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ABSTRACT

Current techniques for tracking nutritional data require undesirable amounts of either time or man-
power. People must choose between tediously recording and updating dietary information or de-
pending on unreliable crowd-sourced or costly maintained databases. Our project looks to overcome
these pitfalls by providing a programming interface for image analysis that will read and report the
information present on a nutrition label directly.

Our solution involves a C++ library that combines image pre-processing, optical character recog-
nition, and post-processing techniques to pull the relevant information from an image of a nutrition
label. We apply an understanding of a nutrition label’s content and data organization to approach
the accuracy of traditional data-entry methods. Our system currently provides around 80% accuracy
for most label images, and we will continue to work to improve our accuracy.
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Chapter 1

Introduction

1.1 Problem

Dietary tracking in today’s world requires a constant updating of numerous nutritional metrics such
as calorie and fat contents of foods being consumed. Traditionally, this process necessitated keeping
a handwritten or electronic log of eating habits and performing tedious calculations to keep one’s
progress up to date. Recently, health and fitness applications have arisen that provide an automated
means of tracking nutritional data, but many of these programs still require the user to input all
of the necessary information. This manual data input requires tedious repetition on the part of the
user. Other applications have emerged that provide alternative, but flawed, methods of nutritional

data gathering.

1.2 Current Solutions

Applications have a few different ways of simplifying user input of nutritional information. One
solution used by popular apps such as MyFitnessPal leverages crowd-sourced information. Users
can search for their product by name to find relevant statistics, but crowd-sourced data may lack
information, may have confusing duplicates, or be completely inaccurate. Other solutions, such
as the effort by Open Product Data, revolve around constructing a database of known reliable
nutritional data. Database-centric solutions require all data to be gathered in a single location, and
changing data must be updated constantly. This approach requires a large amount of infrastructure,
collaboration, and maintenance. If the data is not maintained or new products are not added to the

central repository, data that a user is looking for may be absent or outdated.



1.3 Our Solution

We propose a computer vision solution to extract data directly from the nutrition label on the food
item itself. Our solution will use computer vision and character recognition technologies to pull
relevant nutritional data (calorie, fat, protein, carbohydrate, and other nutrient amounts) from an
image of the USDA nutrition label on the food’s packaging. Using data directly from the food
package ensures that data is never absent, stale, or inaccurate. Data will not have to be maintained,
as the information presented on the food’s label is required by law to be accurate. Our tool can be
leveraged by mobile or web applications to provide a simple and accurate means of tracking diet.
These applications do not have to connect to a central database of information; furthermore, mobile

applications would provide the user a simple interface to connect with the web application.

1.4 Motivation

We have both used nutrition-tracking applications, and have found data entry to be unnecessarily
tedious for the user. We have an interest in the field of computer vision, so we wanted to see
how effectively a computer-vision approach can address an existing problem. We decided on image
data extraction as a project due to its inherent difficulty and potentially widespread applications.
Domain-restricted computer vision is currently only used in a few specific cases, such as depositing
a check by taking a photo with your phone, but we think it could be applied to numerous significant

use cases, starting with nutritional data.



Chapter 2

Requirements

2.1 Overview

Requirements for the system we described in the introduction can be divided into two categories:
functional and non-functional requirements. Functional requirements define what must be done
by the system, while non-functional requirements describe the manner in which the functional re-
quirements need to be achieved. Furthermore, each set is divided into three tiers of importance: a
critical requirement is absolutely necessary, a recommended requirement is highly desirable, and a
suggested requirement could possibly be done but is not essential. Lastly, the design constraints are
also included. These restrict the system design by limiting the means at our disposal to create the

final product.

2.2 Functional Requirements

Functional requirements are non-negotiable functionalities that the system must have to be consid-

ered completed. We have identified seven functional requirements.
2.2.1 Critical

1. The system will analyze an image of a USDA nutrition label, identify the macronutritional
information located in the top portion of the label, and return the relevant data in an object

or text file.

2. The system will provide a C++ library that defines the necessary code for easy integration

with other programs.

