
Santa Clara University Santa Clara University

Scholar Commons Scholar Commons

Engineering Ph.D. Theses Student Scholarship

6-2023

A Submodular Optimization Framework for Imbalanced Text A Submodular Optimization Framework for Imbalanced Text

Classification with Data Augmentation Classification with Data Augmentation

Eyor Alemayehu

Follow this and additional works at: https://scholarcommons.scu.edu/eng_phd_theses

 Part of the Computer Engineering Commons

https://scholarcommons.scu.edu/
https://scholarcommons.scu.edu/eng_phd_theses
https://scholarcommons.scu.edu/student_scholar
https://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages

SANTA CLARA UNIVERSITY

Department of Computer Science and Engineering

Date: June 2023

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER

DR. YI FANG BY

Eyor Alemayehu

ENTITLED

A Submodular Optimization Framework for Imbalanced Text

Classification with Data Augmentation

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE & ENGINEERING

Thesis Advisor
Dr. Yi Fang

Chairman of Department
Dr. Nam Ling

Thesis Reader
Dr. Ying Liu

Thesis Reader
Dr. Yuhong Liu

Thesis Reader
Dr. Tokunbo Ogunfunmi

Thesis Reader
Dr. Zhiqiang Tao

Yi Fang (Jun 8, 2023 14:07 PDT) Ying Liu (Jun 8, 2023 14:56 PDT)

Tokunbo Ogunfunmi (Jun 8, 2023 19:44 PDT)
Tokunbo Ogunfunmi

Zhiqiang Tao (Jun 9, 2023 14:06 EDT)
Zhiqiang Tao

N. Ling (Jun 10, 2023 08:42 PDT)
N. Ling

https://secure.na4.adobesign.com/verifier?tx=CBJCHBCAABAAuwpc3ZuuFS71gacFvw5sSlxJmeci2GMc
https://na4.documents.adobe.com/verifier?tx=CBJCHBCAABAAuwpc3ZuuFS71gacFvw5sSlxJmeci2GMc
https://adobefreeuserschannel.na4.documents.adobe.com/verifier?tx=CBJCHBCAABAAuwpc3ZuuFS71gacFvw5sSlxJmeci2GMc
https://na4.documents.adobe.com/verifier?tx=CBJCHBCAABAAuwpc3ZuuFS71gacFvw5sSlxJmeci2GMc
https://secure.na4.adobesign.com/verifier?tx=CBJCHBCAABAAuwpc3ZuuFS71gacFvw5sSlxJmeci2GMc
https://secure.na4.adobesign.com/verifier?tx=CBJCHBCAABAAuwpc3ZuuFS71gacFvw5sSlxJmeci2GMc

A Submodular Optimization Framework for Imbalanced Text

Classification with Data Augmentation

by

Eyor Alemayehu

Dissertation

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in Computer Science and Engineering

in the School of Engineering at Santa Clara University, 2023

Santa Clara, California

To my parents

iii

Acknowledgements

First of all, I would like to express how lucky I am to have Prof. Yi Fang as my advisor.

Prof. Fang is not only an excellent educator and a mentor, but also a person with a

deep sense of compassion and responsibility. He spent countless hours patiently getting

me up to speed with my research topics and following up on my progress; sometimes at

the expense of his family time. My gratitude to him is eternal, and I hope to follow his

footsteps in being an outstandingly virtuous citizen.

I would like to thank the members of my doctoral committee - Prof. Yuhong Liu, Prof.

Ying Liu, Prof Tokunbo Ogunfunmi, and Prof. Zhiqiang Tao - for setting aside time

from their busy schedules to review my research.

I would like to thank Prof. Rani Mikkilineni, Dr. Minghwa Wang, and Mr. Zoltan

Kurczveil for submitting letters of recommendations for my Ph.D. admission application.

I would also like to thank my initial advisor the late Prof. JoAnne Holliday.

I would like to thank members of Prof. Fang research group. Through the numerous

seminars we had, I have learned a lot from members of the group.

I would like to thank members of my family, friends, and work colleagues who gave me

words of encouragement, and supported me throughout the Ph.D. program.

Lastly, I would like to thank Santa Clara University for giving me the opportunity to

enroll in the Ph.D. program. Go Broncos!

iv

A Submodular Optimization Framework for Imbalanced Text

Classification with Data Augmentation

Eyor Alemayehu

Department of Computer Science and Engineering
Santa Clara University
Santa Clara, California

2023

ABSTRACT

In the domain of text classification, imbalanced datasets are a common occurrence. The

skewed distribution of the labels of these datasets poses a great challenge to the per-

formance of text classifiers. One popular way to mitigate this challenge is to augment

underwhelmingly represented labels with synthesized items. The synthesized items are

generated by data augmentation methods that can typically generate an unbounded

number of items. To select the synthesized items that maximize the performance of

text classifiers, we introduce a novel method that selects items that jointly maximize

the likelihood of the items belonging to their respective labels and the diversity of the

selected items. Our proposed method formulates the joint maximization as a monotone

submodular objective function, whose solution can be approximated by a tractable and

efficient greedy algorithm. We evaluated our method on multiple real-world datasets

with different data augmentation techniques and text classifiers, and compared results

with several baselines. The experimental results demonstrate the effectiveness and effi-

ciency of our method.

Contents

Acknowledgements iv

Abstract iv

Contents vi

List of Figures viii

List of Tables x

1 Introduction 11

1.1 Contributions . 15

1.2 Outline . 16

2 Background 17

2.1 Multiclass Classification . 17

2.2 Multiclass Text Classification . 22

2.2.1 Bag-Of-Words . 24

2.2.2 Recurrent Neural Network . 25

2.2.3 Convolutional Neural Network . 26

2.2.4 Bidirectional Encoder Representations From Transformers 31

3 Related Work 35

3.1 Data Space . 35

3.1.1 Character Level . 36

3.1.2 Word Level . 36

3.1.3 Phrase Level . 38

3.1.4 Document Level . 39

3.2 Feature Space . 40

vi

Contents vii

4 The Proposed Framework 42

4.1 Overview . 42

4.2 Individual Components . 45

4.2.1 Text Generator . 45

4.2.2 Document Scorer . 46

4.2.3 Document Selector . 46

4.2.4 Data Augmentation Pipeline . 47

4.2.5 Diversity Selector . 48

4.2.6 Monotone Submodular Optimization 50

4.2.7 SOFITDA Selector . 52

4.2.8 Computational Complexity of SOFITDA Selector 55

5 Experiments 57

5.1 Datasets . 57

5.2 Pre-processing . 59

5.3 Setup . 60

5.3.1 CONFIGURE GENERATOR Functions 60

5.3.2 GENERATOR Functions . 61

5.3.3 TRAIN SCORER Functions . 61

5.3.4 SCORER Function . 64

5.3.5 CONFIGURE SELECTOR Function 64

5.3.6 SELECTOR Function . 67

5.3.7 TAA Baseline . 67

5.4 Evaluation Methodology . 67

5.5 Results . 69

5.5.1 Optimal α and NC . 69

5.5.2 Baseline Comparison . 72

5.5.3 Likelihood versus Diversity . 78

5.5.4 Hyperparameter Analysis . 79

5.5.5 Cluster Analysis . 85

5.5.6 Time Efficiency . 88

6 Conclusion and Future Work 90

7 Appendix 93

7.1 Monotone Submodularity Proof . 93

7.1.1 Theorem 1 (Submodularity) . 93

7.1.2 Theorem 2 (Monotonicity) . 95

Bibliography 96

List of Figures

2.1 A typical architecture of a text classifier 22

2.2 The architecture of a Recurrent Neural Network 26

2.3 A typical architecture of a convolutional layer 30

2.4 A typical architecture of a CNN . 31

2.5 BERT classification architecture . 34

4.1 The steps of the Data Augmentation Pipeline for getting synthetic items
for a single minority label . 43

5.1 Plots of H(x) = xα for different values of α. Notice how the concavity of
H(x) decreases as the value of α goes from 0 to 1. 65

5.2 Charts showing the mean percentage of synthesized items (Overlap Per-
centage) selected by the SOFITDA selectors that are also selected by
the TOP baseline on a per α value basis for each unique combination of
dataset, generator, and classifier. 80

5.3 Charts showing the mean percentage of synthesized items (Overlap Per-
centage) selected by the SOFITDA selectors that are also selected by the
TOP baseline on a per NC value basis for each unique combination of
dataset, generator, and classifier. 81

5.4 Charts showing the mean macro F-Score of the SOFITDA selectors versus
their α values for each unique combination of dataset, generator, and
classifier. 83

5.5 Charts showing the mean macro F-Score of the SOFITDA selectors versus
their NC values for each unique combination of dataset, generator, and
classifier. 84

5.6 Charts showing the projection of the TF-IDF vectors of 1000 synthesized
items in two of the most significant PCA dimensions. The charts are for
the EDA generator for each unique combination of dataset, and classifier.
The points shown in blue represent synthesized items selected only by the
TOP selector, and the points shown in red represent synthesized items
selected only by the SOFITDA selector. 86

viii

List of Figures ix

5.7 Charts showing the projection of the TF-IDF vectors of 1000 synthesized
items in two of the most significant PCA dimensions. The charts are for
the GPT-2 generator for each unique combination of dataset, and classi-
fier. The points shown in blue represent synthesized items selected only
by the TOP selector, and the points shown in red represent synthesized
items selected only by the SOFITDA selector. 87

5.8 A scatter plot of the mean execution time of the SOFITDA selector for
each dataset as specified in Table 5.11. The plot clearly shows a linear
correlation between the execution time and the number of items selected. 89

List of Tables

5.1 The distribution of the labels for each dataset. 59

5.2 The partition and vocabulary sizes of each dataset. 60

5.3 The α and NC values of the SOFITDA selector that yields the highest
macro F-Score value on a per dataset, generator, and classifier basis. . . . 70

5.4 The mean α and NC values of the SOFITDA selector that yields the
highest macro F-Score value on a per-classifier basis. 71

5.5 The mean α and NC values of the SOFITDA selector that yields the
highest macro F-Score value on a per-dataset basis. 71

5.6 The mean α and NC values for the SOFITDA selector that yields the
highest macro F-Score value on a per-generator basis. 72

5.7 The macro F-Score of SOFITDA and the baseline selectors on a per
dataset, generator, and classifier basis. Bold font indicates the best re-
sults. † indicates a statistically significant improvement over the NO AUG
baseline. 74

5.8 The macro F-Score of the TAA baseline and SOFITDA on a per-dataset
basis. We compare the TAA baseline with a SOFITDA model that uses
BERT as a classifier and EDA as a generator. Bold font indicates the
best results. 75

5.9 The mean relative improvement in percentage of the macro F-Score (F),
macro precision (P), and macro recall (R) of the SOFITDA selector over
the baseline selectors on a per classifier basis averaged across the datasets
and generators. 75

5.10 The relative improvement in percentage of the macro F-Score, macro
precision, and macro recall of the SOFITDA selectors configured with a
BERT classifier and an EDA generator over their equivalent TAA base-
lines averaged across all datasets. Note, the TAA baselines use a BERT
classifier as well as generation methods used by the EDA generator. . . . 75

5.11 The total number of synthetic items selected for each dataset as well as
the mean execution time in seconds for executing the SOFITDA selector
on a per-dataset basis for all labels . 88

x

Chapter 1

Introduction

In machine learning, a multiclass classification task learns from training data the pa-

rameters of a model (classifier) that predicts the likelihood of a given input having a

particular label as an attribute. The likelihood is typically formulated as a probability

score across all possible labels. The training data the classification task learns from

is known as a dataset and is composed of a set of input and label pairs. An input is

represented by a set of numeric values known as features, and a label is a part of a

mutually exclusive set of labels. An example of a dataset is a set of movie review and

sentiment pairs, where the sentiment is a label that has a value of positive or negative.

In this example, since the movie reviews are text data, the multiclass classification task

is known as text classification.

Imbalanced datasets are datasets that have a skewed distribution of labels, where a small

subset of labels have an overwhelmingly dominant representation in the distribution.

11

Introduction 12

In the text classification domain, we frequently run into such datasets. For example, a

dataset for fake news articles consists of an overwhelmingly large proportion of legitimate

news articles when compared to fake ones. The skewed distribution of the labels poses a

serious challenge for text classification models because the models develop a bias for the

dominant labels. This bias typically manifests itself as false positives where some items

that have underwhelmingly represented labels (minority labels) are incorrectly classified

as having dominant labels (majority labels).

To mitigate this problem, two approaches can be used. The first approach is to employ

re-sampling methods [21]. The purpose of these methods is to under-sample majority

label items, and/or over-sample minority label items. In the under-sampling case, items

are removed from the training set, while in the over-sampling case, they are replicated.

The challenge with re-sampling is under-sampling may omit useful training examples,

and over-sampling may lead to overfitting.

The second approach is to employ data augmentation methods. The data augmentation

methods synthesize new training items or mutate existing ones for the purpose of adding

them to the training set. The goal of data augmentation is to increase the amount of

training data available by doing label-preserving transformations [18]. In the domain of

text classification, data augmentation can be done on the data space or the feature space.

The data space is the input text whereas the feature space is the learning representation

of the input text. The data augmentation methods in the text classification domain are

either rules-based or machine-learning-based. An example of a rules-based method is

Easy Data Augmentation (EDA) [77], which works in the data space by mutating items

Introduction 13

in the training set via synonym replacement, random word insertion, random word

swapping, and random word deletion. An example of a machine-learning-based method

is the fine-tuning of a generative language model such as the ”Generative Pre-trained

Transformer 2” (GPT-2) [57] on the training items of a given label, and then using the

model to generate similar items in the data space [9, 74].

In nearly all cases, data augmentation methods can either generate significantly more

distinct items than necessary or even an unbounded number of distinct items. In con-

trast, re-sampling methods are only limited to the items in the training data. Therefore,

provided the distribution of the items generated is sufficient, data augmentation gen-

erally helps text classification models perform better on unseen data than re-sampling.

Recently, the advent of large language models such as ”Bi-directional Encoder Represen-

tations from Transformers” (BERT) [19] and GPT-2, which are trained on large corpora,

allow through transfer learning the generation of high-quality data augmentation items.

Furthermore, rules-based approaches such as EDA, which frequently generate items that

have semantic and syntactic errors, outperform re-sampling, because they add noise to

the training set that results in better generalization.

The ability of data augmentation methods to generate significantly more distinct items

than necessary allows the possibility for over-generating synthesized items and then

selecting a subset of them that yield the best performance. Several works leverage this

possibility on an ad-hoc basis. For example, the HotFlip [20] method selects the subset

which increases the loss (error) of a classification model that is trained without data

augmentation. This is because the purpose of HotFlip is to add adversarial samples

Introduction 14

to the training data that the classification model fails to classify as true positives.

Another example is the ”Language-Model-Based Data Augmentation” (LAMBADA)

algorithm [8] which selects the subset that yields the highest label probabilities on a

classification model that is trained without data augmentation.

While task-specific ad-hoc approaches were proposed for selecting a subset of the re-

quired number of items, to the best of our knowledge, there exists no principled approach

that generalizes some of the existing approaches and opens up the possibility of better

performance through the introduction of additional configuration parameters. In this

thesis, we propose a principled approach to select the optimal subsets of items required

to balance the minority labels of an imbalanced dataset. Our approach for selecting a

synthesized item to balance a minority label is based on maximizing:

1. The likelihood of the selected items belonging to the minority label.

2. The diversity of the selected items.

By maximizing the likelihood of the selected items belonging to the minority label, we

maximize the probability of the selected items being true positives for the minority

label. By maximizing the diversity of the selected items, we maximize the scope of the

minority label distribution seen during training. Furthermore, diversification allows us

to reduce the redundancy of similar items and induces regulating noise. This makes the

resulting model more resilient to overfitting.

