
Santa Clara University
Scholar Commons

Computer Engineering Senior Theses Engineering Senior Theses

6-9-2015

Image processing for the extraction of nutritional
information from food labels
Nate Matsunaga
Santa Clara University

Rick Sullivan
Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_senior

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Computer Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Matsunaga, Nate and Sullivan, Rick, "Image processing for the extraction of nutritional information from food labels" (2015).
Computer Engineering Senior Theses. 42.
https://scholarcommons.scu.edu/cseng_senior/42

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior/42?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

1

SANTA CLARA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Date: June 9, 2015

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Nate Matsunaga
Rick Sullivan

ENTITLED

Image Processing for the Extraction of Nutritional
Information from Food Labels

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE & ENGINEERING

Thesis Advisor

Thesis Reader

Department Chair

Image Processing for the Extraction of Nutritional
Information from Food Labels

by

Nate Matsunaga
Rick Sullivan

Submitted in partial fulfillment of the requirements
for the degree of

Bachelor of Science in Computer Science & Engineering
School of Engineering
Santa Clara University

Santa Clara, California
June 9, 2015

Image Processing for the Extraction of Nutritional
Information from Food Labels

Nate Matsunaga
Rick Sullivan

Department of Computer Science & Engineering
Santa Clara University

June 9, 2015

ABSTRACT

Current techniques for tracking nutritional data require undesirable amounts of either time or man-
power. People must choose between tediously recording and updating dietary information or de-
pending on unreliable crowd-sourced or costly maintained databases. Our project looks to overcome
these pitfalls by providing a programming interface for image analysis that will read and report the
information present on a nutrition label directly.

Our solution involves a C++ library that combines image pre-processing, optical character recog-
nition, and post-processing techniques to pull the relevant information from an image of a nutrition
label. We apply an understanding of a nutrition label’s content and data organization to approach
the accuracy of traditional data-entry methods. Our system currently provides around 80% accuracy
for most label images, and we will continue to work to improve our accuracy.

Table of Contents

1 Introduction 1
1.1 Problem . 1
1.2 Current Solutions . 1
1.3 Our Solution . 2
1.4 Motivation . 2

2 Requirements 3
2.1 Overview . 3
2.2 Functional Requirements . 3

2.2.1 Critical . 3
2.2.2 Recommended . 4
2.2.3 Suggested . 4

2.3 Non-functional Requirements . 4
2.3.1 Critical . 4
2.3.2 Recommended . 4
2.3.3 Suggested . 4

2.4 Design Constraints . 4

3 Use Cases 5
3.1 Overview . 5
3.2 List of Use Cases . 5

3.2.1 Implement System in Program . 5
3.2.2 Configure System . 6

4 Architectural Design 7
4.1 Overview of Program Function . 7
4.2 Dataflow Model . 7
4.3 Module 1: Pre-processing . 8
4.4 Module 2: Optical Character Recognition . 9
4.5 Module 3: Post-processing . 9

5 Conceptual Model 10
5.1 Pre-Processing Stage . 10

5.1.1 Graying and Blurring . 10
5.1.2 Contrasting and Filtering . 11
5.1.3 Image Thresholding . 11
5.1.4 Contour Identification . 11
5.1.5 Label Extraction . 12

5.2 Post-Processing Stage . 12
5.2.1 Clean OCR Output . 12

v

5.2.2 Construct Key/Value Pairs . 13
5.2.3 Keyword Matching . 13
5.2.4 Construct Label Object . 13

5.3 Activity Diagrams . 14

6 Design Rationale 15
6.1 Justification for Technologies . 15

6.1.1 Primary Technologies Used . 15
6.1.2 OpenCV for Image Processing . 15
6.1.3 Tesseract for OCR . 16
6.1.4 C++ Language . 17
6.1.5 Python Language . 17

6.2 Pre and Post Processing . 17
6.3 Choice to Implement as API . 18

7 Testing and Results 19
7.1 Test Plan . 19

7.1.1 Module testing . 19
7.1.2 Testing Post-processing . 20

7.2 End-to-end testing . 20
7.2.1 Standard . 20
7.2.2 Skewed . 21
7.2.3 Lighting . 21
7.2.4 Curved . 21
7.2.5 Color . 21
7.2.6 Horizontal . 21

7.3 Test Results . 21
7.3.1 Module testing . 21
7.3.2 End-to-end testing . 21

8 Risk Analysis 25

9 Conclusion 26
9.1 Project Summary and Evaluation . 26
9.2 Future Progress . 26
9.3 Ethical Considerations and Project Impact . 26

Appendices 28

A Install Guide 29
A.1 Package Manifest . 29
A.2 Installation Instructions . 29

B Bibliography 30

vi

List of Figures

3.1 Use Cases for Nutrition Label Data Recognition. 5

4.1 Architectural Model. 8
4.2 Example of ideal output. 8

5.1 Grayscale Image. 10
5.2 Contrasted Image. 11
5.3 Thresholded Image. 11
5.4 Contour Image. 11
5.5 Label Image. 12
5.6 Activity Diagram for Pre-processing. 14
5.7 Activity Diagram for Post-processing. 14

7.1 Accuracy across label test sets. Data set sizes are approximately 20 labels each. . . . 22
7.2 Accuracy across label nutrients for standard labels. 23
7.3 Label Success Level Distribution. 24

8.1 Risk Analysis Chart. 25

vii

Chapter 1

Introduction

1.1 Problem

Dietary tracking in today’s world requires a constant updating of numerous nutritional metrics such

as calorie and fat contents of foods being consumed. Traditionally, this process necessitated keeping

a handwritten or electronic log of eating habits and performing tedious calculations to keep one’s

progress up to date. Recently, health and fitness applications have arisen that provide an automated

means of tracking nutritional data, but many of these programs still require the user to input all

of the necessary information. This manual data input requires tedious repetition on the part of the

user. Other applications have emerged that provide alternative, but flawed, methods of nutritional

data gathering.