3. The system will work for most common image formats including .jpg, .bmp, .png, and .tiff.



4. The system will provide configuration functionality for data logging and filtering.

2.2.2 Recommended

1. The system will run on modern versions of Mac, Windows, and Linux operating systems.

2.2.3 Suggested

1. The system will support additional compilers other than modern versions of gcc.

2.3 Non-functional Requirements

Non-functional requirements describe the manner in which the system achieves the required func-
tionalities. These requirements are measured on a continuum, not in a black-and-white fashion. We

have identified four non-functional requirements.

2.3.1 Critical

1. The system will complete processing in a reasonable amount of time on modern desktop hard-

ware.
2. The system will be easy to use and configure.

2.3.2 Recommended

1. The source code will be well-organized, cohesive, and thoroughly documented.

2.3.3 Suggested

1. The system will be portable across mobile, desktop, and server environments.

2.4 Design Constraints

Design constraints limit the resources and tools with which the project may be developed by setting

technological boundaries on the project design. We have identified one design constraint.

1. The system must work correctly on Ubuntu 14.04.



Chapter 3

Use Cases

3.1 Overview

Use cases describe a series of steps to achieve a goal in a system. We have restricted our project’s
scope to a very narrow focus, so we are only presenting two use cases. Because we are creating a
software development tool, not an end-user application, the actor in each use case is a developer

using our system in an application. Figure shows the use cases we have identified.

LabelReader

Implement system in program

Configure system

Figure 3.1: Use Cases for Nutrition Label Data Recognition.

3.2 List of Use Cases

3.2.1 Implement System in Program

Goal: Integrate software tool functionality in independent code.
Actor: User (developer using our library).
Precondition: User has OpenCV, Tesseract, and a C++ compiler installed.

Postcondition: The API has been successfully integrated, allowing the user to extract data from



a label image.

Steps:
1. User includes our library header in their application or system.
2. User makes appropriate function call to run program.
Exceptions:
1. User gives invalid image input.
3.2.2 Configure System

Goal: System changes configuration for data logging and information filtering.
Actor: User (developer using our library).

Precondition: System is correctly integrated.

Postcondition: API uses new configuration for each subsequent image processed.

Steps:

1. User provides configuration parameters.

2. User calls our system code as they would normally.
Exceptions:

1. Defined configuration parameters are invalid.



Chapter 4

Architectural Design

4.1 Overview of Program Function

Our program’s goal is to analyze nutrition label images and identify the textual information present
on them. We are choosing to focus on the macro-nutritional data present in the top portion of most

standard labels. Specifically, we look for...

Sodium

e Calories

e Total Fat Potassium

e Saturated Fat

Total Carbohydrate
e Trans Fat

Dietary Fiber
e Monounsaturated Fat

e Polyunsaturated Fat * Sugars

e Cholesterol Protein

To accomplish this goal we are using a combination of image pre-processing and post-processing

techniques in conjunction with the optical character recognition engine Tesseract.

4.2 Dataflow Model

Our system follows a dataflow architectural model, which describes a system in which a defined type
of data undergoes various transformations in sequence. In this case the data is an image file and the
transformations are the pre-processing, optical character recognition, and post-processing stages it

pipes through to determine the nutritional information located within it.



Input Pre- Optical Character Post- Output
(Image) processing Recognition processing (Label data)

Image processing and
label extraction character correction

Text extraction Domain analysis and

Figure 4.1: Architectural Model.

4.3 Module 1: Pre-processing

The input image first passes through the pre-processing module. This stage is responsible for
doctoring the image into a clean, organized format, in which the English text and numerical values
present are easily identifiable. We designed the pre-processing stage to return a black-and-white,
oriented image containing just the label portion of the input image. Figure 4.2 below shows an
example of the ideal pre-processing output. The closer the image gets to that ideal form, the more
effective the text identification and reading will be in the next step. Because our software focuses on
reading the macro-nutritional information located in the upper portion of the label (Calories, Total
Fat, Cholesterol, etc.), the pre-processing output may only contain that top part rather than the

entire label.