Introduction 15

Our work proposes a method to optimize the twin objectives of maximizing the likeli-

hood and the diversity of the selected items. To estimate the likelihood of the selected

items, we propose training a text classifier on the non-augmented training set and then

using the classifier to compute the probabilities of the synthesized items belonging to

their corresponding minority labels. To estimate the diversity of the selected items, we

propose using a similarity function that compares the features of two synthetic items.

We then utilize both estimation methods to formulate a combinatorial joint objective

for each minority label where we maximize the likelihood and the diversity of the syn-

thesized items such that we only select enough items to balance the minority label.

However, the combinatorial joint objective is an NP-hard problem. Therefore, instead

of directly solving this objective, we approximate it by formulating a monotone submod-

ular objective. Having a monotone submodular objective allows us to utilize a tractable

greedy algorithm that is guaranteed to give us a solution that is within (1− 1/e) of the

optimal solution [17].

Our work is independent of the method used to synthesize items such as EDA or GPT-2.

It is exclusively limited to selecting a subset of items synthesized by a given method

as described above. This allows it to be used with any text synthesis method for the

purpose of augmenting imbalanced-text datasets.

1.1 Contributions

In summary, the main contributions of this thesis are as follows:

Introduction 16

• We derive a monotone submodular objective that selects items from a pool of

synthesized items such that the likelihood of the items belonging to their respective

minority label and their diversity are approximately maximized. We solve this

maximization by an efficient greedy algorithm.

• We introduce an abstract data augmentation pipeline that can use any selection

process including the montone submodular objective to augment an imbalanced

dataset in a series of well-defined steps.

• We conduct comprehensive experiments on multiple real-world datasets and con-

figurations to demonstrate the effectiveness and efficiency of our proposed ap-

proach.

This thesis is based on our published work [5].

1.2 Outline

This thesis is organized as follows: Chapter 2 gives a brief background about text

classification, Chapter 3 covers related work in data augmentation for text classification,

Chapter 4 specifies an abstract data augmentation pipeline and derives the montone

submodular objective that is used to select synthesized items, Chapter 5 outlines the

setup of our experiments and discusses the results, and Chapter 6 makes concluding

remarks and suggests potential extensions to our work.

Chapter 2

Background

2.1 Multiclass Classification

In multiclass classification, given a set of inputs X, and a set of labels, Y , our objective

is to build a model (classifier) that predicts the label of a given input. Each xi ∈ X is

represented by K numeric features such that xi ∈ RK×1. Each yi ∈ Y is the one and

only label of xi, where M is the number of distinct labels.

A common type of multiclass-classification model is known as a discriminative model.

A discriminative model estimates the conditional probability distribution p(y|x) where

x ∈X is an input and y ∈ Y is a label.

17

Background 18

We estimate p(y|x) by a function f(·) that returns a vector of probabilities for the labels

such that:

p(y|x) ≈ fy(x;θ) (2.1)

where θ is the set of parameters of the function and the y in fy represents the probability

in the vector that corresponds to the label of y.

We find the optimal θ by drawing a set of {x, y} samples from P(X,Y) and then deter-

mining the θ that minimizes the expected difference between the empirical distribution

of the samples and f(·). We can express this as follows:

θ∗ = arg min
θ

∑
x∈X

p(x)
∑
y∈Y

L (p(y|x), fy(x;θ)) (2.2)

where θ∗ is the optimal θ and L(·) computes the difference between p(y|x) and fy(x;θ)

for a drawn sample {x, y}. Note that p(y|x) in the empirical distribution has a proba-

bility of 1 if {x, y} is observed or 0 if it is not observed.

L(·) is known as a loss function and the smaller the value it returns the more similar

p(y|x) and f(x;θ) are. There are different types of loss functions, but the one that is

most widely used in multiclass classification is the cross-entropy loss function, which we

define as follows:

L(p(x), q(x)) = −p(x) log q(x) (2.3)

Background 19

We obtain the cross-entropy loss function when deriving Equation (2.2) from the Kullback-

Leibler (KL) divergence equation [37]. KL divergence is a measure of the difference

between two probability distributions sampled from the same space. The definition of

KL divergence for two discrete and conditional probability distributions is as follows:

DKL(p ∥ q) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(y|x)

q(y|x)
(2.4)

Using this definition, the KL divergence of the conditional distribution p(y|x) and our

estimation for the distribution, f(.), is as follows:

DKL(p ∥ f) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(y|x)

fy(x;θ)
(2.5)

The optimal θ minimizes the KL divergence to reduce the difference between p(y|x)

and f(·) as follows:

θ∗ = arg min
θ

∑
x∈X

∑
y∈Y

p(x, y) log
p(y|x)

fy(x;θ)

= arg min
θ

∑
x∈X

p(x)
∑
y∈Y

p(y|x) log
p(y|x)

fy(x;θ)

= arg min
θ

∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)−
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log fy(x;θ)

= arg min
θ
−
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log fy(x;θ)

(2.6)

Background 20

Substituting the cross-entropy loss function into the above equation, we get:

θ∗ = arg min
θ

∑
x∈X

p(x)
∑
y∈Y

L (p(y|x), fy(x;θ)) (2.7)

which is the same as Equation (2.2).

A basic method to find an approximation to the optimal θ is to use an algorithm called

the Mini-Batch Gradient Descent [40]. We show the high-level steps of this algorithm

in Algorithm 1. A description of the steps is as follows:

• Step 1: Initialize the θ values. Typically, we randomly set them to small values.

• Steps 3 - 6: Sample a batch of N inputs.

• Step 7: Compute the difference between the empirical and the estimated distri-

bution of the batch. Assign the difference to J(θ).

• Steps 8-11: Update each parameter in θ by subtracting from it a multiplicative

factor, γ, of its partial derivative of J(θ). γ is known as the learning rate. The

update attempts to modify each parameter such that the value of J(θ) is smaller.

• Steps 12: We loop back to Step 3 until J(θ) converges. We achieve convergence

if the difference between the previous and current value of J(·) falls below a given

threshold, ϵ.

Background 21

Algorithm 1 Mini-Batch Gradient Descent

1: θ ← INITIALIZE()
2: do
3: B ← ∅
4: for each i ∈ 1, ..., N do
5: B ← B ∪ {x ∼X}
6: end for
7: J(θ)←

∑
x∈B p(x)

∑
y∈Y L (p(y|x), fy(x;θ))

8: θ̂ ← θ
9: for each i ∈ {1, ..., |θ|} do
10: θi = θi − γ ∂J(θ̂)

∂θi
11: end for
12: while (J(θ̂)− J(θ)) > ϵ

In practice, substantial modifications are made to the Mini-Batch Gradient Descent

algorithm to make it numerically stable, efficient, and approximate a good value for the

optimal θ. Some of the modifications are:

• Utilizing a dynamic programming algorithm called backpropagation [61] to com-

pute the partial derivatives.

• Applying a heuristics to dynamically change the learning rate, γ. The ADAM

optimizer [31] is an example of such a heuristics.

• Not updating a random subset of the parameters when processing a batch of data

to mitigate the model overfitting the training data. This technique is known as

Dropout [73]. Overfitting results in good performance on the training data, but

weak performance on unseen data.

• Normalizing the internally computed values of a batch by f(·) by a process known

as Batch Normalization [28]

Background 22

2.2 Multiclass Text Classification

Multiclass text classification, which we simply refer to as text classification, is a specific

type of multiclass classification where the input data is natural language text. An

example of such input data are customer product reviews that are labeled with a 1-5 star-

rating system. There are many different types of text classification models (classifiers).

Figure 2.1 illustrates the architecture of a typical text classifier.

f(x;θ)

Softmax Layer

Model Specific Layers

Input Encoding Layer

Input Layer

Figure 2.1: A typical architecture of a text classifier

With the exception of the Input Layer, all the steps in the architecture can be combined

into a single function, f(x;θ), that approximates p(y|x) as discussed in the previous

section. The description of each step of the architecture is as follows:

• Input Layer: The input to the text classifier are the tokens of the text represented

by vectors. The tokenization process for splitting the text into tokens is classifier

dependent. Each unique token is represented by a unique one-hot encoding vector,

where the size of the vector is the number of unique tokens. A one-hot encoding

vector is a vector such that one of its elements is set to one and the rest of

Background 23

its elements are set to zero. The one-hot encoding vectors of the tokens are

concatenated together in the order of their tokens and passed to the next step.

• Input Encoding Layer: The sequence of one-hot encoding vectors are trans-

formed into a new linear representation. In most cases, the transformation either

converts the sequence of one-hot encoding vectors into a single vector, or reduces

the dimensions of the one-hot encoding vectors. The transformation can be depen-

dent or independent of the order of the one-hot encoding vectors in the sequence.

Furthermore, the transformation parameters can be imported from another model

in a process known as transfer learning. The vectors obtained from such trans-

formations are known as embeddings. A one-hot encoding vector is mapped to

its corresponding embedding by multiplying it with a matrix of the embeddings

such that the slot of the one-hot encoding vector that is set to one selects the

corresponding embedding as an output of the multiplication.

The type of transformation in this layer is classifier dependent.

• Model Specific Layers: The logic that is specific to the classifier is implemented

by this step. This step can comprise of multiple classifier specific layers. The

output of this step is a vector of values that are known as logits, where each

element in the vector corresponds to a label.

• Softmax Layer: The logits from the previous steps are normalized into proba-

bility values for their corresponding labels by this step. The normalization is done

Background 24

by a softmax operation that is as follows:

p(yi|x) ≈ ezi∑M
j=1 e

zj
(2.8)

where M is the number of labels and zi is the logit for label i.

In the subsections below, we briefly discuss the implementation of widely used text

classifiers.

2.2.1 Bag-Of-Words

The Bag-Of-Words [26] [33] text classifier is one of the simplest and earliest text classi-

fiers. The architecture of the classifier is as follows:

• Input Layer: Any tokenization process can be used. A simple approach is to use

white space (space, tabs, and new lines) to split the text into tokens.

• Input Encoding Layer: The one-hot encoding vectors of the vectors are logically

OR-ed to create a single vector for the given text. This vector has elements that

correspond to the tokens in the text set to one whereas the rest of its elements are

set to zero.

• Model Specific Layers: At a minimum, this step consists of a single layer

that linearly transforms the vector of the text to the vector of the logits. The

Background 25

transformation is as follows:

z = Aw + b (2.9)

where z ∈ RM×1 (M is the number of labels), A ∈ RM×V (V is the number of

unique tokens), b ∈ RM×1, and w ∈ RV×1 is the vector of the input text encoded

by the previous layer. Note that A ∈ θ and b ∈ θ.

2.2.2 Recurrent Neural Network

A recurrent neural network (RNN) [7] classifier models a sequence of items using a

feedback loop that is executed on every item in the sequence. The architecture of the

classifier is as follows:

• Input Layer: Any tokenization process can be used. A simple approach is to use

white space to split the text into tokens.

• Input Encoding Layer: Typically transfer learning is used for the vector rep-

resentation of tokens. In this case, the vectors of tokens trained by a language

model on a large corpus are used. An example of such model is GloVe [55].

• Model Specific Layers: We show the feedback loop of an RNN in Figure 2.2.

When an RNN processes an item in the ith position of the sequence, xi, it uses the

state of the previous item, hi−1. The RNN computes the state of an item by the

function g(·). In the initial case where we process x1, we typically set h0 to the

zero vector, because there is no previous item. The purpose of the feedback loop

Background 26

is to model the context of each item. This is especially important when processing

text, because the meaning of a word could depend on its context. We use the

state of the last item in the sequence to estimate the probability distribution of

the labels of the sequence. We transform the state to a vector of logits using the

function t(·).

g(xi,hi−1;β)xi

Delay

hi

t(hi;α)

Logits

Figure 2.2: The architecture of a Recurrent Neural Network

In practice, due to numerical instability challenges under training, the RNN archi-

tecture shown in Figure 2.2 is not used as is. Complex modifications are made to

the architecture to ensure the RNN is stable during training. Examples of models

that do such modifications are the Long Short-Term Memory (LSTM) [27] and

the Gated Recurrent Unit [15].

2.2.3 Convolutional Neural Network

A convolutional neural network (CNN) [23] [54] [38] classifier creates features by doing

a weighted-sum of neighboring items starting from the input sequence and recursively

Background 27

afterwards until a maximum depth is reached. The idea behind CNNs is to hierarchi-

cally build shift-invariant features that are then transformed to predict the probability

distribution of a given sequence of items.

• Input Layer: Any tokenization process can be used. A simple approach is to use

white space to split the text into tokens.

• Input Encoding Layer: Typically transfer learning is used for the vector repre-

sentation of tokens. For example, the vectors of tokens trained by GloVe can be

used.

• Model Specific Layers: Before we discuss the model specific layers, we specify

the various components that make up a convolution layer.

Given:

– a sequence of items represented by the matrix u ∈ Rm×n, where the rows of

the matrix are known as channels with m being the number of channels, and

n being the number of items in the sequence.

– a set of parameters known as filters that are represented by the tensor c ∈

Rl×s×m, where l is the number of filters, s is an odd integer that is known as

the filter size, and m is the number of channels of each filter.

a convolution operation is the summation of the point-wise multiplication of neigh-

boring items of u and the tth filter, ct, centered at a particular item position, i, in

u and along a particular channel, j. The purpose of a convolution operation is to

Background 28

create a value for the feature associated with the filter from the values of a channel

in a given neighborhood of u. In mathematical terms, a convolution operation is

as follows:

CONV(u, i, j; ct) =

+⌊ s2⌋∑
k=−⌊ s2⌋

ct,k,jui+k,j (2.10)

Note that the index used to access values in the second tensor dimension of the

filter are shifted left by
⌊
s
2

⌋
for clarity purposes. This means the center of the

filter along the second tensor dimension has an index of zero.

To handle the case where there are not enough items in the beginning and end of

the sequence to do the point-wise multiplication of neighboring items, we typically

pad the input sequence with zero vectors using the following operation:

ZEROPAD(u, l) =

[
01 ... 0l u1 ... un 01 ... 0l

]
(2.11)

where l is the floor of half the size of the filter. The zero-padded version of u is

as follows:

û = ZEROPAD
(
u,
⌊s

2

⌋)

Next, we sum up the convolutions of each filter across all channels to create a

single vector as follows:

Background 29

CONVSUM(û; ct) =

[∑m
j=1 CONV(û,

⌊
s
2

⌋
+ 1, j; ct) ...

∑m
j=1 CONV(û,

⌊
s
2

⌋
+ n, j; ct)

]
(2.12)

We assign this vector to a variable zt ∈ Rn×1:

zt = CONVSUM(û; ct)

Finally, we can reduce the size of each zt via an operation known as pooling. The

purpose of pooling is to select features that are important to the classification task.

A common way to do pooling is to break each zt into small segments of equal size,

and then keep the maximum value in each segment. This type of pooling is known

as max-pooling [82] and is as follows:

vt = MAXPOOL(zt, b) =


max(zt,1, ..., zt,b)

...

max(zt,n−b, ..., zt,n)

 (2.13)

where b is the segment size and vt ∈ Rn
b
×1

We can now build the convolution layer that is illustrated in Figure 2.3. The

convolution layer transforms a matrix u ∈ Rm×n to a matrix v ∈ Rl×n
b , where v

consists of all the vt vectors.