1.2 Current Solutions

Applications have a few different ways of simplifying user input of nutritional information. One

solution used by popular apps such as MyFitnessPal leverages crowd-sourced information. Users

can search for their product by name to find relevant statistics, but crowd-sourced data may lack

information, may have confusing duplicates, or be completely inaccurate. Other solutions, such

as the effort by Open Product Data, revolve around constructing a database of known reliable

nutritional data. Database-centric solutions require all data to be gathered in a single location, and

changing data must be updated constantly. This approach requires a large amount of infrastructure,

collaboration, and maintenance. If the data is not maintained or new products are not added to the

central repository, data that a user is looking for may be absent or outdated.

1

1.3 Our Solution

We propose a computer vision solution to extract data directly from the nutrition label on the food

item itself. Our solution will use computer vision and character recognition technologies to pull

relevant nutritional data (calorie, fat, protein, carbohydrate, and other nutrient amounts) from an

image of the USDA nutrition label on the food’s packaging. Using data directly from the food

package ensures that data is never absent, stale, or inaccurate. Data will not have to be maintained,

as the information presented on the food’s label is required by law to be accurate. Our tool can be

leveraged by mobile or web applications to provide a simple and accurate means of tracking diet.

These applications do not have to connect to a central database of information; furthermore, mobile

applications would provide the user a simple interface to connect with the web application.

1.4 Motivation

We have both used nutrition-tracking applications, and have found data entry to be unnecessarily

tedious for the user. We have an interest in the field of computer vision, so we wanted to see

how effectively a computer-vision approach can address an existing problem. We decided on image

data extraction as a project due to its inherent difficulty and potentially widespread applications.

Domain-restricted computer vision is currently only used in a few specific cases, such as depositing

a check by taking a photo with your phone, but we think it could be applied to numerous significant

use cases, starting with nutritional data.

2

Chapter 2

Requirements

2.1 Overview

Requirements for the system we described in the introduction can be divided into two categories:

functional and non-functional requirements. Functional requirements define what must be done

by the system, while non-functional requirements describe the manner in which the functional re-

quirements need to be achieved. Furthermore, each set is divided into three tiers of importance: a

critical requirement is absolutely necessary, a recommended requirement is highly desirable, and a

suggested requirement could possibly be done but is not essential. Lastly, the design constraints are

also included. These restrict the system design by limiting the means at our disposal to create the

final product.

2.2 Functional Requirements

Functional requirements are non-negotiable functionalities that the system must have to be consid-

ered completed. We have identified seven functional requirements.

2.2.1 Critical

1. The system will analyze an image of a USDA nutrition label, identify the macronutritional

information located in the top portion of the label, and return the relevant data in an object

or text file.

2. The system will provide a C++ library that defines the necessary code for easy integration

with other programs.

3. The system will work for most common image formats including .jpg, .bmp, .png, and .tiff.

3

4. The system will provide configuration functionality for data logging and filtering.

2.2.2 Recommended

1. The system will run on modern versions of Mac, Windows, and Linux operating systems.

2.2.3 Suggested

1. The system will support additional compilers other than modern versions of gcc.

2.3 Non-functional Requirements

Non-functional requirements describe the manner in which the system achieves the required func-

tionalities. These requirements are measured on a continuum, not in a black-and-white fashion. We

have identified four non-functional requirements.

2.3.1 Critical

1. The system will complete processing in a reasonable amount of time on modern desktop hard-

ware.

2. The system will be easy to use and configure.

2.3.2 Recommended

1. The source code will be well-organized, cohesive, and thoroughly documented.

2.3.3 Suggested

1. The system will be portable across mobile, desktop, and server environments.

2.4 Design Constraints

Design constraints limit the resources and tools with which the project may be developed by setting

technological boundaries on the project design. We have identified one design constraint.

1. The system must work correctly on Ubuntu 14.04.

4

Chapter 3

Use Cases

3.1 Overview

Use cases describe a series of steps to achieve a goal in a system. We have restricted our project’s

scope to a very narrow focus, so we are only presenting two use cases. Because we are creating a

software development tool, not an end-user application, the actor in each use case is a developer

using our system in an application. Figure 3.1 shows the use cases we have identified.

Figure 3.1: Use Cases for Nutrition Label Data Recognition.

3.2 List of Use Cases

3.2.1 Implement System in Program

Goal: Integrate software tool functionality in independent code.

Actor: User (developer using our library).

Precondition: User has OpenCV, Tesseract, and a C++ compiler installed.

Postcondition: The API has been successfully integrated, allowing the user to extract data from

5

a label image.

Steps:

1. User includes our library header in their application or system.

2. User makes appropriate function call to run program.

Exceptions:

1. User gives invalid image input.

3.2.2 Configure System

Goal: System changes configuration for data logging and information filtering.

Actor: User (developer using our library).

Precondition: System is correctly integrated.

Postcondition: API uses new configuration for each subsequent image processed.

Steps:

1. User provides configuration parameters.

2. User calls our system code as they would normally.

Exceptions:

1. Defined configuration parameters are invalid.

6

Chapter 4

Architectural Design

4.1 Overview of Program Function

Our program’s goal is to analyze nutrition label images and identify the textual information present

on them. We are choosing to focus on the macro-nutritional data present in the top portion of most

standard labels. Specifically, we look for...

• Calories

• Total Fat

• Saturated Fat

• Trans Fat

• Monounsaturated Fat

• Polyunsaturated Fat

• Cholesterol

• Sodium

• Potassium

• Total Carbohydrate

• Dietary Fiber

• Sugars

• Protein

To accomplish this goal we are using a combination of image pre-processing and post-processing

techniques in conjunction with the optical character recognition engine Tesseract.

4.2 Dataflow Model

Our system follows a dataflow architectural model, which describes a system in which a defined type

of data undergoes various transformations in sequence. In this case the data is an image file and the

transformations are the pre-processing, optical character recognition, and post-processing stages it

pipes through to determine the nutritional information located within it.

7

Figure 4.1: Architectural Model.