Nutrition Facts

Serving Size 2/3 cup (55g)
Servings Per Container About 8

Amount Per Serving
Calories 230 Calories from Fat 72

% Daily Value*

Total Fat 8g 12%
Saturated Fat 1g 5%
Trans Fat 0g

C ol Omg 0%

Sodium 160mg 7%

Total Carbohydrate 37g 12%
Dietary Fiber 4g 16%
Sugars 1g

Protein 3g

Vitamin A 10%

Vitamin C 8%

Calcium 20%

Iron 45%

*Percent Daily Values are based on a 2,000 calorie diet.
Your daily value may be higher or lower depending on
your calorie needs.

Calories: 2,000 2,500
Total Fat Lessthan 659 80g
Sat Fat Lessthan  20g 259
Cholesterol Lessthan 300mg  300mg
Sodium Lessthan 2,400mg  2,400mg
Total Carbohydrate 300g 3759
Dietary Fiber 25g 309

Figure 4.2: Example of ideal output.



4.4 Module 2: Optical Character Recognition

The optical character recognition (OCR) module takes as its input the image generated by the
pre-processing module. The OCR engine then attempts to identify the actual English words and
numerical values contained in the image, and write them to a basic text file. To accomplish this
task we implemented an open-source OCR engine called Tesseract, which is maintained by Google.

Tesseract works by matching all of the image data to English words and characters. It will
attempt to find a match for everything that it sees, even if the contour does not relate to an
alphanumeric character. For example, the horizontal black bars separating parts of the label are not

”

letters or numbers, but Tesseract will match them to something anyway, usually a character.
Furthermore, Tesseract analyzes the image data in chunks, meaning that it looks at how contours

relate to one another to help determine what each contour represents. While this approach can

increase word accuracy, any errant or invalid data (such as the horizontal lines) can negatively

impact Tesseract’s output. As such, we expect the Tesseract output to contain some inaccuracies in

spelling as well as extraneous information such as lines of dashes.

4.5 Module 3: Post-processing

The post-processing module serves to correct inaccuracies in the Tesseract output, clean up the data,
and report it in a usable format. As explained above we can expect that the Tesseract output may
contain errors such as misspellings or misidentified characters, and that Tesseract might identify
additional information that is not present on the actual label. The post-processing module analyzes
the text file and searches for the important information (i.e. the macro-nutrient names and values)
while ignoring any irrelevant data. Lastly, the module organizes the nutrient information into name-

value pairs and outputs that data as a text file.



Chapter 5

Conceptual Model

The purpose of this section is to give a more detailed explanation of the techniques we used in our

pre-processing and post-processing modules.

5.1 Pre-Processing Stage

As stated above in section 4.3, the objective of the pre-processing stage is to transform the input
image into a simple, clear, and formatted output. To help accomplish this goal, we implemented
some image manipulation tools from the OpenCV open-source library. Our pre-processing module
can be broken into 5 distinct stages (listed below) that run sequentially. Each stage is accompanied

by an example of a sample image that we processed with our program.

5.1.1 Graying and Blurring

The first pre-processing step is to convert the image from a multi-

color space to grayscale. Most color images are represented using -
Nutrition Facts .

. Serving Size 81l 0z (240mL)
three values for each pixel, a red hue, a blue hue, and a green hue. e et

Amount Per Serving
Calories 150 Calories from Fat 20

Converting to grayscale transforms the pixel data to only depend on =
a single value ranging from white to black with shades of gray in e
between. Once the image has been grayed, we apply a subtle blur to
help smooth out any outlying pixel values. The blur looks at each pixel
and alters its value so its intensity more closely matches the relative Figure 5.1:  Grayscale

. : . : : Image.
intensity of the neighborhood of pixels around it.

10



5.1.2 Contrasting and Filtering

The next step takes the image and applies a histogram equalization
function to help increase the contrast among areas of different intensi-
ties. This process helps darken the nutrition label border to a black or
near black value all along its contour to create a noticeable distinction
against the lighter intensity background. Once the contrast between
the label border and the background has been established, we use a
bilateral filter to create more uniform pixel regions in the background
of the image. The filter is particularly helpful in ensuring that the
background area directly around the label border evens out to a lower

intensity than the border itself.

5.1.3 Image Thresholding

Now that a stark contrast exists between the label border and the
background we use a version of thresholding called Gaussian thresh-
olding to set very dark pixels to black and lighter pixels to white. The
Gaussian version takes into account the given pixel intensity relative
to a neighborhood of pixels around it. This step produces a black and
white image and isolates the black label border within a distinctive

white background.