Background 30

v

MAXPOOL

CONVSUM

ZEROPAD

u

Figure 2.3: A typical architecture of a convolutional layer

In practice, different variations of the convolution layer exist. For example, some

convolution layers include a non-linear transformation while others may not always

do pooling.

We can compactly represent the convolution layer as follows:

v = CONVLAYER(u; c) (2.14)

To build our model specific layers, we stack up the convolution layers one after an-

other, where the output of a convolution layer is the input to the next convolution

layer. We pass the input sequence of items, x, as an input to the first convolution

layer, and we pass the output of the last convolution layer to a function, g(.), that

transforms the output to logits. We illustrate the model specific layers in Figure

2.4.

Note that each convolution layer has its own set of filters that can have different

shapes.

Background 31

Logits

g(z;α)

CONVLAYER(v(d−1); c(d))

...

CONVLAYER(v(1); c(2))

CONVLAYER(x; c(1))

x

Figure 2.4: A typical architecture of a CNN

2.2.4 Bidirectional Encoder Representations From Transform-

ers

A ”bidirectional encoder representations from transformers” (BERT) [19] classifier uses

an architecture known as the transformer [72]. The transformer is composed of layers

that use a mechanism known as attention. BERT is currently the foundation of most

state-of-the-art text classification models. Unlike the other classifiers we have seen so

far, BERT always comes pre-trained. That is it is first trained to predict tokens on

a large number of text segments and then after a small change to its top layer, it is

re-trained (fine-tuned) on a classification task.

• Input Layer: BERT applies a specific type of tokenization algorithm called Word-

Piece [79]. WordPiece decomposes words into multiple tokens such that a desired

vocabulary size for the tokens is reached. In addition, it allows for the handling

Background 32

of new words not seen in the corpus provided those words can be composed of

existing tokens in the vocabulary.

• Input Encoding Layer: The initial vector representations of the tokens are set

during the pre-training of the BERT model prior to the classification task. When

the token vectors are fed as input to the model specific layers their positions in

the sequence are encoded. This is done by adding position specific vectors to the

token vectors.

• Model Specific Layers: As mentioned above, BERT uses an architecture called

a transformer. A transformer is an encoder-decoder system, which means it can

be trained to predict its input as an output. This specifically happens during the

pre-training of BERT when input tokens are used to predict output tokens from

the same text. The details of the transformer are too complex to cover briefly in

this section, but the main takeaway is it uses a technique called attention [69] to

model dependencies between tokens. Attention can be defined as follows:

ATTENTION(Q,K,V) = softmax

(
QKT

√
m

)
V (2.15)

where {Q,K,V } and the output are matrices of size m×n. Attention can be seen

as a way for expressing each vector, vi ∈ V , as a weighted some of the other vectors

in V such that the weights are computed from the dot-product of the vectors in

Q with the vectors in K. The dot-product is a crude measure of the similarity

between two vectors, since it is the unnormalized form of cosine similarity. The

Background 33

weights are normalized by the softmax operation such that they sum up to one

along the column dimension of their matrix. A transformer computes attention

serially across multiple layers and in parallel within each layer.

The encoder part of the architecture uses a specific type of attention that is known

as self-attention, which is as follows:

SELF ATTENTION(V ;WQ,WK ,W V) = ATTENTION(V WQ,V WK ,V W V)

(2.16)

where V ∈ Rm×n and {WQ,WK ,W V } are transformation matrices that are

parameters of the model. Self-attention allows the transformer to discover depen-

dencies between the input tokens.

For a given text, a transformer works by predicting a token in the text using a

subset of the text’s tokens and other tokens of the text that have been predicted.

In addition, BERT embeds a special token called ’[CLS]’ in the beginning of every

text to use the token’s logits as a representation for the whole text.

During a BERT classification task, we use the ’[CLS]’ token’s logits to predict the

probability distribution of the labels. We do this by adding an additional layer to

the transformer to transform the ’[CLS]’ token’s logits to the label logits. We illus-

trate the transformer and this layer in Figure 2.5, where g(.) is the transformation

function.

Background 34

Logits

g(z;α)

Transformer

h[CLS] h1 h2 ... hn

t[CLS] t1 t2
...

tn

Figure 2.5: BERT classification architecture

Chapter 3

Related Work

Extensive research has been done in utilizing data augmentation for text classification

tasks. The research can be categorized into data augmentation done in the data space

and the feature space. For a comprehensive overview of the research literature, please

refer to the recent survey [10].

3.1 Data Space

Data augmentation in the data space can be further subdivided into character, word,

phrase, and document-level augmentation.

35

Related Work 36

3.1.1 Character Level

Data augmentation at the character level is primarily used to induce noise in datasets.

Belinkov et al. [11] apply randomly switching neighboring characters in their neural

translation model. Feng et al. [22] randomly insert, delete, and swap characters to

fine-tune their generators. Ebrahimi et al. [20] keep character changes that increase

the loss of a model trained without data augmentation in order to select them later to

retrain the model. Coulombe [18] applies changing the case of characters, modifying

punctuations, and randomly inserting, deleting, and swapping characters to augment

training sets with additional examples.

Beyond inducing noise in datasets, character-level data augmentation is limited in its

ability to mimic real-world data, because it is prone to generate text that is semantically

and/or syntactically incorrect.

3.1.2 Word Level

Noise inducing is also used in word level data augmentation. Xie et al. [80] apply

“unigram noising”, which is the probabilistic replacement of words, and “blank noising”,

which is the replacement of words with a token designated as blank. Li et al. [42]

utilize syntactic noise (the syntactic alteration of sentences such as the switching of

adjectives), semantic noise (such as the substitution of words by their synonyms), and

word dropouts. Wei et al. [77] use random word insertions, deletions and swaps in their

Related Work 37

EDA method. Xie et al. [81] utilize TF-IDF to replace less weighted words with other

less weighted words.

Synonym replacement, word swapping, word insertion, and word deletion are common

techniques used by word-level data augmentation. Wei et al. [77] randomly apply these

techniques in their EDA method using a preset probability distribution. Recent work by

Shuhuai Ren et al. [59] learns the optimal parameters of the probability distribution for

applying each of the techniques used by EDA. They call their work Text AutoAugment

(TAA), and it yields better results than EDA. Kolomiyets et al. [35] substitute temporal

expressions with synonyms from WordNet [49]. Li et al. [42], Mosolova et al. [51], and

Wang et al. [76] selectively apply synonym substitution to certain words. Zhang et

al. [84] and Marivate et al. [47] implement synonym substitution by sampling from a

geometric distribution that models the closeness of synonyms. Jungiewicz et al. [30]

replace synonyms if they increase the loss of the classifier when trained without data

augmentation.

Embedding replacement is the replacement of words by finding the replacements in the

embedding space of the vocabulary. Some existing work do a K-Nearest-Neighbor search

in the embedding space to find replacements for words [60]. However, such replacements

sometimes cause antonyms to be selected, which has the unintended consequence of

capturing the wrong semantics. To mitigate this issue, Mrkšić et al. [52], Li et al. [42],

and Alzantot et al. [6] devise a counter-fitting method that rewards the selection of

synonyms while sanctioning the selection of antonyms.

Related Work 38

Language model replacement is the replacement of words using language models. Lan-

guage models are trained by predicting the next word or missing words given the

neighboring words. Kobayashi [34] uses a label-conditioned Long short-term memory

(LSTM) [27] based language model to replace words in sentences. Wu et al. [78] apply

a similar approach by using a label-conditioned BERT [19] language model (c-BERT).

Jiao et al. [29] extend c-BERT to do embedding replacement for multiple-piece words.

Similar to character-level data augmentation, world-level data augmentation is limited

in its ability to mimic real-world data as it is prone to generating text that is semanti-

cally and syntactically incorrect. However, it is significantly better than character-level

data augmentation in this regard, because it avoids spelling errors as is the case with

character-level data augmentation. This is due to the fact that world-level data augmen-

tation generates whole words instead of mutating the characters of individual words.

3.1.3 Phrase Level

Phrase-level data augmentation is done by replacing consecutive sequences of words

(phrases) with other phrases. Feng et al. [22] use an attention-based model to do phrase

replacement. Min et al. [50] swap the object and subject parts of sentences, where the

parts could be phrases. Shi et al. [65] replace phrases with phrases that share the same

sequence of part-of-speech tags.

Related Work 39

Unlike character and word-level data augmentation, phrase-level data augmentation is

not prone to syntactic and semantic errors. However, it is constrained by the fact that

a phrase bank needs to be built in order to facilitate the replacement of phrases.

3.1.4 Document Level

Document-level data augmentation is the synthesis of entire training items (documents).

Round-trip language translation is a simple way to do document-level language trans-

lation. In round-trip language translation, a training item is translated to another

language and then translated back to the original language. If the translation back

has differences with the training item, it can be used for data augmentation [18, 36].

Xie et al. [80] modified the beam search of translation algorithms to randomly sample

candidate translations for greater diversity.

Generative methods, which utilize models such as Variational Autoencoder (VAE) [32],

Generative Adversarial Network (GAN) [24], and GPT-2 [57], can be used for document-

level data augmentation. Qiu et al. [56] utilize both unconditioned and conditioned (the

label is input) VAEs to generate items. Guu et al. [25] use a VAE that encodes an

item and an offset vector to generate an item whose latent representation is closest to

the combination of the latent representation of the input item and the offset vector.

Sun et al. [68] use a sequential GAN architecture to generate items. Wang et al. [74]

use GPT-2 to generate items. Anaby-Tavor et al. [8] do conditional GPT-2 where they

fine-tune a GPT-2 model with the label and text of the training items concatenated

Related Work 40

with each other. During inference, the fine-tuned GPT-2 model generates items with

their respective labels and texts concatenated with each other. Liu et al. [44] add a

reinforcement learning component to GPT-2 to be able to condition the generation of

items by a given label.

A recent work [83] took the hierarchical structure of texts into account and augmented

texts at the word level and sentence level respectively. Iterative Translation-based Data

Augmentation (ITDA) [39] was proposed to provide multiple-language support for text

classification by generating augmented sentences through iterations of a translator. Luo

et al. [46] presented a data augmentation framework based on sequence generative ad-

versarial networks to improve sentiment analysis accuracy.

3.2 Feature Space

One of the main purposes of data augmentation in the feature space is to induce noise.

One method for inducing noise is to add a perturbation to the features of the text during

training. Zhu et al. [85], Liu et al. [45], and Shafahi et al. [63] induce noise during training

by learning the best perturbation parameters. Another method to induce noise is by

adding the perturbation in the final embedding layer of a model. Wang et al. [75] use this

method to enhance pre-trained language models. However, learning the perturbation

parameters is computationally expensive, and Shen et al. [64] use a different method,

where they occasionally zero out feature vectors, or specific dimensions in the feature

vectors instead of using a trainable perturbation. Although interpolation is hard to

Related Work 41

attain in the data space of textual data, it can be done in the feature space by combining

the learning representations of sentences or text fragments [14].

Chapter 4

The Proposed Framework

4.1 Overview

SOFITDA follows a generic pipeline (Data Augmentation Pipeline) for generating syn-

thetic items and selecting a subset of them for augmenting a minority label. This

pipeline makes no assumption of the generation and selection methods. SOFITDA fur-

ther specifies a selection method that jointly maximizes the likelihood of the selected

items belonging to the minority label and the diversity of the selected items.

Figure 4.1 shows the steps of the Data Augmentation Pipeline. The following are the

descriptions of the steps:

• Configure Generator: Configures the algorithm that generates synthetic items.

42

The Proposed Framework 43

Configure Generator

Generate Synthetic Items

Score Synthetic Items

Configure Selector

Select Synthetic Items

Train Scorer

Figure 4.1: The steps of the Data Augmentation Pipeline for getting synthetic items
for a single minority label

For example, in the case of a pre-trained text-generating model, this is a fine-

tuning step where the model is fine-tuned with the items of a minority label.

• Generate Synthetic Items: Generates synthetic items using the configured

generator. We generate an excessive number of synthetic items such that we have

a large enough pool of items from which we select the optimal items we need for

augmentation.

• Train Scorer: Trains a classifier on the original dataset (without augmentation).

For a given item, the classifier infers the probability distribution of the labels.

• Score Synthetic Items: Assigns scores to the synthetic items using the classifier.

The scores are the probability of the minority label inferred by the classifier. The

selection process uses them as a measure for the likelihood of the synthetic items

in belonging to the minority label.

The Proposed Framework 44

• Configure Selector: Configures the algorithm that selects synthetic items. For

example, if the selector uses embedding vectors to represent documents, the vectors

are computed in this step.

• Select Synthetic Items: Selects items from the pool of generated synthetic

items such that the minority label is balanced. This means the number of items

of the minority label is equal to the number of items of the most dominant label

in the dataset.

The Data Augmentation Pipeline is executed for each minority label of the dataset such

that all labels are augmented with enough synthetic items to have the same number of

items as the most dominant label in the dataset. Note, however, the Train Scorer step

only needs to be executed once for the whole dataset.

SOFITDA specifies a specific selector for the Data Augmentation Pipeline that jointly

maximizes the likelihood and the diversity of the selected items. We initially formulate

the maximization as an intractable combinatorial objective that we then approximate

by transforming it into a monotone submodular objective. Monotone submodular ob-

jectives can be solved by a tractable, greedy algorithm that yields a solution that is

within (1− 1/e) of the optimal solution [17].

The Proposed Framework 45

4.2 Individual Components

We now define the Data Augmentation pipeline in mathematical and algorithmic detail.

Let D be a set of labeled documents, where each document is represented by a vector

d ∈ RM×1, and has only one label. Furthermore, let L represent the number of labels,

and nD
i represent the number of documents that have the label i. The goal of SOFITDA

is to generate synthetic documents, assign a score to each of the synthetic documents,

and finally select enough of the synthetic documents for each label i such that the

number of documents for each label is exactly balanced.

Let S represent the set of selected synthetic documents. The documents of D and S

are combined to train a text classification model. The model predicts the probability

distribution of the labels for a given document. We call this model the Document

Classifier.

4.2.1 Text Generator

Synthetic documents for label i are generated by GENERATOR(nS
i ;θi), where nS

i is

the number of synthetic documents to generate for label i, and θi are the parameters of

the generator that generates the synthetic documents. The values of θi are determined

by a configuration step CONFIGURE GENERATOR(D, i).

The Proposed Framework 46

4.2.2 Document Scorer

We assign a score to each synthetic document we generate for label i. The score is

determined by a document classifier SCORER(s, i;β), where s is a synthetic document,

i is the label, and β are the parameters of the document classifier. The document

classifier is trained on set D by TRAIN SCORER(D) to determine the values of β.

The score of a synthetic document is the probability of label i inferred by the document

classifier.

4.2.3 Document Selector

To balance each label i in D, the number of synthetic documents we need is given by

the following equation:

nS
i =

(
max

m∈{1,...,L}
nD
m

)
− nD

i (4.1)

where nD
i is the number of samples a label i has in D and nS

i is the number of synthetic

samples we need to balance the label i.

In order to sample high-quality synthetic documents, we generate excess synthetic doc-

uments for label i by an integral factor of ω, where ω > 1. We then use a selector

SELECTOR
(
Ti, Ri, n

S
i ;ηi

)
to sample high-quality synthetic documents, where Ti is the

set of all synthetic documents generated for label i, Ri is the set of the correspond-

ing scores of the synthetic documents, and ηi are the parameters of the selector. The

number of synthetic documents in Ti is equal to ω × nS
i and the selector selects nS

i

The Proposed Framework 47

synthetic documents from Ti. The values of ηj are determined by a configuration step

CONFIGURE SELECTOR (D, i).

