retroreflective 

markers to provide the 3D pose of the objects or humans. In our scenario, the cameras are mounted 

on the ceiling (see Figure 17) and the markers are attached to the robot's end-effector and the 

extended object (see Figure 5). For tracking the human hands, bands with markers are used. Figure 

18 presents the view of the OptiTrack system on its own software called Motive. 
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Figure 18: OptiTrack View in Motive Software(OptiTrack cameras in orange and robot end­
effector in green) 

Table 13: Specifications for Flex VIOO camera used in OptiTrack 

Frame Rate: l00hz 
Default Shutter Time 1 ms (1/1000th of a second) 
Minimum Shutter Time 20us ( 1/50,000th of a second) 
Resolution 640 X 480· 
Imaging modes Pre-processed, Greyscale, Pre-processed objects 
Interface USB 2.0 Hi-speed, mini USB B-type 
Mounting Standard tripod -20 thread 
Latency l0ms 
Accuracy 2D sub millimeter, depending on marker size and distance 

to camera 
Operating Range 15cm - 6 meters, depending on marker size 
LED Ring IR @ 850nm, 30 LEDs 45 degree FOV, adjustable bright-

ness, removable 
Status LEDs two digit numeric LED and 2 status LEDs with PC control 
Lens 45 degrees, IR 800nm bandpass coated 
Lens mount M 12 Lens Holder 
Power 5V @490ma, including IR LED Ring 
Dimensions 1.78"(W) x 2.75"(H) x (0.81 "(D)+ 0.60"(0 LED)) 
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Figure 19 shows the position of the robot's end-effector in the X-axis as measured by the 

Optitrack and calculated by the robot's forward kinematics (based on the position of the robot's 

joints) in comparison to the desired position generated by the OSAG control (Section 3.4). The 

figure shows the absolute error in the X-axis between the calculated robot's end-effector position 

and the measured position by the Optitrack (top), between the desired position of the robot's end­

effector and the measured position by the Optitrack (center) and between the desired position 

of the robot's end-effector and the calculated robot's end-effector position (bottom). As can be 

observed in Figure 19, the minimum absolute error is Om and the maximum absolute error is 0.018 

m between the calculated robot's end-effector position and the measured position by Optitrack, 

0.027 m between the desired position of the robot's end-effector and the measured position by the 

Optitrack, and 0.024 m between the desired position of the robot's end-effector and the calculated 

robot's end-effector position. The average error is shown in Table 14. 
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Figure 19: Robot's End-Effector Position in X-axis; Desired, measured by Optitrack and calculated 
by robot's forward kinematics (left). Absolute error in X-axis (right) 

Table 14: Minimum, Maximum and Average Absolute Error for Robot-OptiTrack, Desired• 
OptiTrack and Desired-Robot in X-axis 

Absolute Error in m (X-axis) Min Max Average 

Robot-OptiTrack 
Desired-OptiTrack 
Desired-Robot 

0.00000 I 0.017967 0.007603 
0.000000 0.026914 0.008146 
0.000001 0.023986 0.003545 
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Figure 20 shows the position of the robot's end-effector in the Y-axis as measured by the Opti­

track and calculated by the robot's forward kinematics (based on the position of the robot's joints) 

in comparison to the desired position generated by the OSAG control (Section 3.4). It also shows 

the absolute error in the Y-axis between the calculated robot's end-effector position and the mea­

sured position by the Optitrack (top), between the desired position of the robot's end-effector and 

the measured position by the Optitrack (center) and between the desired position of the robot's 

end-effector and the calculated robot's end-effector position (bottom). As can be observed in Fig­

ure 20, the minimum absolute error is 0 m and the maximum absolute error is 0.03 m between 

the calculated robot's end-effector position and the measured position by Optitrack, 0.036 m be­

tween the desired position of the robot's end-effector and the measured position by the Optitrack, 

and 0.024 m between the desired position of the robot's end-effector and the calculated robot's 

end-effector position. The average error is shown in Table 15. 

Table 15: Minimum, Maximum and Average Absolute Error for Robot-OptiTrack, Desired­
OptiTrack and Desired-Robot in Y-axis 

Absolute Error in m (Y-axis) Min Max Average 

Robot-OptiTrack 
Desired-OptiTrack 
Desired-Robot 

0.000006 0.030553 0.013514 
0.000000 0.036480 0.013441 
0.000000 0.023474 0.003275 
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Figure 20: Robot's End-Effector Position in Y-axis; Desired, measured by Optitrack and calculated 
by robot's forward kinematics (left). Absolute error in Y-axis (right) 

Figure 21 shows the position of the robot's end-effector in the Z-axis as measured by the Opti­

track and calculated by the robot's forward kinematics (based on the position of the robot's joints) 

in comparison to the desired position generated by the OSAG control (Section 3.4). It also shows 

the absolute error in the Z-axis between the calculated robot's end-effector position and the mea­

sured position by the Optitrack (top), between the desired position of the robot's end-effector and 

the measured position by the Optitrack (center) and between the desired position of the robot's end­

effector and the calculated robot's end-effector position (bottom). As can be observed in Figure 21, 
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the minimum absolute error is Om and the maximum absolute error is 0.014 m between the cal­

culated robot's end-effector position and the measured position by Optitrack, 0.03 m between the 

desired position of the robot's end-effector and the measured position by the Optitrack, and 0.03 

m between the desired position of the robot's end-effector and the calculated robot's end-effector 

position. The average error is shown in Table 16. 
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Figure 21: Robot's End-Effector Position in Z-axis; Desired, measured by Optitrack and calculated 
by robot's forward kinematics (left). Absolute error in Z-axis (right) 
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Table 16: Minimum, Maximum and Average Absolute Error for Robot-OptiTrack, Desired­
OptiTrack and Desired-Robot in Z -axis • 