5.1.4 Contour Identification

Once we generate the black and white image, we implement a contour
identification process to find all shapes present in the image. This
initial analysis records a large number of contours as each character,
line, and any enclosed white space is usually identified as a contour.
From this list, we filter all the contours based on their size and location
in the image. We know that we are looking for a centrally located and
rectangular contour that takes up a majority of the original image
space. Using these qualifications we isolate the contour along the label

border.

11

Nutrition Facts . |
Serving Size 81l oz 240mL) [
Servings Per Contaifier 12

Ameunt
il ies from Fat 20

Figure 5.2: Contrasted
Image.

Nutrition Facts
Serving Size 8#0z{240mL) &
rvings Per Contaifer 12 %
Amoimibes Sovig . - .- B
Caloried 150 Calories from Fat 20
—r R

Figure 5.3: Thresholded
Image.

Figure 5.4: Contour Im-
age.



5.1.5 Label Extraction

Nutrition Facts .

The final pre-processing step involves applying a perspective transform to map Sorvina Sice 81 oz 2s0mL)
Calories 150 Calories from Fat 20

the identified label space on the original image to an oriented, rectangular space m
Snluralew

in a new image. The new image contains only the nutrition label, with the éﬁi—?
Zochim 120m %

9______ 5%
Total Carbohydrate 265 9%
—_— "8 Y%
Gietary Fiber 29 8%
Sugar. —

borders of the label on the original image becoming the outside border of the

new rectangular image. The oriented label is then run through steps 2 and 3

again to clearly bring out the text information as black pixel data on a white

background. Figure 5.5:

Label Image.

Ideally the end result of the pre-processing stage is a vertically oriented, rectangular image of just
the nutrition label with a white background and black text. While that goal may not be fully
achievable, the closer we can get the image to that ideal, the more accurate the Tesseract output.
Because we are not making any OCR modifications ourselves, successful pre-processing is critical in

obtaining the most accurate result.

5.2 Post-Processing Stage

As mentioned above in section 4.5, the purpose of the post-processing stage is to identify and correct
any errors present in the Tesseract output. This module depends heavily on the particular domain of
the problem we are addressing. Because we are analyzing food labels, we can expect a restricted list
of characters and words to appear on the label. Furthermore we can make use of the label structure
itself to organize the OCR output. Using this domain knowledge greatly increases the effectiveness
of the post-processing module and consequently the accuracy of our final results. Our four main

post-processing stages are listed below.

5.2.1 Clean OCR Output

The first post-processing step is to read through the Tesseract output and decide which information
is important and which information should be ignored. Tesseract tends to generate extraneous
newlines and errant ”-” and ”*” characters that complicate the information we want. Specifically,
this step analyzes the OCR output line by line and removes all lines that do not contain a close

name match with one of the 13 macro-nutrients we are trying to identify. The important lines are

12



then extracted from the file with their ordering maintained.

5.2.2 Construct Key/Value Pairs

Once we have identified the important lines, the next step is to create a name (key) and a value
from each line. The name usually consists of the set of letters read before a number is found, and
the value becomes the first sensible number read on the line. Sensible means that the number is
located in an expected position. Some OCR reading errors identify numbers at the beginning of the
line, but we know that the numerical value should be after the nutrient name. The key/value pairs

are stored in a list of pair objects.

5.2.3 Keyword Matching

Next, we must determine the mapping from the keys to the macro-nutrient names that gives the best
overall match for the whole list. To accomplish this we use a bipartite graph matching algorithm,
which works by first determining the Levenshtein distance between each key and each nutrient name,
and second finding the mapping that both matches each key to a nutrient and minimizes the total
edit distance among all the matches. The Levenshtein (edit) distance is a metric that reflects how
closely a given string of characters matches another given string.