4.2.4 Data Augmentation Pipeline

The Data Augmentation Pipeline is an algorithm that utilizes the generator, scorer,

and selector to create the set of synthetic documents S that we use to augment the

set of real documents D such that all the labels are exactly balanced. The training

using the augmented dataset (D ∪ S) is done by the same type of classifier used by the

document scorer. Algorithm 2 outlines the steps of the Data Augmentation Pipeline.

The algorithm does not specify the implementation details for the document generator,

Algorithm 2 Data Augmentation Pipeline

1: S ← ∅
2: R← ∅
3: β ← TRAIN SCORER(D)
4: for each i ∈ {1, ..., L} do
5: nS

i =
(
maxm∈{1,...,L} n

D
m

)
− nD

i

6: nG
i ← ω × nS

i

7: θi ← CONFIGURE GENERATOR (D, i)
8: Ti ← GENERATOR(nG

i ;θi)
9: for each j ∈ {1, ..., nG

i } do
10: s← ti,j
11: ri,j ← SCORER(s, i;β)
12: end for
13: ηi ← CONFIGURE SELECTOR (D, i)
14: Si ← SELECTOR

(
Ti, Ri, n

S
i ;ηi

)
15: end for

scorer, or selector. It begins by first training the scorer for the set of documents, D,

and then proceeds to do the following for each label i:

The Proposed Framework 48

• Determines the number of documents, nG
i , that need to be synthesized for the

label. This number is ω times the number of documents, nS
i , required to balance

the label such that the number of documents of the label is the same as the number

of documents of the most dominant label.

• Configures the parameters of the generator, θi, for the label.

• Using the generator, synthesizes a set of documents, Ti, for the label. The number

of documents synthesized is nG
i .

• Using the scorer, computes a score, ri,j, for each synthesized document, ti,j. The

score is a probability value.

• Configures the parameters of the selector, ηi, for the label.

• Using the selector selects nS
i items from Ti and puts them into the set of selected

documents, Si.

4.2.5 Diversity Selector

The diversity selector is a selector that attempts to select a synthetic document for label

i based on the ability of the synthetic document to maximize the total score and the

diversity of Si. We compute the total score of Si as follows:

U(Si) =

nS
i∑

j=1

ri,j (4.2)

The Proposed Framework 49

To compute the diversity score of Si, we first compute the dissimilarity of a synthetic

document j in Si, vi,j, with the other synthetic documents in Si as follows:

vi,j =

nS
i∑

k=1

1− SIMILARITY(Si,j, Si,k) (4.3)

where SIMILARITY computes the similarity of two documents Si,j and Si,k as a real

number ∈ [0, 1] such that similarity increases from a minimum value of 0 to a maximum

value of 1. We then compute the diversity V (Si) of Si as a measure of total dissimilarity

as follows:

V (Si) =

nS
i∑

j=1

vi,j (4.4)

Ideally, the diversity selector should linearly combine the two objectives of maximizing

U(Si) and V (Si) as follows:

Z(Si) = U(Si) + λV (Si) (4.5)

where λ is a weight such that λ ≥ 0 and λ ∈ R. To find the optimal selection S∗
i , we

maximize the following objective:

S∗
i = argmax

Si⊂Ti

Z(Si)

s.t. |Si| = nS
i

(4.6)

However, this maximization is an NP-hard combinatorial problem, because the number

of possible subsets of Si is
(

ω×nS
i

nS
i

)
. Therefore, the maximization cannot be tractably

The Proposed Framework 50

solved for sufficiently large values of ω, and nS
i .

4.2.6 Monotone Submodular Optimization

To overcome the intractability of Equation (4.6), we modify it such that it becomes a

monotone submodular optimization objective. This allows us to use a tractable greedy

algorithm whose solution is shown by [17] to be within (1−1/e) of the optimal solution.

A monotone submodular optimization objective is formulated as follows:

S = argmax
S⊂E

F(S)

s.t. |S| ≤ c

(4.7)

where E is a set of elements, F is a monotone submodular function, and c is an integer

such that 0 < c < |E|. A monotone submodular function is a function F : 2E → R+

that abides by the following [17]:

• (Submodularity) For all S ⊆ T ⊆ E and {l} ∈ E\T :

F(T ∪ {l})−F(T) ≤ F(S ∪ {l})−F(S) (4.8)

Equivalently, the submodularity can also be defined as follows: For all S ⊆ E and

T ⊆ E :

F(S) + F(T) ≥ F(S ∩ T) + F(S ∪ T) (4.9)

The Proposed Framework 51

Algorithm 3 Greedy Algorithm for Monotone Submodular Optimization

1: S ← ∅
2: while |S| < c do
3: e← argmaxe∈E F(S ∪ {e})−F(S)
4: S ← S ∪ {e}
5: end while

• (Monotonicity) For all S ⊆ T ⊆ E :

F(S) ≤ F(T) (4.10)

An approximate solution for the monotone submodular optimization objective can be

solved by Algorithm (3), which is proposed by [17]. What is interesting about this

solution is the fact that it occurs when |S| = c. This means if our combined objective

Z(Si) in Equation (4.6) is a monotone submodular function, we can update the con-

straint in the equation from |Si| = nS
i to |Si| ≤ nS

i in order to convert it to a monotone

submodular optimization objective. Doing so allows us to use Algorithm (3) to obtain

an approximation for the optimal solution.

However, Equation (4.6) is not a monotone submodular function. While the term U(Si)

in the equation for Z(Si) is a monotone submodular function, the term V (Si) is not.

U(Si) is a monotone submodular function because we can add scores in descending

order to each successive and larger subset of elements. This allows U(Si) to meet all the

conditions of a submodular function. V (Si) is not a monotone submodular function,

because Equation (4.9) is not always met. This is due to each similarity score, vi,j,

being dependent on other values of the set. Therefore, the same vi,j ∈ S and vi,j ∈ T

The Proposed Framework 52

may not contribute the same value to F(S), F(T), F(S ∩ T) and F(S ∪ T) due to

the composition of the sets being different in each function call. As a consequence, the

inequality of Equation (4.9) is not always maintained.

4.2.7 SOFITDA Selector

To address Equation (4.6) not being a monotone submodular function, we approximate

diversity by clustering the documents in Ti based upon their features instead of using

V (Si). Our goal is to select documents as evenly as possible across the clusters in order

to increase diversity. When we select the documents from each cluster, we select the

documents in descending order of their scores. The value we return for the document

selector is as follows:

Ẑ(Si) =

NC∑
k=1

∑
d∈Ck∩Si

ri,d (4.11)

where NC is the number of clusters, and Ck is the kth cluster. We can change the quality

of the diversity by adjusting the number of clusters. If the number of clusters is one, we

do not induce diversity, because we select nS
i documents in Ti with the highest scores.

We attempt to evenly select documents across clusters by randomly selecting the cluster

from which we select the next document. However, this approach does not meet all the

conditions of a monotone submodular function. Specifically, it violates Equation (4.8),

because the document we select next may have a higher score than a document we have

already selected. This can happen when both documents come from different clusters.

The Proposed Framework 53

As a result of this violation, we cannot guarantee the approach yields a close-to-optimal

solution.

Inspired by the application of submodular functions for document summarization in

Lin et al. [43], we fix this violation by updating Equation (4.11) to use a non-decreasing

concave function H(·) as follows:

Z̃(Si) =

NC∑
k=1

H

(∑
d∈Ck∩Si

ri,d

)
(4.12)

The usage of a non-decreasing concave function gives us two advantages. The first

advantage is we would not violate Equation (4.8), because in a non-decreasing concave

function, the following condition holds:

H(y + d)−H(y) ≤ H(x + d)−H(x) (4.13)

provided that:

x, y, d ∈ R

x, y, d ≥ 0

x ≤ y

(4.14)

In the case of Equation (4.12), x and y are the sum of probability values and they are

therefore real numbers greater than or equal to zero. d is a probability value and is

therefore a real number greater than or equal to zero. An example of a non-decreasing

concave is the square root function. We can see from the expression
√

25 + 1−
√

25 <

The Proposed Framework 54

√
16 + 1−

√
16 the inequality of Equation (4.13) is met. The full proof for the monotone

submodularity of Equation (4.12) is listed in Appendix A.

The second advantage of using a non-decreasing concave function is we no longer need

to randomly select a cluster from which we select the next document. This is because

the document with the highest score is not always selected due to H(·) being a non-

decreasing concave function. To see this being the case, let us assume an example,

where:

• H(·) is the square root function.

• We have two clusters, C1 and C2.

• C1 contains the documents with the highest scores.

• All documents selected so far are from C1 and the sum of their scores is 25.

• The score of the highest document not selected in C1 is 0.9.

• The score of the highest document in C2 is 0.5.

The net change in the value of Z̃(Si) for selecting the next document from C1 is

√
25 + 0.9 −

√
25 = 0.089, whereas the net change in the value of Z̃(Si) for select-

ing the next document from C2 is
√

25 +
√

0 + 0.5−
√

25 = 0.707. Therefore, the next

document is selected from C2, and this shows us that the next document can come from

a cluster that does not contain the highest-scoring candidate document due to the non-

decreasing concavity characteristics of H(·). As a result, we do not need to randomly

The Proposed Framework 55

select a cluster from which we select the next document in order to boost diversity.

Instead, we can select a function for H(·) that has the appropriate level of concavity for

inducing the desired level of diversity.

The monotone submodular objective for using Z̃(Si) is as follows:

S∗
i = argmax

Si⊂Ti

Z̃(Si)

s.t. |Si| ≤ nS
i

(4.15)

Unlike the objective in Equation (4.6), this objective is a monotone submodular function.

Therefore, an approximate solution for the objective can be solved by Algorithm (3), and

the approximate solution is guaranteed to be within (1−1/e) of the optimal solution [17].

It is possible that Algorithm (3) can have multiple candidate documents for the next

document to be selected. This occurs when selecting any one of the candidate documents

results in the same value for Z̃(Si). When this scenario occurs, the algorithm randomly

selects one of the candidate documents.

4.2.8 Computational Complexity of SOFITDA Selector

We use Algorithm (3) to optimize the SOFITDA selector. The clusters are sorted in

descending order by the scores of their documents. As a result, selecting the document

that has the maximum score from the clusters during each iteration of the loop has a

time efficiency of O(NC). Since NC , the number of clusters, is a constant, the time

The Proposed Framework 56

efficiency reduces to O(1). To select the documents of Si, the loop iterates nS
i times,

and this results in the efficiency of the algorithm being nS
i ×O(1) = O(nS

i). Therefore,

the SOFITDA selector scales up linearly with the number of synthesized items.

Chapter 5

Experiments

In this section, we present the setup, results, and analysis of the experiments.

5.1 Datasets

We use a total of 6 datasets to evaluate SOFITDA. All 6 datasets are composed of

labeled texts. The datasets are as follows:

• Amazon Camera Reviews [1]: Camera reviews are labeled using a 5-star sys-

tem, where 1 star represents the lowest rating, and 5 stars represent the highest

rating.

57

Experiments 58

• Yelp Reviews [4]: Customer reviews of businesses are labeled using a 5-star

system, where 1 star represents the lowest rating, and 5 stars represent the highest

rating.

• Quora Insincere Questions [2]: Quora questions are labeled as sincere or in-

sincere. An insincere question is a question that is not well intended, malicious,

or not based on facts.

• Trip Advisor Hotel Reviews [3]: Hotel reviews are labeled using a 5-star

system, where 1 star represents the lowest rating, and 5 stars represent the highest

rating. For this dataset, we only use hotel reviews that have ASCII characters in

order to avoid including non-English reviews in the dataset.

• Stanford Sentiment Treebank (SST-5) [66]: Movie reviews are labeled using

the following 5 sentiment labels: very negative, negative, neutral, positive, and

very positive.

• Text Retrieval Conference (TREC-6) [41]: Questions are labeled into six

broad categories as follows: ABBR (Abbreviation), DESC (Description and ab-

stract), ENTY (ENTITIES), HUM (Human beings), LOC (Locations), and NYM

(Numeric values).

Table 5.1 shows the size and percentage of the labels of each dataset.

Experiments 59

Table 5.1: The distribution of the labels for each dataset.

Dataset Label Size Percentage

Amazon Camera Reviews

1 2,527 8.31

2 1,224 4.03

3 1,897 6.24

4 4,402 14.48

5 20,359 66.95

Yelp Open Dataset

1 2,674 8.65

2 1,813 5.86

3 2,750 8.89

4 7,444 24.07

5 16,246 52.53

Quora Insincere Questions
Sincere 37,500 93.81

Insincere 2,475 6.19

Trip Advisor Hotel Reviews

1 1,322 4.22

2 1,142 3.64

3 3,211 10.25

4 10,975 35.02

5 14,690 46.87

Stanford Sentiment Treebank

Very negative 1,509 12.74

Negative 3,140 26.50

Neutral 2,241 18.91

Positive 3,109 26.24

Very positive 1,850 15.61

Text Retrieval Conference Dataset

DESC 3,442 21.58

ENTY 3,721 23.33

ABBR 250 1.57

HUM 3,489 21.87

NUM 2,593 16.26

LOC 2,457 15.40

5.2 Pre-processing

For the Amazon, Yelp, Quora, and Trip Advisor datasets, we partition 50% of the

items for training, 25% for validation, and 25% for testing. We don’t partition the

Stanford Sentiment Treebank (SST-5) and the Text Retrieval Conference (TREC-6)

datasets, because they come partitioned. Table 5.2 shows the sizes of the partitions

Experiments 60

Table 5.2: The partition and vocabulary sizes of each dataset.

Dataset Training Validation Testing Vocabulary Size

Amazon Camera Reviews 15,159 7,655 7,595 29,628

Yelp Open Dataset 15,442 7,765 7,720 61,112

Quora Insincere Questions 19,987 9,992 9,994 56,092

Trip Advisor Hotel Reviews 15,690 7,831 7,819 67,102

Stanford Sentiment Treebank 8,531 1,101 2,209 19,514

Text Retrieval Conference Dataset 14,452 1,000 500 9,778

and the vocabulary of each dataset. The vocabulary size shown here is based on the

tokenization of text into words by using white-space characters as separators.

5.3 Setup

In this section, we describe the setup of the Data Augmentation Pipeline for our exper-

iments by specifying the characteristics of the functions in Algorithm (2). As part of

our evaluation, we use multiple datasets, GENERATOR functions, SCORER functions,

and SELECTOR functions. We execute the Data Augmentation Pipeline for each dis-

tinct tuple of dataset, GENERATOR function, SCORER function, and SELECTOR

function.

5.3.1 CONFIGURE GENERATOR Functions

We evaluate SOFITDA on two widely used data augmentation methods. For each

method, we have a GENERATOR function for generating synthetic documents. The

first method is EDA [77], and we use this method to analyze the performance of

Experiments 61

SOFITDA on items synthesized by a rules-based data augmentation method. In the

case of EDA, we do not have a CONFIGURE GENERATOR function, because we use

the default parameters of EDA as is. The second method utilizes GPT-2 [57], which

is a high-quality generative language model that is trained on a large corpus of text.

We use this method to analyze the performance of SOFITDA on items synthesized by

a machine-learning model. For each minority label of a given dataset, we execute the

CONFIGURE GENERATOR function of GPT-2 to fine-tune an instance of the GPT-2

model on the training items of the minority label. We enclose the text of each train-

ing item with the tokens ‘[BEGIN]’ and ‘[END]’. The tokens allow us to identify the

beginning and end of the text of an item that is generated by GPT-2.