4.3 Module 1: Pre-processing

The input image first passes through the pre-processing module. This stage is responsible for

doctoring the image into a clean, organized format, in which the English text and numerical values

present are easily identifiable. We designed the pre-processing stage to return a black-and-white,

oriented image containing just the label portion of the input image. Figure 4.2 below shows an

example of the ideal pre-processing output. The closer the image gets to that ideal form, the more

effective the text identification and reading will be in the next step. Because our software focuses on

reading the macro-nutritional information located in the upper portion of the label (Calories, Total

Fat, Cholesterol, etc.), the pre-processing output may only contain that top part rather than the

entire label.

Figure 4.2: Example of ideal output.

8

4.4 Module 2: Optical Character Recognition

The optical character recognition (OCR) module takes as its input the image generated by the

pre-processing module. The OCR engine then attempts to identify the actual English words and

numerical values contained in the image, and write them to a basic text file. To accomplish this

task we implemented an open-source OCR engine called Tesseract, which is maintained by Google.

Tesseract works by matching all of the image data to English words and characters. It will

attempt to find a match for everything that it sees, even if the contour does not relate to an

alphanumeric character. For example, the horizontal black bars separating parts of the label are not

letters or numbers, but Tesseract will match them to something anyway, usually a ”-” character.

Furthermore, Tesseract analyzes the image data in chunks, meaning that it looks at how contours

relate to one another to help determine what each contour represents. While this approach can

increase word accuracy, any errant or invalid data (such as the horizontal lines) can negatively

impact Tesseract’s output. As such, we expect the Tesseract output to contain some inaccuracies in

spelling as well as extraneous information such as lines of dashes.

4.5 Module 3: Post-processing

The post-processing module serves to correct inaccuracies in the Tesseract output, clean up the data,

and report it in a usable format. As explained above we can expect that the Tesseract output may

contain errors such as misspellings or misidentified characters, and that Tesseract might identify

additional information that is not present on the actual label. The post-processing module analyzes

the text file and searches for the important information (i.e. the macro-nutrient names and values)

while ignoring any irrelevant data. Lastly, the module organizes the nutrient information into name-

value pairs and outputs that data as a text file.

9

Chapter 5

Conceptual Model

The purpose of this section is to give a more detailed explanation of the techniques we used in our

pre-processing and post-processing modules.

5.1 Pre-Processing Stage

As stated above in section 4.3, the objective of the pre-processing stage is to transform the input

image into a simple, clear, and formatted output. To help accomplish this goal, we implemented

some image manipulation tools from the OpenCV open-source library. Our pre-processing module

can be broken into 5 distinct stages (listed below) that run sequentially. Each stage is accompanied

by an example of a sample image that we processed with our program.

5.1.1 Graying and Blurring

The first pre-processing step is to convert the image from a multi-

color space to grayscale. Most color images are represented using

three values for each pixel, a red hue, a blue hue, and a green hue.

Converting to grayscale transforms the pixel data to only depend on

a single value ranging from white to black with shades of gray in

between. Once the image has been grayed, we apply a subtle blur to

help smooth out any outlying pixel values. The blur looks at each pixel

and alters its value so its intensity more closely matches the relative

intensity of the neighborhood of pixels around it.

Figure 5.1: Grayscale
Image.

10

5.1.2 Contrasting and Filtering

The next step takes the image and applies a histogram equalization

function to help increase the contrast among areas of different intensi-

ties. This process helps darken the nutrition label border to a black or

near black value all along its contour to create a noticeable distinction

against the lighter intensity background. Once the contrast between

the label border and the background has been established, we use a

bilateral filter to create more uniform pixel regions in the background

of the image. The filter is particularly helpful in ensuring that the

background area directly around the label border evens out to a lower

intensity than the border itself.

Figure 5.2: Contrasted
Image.

5.1.3 Image Thresholding

Now that a stark contrast exists between the label border and the

background we use a version of thresholding called Gaussian thresh-

olding to set very dark pixels to black and lighter pixels to white. The

Gaussian version takes into account the given pixel intensity relative

to a neighborhood of pixels around it. This step produces a black and

white image and isolates the black label border within a distinctive

white background. Figure 5.3: Thresholded
Image.

5.1.4 Contour Identification
Once we generate the black and white image, we implement a contour

identification process to find all shapes present in the image. This

initial analysis records a large number of contours as each character,

line, and any enclosed white space is usually identified as a contour.

From this list, we filter all the contours based on their size and location

in the image. We know that we are looking for a centrally located and

rectangular contour that takes up a majority of the original image

space. Using these qualifications we isolate the contour along the label

border.

Figure 5.4: Contour Im-
age.

11

5.1.5 Label Extraction

The final pre-processing step involves applying a perspective transform to map

the identified label space on the original image to an oriented, rectangular space

in a new image. The new image contains only the nutrition label, with the

borders of the label on the original image becoming the outside border of the

new rectangular image. The oriented label is then run through steps 2 and 3

again to clearly bring out the text information as black pixel data on a white

background. Figure 5.5:
Label Image.

Ideally the end result of the pre-processing stage is a vertically oriented, rectangular image of just

the nutrition label with a white background and black text. While that goal may not be fully

achievable, the closer we can get the image to that ideal, the more accurate the Tesseract output.

Because we are not making any OCR modifications ourselves, successful pre-processing is critical in

obtaining the most accurate result.

5.2 Post-Processing Stage

As mentioned above in section 4.5, the purpose of the post-processing stage is to identify and correct

any errors present in the Tesseract output. This module depends heavily on the particular domain of

the problem we are addressing. Because we are analyzing food labels, we can expect a restricted list

of characters and words to appear on the label. Furthermore we can make use of the label structure

itself to organize the OCR output. Using this domain knowledge greatly increases the effectiveness

of the post-processing module and consequently the accuracy of our final results. Our four main

post-processing stages are listed below.

5.2.1 Clean OCR Output

The first post-processing step is to read through the Tesseract output and decide which information

is important and which information should be ignored. Tesseract tends to generate extraneous

newlines and errant ”-” and ”*” characters that complicate the information we want. Specifically,

this step analyzes the OCR output line by line and removes all lines that do not contain a close

name match with one of the 13 macro-nutrients we are trying to identify. The important lines are

12

then extracted from the file with their ordering maintained.