The algorithm we use creates a best-fit mapping for the list of keys as a whole, rather than
simply identifying the best match for each individual key. Furthermore, at this stage we account
for the possibility of having multiple occurrences of the same nutrient name on the label. If the
key chosen in the mapping has a line number outside the range of the expected number of nutrients
then we know that we should re-run the matching algorithm, ignoring the line(s) that fall outside

the determined range.
5.2.4 Construct Label Object

The post-processing module concludes by generating a simple text file containing the key names and
their corresponding values. If a macro-nutrient was not present on a given label (e.g. several do not

contain ”Potassium”) then the field for that nutrient gets a value of null.

13



5.3 Activity Diagrams

Graying and
blurring

®

Get OCR output

Construct key/

Contrasting and
filtering

Image
thresholding

value pairs

Keyword
matching

Construct Label

Contour
identification

Label extraction

r/iﬁ

| 1
| _n'l
R

Figure 5.7:
processing.

Figure 5.6: Activity Diagram for Pre-

processing.
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Chapter 6

Design Rationale

6.1 Justification for Technologies

6.1.1 Primary Technologies Used

—_

. OpenCV
2. Tesseract
3. C++ programming language
4. Python programming language
6.1.2 OpenCV for Image Processing

The Open Source Computer Vision Library, better known as OpenCV, is an open source computer
vision library. OpenCV provides common infrastructure for all manner of computer vision projects; it
provides tools for object recognition, image processing, machine learning, and much more. OpenCV
has some other advantages in that it is multiplatform, and provides APIs for five programming

languages.
Support ecosystem

OpenCV is used and supported by companies of all sizes, including Google, Yahoo, Microsoft, and
Intel. Because it is used so widely, it is very well documented, and we are unlikely to run into any

problems that have not been previously encountered.

15



Unneccessary features

OpenCV does bring many features that we are unlikely to use in our small-scoped system. Features
of OpenCV that are not needed could potentially bloat our system. However, we can circumvent
this issue by building OpenCV with only the modules we need to use in our process. OpenCV has a
comprehensive build system using CMAKE, which will let us customize our build to minimize bloat

in our system.
Designing for change

OpenCV’s huge number of modules could provide functionality for any design changes that occur
over our project’s lifetime. If we decide to branch out into different areas of the computer vision
field to improve our library’s accuracy, OpenCV will likely already provide some functionality we

need.
OpenCV vs. custom code

An alternative to using OpenCV would be to create our own functions and libraries for image manip-
ulation. However, this adds another likely point of failure to our project; we would be implementing
algorithms that have been implemented and used many times in OpenCV. Using OpenCV gives us
confidence in the correctness of the computer vision algorithms we use, as the stable features of

OpenCV have been tested and used many times before.

6.1.3 Tesseract for OCR

Tesseract is an open source optical character recognition (OCR) library. It is now maintained by

Google, and is considered on of the most accuracte open source OCR libraries.
Commercial OCR tools

We considered some commercial OCR tools as alternatives to Tesseract. The most popular and most
accurate commercial OCR system is ABBYY’s FineReader. FineReader and competing commercial
OCR tools have license costs in the thousands of dollars for developer software development kits
(SDKs). While FineReader is much more accurate than Tesseract out of the box, some studies have
shown that finely tuning Tesseract can lead to performance near that or better than commercial

products.
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6.1.4 C++4 Language

We plan to use C++ to implement the majority of our system. This design choice is highly influenced

by two major factors:
1. Integration with chosen technologies

2. Team familiarity
Technology integration

Both OpenCV and Tesseract are written in C++, and natively provide C++ APIs. These APIs will

allow us to directly integrate with these systems.
Team familiarity

We are both more familiar with C+4 than any other programming language. Using this language

will require minimal time devoted to understanding how to use new libraries.

6.1.5 Python Language

We will use Python for scripting to automate tests of our system. Python is much more flexible and
user-friendly than shell scripting for automated tests. Python is aimed at increasing developer pro-
ductivity by being understandable and easy to use, so it enables us to quickly automate running our
system and any other included technologies. Python provides easy integration with C++ function

calls as well.

6.2 Pre and Post Processing

Optical character recognition (OCR) accuracy can be greatly improved by pre-processing the image
in certain ways. Studies have found that OCR accuracy is negatively influenced by factors such
as image skew, low contrast, low lighting, and geometric distortion. Image pre-processing aims to
eliminate these negative factors through intelligently altering the provided image.