5.3.2 GENERATOR Functions

The GENERATOR functions generate 10 times the number of items required to make

the number of items of a given label be equal to the number of items of the majority

label. This is so that we have a large enough pool of synthetic items to make a good

selection. In the case of GPT-2, a valid generated item is delimited by the ‘[BEGIN]’

and ‘[END]’ tokens. We strip these tokens to extract the text of the generated item.

5.3.3 TRAIN SCORER Functions

We train four types of SCORER functions, where each type uses a unique text classifier.

The learning rate and batch size of the text classifiers were tuned on the validation sets.

Experiments 62

The text classifiers and their configurations are as follows:

• BOW Classifier: A Logistic Regression model that uses the Bag-Of-Words

(BOW) representation of the input text as features such that the input text is

represented by a binary vector where each slot in the vector corresponds to a

unique word and is set to 1 if the word is present in the input text or 0, otherwise.

For the BOW classifier, we use a learning rate of 0.001, an ADAM optimizer [31],

and a batch size of 32.

• RNN Classifier: A Recurrent Neural Network (RNN) model that consists of

a word embedding layer, a bi-directional Long Short-Term Memory (LSTM) [27]

layer, a fully connected hidden layer that consists of 50 RELU (Rectified Linear

Unit) units, a 50% dropout layer, and a softmax layer that linearly transforms the

output of the previous layer to compute the probability scores of the labels. We

initialize the word embeddings with GloVe embeddings [70], which are trained on

a large text corpus, and have a size of 100 dimensions. For the RNN classifier, we

use a learning rate of 0.0001, an ADAM optimizer, and a batch size of 32.

• CNN Classifier: A Convolutional Neural Network (CNN) model that consists

of a word embedding layer, a one-dimensional CNN layer that has 200 filters with

a kernel size of 5, a RELU layer, a global max pooling layer, a fully connected

hidden layer that consists of 50 RELU units, and a softmax layer that linearly

transforms the output of the previous layer to compute the probability scores of

the labels. We initialize the word embeddings with GloVe embeddings that have

Experiments 63

a size of 100 dimensions. For the CNN classifier, we use a learning rate of 0.0001,

an ADAM optimizer, and a batch size of 32.

• BERT Classifier: A classifier that uses BERT (Bidirectional Encoder Represen-

tations from Transformers) [19] embeddings. Similar to GloVe embeddings, BERT

embeddings are trained on a large text corpus. We use uncased small BERT em-

beddings that are trained on a 2-layer neural network with 512 hidden weights and

8 attention heads. Our BERT classifier consists of the BERT transformer stack, a

10% dropout layer, and a softmax layer that linearly transforms the final output

of the BERT transformer stack to compute the probability scores of the labels.

For the BERT classifier, we use a learning rate of 0.0003, an ADAM optimizer,

and a batch size of 32.

With the exception of the BERT text classifier, which uses its own tokenization method,

we tokenize the text of the training items for the text classifiers as follows:

• We remove all occurrences of the following characters in the text: !"#$%&()*+,-./:

;<=>?@[\]^‘{|}~

• We split the tokens by white space (space, tabs, and new lines).

The number of epochs required to train each SCORER function is the number of epochs

that gives the least amount of error on the validation set of the dataset. We use the

Keras Tensorflow 2 framework to build and run the text classifiers.

Experiments 64

5.3.4 SCORER Function

The scores returned by the SCORER functions are the likelihoods of the labels of the

synthesized items passed as inputs. The likelihoods are expressed as a vector of proba-

bility values where each slot in the vector corresponds to a label.

5.3.5 CONFIGURE SELECTOR Function

We have five types of selector functions. The first type is the SOFITDA selector. The

non-decreasing concave function we use for the selector is as follows:

H(x) = xα (5.1)

where x, α ∈ R and α ∈ [0, 1]. Our choice of α values makes H(·) a non-decreasing

concave function that includes the square root function (α = 0.5). As shown in Figure

5.1, the α values allow us to control the concavity of H(·) so that we can induce the

optimal amount of diversity we need. When α = 1, we do not use diversity as a factor,

because the documents with the highest scores are selected. When α = 0, we use

diversity as the only factor, because H(·) returns a value of 1 for all documents, and

therefore the selection of the documents is randomized. As the value of α decreases from

1 to 0, the amount of diversity increases. In addition to α, we can control the quality of

the diversity by adjusting the number of clusters, NC . For our experiment, we configure

Experiments 65

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
H(

x)
α = 0.0
α = 0.1
α = 0.3
α = 0.5
α = 0.7
α = 0.9
α = 1.0

Figure 5.1: Plots of H(x) = xα for different values of α. Notice how the concavity
of H(x) decreases as the value of α goes from 0 to 1.

a SOFITDA selector for each distinct pair of α and NC from the following sets:

α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

NC ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
(5.2)

In the CONFIGURE SELECTOR function of the SOFITDA selector, we create the

clusters for a label of the dataset. We use the Mini-Batch K-Means algorithm [62] to

cluster the items synthesized by the GENERATOR function. We use the items’ TF-

IDF [67] vectors as clustering features. Section 5.5.4 investigates the effect of α and NC

on SOFITDA.

The remaining four types of selector functions constitute the baseline selectors and are

as follows:

Experiments 66

• NO AUG: Does not select synthesized items for any of the labels. Although this

selector technically violates Equation (4.1), we need it as a baseline to represent

the case where data augmentation is not applied.

• RANDOM: Randomly selects the necessary number of synthesized documents

required to balance the minority label, and we use it to represent the case where

no selection algorithm is used. The RANDOM baseline is equivalent to a specific

instance of the SOFITDA selector with α = 0.

• TOP: Ranks the synthesized documents in descending order of their scores and

selects the necessary number of top-ranked documents required to balance the mi-

nority label. The TOP baseline is equivalent to a specific instance of the SOFITDA

selector with α = 1 or NC = 1. This baseline is used by the LAMBADA algo-

rithm [8] to select synthesized documents for augmenting labels.

• BOTTOM: Ranks the synthesized documents in ascending order of their scores,

and selects the necessary number of top-ranked documents required to balance

the minority label. The BOTTOM baseline is similar to the selection method

used by the HotFlip method [20], where synthesized documents that maximize

the classifier’s loss are selected.

The above baselines do not have a CONFIGURE SELECTOR function, because they

do not have configurable parameters.

Experiments 67

5.3.6 SELECTOR Function

We evaluate a total of 99 SOFITDA selectors, one for each distinct pair of α (9 values)

and NC (11 values), and 4 baseline selectors.

5.3.7 TAA Baseline

In addition to the 4 baseline selectors, we use the Text Auto Augmentation (TAA)

method [59] as a baseline. Unlike the baseline selectors, this method jointly uses a

generator and a selector in one model such that we cannot incorporate it into our Data

Augmentation Pipeline. The generator portion of the method is a word-level rules-based

synthesizer and we configure it to use the same rules as our EDA generator. The selector

portion uses a probability distribution to randomly sample rules for the generator. The

parameters of the probability distribution are the ones that generate synthetic items for

an augmented training set that yields the best performance on the validation set when

used to train a BERT classifier. For our experiments, we configure the BERT classifier

the same way we configure the BERT classifiers of the SCORER functions.

5.4 Evaluation Methodology

After executing the Data Augmentation pipeline for each distinct tuple of dataset,

GENERATOR function, SCORER function, and SELECTOR function, we do our eval-

uation on each tuple as follows:

Experiments 68

• We augment a copy of the dataset’s training set with the items of the dataset’s

labels that are selected by the SELECTOR function.

• We train a classifier for the augmented training set using the same classifier type

and setup used by the SCORER function. The number of epochs required to train

the classifier is the number of epochs that gives the least amount of error on the

validation set of the dataset.

• We determine the performance of the classifier on the testing set of the dataset.

The metric we use to evaluate the performance of the classifier is the macro F-Score [53].

The macro F-Score is computed on a per-label basis, and we aggregate the F-Score of

the labels of a dataset by taking their mean. The F-Score of a label is computed as

follows:

F-Score = 2× Precision× Recall

Precision + Recall
(5.3)

where:

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

(5.4)

The macro F-Score is a well-suited metric for analyzing the performance of classifiers

on imbalanced testing sets because all labels are weighted equally regardless of their

distribution [53]. This is not the case with a metric such as accuracy, because a classifier

that always predicts the majority label on an imbalanced testing set can have a high

Experiments 69

accuracy value. In addition to computing the macro F-Score, we also compute the

macro precision and the macro recall to get further insights into the behavior of the

macro F-Score. The macro precision and macro recall are the mean precision and mean

recall of the precision and recall of the labels, respectively. We are not able to use other

widely used metrics such as ”Area under the curve” (AUC) and ”Mean correlation

coefficient” (MCC) due to their misleading performance on the multi-class classification

of imbalanced datasets [12], [86]. For performance comparisons, we group the tuples by

dataset, GENERATOR function, and classifier. We choose the SOFITDA selector that

yields the highest macro F-Score value in each group and compare the performance of

this selector with the performance of the baseline selectors of the group. In addition, we

compare the performance of the SOFITDA selector we choose for the EDA generator

and BERT classifier with the performance of its equivalent TAA baseline.

5.5 Results

5.5.1 Optimal α and NC

Table 5.3 shows the α and NC values of the SOFITDA selector that yield the optimal

macro F-Score values on a per dataset, generator, and classifier basis.

To see the impact of the classifier on the values of α and NC , we compute the mean

value of α and NC in Table 5.3 on a per-classifier basis, and display the results in Table

5.4. From the results, we see that the BERT, RNN, and BOW classifiers have similar α

Experiments 70

Table 5.3: The α and NC values of the SOFITDA selector that yields the highest
macro F-Score value on a per dataset, generator, and classifier basis.

Dataset Generator Parameter BERT CNN RNN BOW

Amazon EDA
α 0.1 0.4 0.7 0.3

NC 6 5 11 11

GPT-2
α 0.7 0.2 0.7 0.7

NC 12 6 11 8

Yelp EDA
α 0.6 0.5 0.1 0.7

NC 3 3 10 10

GPT-2
α 0.5 0.1 0.7 0.5

NC 6 8 6 8

Quora EDA
α 0.5 0.3 0.5 0.1

NC 5 12 8 12

GPT-2
α 0.6 0.2 0.4 0.7

NC 2 2 6 4

Trip Advisor EDA
α 0.8 0.4 0.6 0.1

NC 5 3 4 6

GPT-2
α 0.7 0.2 0.4 0.5

NC 5 3 5 2

SST-5 EDA
α 0.7 0.1 0.5 0.6

NC 11 3 2 12

GPT-2
α 0.4 0.3 0.6 0.8

NC 5 11 5 8

TREC-6 EDA
α 0.1 0.1 0.6 0.5

NC 10 5 4 8

GPT-2
α 0.6 0.1 0.4 0.4

NC 6 8 9 9

values that are approximately the same as the mean α value, whereas CNN has a low

α value. This means CNN requires more diversity than the other classifiers when we

consider its α value in isolation. With regards to the NC values, we see more variance

with the BOW classifier being a notable outlier.

To see the impact of the dataset on the values of α and NC , we compute the mean

value of α and NC in Table 5.3 on a per-dataset basis, and display the results in Table

Experiments 71

Table 5.4: The mean α and NC values of the SOFITDA selector that yields the
highest macro F-Score value on a per-classifier basis.

Parameter BERT CNN RNN BOW

α 0.53 0.24 0.52 0.49

NC 6.33 5.75 6.75 8.17

Table 5.5: The mean α and NC values of the SOFITDA selector that yields the
highest macro F-Score value on a per-dataset basis.

Parameter Amazon Yelp Quora Trip Advisor SST-5 TREC-6

α 0.47 0.46 0.41 0.46 0.50 0.35

NC 8.75 6.75 6.38 4.12 7.12 7.38

5.5. From the results, we can see that the Amazon, Yelp, Quora, Trip Advisor, and

SST-5 datasets have similar α values, whereas the TREC-6 dataset is an outlier with

a relatively low α value. This can be explained by the fact that all classifiers perform

remarkably well on the TREC-6 dataset as shown in Table 5.7. As a result, diversity

can be weighted more on the TREC-6 dataset compared to the other datasets. With

regards to NC , we see more variance, but no apparent pattern that can be explained.

To see the impact of the generator on the values of α and NC , we compute the mean

value of α and NC in Table 5.3 on a per-generator basis, and display the results in Table

5.6. Both the α and NC values indicate the EDA generator induces more diversity than

the GPT-2 generator. This can be explained by the fact that EDA mutates existing

items to synthesize new ones whereas GPT-2 synthesizes items from scratch. As a result,

there is inherently more diversity in items generated by GPT-2 than in items generated

by EDA, and therefore, there is less reliance in the α and NC values to boost diversity.

Experiments 72

Table 5.6: The mean α and NC values for the SOFITDA selector that yields the
highest macro F-Score value on a per-generator basis.

Parameter EDA GPT-2

α 0.41 0.48

NC 7.04 6.46

5.5.2 Baseline Comparison

In this section, we compare the performance of the optimal SOFITDA selector with

the baselines. The optimal SOFITDA selector yields the best macro F-Score value on

a per dataset, generator, and classifier basis. Going forward, we refer to the optimal

SOFITDA selector as the SOFITDA selector.

Table 5.7 shows the macro F-Score of SOFITDA and the baseline selectors on a per

dataset, generator, and classifier basis. Bold font indicates the selector that yields the

highest macro F-Score for each tuple of dataset, generator, and classifier. † indicates a

statistically significant difference between the macro F-Score of SOFITDA and NO AUG

on a paired t-test, where the P-value is less than 0.05. We compute the statistical

significance by splitting the test dataset into 10 partitions and then doing a P-value test

between the macro F-Scores of SOFITDA and NO AUG for each partition.

Table 5.8 shows the macro F-Score of the TAA baseline on a per-dataset basis. The

TAA baseline has a generator that uses the same rules as the EDA generator and uses a

BERT classifier. Therefore, we compare the macro F-Score value of each TAA baseline

to the macro F-Score value of its equivalent SOFITDA that uses a BERT classifier

Experiments 73

and an EDA generator. In all cases of our comparison, the macro F-Score of the TAA

baseline underperforms the macro F-Score of its equivalent SOFITDA.

To further analyze the results, we compare in Table 5.9 the baseline selectors’ mean

macro F-Score, precision, and recall on a per-classifier basis with the corresponding mean

macro F-Score, precision, and recall of SOFITDA, respectively. We do the comparison as

the relative improvement of the mean macro F-Score, precision, and recall of SOFITDA

over the mean macro F-Score, precision, and recall of the baseline, respectively. We

calculate the relative improvement as a percentage value as follows: r = s−b
b
× 100 ,

where s and b are the mean macro F-Score, precision, or recall on a per-classifier basis

for SOFITDA and the baseline, respectively. From Table 5.9, we can see that SOFITDA

has significantly higher macro F-Score relative improvement values for every baseline

and classifier combination.

When we aggregate the relative improvement values of the macro F-Score by averaging

them on a per-selector basis as shown in Table 5.9, we notice the TOP baseline per-

forms the second best after SOFITDA. The TOP baseline only takes the likelihood of

a synthetic item belonging to a minority label as a factor in determining whether or

not to select the item. The fact that SOFITDA performs better than this baseline indi-

cates using diversity as an additional factor helps to select better synthetic items. The

RANDOM baseline is the second-best performing baseline and this baseline represents

the case where we select synthesized items without applying any criteria. While this

approach is better than not using synthesized items because the RANDOM baseline

Experiments 74

Table 5.7: The macro F-Score of SOFITDA and the baseline selectors on a per
dataset, generator, and classifier basis. Bold font indicates the best results. † indicates

a statistically significant improvement over the NO AUG baseline.