5.2.2 Construct Key/Value Pairs

Once we have identified the important lines, the next step is to create a name (key) and a value

from each line. The name usually consists of the set of letters read before a number is found, and

the value becomes the first sensible number read on the line. Sensible means that the number is

located in an expected position. Some OCR reading errors identify numbers at the beginning of the

line, but we know that the numerical value should be after the nutrient name. The key/value pairs

are stored in a list of pair objects.

5.2.3 Keyword Matching

Next, we must determine the mapping from the keys to the macro-nutrient names that gives the best

overall match for the whole list. To accomplish this we use a bipartite graph matching algorithm,

which works by first determining the Levenshtein distance between each key and each nutrient name,

and second finding the mapping that both matches each key to a nutrient and minimizes the total

edit distance among all the matches. The Levenshtein (edit) distance is a metric that reflects how

closely a given string of characters matches another given string.

The algorithm we use creates a best-fit mapping for the list of keys as a whole, rather than

simply identifying the best match for each individual key. Furthermore, at this stage we account

for the possibility of having multiple occurrences of the same nutrient name on the label. If the

key chosen in the mapping has a line number outside the range of the expected number of nutrients

then we know that we should re-run the matching algorithm, ignoring the line(s) that fall outside

the determined range.

5.2.4 Construct Label Object

The post-processing module concludes by generating a simple text file containing the key names and

their corresponding values. If a macro-nutrient was not present on a given label (e.g. several do not

contain ”Potassium”) then the field for that nutrient gets a value of null.

13

5.3 Activity Diagrams

Figure 5.6: Activity Diagram for Pre-
processing.

Figure 5.7: Activity Diagram for Post-
processing.

14

Chapter 6

Design Rationale

6.1 Justification for Technologies

6.1.1 Primary Technologies Used

1. OpenCV

2. Tesseract

3. C++ programming language

4. Python programming language

6.1.2 OpenCV for Image Processing

The Open Source Computer Vision Library, better known as OpenCV, is an open source computer

vision library. OpenCV provides common infrastructure for all manner of computer vision projects; it

provides tools for object recognition, image processing, machine learning, and much more. OpenCV

has some other advantages in that it is multiplatform, and provides APIs for five programming

languages.

Support ecosystem

OpenCV is used and supported by companies of all sizes, including Google, Yahoo, Microsoft, and

Intel. Because it is used so widely, it is very well documented, and we are unlikely to run into any

problems that have not been previously encountered.

15

Unneccessary features

OpenCV does bring many features that we are unlikely to use in our small-scoped system. Features

of OpenCV that are not needed could potentially bloat our system. However, we can circumvent

this issue by building OpenCV with only the modules we need to use in our process. OpenCV has a

comprehensive build system using CMAKE, which will let us customize our build to minimize bloat

in our system.

Designing for change

OpenCV’s huge number of modules could provide functionality for any design changes that occur

over our project’s lifetime. If we decide to branch out into different areas of the computer vision

field to improve our library’s accuracy, OpenCV will likely already provide some functionality we

need.

OpenCV vs. custom code

An alternative to using OpenCV would be to create our own functions and libraries for image manip-

ulation. However, this adds another likely point of failure to our project; we would be implementing

algorithms that have been implemented and used many times in OpenCV. Using OpenCV gives us

confidence in the correctness of the computer vision algorithms we use, as the stable features of

OpenCV have been tested and used many times before.

6.1.3 Tesseract for OCR

Tesseract is an open source optical character recognition (OCR) library. It is now maintained by

Google, and is considered on of the most accuracte open source OCR libraries.

Commercial OCR tools

We considered some commercial OCR tools as alternatives to Tesseract. The most popular and most

accurate commercial OCR system is ABBYY’s FineReader. FineReader and competing commercial

OCR tools have license costs in the thousands of dollars for developer software development kits

(SDKs). While FineReader is much more accurate than Tesseract out of the box, some studies have

shown that finely tuning Tesseract can lead to performance near that or better than commercial

products.

16

6.1.4 C++ Language

We plan to use C++ to implement the majority of our system. This design choice is highly influenced

by two major factors:

1. Integration with chosen technologies

2. Team familiarity

Technology integration

Both OpenCV and Tesseract are written in C++, and natively provide C++ APIs. These APIs will

allow us to directly integrate with these systems.

Team familiarity

We are both more familiar with C++ than any other programming language. Using this language

will require minimal time devoted to understanding how to use new libraries.

6.1.5 Python Language

We will use Python for scripting to automate tests of our system. Python is much more flexible and

user-friendly than shell scripting for automated tests. Python is aimed at increasing developer pro-

ductivity by being understandable and easy to use, so it enables us to quickly automate running our

system and any other included technologies. Python provides easy integration with C++ function

calls as well.

6.2 Pre and Post Processing

Optical character recognition (OCR) accuracy can be greatly improved by pre-processing the image

in certain ways. Studies have found that OCR accuracy is negatively influenced by factors such

as image skew, low contrast, low lighting, and geometric distortion. Image pre-processing aims to

eliminate these negative factors through intelligently altering the provided image.

After raw OCR output is gathered, we can apply post-processing to identify and fix OCR errors.

If output is restricted by a certain lexicon, or list of words possible in an image, we can use this

information to adjust erroneous output. Many OCR systems use the english language as a lexicon

for correcting OCR, but we can use the much more limited set of expected nutrition label terms to

improve accuracy.

17

6.3 Choice to Implement as API

We decided to implement our system as an application program interface (API) that can easily be

included in applications of all types. We provide a C++ API through header files so that users can

quickly include our system without having to install or build anything.

We considered creating a fully-fledged application for our system. However, many nutrition and

fitness applications already exist, and our software would serve to complement those other systems

rather than act as the basis for a multi-featured application. This approach allows us to focus on the

functionality and accuracy of our system and more effectively explore the applications of computer

vision to our particular problem.