After raw OCR output is gathered, we can apply post-processing to identify and fix OCR errors.
If output is restricted by a certain lexicon, or list of words possible in an image, we can use this
information to adjust erroneous output. Many OCR systems use the english language as a lexicon
for correcting OCR, but we can use the much more limited set of expected nutrition label terms to

improve accuracy.
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6.3 Choice to Implement as API

We decided to implement our system as an application program interface (API) that can easily be
included in applications of all types. We provide a C++ API through header files so that users can
quickly include our system without having to install or build anything.

We considered creating a fully-fledged application for our system. However, many nutrition and
fitness applications already exist, and our software would serve to complement those other systems
rather than act as the basis for a multi-featured application. This approach allows us to focus on the
functionality and accuracy of our system and more effectively explore the applications of computer

vision to our particular problem.
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Chapter 7

Testing and Results

7.1 Test Plan

We took two major approaches to testing the effectiveness of our implementation. The first approach
focused on testing each of our three modules that make up our solution. We attempted to isolate
each of these modules in our architecture and manually verify whether our approach at the time
was effective. These tests occurred primarily during the early implementation phases. Our second
testing approach analyzed end-to-end accuracy of our entire system. For obvious reasons, this testing
begin once we had a fully-functional prototype completed, and continued throughout the rest of our
implementation. For both types of testing, we constructed ground truths for each image in our data
set, which contain the data we expect to see from a correctly working system. All accuracy testing

was verified against these truths.

7.1.1 Module testing

Pre-processing

In order to isolate improvements in pre-processing, we pre-processed images in our data set and
passed them through Tesseract OCR’s default configuration. We manually compared this raw output
(without post-processing) to our ground-truth files. Our project was heavily research based—we
implemented around 10 to 15 different pre-processing approaches that had been used in various
computer vision projects and applications. Testing continuously allowed us to verify whether or not
a certain approach would be effective for our problem. Once our pre-processing step was producing
relatively clear images, we used an edit distance calculation to determine how closely our output

came to the expected ground truth. This allowed for some early automation of testing before our
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entire system was in a working state.
Optical Character Recognition

Similarly to pre-processing, isolated Tesseract in testing, feeding clear images to various configura-
tions. Unfortunately, Tesseract proved very difficult to correctly configure to a restricted-domain

problem, and only restricting the engine’s word dictionary provided any realistic results.
7.1.2 Testing Post-processing

The ability of post-processing to improve our system’s accuracy was highly dependent on the first
two components delivering some level of accuracy, so post-processing testing was delayed until later
in our project. We identified some common mistakes from our OCR module, so we created test cases
to ensure that our post-processing approach accounted for them. For example, the ’g’ for 'grams’
after a number value in a label is often misidentified as the number '9’, so we created tests to verify

our handling of the issue.

7.2 End-to-end testing

After our system reached a functional state, we tested the system in its entirety by evaluating
accuracy across a variety of test sets. Labels come in many different types, and we needed to verify
how well our system handled each type individually.

Accuracy was evaluated by finding the percentage of nutritional amounts correctly identified

across the label set.

S, # values correct in label;

Accuracy =
4 2?:1 # wvalues expected in label;

We constructed and analyzed the following data sets.
7.2.1 Standard

Standard labels are images that have the label centered and vertical, with the label taking up the
majority of the image. Labels are black and white and are on a two-dimensional surface. These test

images should be the easiest to process.
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7.2.2 Skewed

These test cases contain images of nutrition labels that are skewed (rotated) in either direction. This
set also includes images taken from above or below a label, which results in perspective distortions.

Our system should be able to handle angled perspectives of nutrition labels.

7.2.3 Lighting

Our lighting subset contains labels with uneven lighting, or shadows appearing across the image.

These labels require our system to provide more complex intensity thresholding.

7.2.4 Curved

Curved labels refer to labels on the side of cylindrical objects. These labels test how well our system

handles nonlinear geometric distortion.

7.2.5 Color

Different color schemes can have negative effects on OCR accuracy. This test set contains images
with color schemes outside of the regular black and white. This also tests how well our system deals

with low-contrast label images.

7.2.6 Horizontal

Certain food items have nutrition labels that have all information presented inline in a horizontal

field. This data set challenges our system with more complex layouts.