Dataset Generator Selector BERT CNN RNN BOW

Amazon

EDA

NO AUG 0.489 0.389 0.406 0.402

RANDOM 0.424 0.442 0.447 0.451

BOTTOM 0.367 0.337 0.332 0.338

TOP 0.455 0.422 0.428 0.427

SOFITDA 0.498 0.453 † 0.474 † 0.468 †

GPT-2

NO AUG 0.461 0.362 0.337 0.400

RANDOM 0.439 0.427 0.424 0.419

BOTTOM 0.336 0.323 0.265 0.290

TOP 0.472 0.444 0.461 0.438

SOFITDA 0.495 † 0.467 † 0.484 † 0.455 †

Yelp

EDA

NO AUG 0.560 0.492 0.458 0.510

RANDOM 0.547 0.507 0.510 0.516

BOTTOM 0.509 0.384 0.293 0.447

TOP 0.532 0.501 0.521 0.515

SOFITDA 0.565 0.511 0.521 † 0.524

GPT-2

NO AUG 0.522 0.477 0.431 0.505

RANDOM 0.521 0.482 0.489 0.490

BOTTOM 0.443 0.333 0.352 0.382

TOP 0.527 0.482 0.494 0.515

SOFITDA 0.563 † 0.514 † 0.513 † 0.518

Quora

EDA

NO AUG 0.761 0.691 0.746 0.650

RANDOM 0.748 0.731 0.714 0.740

BOTTOM 0.764 0.694 0.702 0.683

TOP 0.758 0.734 0.715 0.700

SOFITDA 0.787 0.748 † 0.755 0.718 †

GPT-2

NO AUG 0.775 0.684 0.696 0.648

RANDOM 0.745 0.706 0.716 0.717

BOTTOM 0.636 0.585 0.593 0.613

TOP 0.789 0.737 0.727 0.717

SOFITDA 0.797 0.754 † 0.752 † 0.736 †

Trip Advisor

EDA

NO AUG 0.528 0.424 0.470 0.467

RANDOM 0.514 0.483 0.495 0.486

BOTTOM 0.486 0.429 0.368 0.445

TOP 0.529 0.480 0.477 0.481

SOFITDA 0.543 0.489 † 0.503 † 0.490 †

GPT-2

NO AUG 0.526 0.430 0.473 0.465

RANDOM 0.488 0.423 0.403 0.476

BOTTOM 0.428 0.317 0.391 0.384

TOP 0.525 0.457 0.460 0.484

SOFITDA 0.540 0.483 † 0.500 † 0.492 †

SST-5

EDA

NO AUG 0.388 0.343 0.308 0.357

RANDOM 0.421 0.381 0.373 0.353

BOTTOM 0.355 0.345 0.267 0.355

TOP 0.411 0.357 0.368 0.345

SOFITDA 0.439 † 0.408 † 0.399 † 0.365

GPT-2

NO AUG 0.426 0.337 0.341 0.355

RANDOM 0.415 0.396 0.401 0.373

BOTTOM 0.356 0.296 0.328 0.359

TOP 0.422 0.404 0.400 0.376

SOFITDA 0.441 0.409 † 0.412 † 0.387 †

TREC-6

EDA

NO AUG 0.947 0.900 0.892 0.839

RANDOM 0.947 0.874 0.889 0.785

BOTTOM 0.932 0.758 0.870 0.673

TOP 0.949 0.908 0.900 0.817

SOFITDA 0.965 0.921 0.913 0.828

GPT-2

NO AUG 0.957 0.897 0.879 0.840

RANDOM 0.950 0.888 0.888 0.829

BOTTOM 0.934 0.897 0.879 0.811

TOP 0.937 0.889 0.911 0.810

SOFITDA 0.972 0.926 † 0.910 0.823

Experiments 75

Table 5.8: The macro F-Score of the TAA baseline and SOFITDA on a per-dataset
basis. We compare the TAA baseline with a SOFITDA model that uses BERT as a

classifier and EDA as a generator. Bold font indicates the best results.

Dataset TAA SOFITDA

Amazon 0.491 0.498

Yelp 0.561 0.563

Quora 0.773 0.787

Trip Advisor 0.531 0.543

SST-5 0.421 0.439

TREC-6 0.952 0.965

Table 5.9: The mean relative improvement in percentage of the macro F-Score (F),
macro precision (P), and macro recall (R) of the SOFITDA selector over the baseline

selectors on a per classifier basis averaged across the datasets and generators.

Selector
BERT CNN RNN BOW Selector Average

F P R F P R F P R F P R F P R

NO AUG +4.16 -0.21 +4.41 +12.46 +0.63 +11.41 +14.24 +5.68 +10.22 +6.52 -1.76 +7.17 +9.34 +1.09 +8.30

RANDOM +7.05 +7.40 +4.66 +5.37 +7.68 +0.13 +6.53 +10.86 -0.15 +2.91 +8.39 -2.93 +5.47 +8.58 +0.43

BOTTOM +20.22 +18.73 +14.86 +29.20 +32.23 +16.88 +35.87 +37.87 +20.05 +20.54 +26.56 +9.16 +26.46 +28.85 +15.24

TOP +4.56 +0.83 +5.89 +4.57 +1.22 +5.20 +4.60 +2.33 +4.79 +2.99 +1.37 +2.87 +4.18 +1.44 +4.69

Classifier Average +7.20 +5.35 +5.97 +10.32 +8.35 +6.73 +12.25 +11.35 +6.98 +7.20 +5.35 +5.97

Table 5.10: The relative improvement in percentage of the macro F-Score, macro
precision, and macro recall of the SOFITDA selectors configured with a BERT clas-
sifier and an EDA generator over their equivalent TAA baselines averaged across all
datasets. Note, the TAA baselines use a BERT classifier as well as generation methods

used by the EDA generator.

Macro F-Score Macro F-Precision Macro F-Recall

+1.915 +0.573 +2.71

performs better than the NO AUG baseline, the fact that the RANDOM baseline per-

forms worse than the top two selectors underscores the need for having good selection

criteria for synthesized items. The BOTTOM baseline is the worst-performing baseline.

This baseline selects synthesized items that have the least likelihood of belonging to

their respective labels. While this approach is good in augmenting a training set for

an adversarial model, where the objective is to select long tail items, it performs badly

when training a classifier for a non-adversarial scenario.

Experiments 76

When we aggregate the relative improvement values of the macro F-Score by averaging

them on a per-classifier basis as shown in Table 5.9, we notice the CNN and RNN

classifiers record the largest relative improvement values. This is due to the fact that

both models have sufficient capacity to learn more and the GloVe embeddings they use

are limited in their ability to transfer knowledge when compared to non-linear and deep

embeddings such as BERT. Therefore, adding synthetic data to the training sets of

these classifiers results in relatively large performance increases. The BERT and BOW

classifiers have about the same and lower relative improvement values, but for different

reasons. The BERT classifier is able to utilize the large amount of prior knowledge in

the BERT embeddings, and therefore its performance is impacted less by the synthetic

items. On the other hand, the BOW classifier has limited capacity, because it is a linear

model, and therefore is less able to take advantage of the synthetic items to boost its

performance.

To get more insight into the macro F-Score values, let us take a look at the relative

improvement values of the macro precision and macro recall shown in Table 5.9. We

observe several negative relative improvement values for the macro precision and macro

recall for certain baselines, which indicate their corresponding SOFITDA on average

performs worse. However, the negative relative improvement values for the macro pre-

cision and the macro recall values are more than offset by positive relative improvement

values for their corresponding macro recall and macro precision values, respectively. As

a result, the relative improvement values of the macro F-Scores in the table are all

positive, since the F-Score is impacted by both the precision and recall.

Experiments 77

Upon closer inspection of the relative improvement values for the macro precision, we

notice the NO AUG and TOP baselines have negative or low relative improvement

values. This is due to SOFITDA on average having items with less likelihood than

the NO AUG and TOP baselines because it uses diversity as an additional selection

criterion. As a result, the precision of the selectors is lower. However, SOFITDA

has higher recall than both the NO AUG and TOP baselines as illustrated by the

higher and positive relative improvement values for the macro recall. This is due to

SOFITDA on average having more diverse items than the NO AUG and TOP baselines,

which increases the recall of the selectors. Conversely, the RANDOM baseline has

high and positive relative improvement values for macro precision, but low or negative

relative improvement values for macro recall. This is because on average the items of the

RANDOM baseline have less likelihood and higher diversity than SOFITDA because

the baseline does not use likelihood as a selection criterion. As a result, the precision of

the baseline is lower, while the recall of the baseline is higher.

Table 5.10 shows the relative improvement values of the macro F-Score, macro precision,

and macro recall of the SOFITDA selectors configured with an EDA generator and a

BERT classifier over their equivalent TAA baselines averaged across all datasets. In all

cases, the relative improvement values indicate the TAA baselines underperform their

SOFITDA equivalents.

Experiments 78

5.5.3 Likelihood versus Diversity

In this section, we investigate the trade-off between the likelihood and diversity of

the synthetic items selected by the SOFITDA selectors. In Figure 5.2, we show the

charts of the mean percentage of synthesized items (Overlap Percentage) selected by the

SOFITDA selectors that are also selected by the TOP baseline on a per α value basis for

each unique tuple of dataset, generator, and classifier. For each α, we compute the mean

overlap percentage across all the NC values in the tuple. The TOP baseline is equivalent

to a SOFITDA selector with an α value of 1, and selects synthesized items only on the

basis of likelihood. By subtracting from 100 percent the overlap percentage, we compute

the mean proportion of synthesized items that are selected by the SOFITDA selectors

on the basis of diversity. From the figure, we can see in nearly all cases a smooth increase

in the proportion of synthesized items selected on the basis of diversity as the value of

α decreases from 0.9 to 0.1. This is because the overlap percentage decreases when the

value of α decreases. The rate of decrease varies depending on the dataset, generator,

and classifier. In Figure 5.1, we see α controls the concavity of the SOFITDA selector.

The less the value of α, the larger the concavity. Therefore, we can conclude from our

observation of the charts that an increase in concavity results in a smooth increase of

the proportion of synthesized items that are selected on the basis of diversity. The mean

optimal α of SOFITDA is 0.45. From the charts, we can gather this means 20% - 35% of

the synthesized items are selected on the basis of diversity whereas the rest are selected

on the likelihood of them being an instance of their corresponding label.

Experiments 79

In Figure 5.3, we show the overlap percentage on the basis of the number of clusters,

NC , instead of α. In the case of this figure, we compute the mean overlap percentage

for each NC value across all the α values for every unique tuple of dataset, generator,

and classifier. Unlike in Figure 5.2, we do not see a smooth increase in the proportion of

synthesized items selected on the basis of diversity as we increase the number of clusters.

The increase is generally noisy and does not consistently trend downwards for a higher

number of clusters. For example, in the case of the charts for the Quora dataset, we see

a noisy decrease of the proportion of synthesized items selected on the basis of diversity

when the number of clusters is greater than 8. Therefore, unlike α, the impact of NC

in boosting diversity is limited to the first few number of clusters. Furthermore, we see

general trends in the shapes of the charts that are dataset-specific. We do not nearly see

such noticeable trends for the type of generator or the type of classifier. This indicates

the impact of the number of clusters on the overlap percentage is primarily driven by

the content of the datasets.

5.5.4 Hyperparameter Analysis

In this section, we investigate the impact of the hyperparameters on the SOFITDA

selectors. α is a hyperparameter of the SOFITDA selector we use in our experiments

and it controls the concavity of the function. The greater the value of α the less concave

the function becomes. Therefore, an analysis of the impact of α gives us an insight into

how concavity impacts the performance of the text classifications. In Figure 5.4, we

analyze the macro F-Score impact of α on a per dataset, generator, and classifier basis

Experiments 80

0.2 0.4 0.6 0.8
α

60

65

70

75

80

85

Ov
er
la

p
Pe

rc
en

ta
ge

Dataset: Amazon, Generator: EDA
BERT
CNN
RNN
BOW

0.2 0.4 0.6 0.8
α

55

60

65

70

75

80

85

90

Ov
er
la

p
Pe

rc
en

ta
ge

Dataset: Amazon, Generator: GPT-2

0.2 0.4 0.6 0.8
α

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Ov
er
la

p
Pe

rc
en

ta
ge

Dataset: Yelp, Generator: EDA

0.2 0.4 0.6 0.8
α

76
78
80
82
84
86
88
90

Ov
er
la

p
Pe

rc
en

ta
ge

Dataset: Yelp, Generator: GPT-2

0.2 0.4 0.6 0.8
α

65

70

75

80

85

Ov
er
la

p
Pe

rc
en

ta
ge

Dataset: Quora, Generator: EDA

0.2 0.4 0.6 0.8
α

70

75

80

85

90

Ov
er
la

p
Pe

rc
en

ta
ge

Dataset: Quora, Generator: GPT-2

0.2 0.4 0.6 0.8
α

65

70

75

80

85

Ov
er
la
p
Pe
rc
en
ta
ge

Dataset: Trip Advisor, Generator: EDA

0.2 0.4 0.6 0.8
α

72.5
75.0
77.5
80.0
82.5
85.0
87.5
90.0
92.5

Ov
er
la
p
Pe
rc
en
ta
ge

Dataset: Trip Advisor, Generator: GPT-2

0.2 0.4 0.6 0.8
α

67.5
70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5

O-
er
la

p
Pe

rc
en

ta
ge

Dataset: SST-5, Generator: EDA

0.2 0.4 0.6 0.8
α

70

75

80

85

90

Ov
er
la

p
Pe

rc
en

ta
ge

Dataset: SST-5, Generator: GPT-2

0.2 0.4 0.6 0.8
α

42

43

44

45

46

47

48

49

Ov
er
la

p
Pe

rc
en

ta
ge

Dataset: TREC-6, Generator: EDA

0.2 0.4 0.6 0.8
α

28

30

32

34

36

38

40

Ov
er
la

p
Pe

rc
en

ta
ge

Dataset: TREC-6, Generator: GPT-2

Figure 5.2: Charts showing the mean percentage of synthesized items (Overlap
Percentage) selected by the SOFITDA selectors that are also selected by the TOP
baseline on a per α value basis for each unique combination of dataset, generator, and

classifier.