18

Chapter 7

Testing and Results

7.1 Test Plan

We took two major approaches to testing the effectiveness of our implementation. The first approach

focused on testing each of our three modules that make up our solution. We attempted to isolate

each of these modules in our architecture and manually verify whether our approach at the time

was effective. These tests occurred primarily during the early implementation phases. Our second

testing approach analyzed end-to-end accuracy of our entire system. For obvious reasons, this testing

begin once we had a fully-functional prototype completed, and continued throughout the rest of our

implementation. For both types of testing, we constructed ground truths for each image in our data

set, which contain the data we expect to see from a correctly working system. All accuracy testing

was verified against these truths.

7.1.1 Module testing

Pre-processing

In order to isolate improvements in pre-processing, we pre-processed images in our data set and

passed them through Tesseract OCR’s default configuration. We manually compared this raw output

(without post-processing) to our ground-truth files. Our project was heavily research based–we

implemented around 10 to 15 different pre-processing approaches that had been used in various

computer vision projects and applications. Testing continuously allowed us to verify whether or not

a certain approach would be effective for our problem. Once our pre-processing step was producing

relatively clear images, we used an edit distance calculation to determine how closely our output

came to the expected ground truth. This allowed for some early automation of testing before our

19

entire system was in a working state.

Optical Character Recognition

Similarly to pre-processing, isolated Tesseract in testing, feeding clear images to various configura-

tions. Unfortunately, Tesseract proved very difficult to correctly configure to a restricted-domain

problem, and only restricting the engine’s word dictionary provided any realistic results.

7.1.2 Testing Post-processing

The ability of post-processing to improve our system’s accuracy was highly dependent on the first

two components delivering some level of accuracy, so post-processing testing was delayed until later

in our project. We identified some common mistakes from our OCR module, so we created test cases

to ensure that our post-processing approach accounted for them. For example, the ’g’ for ’grams’

after a number value in a label is often misidentified as the number ’9’, so we created tests to verify

our handling of the issue.

7.2 End-to-end testing

After our system reached a functional state, we tested the system in its entirety by evaluating

accuracy across a variety of test sets. Labels come in many different types, and we needed to verify

how well our system handled each type individually.

Accuracy was evaluated by finding the percentage of nutritional amounts correctly identified

across the label set.

Accuracy =

∑n
i=1 # values correct in labeli∑n
i=1 # values expected in labeli

We constructed and analyzed the following data sets.

7.2.1 Standard

Standard labels are images that have the label centered and vertical, with the label taking up the

majority of the image. Labels are black and white and are on a two-dimensional surface. These test

images should be the easiest to process.

20

7.2.2 Skewed

These test cases contain images of nutrition labels that are skewed (rotated) in either direction. This

set also includes images taken from above or below a label, which results in perspective distortions.

Our system should be able to handle angled perspectives of nutrition labels.

7.2.3 Lighting

Our lighting subset contains labels with uneven lighting, or shadows appearing across the image.

These labels require our system to provide more complex intensity thresholding.

7.2.4 Curved

Curved labels refer to labels on the side of cylindrical objects. These labels test how well our system

handles nonlinear geometric distortion.

7.2.5 Color

Different color schemes can have negative effects on OCR accuracy. This test set contains images

with color schemes outside of the regular black and white. This also tests how well our system deals

with low-contrast label images.

7.2.6 Horizontal

Certain food items have nutrition labels that have all information presented inline in a horizontal

field. This data set challenges our system with more complex layouts.

7.3 Test Results

7.3.1 Module testing

Our module testing was primarily manually-verified, with some later applications of edit distance

calculations. We do not have concrete test results for this primary testing stage.

7.3.2 End-to-end testing

Our results across our constructed data sets can be see in figure 7.3.2. Most of our data sets are

processed with approximately 80% accuracy. Our approach sees a slight decrease in accuracy in

our curved data set–our current pre-processing approach relies on linear transformations, which can

result in distorted final images for curved labels, reducing our final accuracy. We had initially planned

21

to address horizontal labels, which list values in a comma-separated list. Due to time constraints,

however, this has not been fully implemented in our system, resulting in the 35% accuracy for that

category.

st
an

da
rd

sk
ew

ed

lig
ht

in
g

cu
rv

ed

ho
riz

on
ta

l

co
lo
r

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)
Percent Accuracy for Label Test Sets

Figure 7.1: Accuracy across label test sets. Data set sizes are approximately 20 labels each.

We also noticed varying accuracy levels for each of the nutritional values we chose to identify on

the labels. Figure 7.3.2 lists accuracy levels for each of these values in the order that they appear on

labels. Most of the nutritional keywords have a consistent accuracy near or above 80%. However,

keywords that appear toward the bottom of the label, such as sugars and protein, have much lower

accuracies. This is due again to our method of geometric distortion correction–certain distortions

become more exaggerated toward the bottom of an image, requiring further pre-processing.

22

ca
lo
rie

s

to
ta

l fa
t

sa
tu

ra
te

d
fa

t

tr
an

s
fa

t

po
ly

fa
t

m
on

o
fa

t

ch
ol
es

te
ro

l

so
di

um

po
ta

ss
iu

m

to
ta

l ca
rb

s

di
et

ar
y

fib
er

su
ga

rs

pr
ot

ei
n

0

20

40

60

80

100
A

cc
u

ra
cy

(%
)

Accuracy Across Label Nutrients

Figure 7.2: Accuracy across label nutrients for standard labels.

A histogram of the success levels for each of our labels can be found in figure 7.3.2. Each color

represents one of our constructed data sets. Most of the labels we have in our test set result in over

a 60% accuracy rate. However, there are still quite a few outlying cases that our approach does not

adequately handle.

23

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100
0

1

2

3

4

5

6

7

8

Accuracy range (%)

N
u

m
b

er
of

la
b

el
s

Label Success Level Distribution

Standard Skewed Lighting Curved Horizontal Color

Figure 7.3: Label Success Level Distribution.

24

Chapter 8

Risk Analysis

This section outlines the risks associated with the development of this project. The probability of

a risk occurring is assessed between 0 and 1. The severity of the risk is measured between 1 and

10. The risk’s impact is the probability it will happen multiplied by its severity. The mitigation

strategies are actions that lessen the impact of a risk.

Figure 8.1: Risk Analysis Chart.