Absolute Error in m (Z-axis) 
Robot-OptiTrack 
Desired-OptiTrack 
Desired-Robot 

Min 
0.000000 
0.000001 
0.000000 

Max 
0.014334 
0.029444 
0.030315 

Average 
0.005740 
0.006958 
0.003912 

For our scenario, which involves the co-manipulation of an extended object and placing it 

into tubes, the mean errors in the X, Y, and Z axes are acceptable as the task was completed 

successfully. The developed system can be deployed in scenarios where a maximum error of 0.03 

m is acceptable. It is worth noting that the Optitrack system costs a few thousand dollars while 

our vision-based system of two cameras is less than a thousand dollars. Therefore, our solution is 

affordable and low-cost. However, in scenarios that require very fine precision (e.g. assembly of 

electronics), our system will not be acceptable. 

4.4 Discussion: Ethical Considerations and Privacy 

Our proposed system received overall positive feedback from the users who evaluated it in the 

user study. The proposed system can support workers who are required to manipulate heavy and 

extended objects, e.g. in warehouses or construction, by taking care of the heavy lifting which the 

workers can provide guidance for the manipulation. The proposed system could improve the work­

ing conditions for workers who are required to do the heavy lifting by minimizing musculoskeletal 

disorders [58]. 

As our system consists of cameras, privacy concerns are important to be addressed [59, 60). 

In our case, our system does not record any videos or images and it does the processing on the 

fly. Due to this reason, our participants in the user study were not concerned about the privacy 
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of their data (see Section 4.2). A recent study by Vervier et al. [61] with 125 participants for two 

working scenarios (a cobot and a chatbot) found that "the more ftm it is to use and the higher the 

expected performance, the higher the acceptance of technology using personal data". Therefore, 

this demonstrates that there is a connection between the performance of robots and the acceptance 

of robots having access to personal data. 

Another important point that needs to be addressed is the fear that robots will replace human 

workers [62]. Our system is not designed to replace human workers but to enhance their abilities 

and improve their workplace. The human is an important component of our system and responsible 

for guiding the robot through the task. Our system has the potential to be extended to enable 

teleoperation for applications that are dangerous for humans, for example, ·the manipulation of 

hazardous materials. The human operator could be in a safe environment while using hand gestures 

to control the robot in a hazardous and polluted environment (e.g. manipulation of nuclear waste). 
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5 Conclusion and Future Work 

This thesis presented a novel framework that enabled naive users to co-manipulate objects with a 

cobot, by using hand gestures. The users were able to control the robot in all dimensions providing 

a high level of flexibility and not being application specific. The framework took into account the 

user's position in the workspace in order to move the manipulated object in the desired motion, 

which enabled the user to freely move within the cobot's workplace. The proposed system was 

developed in ROS and was implemented into a 7-Degrees of Freedom Cobot equipped with a 

camera on its end-effector and a wearable camera that was worn by the user. 

For the evaluation of the proposed framework, an experimental scenario was developed where 

the user was required to co-manipulate an extended object by guiding the robot to pick it up 

from the table and place it into four tubes with different orientations in different locations in the 

workspace. A study with 16 participants was conducted to evaluate the system's performance and 

usability. The developed system was compared to the state-of-the-art OptiTrack system and had 

an average error of 0.0 I m which is acceptable for our application. Moreover, the system was 

evaluated positively by the participants in the study. 

The contributions of this Thesis are summarized as follows: 

• A novel control method for object co-manipulation, called OSAG, is developed that based 

on spatially aware information of the operator and their hand gestures can generate object­

centric motion. 

• The OSAG control method is generic and enables object co-manipulation in all dimensions 

(rotation and translation in all 3 axes). 

• The OSAG control method does not depend on a specific application and it can be imple-
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mented on any ROS-enable collaborative robotic arm. 

• The developed OSAG control method was evaluated on an experimental scenario with 16 

participants and all of them were able to successfully complete the required task without 

extensive training. 

To further evaluate the feasibility and usability of the developed framework, it would be inter­

esting to test it in a study with industrial workers and in different types of co-manipulation tasks 

(e.g. transportation of heavy objects, manipulation of waste or hazardous materials, etc.). This 

further testing would provide insights into how the system could be improved for the end-users 

(i.e. industrial workers). 

It would also be interesting to expand the proposed system to a multi-arm robotic setup where 

a human could co-manipulate objects by controlling multiple robotic arms based on the required 

tasks. However, this will possibly require additional gestures and re-mapping of gestures and 

human position estimation to multi-robot motions. Moreover, with the recent advantages of Chat­

GPT [631, the proposed system could be extended into a multimodal interface that could utilize 

speech commands as an additional modality for object co-manipulation with multi-robot systems. 

While gestures could be used for continuous control of the cobots, speed changes or cobot se­

lections could be done through speech commands. This approach may improve the perceived 

usefulness of the system. 
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