Experiments 81

2 4 6 8 10 12
Cluster Count

65

70

75

80

85

Ov
er

la
p

Pe
rc

en
ta

ge

Dataset: Amazon, Generator: EDA
BERT
CNN
RNN
BOW

2 4 6 8 10 12
Cluster Count

55

60

65

70

75

80

85

90

Ov
er

la
p

Pe
rc

en
ta

ge

Dataset: Amazon, Generator: GPT-2

2 4 6 8 10 12
Cluster Count

65

70

75

80

85

90

95

Ov
er

la
p

Pe
rc

en
ta

ge

Dataset: Yelp, Generator: EDA

2 4 6 8 10 12
Cluster Count

75

80

85

90

95

Ov
er

la
p

Pe
rc

en
ta

ge

Dataset: Yelp, Generator: GPT-2

2 4 6 8 10 12
Cluster Count

60

65

70

75

80

85

90

Ov
er

la
p

Pe
rc

en
ta

ge

Dataset: Quora, Generator: EDA

2 4 6 8 10 12
Cluster Count

65

70

75

80

85

90

95

Ov
er

la
p

Pe
rc

en
ta

ge

Dataset: Quora, Generator: GPT-2

2 4 6 8 10 12
Cluster Count

55

60

65

70

75

80

85

90

Ov
er
la
p
Pe
rc
en
ta
ge

Dataset: Trip Advisor, Generator: EDA

2 4 6 8 10 12
Cluster Count

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

Ov
er
la
p
Pe
rc
en
ta
ge

Dataset: Trip Advisor, Generator: GPT-2

2 4 6 8 10 12
Cluster Count

65

70

75

80

85

Ov
er

la
p

Pe
rc

en
ta

ge

Dataset: SST-5, Generator: EDA

2 4 6 8 10 12
Cluster Count

65

70

75

80

85

90

Ov
er

la
p

Pe
rc

en
ta

ge

Dataset: SST-5, Generator: GPT-2

2 4 6 8 10 12
Cluster Count

35

40

45

50

55

60

65

Ov
er

la
p

Pe
rc

en
ta

ge

Dataset: TREC-6, Generator: EDA

2 4 6 8 10 12
Cluster Count

20

30

40

50

60

Ov
er

la
p

Pe
rc

en
ta

ge

Dataset: TREC-6, Generator: GPT-2

Figure 5.3: Charts showing the mean percentage of synthesized items (Overlap
Percentage) selected by the SOFITDA selectors that are also selected by the TOP
baseline on a per NC value basis for each unique combination of dataset, generator,

and classifier.

Experiments 82

by plotting the mean macro F-Score of each α value across all the NC values. We notice

from the plots a non-linear distribution of the local maxima of the macro F-Score with

the variance of the maxima increasing with the non-linearity of the classifiers. The order

of the classifiers in ascending order of non-linearity is BOW, CNN, RNN, and BERT.

Furthermore, we notice the variance of the plots is higher for EDA than GPT-2. This

may have to do with the fact that the diversity of EDA’s synthetic items is lower than

that of GPT-2’s. This is because EDA makes small mutations to existing text that may

not be syntactically and semantically correct, whereas GPT-2 generates new text that is

of higher syntactic and semantic quality. As a result, the performance of the classifiers

has a greater variance when a group of items derived from the same existing item are

synthesized by EDA and the existing item has a high positive or negative impact on

performance. There appear to be no meaningful dataset-specific correlations in the

structure of the plots. All significant correlations appear to be classifier or generator

specific.

Similar to the way we analyze α, we analyze in Figure 5.5 the macro F-Score impact of

the number of clusters, NC , on a per dataset, generator, and classifier basis by plotting

the mean macro F-Score of each NC value across all the α values. Just as we notice

for α, we see a non-linear distribution of the local maxima of the macro F-Score with

the variance of the maxima increasing with the non-linearity of the classifiers. However,

there appear to be no meaningful dataset or generator correlations in the structure of

the plots. All significant correlations appear to be classifier specific.

Experiments 83

0.2 0.4 0.6 0.8
α

0.43

0.44

0.45

0.46

0.47

M
ac
ro
 F
-S
co
re

Dataset: Amazon, Generator: EDA
BERT
CNN
RNN
BOW

0.2 0.4 0.6 0.8
α

0.44

0.45

0.46

0.47

0.48

M
ac
ro
 F
-S
co
re

Dataset: Amazon, Generator: GPT-2

0.2 0.4 0.6 0.8
α

0.49

0.50

0.51

0.52

0.53

0.54

M
ac
ro
 F
-S
co
re

Dataset: Yelp, Generator: EDA

0.2 0.4 0.6 0.8
α

0.49

0.50

0.51

0.52

0.53

0.54

0.55

M
ac
ro
 F
-S
co
re

Dataset: Yelp, Generator: GPT-2

0.2 0.4 0.6 0.8
α

0.70

0.71

0.72

0.73

0.74

0.75

M
ac
ro
 F
-S
co
re

Dataset: Quora, Generator: EDA

0.2 0.4 0.6 0.8
α

0.73

0.74

0.75

0.76

0.77

0.78

M
ac
ro
 F
-S
co
re

Dataset: Quora, Generator: GPT-2

0.2 0.4 0.6 0.8
α

0.47

0.48

0.49

0.50

0.51

0.52

M
ac
ro
 F
-S
co
re

Dataset: Trip Advisor, Generator: EDA

0.2 0.4 0.6 0.8
α

0.46

0.47

0.48

0.49

0.50

0.51

0.52

M
ac
ro
 F
-S
co
re

Dataset: Trip Advisor, Generator: GPT-2

0.2 0.4 0.6 0.8
α

0.33

0.34

0.35

0.36

0.37

0.38

0.39

M
ac
ro
 F
-S
co
re

Dataset: SST-5, Generator: EDA

0.2 0.4 0.6 0.8
α

0.34

0.36

0.38

0.40

0.42

M
ac
ro
 F
-S
co
re

Dataset: SST-5, Generator: GPT-2

0.2 0.4 0.6 0.8
α

0.82

0.84

0.86

0.88

0.90

0.92

0.94

M
ac
ro
 F
-S
co
re

Dataset: TREC-6, Generator: EDA

0.2 0.4 0.6 0.8
α

0.82

0.84

0.86

0.88

0.90

0.92

0.94

M
ac
ro
 F
-S
co
re

Dataset: TREC-6, Generator: GPT-2

Figure 5.4: Charts showing the mean macro F-Score of the SOFITDA selectors
versus their α values for each unique combination of dataset, generator, and classifier.

Experiments 84

2 4 6 8 10 12
Cluster Count

0.43

0.44

0.45

0.46

0.47

M
ac
ro
 F
-S
co
re

Dataset: Amazon, Generator: EDA

BERT
CNN
RNN
BOW

2 4 6 8 10 12
Cluster Count

0.44

0.45

0.46

0.47

0.48

M
ac
ro
 F
-S
co
re

Dataset: Amazon, Generator: GPT-2

2 4 6 8 10 12
Cluster Count

0.49

0.50

0.51

0.52

0.53

0.54

M
ac
ro
 F
-S
co
re

Dataset: Yelp, Generator: EDA

2 4 6 8 10 12
Cluster Count

0.49

0.50

0.51

0.52

0.53

0.54

0.55

M
ac
ro
 F
-S
co
re

Dataset: Yelp, Generator: GPT-2

2 4 6 8 10 12
Cluster Count

0.70

0.71

0.72

0.73

0.74

0.75

0.76

M
ac
ro
 F
-S
co
re

Dataset: Quora, Generator: EDA

2 4 6 8 10 12
Cluster Count

0.73

0.74

0.75

0.76

0.77

0.78

M
ac
ro
 F
-S
co
re

Dataset: Quora, Generator: GPT-2

2 4 6 8 10 12
Cluster Count

0.47

0.48

0.49

0.50

0.51

0.52

M
ac
ro
 F
-S
co
re

Dataset: Trip Advisor, Generator: EDA

2 4 6 8 10 12
Cluster Count

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

M
ac
ro
 F
-S
co
re

Dataset: Trip Advisor, Generator: GPT-2

2 4 6 8 10 12
Cluster Count

0.34

0.35

0.36

0.37

0.38

0.39

0.40

M
ac
ro
 F
-S
co
re

Dataset: SST-5, Generator: EDA

2 4 6 8 10 12
Cluster Count

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

M
ac
ro
 F
-S
co
re

Dataset: SST-5, Generator: GPT-2

2 4 6 8 10 12
Cluster Count

0.82

0.84

0.86

0.88

0.90

0.92

0.94

M
ac
ro
 F
-S
co
re

Dataset: TREC-6, Generator: EDA

2 4 6 8 10 12
Cluster Count

0.82

0.84

0.86

0.88

0.90

0.92

0.94

M
ac
ro
 F
-S
co
re

Dataset: TREC-6, Generator: GPT-2

Figure 5.5: Charts showing the mean macro F-Score of the SOFITDA selectors ver-
sus their NC values for each unique combination of dataset, generator, and classifier.

Experiments 85

5.5.5 Cluster Analysis

In Figure 5.6 and 5.7, we illustrate charts showing the projection of the TF-IDF vectors

of 1000 synthesized items in two of the most significant PCA dimensions. In the case of

Figure 5.6, the charts are for the EDA generator, and in the case of Figure 5.7, the charts

are for the GPT-2 generator. In both cases, we plot charts for each unique combination

of dataset and classifier. The points shown in blue represent synthesized items selected

only by the TOP selector, and the points shown in red represent synthesized items

selected only by the SOFITDA selector.

From the charts, we make the general observation that the blue and red plots have

varying clustering properties. That is they have distinct areas where they are concen-

trated. In some cases, their concentrations barely overlap as is the case with the Quora

charts. In other cases, their concentrations are a subset of one another as is the case

with the Amazon charts. The fact that the clustering properties vary between the TOP

and SOFITDA selectors indicates that the SOFITDA selector adds groups of synthetic

items that are not present in the set of synthetic items selected by the TOP selector.

In addition, we note that the equivalent clusters in EDA and GPT-2 have different

shapes. This is because the vocabulary distribution of the synthetic items generated

by EDA and GPT-2 are different. As a result, their TF-IDF vectors are different. In

addition, we note that GPT-2 clusters have a finer distribution of points when compared

to EDA. This is because the vocabulary of synthetic items generated by GPT-2 is much

larger than that of EDA.

Experiments 86

Figure 5.6: Charts showing the projection of the TF-IDF vectors of 1000 synthesized
items in two of the most significant PCA dimensions. The charts are for the EDA
generator for each unique combination of dataset, and classifier. The points shown
in blue represent synthesized items selected only by the TOP selector, and the points
shown in red represent synthesized items selected only by the SOFITDA selector.

Experiments 87

Figure 5.7: Charts showing the projection of the TF-IDF vectors of 1000 synthesized
items in two of the most significant PCA dimensions. The charts are for the GPT-2
generator for each unique combination of dataset, and classifier. The points shown
in blue represent synthesized items selected only by the TOP selector, and the points
shown in red represent synthesized items selected only by the SOFITDA selector.

Experiments 88

Table 5.11: The total number of synthetic items selected for each dataset as well
as the mean execution time in seconds for executing the SOFITDA selector on a per-

dataset basis for all labels .

Amazon Yelp Quora Trip Advisor SST-5 TREC-6

Number of Items Selected 71,386 50,303 35,025 42,110 3,851 6,374

Execution Time 0.58 0.41 0.30 0.35 0.03 0.05

5.5.6 Time Efficiency

We note in Section 4.2.8 that the time complexity of the SOFITDA selector is a linear

function of the number of items selected for a given label. In Table 5.11, we show the

mean execution time in seconds for executing the SOFITDA selector on a per-dataset

basis for all labels as well as the total number of synthetic items selected for each dataset.

We run the SOFITDA selector on a 2.6 GHZ, 6-Core, Intel i7 processor with 16 GB of

RAM. From the visualization of the data in Figure 5.8, we can see a linear correlation

between the execution time and the number of selected items, which validates the theo-

retical analysis. Furthermore, for the dataset sizes we used, the SOFITDA selector runs

in a sub-second time. It is much more efficient than the brute-force approach (without

using monotone submodular optimization), which would be intractable given the sizes

of the datasets.

Experiments 89

0.1 0.2 0.3 0.4 0.5 0.6
Time (seconds)

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f i
te

m
s

Figure 5.8: A scatter plot of the mean execution time of the SOFITDA selector for
each dataset as specified in Table 5.11. The plot clearly shows a linear correlation

between the execution time and the number of items selected.

Chapter 6

Conclusion and Future Work

In this thesis, we introduce a principled approach to balance the minority labels of an

imbalanced text dataset by selecting the required number of items from a list of items

synthesized by a data augmentation model. The fact that most data augmentation

models can synthesize an unbounded number of items necessitates the need to have a

selection method to identify the items that best improve the performance of the dataset

for classification tasks. Our selection method is based on selecting synthesized items

whose likelihood of belonging to their respective labels as well as their diversity are

maximized. The initial formulation of our selection method is intractable, but we were

able to approximate it by reformulating it as a monotone submodular objective whose

solution can be approximated by a tractable greedy algorithm.

We empirically evaluated the performance of our selection method on a permutation of

6 datasets, 2 widely used data augmentation models, and 4 of the most common types

90

Conclusion and Future Work 91

of text classifiers. We extensively evaluated different configurations of our selection

method and compared the performance of the best-performing configurations with 5

baselines. Our best-performing configurations performed significantly better than the

baselines on the evaluation metric of our experiments.

Now that we have conceptually demonstrated the effectiveness of our method, our po-

tential avenues for future work are as follows:

• Optimizing Hyperparameters: In our experiments, we used grid-search to

find the optimal hyperparameters, α and NC , of the SOFITDA selector. This is a

time consuming effort, and the hyperparameters are constrained to specific ranges

and resolutions. One way to overcome this problem is to use non-brute force

techniques such as Bayesian optimizers to systematically discover the optimal

hyperparameters. These optimizers estimate a surrogate model that predicts the

loss (error) for a given hyperparameter tuple. The surrogate model leverages the

previous losses of hyperparameter tuples to select a new hyperparameter tuple that

is likely to reduce the loss. The optimizers repeat this selection process iteratively

until the loss converges.

• Exploring other Combinatorial Approximations: In this thesis, we explored

approximating our original objective for selecting synthentic items, Equation (4.6),

using a monotone submodular objective. We should explore other combinatorial

approximations for our original objective since some of them may give a tighter

Conclusion and Future Work 92

bound than the montone submodular objective. In this case, our Data Augmen-

tation Pipeline remains the same, but we will have a new selector.

• Combining Generator and Selector: Currently, the generator and selector are

two different functions that are optimized separately. As a result, the generator

selects more synthetic items than necessary and the selector selects a subset of

the items that it deems are optimal. Ideally, we should combine the generator

and selector into a single architecture so that we can optimize them jointly. This

would allow us to generate items that maximize both the likelihood and diversity,

which eliminates the need to over generate items for a separate selection step.

• Using Various Text Representations and Clustering Algorithms: So far

we have used one text representation, TF-IDF, and one clustering algorithm, Mini-

Batch K-Means. An area of future work is to evaluate the performance of our

approach on state-of-the-art semantic representations such as Sentence-BERT [58],

and advanced clustering algorithms such as the Gaussian Mixture model [48].

• Large Language Models: Recent advancements in Large Language Model

(LLM) development such as GPT-3 [13], LLaMa [71], and PaLM [16] create a

new opportunity for generating synthetic items by giving free-form natural lan-

guage instructions to the LLM. This type of generation is known as zero-shot since

no fine-tuning process is required by the LLM to mimic the items in the training

dataset. Selecting a subset of these synthetic items using our methodology is a

new area of research.

Chapter 7

Appendix

7.1 Monotone Submodularity Proof

The following are the proofs for the monotone submodularity of Z̃(·) as defined in

Equation (4.12). Specifically, Theorem 1 shows Z̃(·) is submodular and Theorem 2

demonstrates the function is monotonic.

7.1.1 Theorem 1 (Submodularity)

For all S ⊆ T ⊆ E and {l} ∈ E\T :

Z̃(T ∪ {l})− Z̃(T) ≤ Z̃(S ∪ {l})− Z̃(S) (7.1)

93

Appendix 94

Proof : A concave function has a non-increasing gradient. This means for any a ∈ R

and a ≥ 0, and a concave function f :

f ′(x + a) ≤ f ′(x)

lim
h→0+

f(x + a + h)− f(x + a)

h
≤ lim

h→0+

f(x + h)− f(x)

h

lim
h→0+

f(x + a + h)− f(x + a) ≤ lim
h→0+

f(x + h)− f(x)

f(x + a + h)− f(x + a) ≤ f(x + h)− f(x)

(7.2)

From the last inequality, we can conclude the following is true for a cluster i, because

H(·) is a concave function and ri,d ≥ 0, since ri,d is a probability value.