25

Chapter 9

Conclusion

9.1 Project Summary and Evaluation

As stated at the beginning of this paper, our goal for our senior design project was to apply the field

of computer vision to the existing problem of dietary tracking. We integrated the domain knowledge

associated with the standard structure and form of a nutrition label to create an innovative solution

to improve on the existing manual entry and database models. This project was very research heavy

for a development project, as we had no prior experience working with computer vision applications.

As such the final system still has some room for future accuracy improvement. We are pleased with

the work we have done over the last nine months, and we think that we have set the stage for further

advancements both with this project in particular and the increasing number of computer vision

applications.

9.2 Future Progress

Although senior design has concluded, we plan to continue working on this project, testing out

new implementations, and exploring more OCR options to see if we can obtain better results. The

project is located in a gitHub repository, so anyone who wishes to review or experiment with what

we have done is welcome to do so. We do not plan to make this a marketable item; even if further

improvements are made we intend to keep it open source as it is now.

9.3 Ethical Considerations and Project Impact

The field of computer vision has widespread applications. We believe that advancements in this field

could allow for near endless applications that would allow machines to automate tasks that previously

26

required direct human involvement. As computer vision essentially seeks to teach machines how to

see and glean understanding from images and video just as people do, there is a potential for great

benefit, but also great harm. Our particular project has a positive focus that could not directly

be used an unethical application, such as a program that reads credit card numbers from public

video recordings. Additionally, we have not contributed to the underlying theory of computer vision

techniques, so our project has not enabled the creation of any harmful products.

Primarily, we see our senior design project as an early effort to expand the applications of

computer vision and combine existing techniques with the specific domains associated with various

problems to improve on current solutions. Anything that requires systematic data entry, pattern

recognition, object identification, and any other observation based task could theoretically be auto-

mated with the proper integration of computer vision techniques with the given problem domain.

Our efforts give testament to, if nothing else, the real possibilities that exist in developing more

efficient and automated solutions to these problems utilizing the field of computer vision.

27

Appendices

28

Appendix A

Install Guide

A.1 Package Manifest

The installation folder should contain the following files:

• categories.py

• contours.py

• end to end.py

• eng.label-patterns

• generate json.py

• keywords.py

• label.py

• post process.py

• requirements.txt

• text.py

A.2 Installation Instructions

Product installation is relatively straightforward. Once the install package has been downloaded,
extract the files to the desired directory. In order to run properly the user must have OpenCV (3.0.0
alpha or higher), the Tesseract OCR, and Python (3.4 or higher) installed properly. Once everything
is set up, simply call the end to end process located in end to end.py to run the software.

29

Appendix B

Bibliography

Bhattacharjee, Disha, et al. “A Novel Approach for Character Recognition”. International Journal
of Engineering Trends and Technology 10.6 (2014): 271–275. Print.

This source deals with the goal of English word recognition using computer vision.
While the source “Scene Text Recognition Using Structure-Guided Character Detec-
tion and Linguistic Knowledge” centers on detecting words within structured images,
this source gives a description of identifying any and all printed words in an image
for the purpose of language translation. As with any optical character recognition
project accuracy is the paramount concern, and this article focuses on a new method
of increasing OCR accuracy using image pre-processing or “cleaning up” the image to
make characters more easily recognizable. By smoothing out lighting and shadow ef-
fects, perspective distortion, and confusing background colors OCR programs can more
effectively identify English characters. This article is helpful for our project because we
are developing our own method of preparing images for OCR reading, and this source
provides some useful techniques we will want to consider. The source is peer-reviewed
and published in a scholarly engineering journal. I found this source using the Santa
Clara University library database.

Bieniecki, Wojciech, Szymon Grabowski, and Wojciech Rozenberg. “Image preprocessing for improv-
ing ocr accuracy”. Perspective Technologies and Methods in MEMS Design, 2007. MEMSTECH
2007. International Conference on. IEEE, 2007. 75–80. Web.

Bieniecki and his co-authors discuss methods for correcting geometric distortion of
text pages. Correcting these distortions can drastically improve the accuracy of OCR
systems. The essay explains methods for detecting and correcting both linear and
non-linear distortions. These explanations can be extremely useful for our approach in
correcting geometric distortion of nutrition labels in images. Nutrition labels exist on
both flat and round objects, as well, so we can improve our design by considering both
linear and non-linear correction.

Borovikov, Eugene. “A survey of modern optical character recognition techniques”. (2004). Web.

The purpose of this article is to provide a broad summary of current optical charac-
ter recognition techniques. It focuses on techniques used to analyze both printed and
hand-written words in images. The article begins by giving an overview of OCR en-
gines and their general trend of development. It continues with discussing various OCR
techniques for different image types and scenarios. Lastly it talks about pre-processing

30

http://wbieniec.kis.p.lodz.pl/research/files/07_memstech_ocr.pdf
http://www.academia.edu/3732087/A_survey_of_modern_optical_character_recognition_techniques

and post-processing strategies and how they apply to optical charater recognition. The
article was written in 2004 so some of the information is not current regarding the
present state and direction of OCR engines; however, it does provide useful backgroud
information on OCR methods and overall strategies for computer vision analysis. We
used this article to help plan the basic structure of our program and to guide our initial
testing efforts to determine OCR accuracy. While the article was not published in a
scholarly journal it was written by a research scientist who works in the field of com-
puter vision and hosted in an academia database making its information trustworthy.

Chang, Loh Zhi and Steven Zhou ZhiYing. “Robust pre-processing techniques for OCR applications
on mobile devices”. Proceedings of the 6th International Conference on Mobile Technology. ACM
Digital Library, 2009. Print.

This source discusses two specific techniques for accomplishing the goal of image pre-
processing with the added consideration of implementation on a mobile platform. Pre-
processing is especially important in mobile applications using computer vision because
they have less resources to work with than larger, more powerful machines. Although
mobile devices have developed rapidly in the last decade they remain at a vast disad-
vantage in memory and processing power when compared to desktop machines, two
aspects necessary for detailed image analysis. The two techniques described in this
article utilize different algorithms that employ object isolation and shape detection.
These algorithmic techniques seek to improve the accuracy of optical character recog-
nition programs while minimizing the demand on mobile hardware. Ideally our project
would culminate in a mobile application which would provide the easiest medium for
customers to use our label analysis program. Implementing on a mobile device however
means that we will have to adjust some of our methods for image analysis due to the
decreased capability when moving from a computer to a mobile device, and this source
provides a helpful starting point for making that transition. This source is both peer-
reviewed and published in a scholarly journal. I found this source when researching
general pre-processing techniques.

“How we tuned Tesseract to perform as well as a commercial OCR package”. (2014). Web.

This blog post discusses the efforts of a group of developers to increase the perfor-
mance of Google’s Tesseract OCR engine by focusing on processing and cleaning an
image before Tesserat analyzes it. They identified several factors such as lighting and
contrast which can negatively impact an OCR engine’s ability to process an image.
By implementing a image cleaning program to smooth contrasts and remove lighting
and shadow effects, the group saw an impressive increase in the performance of Tesser-
act compared to high-end commercial products, suggesting that focusing on effective
pre-processing rather than the OCR engine may be the more beneficial endeavor when
trying to increase the accuracy of computer vision software. While this source is neither
peer-reviewed nor published in an academic journal it provides useful information re-
garding the choice between using an open source OCR like Tesseract or a commercial
product such as ABBYY FineReader. This report helped us decide that we wanted
to work with the Tesseract engine rather than purchase an expensive license for a
commerical product.

Kim, Daehyn and Hong Yu. “Figure text extraction in biomedical literature”. PloS one 6.1 (2011).
Web.

31

http://vbridge.co.uk/2012/11/05/how-we-tuned-tesseract-to-perform-as-well-as-a-commercial-ocr-package/
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0015338#pone-0015338-g009

In this article, Kim and Yu analyze and test methods to most effectively extract text
from biomedical figures. Biomedical figures often have important and helpful text con-
tained within, but out-of-the-box optical character recognition (OCR) software is not
equipped to handle these more complicated figures. Kim and Yu focus on three com-
ponents to improve OCR performance: image preprocessing, character recognition,
and text correction. Throughout each of these steps, the authors apply knowledge of
biomedical figures to make their tool more capable of text extraction. For example,
text in biomedical figures often features words truncated or hyphenated at unexpected
points; the authors found that standard OCR tools were ineffective at accurately ex-
tracting text from biomedical figures because of these unique features. Kim and Yu
found that text localization and image up-sampling were the most effective preprocess-
ing approaches to improve OCR accuracy. Their research identified five main sources of
OCR errors: high image complexity, thick stroke, low image contrast, small font size,
and non-standard font types. Kim and Yu’s objective shares many similarities with
our goal of extracting and processing text from nutrition labels. Most importantly, the
authors identify the most effective areas of improving out-of-the-box OCR, as well as
the most problematic sources of OCR errors.

“Macronutrients: the Importance of Carbohydrate, Protein, and Fat”. University of Illinois at
Urbana-Champaign. 2014. Web.

This source is an informative report from the McKinley health center at the University
of Illinois at Urbana-Champaign that discusses estimating the caloric content of a food
from its macronutrients. It gives the number of calories found in fats, carbohydrates,
proteins, and alcohol, the four main sources of calories in any food. The report goes on
to describe the health benefits of fats, carbohydrates, and proteins. To help improve
the accuracy of our software, we plan to check the number of calories read against the
number of fats, carbohydrates, protein, and alcohol read to determine if the relationship
makes sense, as the number of calories is roughly dependent on those four metrics. We
used this brief report to verify this relationship so we could correctly check these values
in our program. This source gives mostly common knowledge information, but it is
pertinent data that we did not know before-hand. This source is neither peer-reviewed
nor published in an academic journal, but it is supported by a nationally accredited
university which gives it validity. I found this source through researching relationships
among nutritional metrics found on a USDA food label.

Marcin, Helinski, Kmieciak Milosz, and Parkola Tomasz. “Report on the Comparison of Tesser-
act and ABBYY FineReader OCR Engines”. Poznan Supercomputing and Networking Center,
Poznan Supercomputing and Networking Center. 2012. Web.

As the title suggests this report details a comparison of two different optical character
recognition programs, Google’s Tesseract and ABBYY FineReader. The report focuses
on comparing the accuracy of the two engines in analyzing scanned images of historical
documents. Currently, Google’s Tesseract is the best open-source OCR engine while
ABBYY FineReader is the best commercial software. When using each as a stand-
alone system the ABBYY engine vastly outperforms the Tesseract; however, licenses
for the ABBYY software cost thousands of dollars while the Tesseract is completely
free. This article describes efforts to train the Tesseract engine and improve its accuracy
to analyze how close the performance could get to commercial software levels. In terms
of the test cases (reading historical documents) the study found that with adequate
preparation the Tesseract gave results equitable to those of the ABBYY FineReader.

32

http://www.mckinley.illinois.edu/handouts/macronutrients.htm
http://lib.psnc.pl/Content/358/PSNC_Tesseract-FineReader-report.pdf

We used this source to help us determine the OCR engine we wanted to work with
for our project. While purchasing an ABBYY license was never realistic we wanted to
gauge the effectiveness of the free Tesseract engine against commercial products. Along
with additional research this source helped us decide that we could work with Google’s
Tesseract and obtain accurate results. The source is peer-reviewed but was published
online only not through a scholarly journal. I found this source when researching the
pros and cons of different OCR engines.

Ranjini, S. and Dr. M. Sundaresan. “Extraction and Recognition of Text From Digital English Comic
Image Using Median Filter”. International Journal on Computer Science and Engineering 5.4
(2013): 238–44. Web.

Ranjini and Sundaresan analyze and explain the problems with extracting text from
images of comics and provide a solution for some types of comics. The authors focus
on comics that contain a speech bubble. In order to recognize the text from within the
speech bubble of a comic, Ranjini and Sundaresan apply a median filter to remove noise
from the image and then use connected-component labeling to identify the location of
a speech bubble within the image. They then assume that the speech bubble will be
a certain size relative to the entire image, and they are able to isolate the speech
bubble. Once the speech bubble is located, the actual character recognition is trivial.
Ranjini and Sundaresan neglect to provide any justification for why their method is
preferable over another, and do not provide any information about how accurate their
approach actually is. One component of our project focuses on finding a nutrition
label from within an image, and then extracting text from inside of that image area.
Identification and isolation of a comic’s speech bubbles is a similar task, although I
am hesitant to believe that Ranjini and Sundaresan’s method can be generalized for
real-world images because of their lack of supporting evidence.