H

 ∑
d∈Ci∩(T ∪{l})

ri,d

−H

(∑
d∈Ci∩T

ri,d

)
≤

H

 ∑
d∈Ci∩(S∪{l})

ri,d

−H

(∑
d∈Ci∩S

ri,d

) (7.3)

We can generalize the above to the sum of all clusters, since the sum of concave functions

is a concave function:

NC∑
i=1

H

 ∑
d∈Ci∩(T ∪{l})

ri,d

− NC∑
i=1

H

(∑
d∈Ci∩T

ri,d

)
≤

NC∑
i=1

H

 ∑
d∈Ci∩(S∪{l})

ri,d

− NC∑
i=1

H

(∑
d∈Ci∩S

ri,d

) (7.4)

By substituting Z̃(.) for the cluster summations, we successfully complete the proof:

Appendix 95

Z̃(T ∪ {l})− Z̃(T) ≤ Z̃(S ∪ {l})− Z̃(S) (7.5)

7.1.2 Theorem 2 (Monotonicity)

For all S ⊆ T ⊆ E :

Z̃(S) ≤ Z̃(T) (7.6)

Proof : H(·) is a non-decreasing function. This means for any b ∈ R and b ≥ 0,

H(a) ≤ H(a + b). Using this fact, we make the proof as follows:

Z̃(S) =

NC∑
i=1

H

(∑
d∈Ci∩S

ri,d

)

≤
NC∑
i=1

H

 ∑
d∈Ci∩(S∪T)

ri,d


≤

NC∑
i=1

H

(∑
d∈Ci∩T

ri,d

)

≤ Z̃(T)

(7.7)

Bibliography

[1] Amazon customer reviews dataset.

[2] Quora insincere questions classification.

[3] Tripadvisor hotel reviews.

[4] Yelp open dataset.

[5] Eyor Alemayehu and Yi Fang. A submodular optimization framework for imbal-

anced text classification with data augmentation. IEEE Access, 2023.

[6] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava,

and Kai-Wei Chang. Generating natural language adversarial examples. Proceed-

ings of the 2018 Conference on Empirical Methods in Natural Language Processing,

2018.

[7] S-I Amari. Learning patterns and pattern sequences by self-organizing nets of

threshold elements. IEEE Transactions on computers, 100(11):1197–1206, 1972.

96

Bibliography 97

[8] Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, Amir Kantor, George Kour,

Segev Shlomov, Naama Tepper, and Naama Zwerdling. Do not have enough data?

deep learning to the rescue! In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 34, pages 7383–7390, 2020.

[9] Markus Bayer, Marc-André Kaufhold, Björn Buchhold, Marcel Keller, Jörg

Dallmeyer, and Christian Reuter. Data augmentation in natural language pro-

cessing: a novel text generation approach for long and short text classifiers. Inter-

national Journal of Machine Learning and Cybernetics, pages 1–16, 2022.

[10] Markus Bayer, Marc-André Kaufhold, and Christian Reuter. A survey on data

augmentation for text classification. arXiv preprint arXiv:2107.03158, 2021.

[11] Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural

machine translation. In International Conference on Learning Representations,

2018.

[12] Paula Branco, Lúıs Torgo, and Rita P Ribeiro. A survey of predictive modeling on

imbalanced domains. ACM computing surveys (CSUR), 49(2):1–50, 2016.

[13] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

et al. Language models are few-shot learners. Advances in neural information pro-

cessing systems, 33:1877–1901, 2020.

[14] Jiaao Chen, Zichao Yang, and Diyi Yang. Mixtext: Linguistically-informed inter-

polation of hidden space for semi-supervised text classification. In Proceedings of

Bibliography 98

the 58th Annual Meeting of the Association for Computational Linguistics, pages

2147–2157, 2020.

[15] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-

tions using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[16] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav

Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-

tian Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv

preprint arXiv:2204.02311, 2022.

[17] Gerard Cornuejols, Marshall L Fisher, and George L Nemhauser. Exceptional

paper—location of bank accounts to optimize float: An analytic study of exact and

approximate algorithms. Management science, 23(8):789–810, 1977.

[18] Claude Coulombe. Text data augmentation made simple by leveraging nlp cloud

apis. arXiv preprint arXiv:1812.04718, 2018.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[20] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box ad-

versarial examples for text classification. In Proceedings of the 56th Annual Meeting

Bibliography 99

of the Association for Computational Linguistics (Volume 2: Short Papers), pages

31–36, 2018.

[21] Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz. A multiple resam-

pling method for learning from imbalanced data sets. Computational intelligence,

20(1):18–36, 2004.

[22] Steven Y Feng, Varun Gangal, Dongyeop Kang, Teruko Mitamura, and Eduard

Hovy. Genaug: Data augmentation for finetuning text generators. In Proceedings of

Deep Learning Inside Out (DeeLIO): The First Workshop on Knowledge Extraction

and Integration for Deep Learning Architectures, pages 29–42, 2020.

[23] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological cyber-

netics, 36(4):193–202, 1980.

[24] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

Advances in neural information processing systems, 27, 2014.

[25] Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang. Generating

sentences by editing prototypes. Transactions of the Association for Computational

Linguistics, 6:437–450, 2018.

[26] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

Bibliography 100

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

[28] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. In International conference on

machine learning, pages 448–456. pmlr, 2015.

[29] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang

Wang, and Qun Liu. Tinybert: Distilling bert for natural language understanding.

In Findings of the Association for Computational Linguistics: EMNLP 2020, pages

4163–4174, 2020.

[30] Micha l Jungiewicz and Aleksander Smywiński-Pohl. Towards textual data augmen-

tation for neural networks: synonyms and maximum loss. Computer Science, 20,

2019.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[32] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[33] Youngjoong Ko. A study of term weighting schemes using class information for

text classification. In Proceedings of the 35th international ACM SIGIR conference

on Research and development in information retrieval, pages 1029–1030, 2012.

Bibliography 101

[34] Sosuke Kobayashi. Contextual augmentation: Data augmentation by words with

paradigmatic relations. In Proceedings of the 2018 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 2 (Short Papers), pages 452–457, 2018.

[35] Oleksandr Kolomiyets, Steven Bethard, and Marie-Francine Moens. Model-

portability experiments for textual temporal analysis. In Proceedings of the 49th

annual meeting of the association for computational linguistics: human language

technologies, volume 2, pages 271–276. ACL; East Stroudsburg, PA, 2011.

[36] Anna Kruspe, Jens Kersten, Matti Wiegmann, Benno Stein, and Friederike Klan.

Classification of incident-related tweets: Tackling imbalanced training data using

hybrid cnns and translation-based data augmentation. In Proceedings of the 27th

Text REtrieval Conference (TREC 2018), Gaithersburg, Maryland, November 14,

volume 16, page 2018, 2018.

[37] Solomon Kullback and Richard A Leibler. On information and sufficiency. The

annals of mathematical statistics, 22(1):79–86, 1951.

[38] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[39] Sangwon Lee, Ling Liu, and Wonik Choi. Iterative translation-based data augmen-

tation method for text classification tasks. IEEE Access, 9:160437–160445, 2021.

Bibliography 102

[40] Claude Lemaréchal. Cauchy and the gradient method. Doc Math Extra,

251(254):10, 2012.

[41] Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th

International Conference on Computational Linguistics, 2002.

[42] Yitong Li, Trevor Cohn, and Timothy Baldwin. Robust training under linguistic

adversity. In Proceedings of the 15th Conference of the European Chapter of the

Association for Computational Linguistics: Volume 2, Short Papers, pages 21–27,

2017.

[43] Hui Lin and Jeff Bilmes. A class of submodular functions for document summariza-

tion. In Proceedings of the 49th annual meeting of the association for computational

linguistics: human language technologies, pages 510–520, 2011.

[44] Ruibo Liu, Guangxuan Xu, Chenyan Jia, Weicheng Ma, Lili Wang, and Soroush

Vosoughi. Data boost: Text data augmentation through reinforcement learning

guided conditional generation. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 9031–9041, 2020.

[45] Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon,

and Jianfeng Gao. Adversarial training for large neural language models. arXiv

preprint arXiv:2004.08994, 2020.

[46] Jiawei Luo, Mondher Bouazizi, and Tomoaki Ohtsuki. Data augmentation for

sentiment analysis using sentence compression-based seqgan with data screening.

IEEE Access, 9:99922–99931, 2021.

Bibliography 103

[47] Vukosi Marivate and Tshephisho Sefara. Improving short text classification through

global augmentation methods. In International Cross-Domain Conference for Ma-

chine Learning and Knowledge Extraction, pages 385–399. Springer, 2020.

[48] Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake. Finite mixture

models. Annual review of statistics and its application, 6:355–378, 2019.

[49] George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Kather-

ine J Miller. Introduction to wordnet: An on-line lexical database. International

journal of lexicography, 3(4):235–244, 1990.

[50] Junghyun Min, R Thomas McCoy, Dipanjan Das, Emily Pitler, and Tal Linzen.

Syntactic data augmentation increases robustness to inference heuristics. In Pro-

ceedings of the 58th Annual Meeting of the Association for Computational Linguis-

tics, pages 2339–2352, 2020.

[51] Anna Mosolova, Vadim Fomin, and Ivan Bondarenko. Text augmentation for neural

networks. In AIST (Supplement), pages 104–109, 2018.

[52] Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gasic, Lina M Ro-

jas Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve Young.

Counter-fitting word vectors to linguistic constraints. In Proceedings of the 2016

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 142–148, 2016.

Bibliography 104

[53] Harikrishna Narasimhan, Weiwei Pan, Purushottam Kar, Pavlos Protopapas, and

Harish G Ramaswamy. Optimizing the multiclass f-measure via biconcave program-

ming. In 2016 IEEE 16th international conference on data mining (ICDM), pages

1101–1106. IEEE, 2016.

[54] Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur. A time delay neural

network architecture for efficient modeling of long temporal contexts. In Sixteenth

annual conference of the international speech communication association, 2015.

[55] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[56] Siyuan Qiu, Binxia Xu, Jie Zhang, Yafang Wang, Xiaoyu Shen, Gerard De Melo,

Chong Long, and Xiaolong Li. Easyaug: An automatic textual data augmentation

platform for classification tasks. In Companion Proceedings of the Web Conference

2020, pages 249–252, 2020.

[57] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. Language models are unsupervised multitask learners. OpenAI blog,

1(8):9, 2019.

[58] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using

siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[59] Shuhuai Ren, Jinchao Zhang, Lei Li, Xu Sun, and Jie Zhou. Text autoaugment:

Learning compositional augmentation policy for text classification. In Proceedings

Bibliography 105

of the 2021 Conference on Empirical Methods in Natural Language Processing,

pages 9029–9043, 2021.

[60] Georgios Rizos, Konstantin Hemker, and Björn Schuller. Augment to prevent:

short-text data augmentation in deep learning for hate-speech classification. In

Proceedings of the 28th ACM International Conference on Information and Knowl-

edge Management, pages 991–1000, 2019.

[61] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-

sentations by back-propagating errors. nature, 323(6088):533–536, 1986.

[62] David Sculley. Web-scale k-means clustering. In Proceedings of the 19th interna-

tional conference on World wide web, pages 1177–1178, 2010.

[63] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson,

Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial

training for free! Advances in Neural Information Processing Systems, 32, 2019.

[64] Dinghan Shen, Mingzhi Zheng, Yelong Shen, Yanru Qu, and Weizhu Chen. A simple

but tough-to-beat data augmentation approach for natural language understanding

and generation. arXiv preprint arXiv:2009.13818, 2020.

[65] Haoyue Shi, Karen Livescu, and Kevin Gimpel. Substructure substitution: Struc-

tured data augmentation for nlp. In Findings of the Association for Computational

Linguistics: ACL-IJCNLP 2021, pages 3494–3508, 2021.

Bibliography 106

[66] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,

Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic com-

positionality over a sentiment treebank. In Proceedings of the 2013 conference on

empirical methods in natural language processing, pages 1631–1642, 2013.

[67] Karen Sparck Jones. A statistical interpretation of term specificity and its appli-

cation in retrieval. Journal of documentation, 28(1):11–21, 1972.

[68] Xiao Sun and Jiajin He. A novel approach to generate a large scale of super-

vised data for short text sentiment analysis. Multimedia Tools and Applications,

79(9):5439–5459, 2020.

[69] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. Advances in neural information processing systems, 27, 2014.

[70] Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincaré glove:

Hyperbolic word embeddings. In Proceedings of the International Conference on

Learning Representations (ICLR 2019). OpenReview, 2018.

[71] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint

arXiv:2302.13971, 2023.

[72] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

Bibliography 107

[73] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regulariza-

tion of neural networks using dropconnect. In International conference on machine

learning, pages 1058–1066. PMLR, 2013.

[74] Congcong Wang and David Lillis. Classification for crisis-related tweets leveraging

word embeddings and data augmentation. In TREC, 2019.

[75] Dilin Wang, Chengyue Gong, and Qiang Liu. Improving neural language modeling

via adversarial training. In International Conference on Machine Learning, pages

6555–6565. PMLR, 2019.

[76] Xingkai Wang, Yiqiang Sheng, Haojiang Deng, and Zhenyu Zhao. Charcnn-svm for

chinese text datasets sentiment classification with data augmentation. International

Journal of Innovative Computing, Information and Control, 15(1):227–246, 2019.

[77] Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting

performance on text classification tasks. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6382–6388,

2019.

[78] Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han, and Songlin Hu. Conditional

bert contextual augmentation. In International Conference on Computational Sci-

ence, pages 84–95. Springer, 2019.

[79] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

Bibliography 108

Google’s neural machine translation system: Bridging the gap between human and

machine translation. arXiv preprint arXiv:1609.08144, 2016.

[80] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised

data augmentation for consistency training. Advances in Neural Information Pro-

cessing Systems, 33:6256–6268, 2020.

[81] Ziang Xie, Sida I Wang, Jiwei Li, Daniel Lévy, Aiming Nie, Dan Jurafsky, and

Andrew Y Ng. Data noising as smoothing in neural network language models. In

5th International Conference on Learning Representations, ICLR 2017, 2019.

[82] Kouichi Yamaguchi, Kenji Sakamoto, Toshio Akabane, and Yoshiji Fujimoto. A

neural network for speaker-independent isolated word recognition. In ICSLP, 1990.

[83] Shujuan Yu, Jie Yang, Danlei Liu, Runqi Li, Yun Zhang, and Shengmei Zhao.

Hierarchical data augmentation and the application in text classification. IEEE

Access, 7:185476–185485, 2019.

[84] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional net-

works for text classification. Advances in neural information processing systems,

28:649–657, 2015.

[85] Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb:

Enhanced adversarial training for natural language understanding. arXiv preprint

arXiv:1909.11764, 2019.

Bibliography 109

[86] Qiuming Zhu. On the performance of matthews correlation coefficient (mcc) for

imbalanced dataset. Pattern Recognition Letters, 136:71–80, 2020.

	A Submodular Optimization Framework for Imbalanced Text Classification with Data Augmentation
	tmp.1689625440.pdf.VNXQf

		2023-06-13T09:18:07-0700
	Agreement certified by Adobe Acrobat Sign