Rice, Stephen V. “Measuring the accuracy of page reading systems”. Diss. University of Nevada,
Las Vegas, 1996. Print.

In his dissertation, Rice analyzes methods for determining the accuracy of optical char-
acter recognition (OCR) systems. He thoroughly explains solutions that have been used
as the computer vision develops. In order to measure character accuracy, Rice covers
solutions to the string editing problem, as well as improved versions of classic algo-
rithms. The dissertation also covers other forms of accuracy, including phrase accuracy
and non-stopword accuracy. Rice’s research and clear explanations give us a basis to
determine how accurate our system is. This will enable us to measure the effects of
changes to our system, and to determine where we can most effectively improve our
system’s accuracy.

Sawaki, Minako and Norihiro Hagita. “Text-line extraction and character recognition of document
headlines with graphical designs using complementary similarity measure”. IEEE Transactions
on Pattern Analysis and Machine Intelligence 20.10 (1998): 1103–9. Web.

Sawaki and Hagita approach the problem of headline recognition from a very low-level.
They explain an approach to identify text-lines and then apply the complementary
similarity measure to analyze each individual character in the identified line. For their
testing, the authors focus on recognition of Japanese headlines. Japanese characters are
much more complex than Arabic characters, and are likely more difficult to distinguish
between. This means that Sawaki and Hagita’s approach to character identification

33

http://www.enggjournals.com/ijcse/abstract.html?file=13-05-04-081
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=722625&url=http://ieeexplore.ieee.org/iel4/34/15627/00722625.pdf?arnumber=722625

can be directly applied to English or other languages, although it does not account
for the likelihood of certain words occurring. For individual character recognition,
however, Sawaki and Hagita provide a strong argument for their approach. Sawaki
and Hagita tackle two problems that are directly applicable to our project: text-line
identification and individual character recognition. They provide a large amount of
detail, explanation, and justification for their methodology.

Shi, Cun-Zhao, et al. “Scene Text Recognition Using Structure-Guided Character Detection and
Linguistic Knowledge”. IEEE Transactions on Circuit and Systems for Video Technology 24.7
(2014): 1235–50. Web.

This scholarly article explores a new method of extracting scene text from real-world
images. Scene text can be have different fonts, shadows, distortions, deformations, low
resolutions, and occlusions; these attributes make scene text much more difficult to
identify accurately. Shi and his co-authors give experimental results for each component
of their character recognition system. They explain how each component was tweaked
to improve performance of their final system. In the concluding sections, the authors
also compare the performance of their solution against other commercially-available
methods as well as alternate methods proposed in research. Their method generally
outperforms previously implemented methods, but the authors are clear in showing the
data sets and configurations where they are not the optimal solution. This article not
only provides extremely detailed approaches to character and word recognition in real-
world image, but it also emphasizes which approaches work best in which contexts. This
research could be extremely valuable in directing our approach to character recognition
in nutrition labels.

Tsai, Sam S., et al. “Combining image and text features: a hybrid approach to mobile book spine
recognition”. Proceedings of the 19th ACM international conference on Multimedia. ACM, 2011.
Web.

Tsai and his co-authors approach the problem of identifying book spines by applying
both character and object recognition. Book spines do not have many distinguishing
features other than text, so the authors’ solution uses text recognition to search a
book spine text database, while book spine images are used to search a book spine
image database. These results are intelligently combined to increase the accuracy of
identifying a particular book. Their results show that this combined approach improves
the text-based or image-based systems’ 72% recall rate to approximately 91% recall.
The authors’ system does increase recognition latency from 0.22 and 0.57 seconds for
text and image recognition, respectively, to a 1.24 second delay. However, the increase
in system accuracy will often be worth the time tradeoff. Nutrition labels will always
have text inside, and we could potentially merge character recognition with object
recognition to more accurately identify the location of a label in an image.

34

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6727574
http://web.stanford.edu/~bgirod/pdfs/Tsai_ACM_Multimedia_11.pdf

	Santa Clara University
	Scholar Commons
	6-9-2015

	Image processing for the extraction of nutritional information from food labels
	Nate Matsunaga
	Rick Sullivan
	Recommended Citation

	Introduction
	Problem
	Current Solutions
	Our Solution
	Motivation

	Requirements
	Overview
	Functional Requirements
	Critical
	Recommended
	Suggested

	Non-functional Requirements
	Critical
	Recommended
	Suggested

	Design Constraints

	Use Cases
	Overview
	List of Use Cases
	Implement System in Program
	Configure System

	Architectural Design
	Overview of Program Function
	Dataflow Model
	Module 1: Pre-processing
	Module 2: Optical Character Recognition
	Module 3: Post-processing

	Conceptual Model
	Pre-Processing Stage
	Graying and Blurring
	Contrasting and Filtering
	Image Thresholding
	Contour Identification
	Label Extraction

	Post-Processing Stage
	Clean OCR Output
	Construct Key/Value Pairs
	Keyword Matching
	Construct Label Object

	Activity Diagrams

	Design Rationale
	Justification for Technologies
	Primary Technologies Used
	OpenCV for Image Processing
	Tesseract for OCR
	C++ Language
	Python Language

	Pre and Post Processing
	Choice to Implement as API

	Testing and Results
	Test Plan
	Module testing
	Testing Post-processing

	End-to-end testing
	Standard
	Skewed
	Lighting
	Curved
	Color
	Horizontal

	Test Results
	Module testing
	End-to-end testing

	Risk Analysis
	Conclusion
	Project Summary and Evaluation
	Future Progress
	Ethical Considerations and Project Impact

	Appendices
	Install Guide
	Package Manifest
	Installation Instructions

	Bibliography