7.3 Test Results

7.3.1 Module testing

Our module testing was primarily manually-verified, with some later applications of edit distance

calculations. We do not have concrete test results for this primary testing stage.

7.3.2 End-to-end testing

Our results across our constructed data sets can be see in figure Most of our data sets are
processed with approximately 80% accuracy. Our approach sees a slight decrease in accuracy in
our curved data set—our current pre-processing approach relies on linear transformations, which can

result in distorted final images for curved labels, reducing our final accuracy. We had initially planned
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to address horizontal labels, which list values in a comma-separated list. Due to time constraints,

however, this has not been fully implemented in our system, resulting in the 35% accuracy for that
category.

Percent Accuracy for Label Test Sets
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Figure 7.1: Accuracy across label test sets. Data set sizes are approximately 20 labels each.

We also noticed varying accuracy levels for each of the nutritional values we chose to identify on
the labels. Figure lists accuracy levels for each of these values in the order that they appear on
labels. Most of the nutritional keywords have a consistent accuracy near or above 80%. However,
keywords that appear toward the bottom of the label, such as sugars and protein, have much lower
accuracies. This is due again to our method of geometric distortion correction—certain distortions

become more exaggerated toward the bottom of an image, requiring further pre-processing.
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Accuracy Across Label Nutrients
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Figure 7.2: Accuracy across label nutrients for standard labels.

A histogram of the success levels for each of our labels can be found in figure [7.3.2l Each color
represents one of our constructed data sets. Most of the labels we have in our test set result in over

a 60% accuracy rate. However, there are still quite a few outlying cases that our approach does not

adequately handle.
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Figure 7.3: Label Success Level Distribution.
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Chapter 8

Risk Analysis

This section outlines the risks associated with the development of this project. The probability of
a risk occurring is assessed between 0 and 1. The severity of the risk is measured between 1 and
10. The risk’s impact is the probability it will happen multiplied by its severity. The mitigation

strategies are actions that lessen the impact of a risk.

Risk Consequence Probability| Severity| Impact]  Mitigation Strategies

1. Clearly define the
Knowledge Allocate additional time for learning 1 7 7 technologies we will use

- Begin implementation early

]

—

- Keep code well
Bugs Delay project development 1 7 7 documented
. Maintain a version history

. Get adequate sleep
- Maintain healthy
diet and exercise

[ S [ ]

Personnel

(llness) Slow project progress 0.8 5 4

1. Meet often as a team
. Clearly define member
roles

1. Plan future schedule

f:;:lr;zzlm) Slow project progress 02 7 14 with project in mind

Additional errors or bugs;
increase in stress, workload

03 6 18

k2

Comnmmnication

k2

. Plan an appropriate
course load

1. Regularly asses progress

. Actively schedule time
to work on project

1. Consult expert studies
and techniques

. Work together on difficult
components

| =]

Time Unable to finish project on time 01 10 1

Cannot complete certain features;

Ability 0.1 g 0.8

k2

simplify/re-structure certain aspects

Figure 8.1: Risk Analysis Chart.
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Chapter 9

Conclusion

9.1 Project Summary and Evaluation

As stated at the beginning of this paper, our goal for our senior design project was to apply the field
of computer vision to the existing problem of dietary tracking. We integrated the domain knowledge
associated with the standard structure and form of a nutrition label to create an innovative solution
to improve on the existing manual entry and database models. This project was very research heavy
for a development project, as we had no prior experience working with computer vision applications.
As such the final system still has some room for future accuracy improvement. We are pleased with
the work we have done over the last nine months, and we think that we have set the stage for further
advancements both with this project in particular and the increasing number of computer vision

applications.

9.2 Future Progress

Although senior design has concluded, we plan to continue working on this project, testing out
new implementations, and exploring more OCR options to see if we can obtain better results. The
project is located in a gitHub repository, so anyone who wishes to review or experiment with what
we have done is welcome to do so. We do not plan to make this a marketable item; even if further

improvements are made we intend to keep it open source as it is now.

9.3 Ethical Considerations and Project Impact

The field of computer vision has widespread applications. We believe that advancements in this field

could allow for near endless applications that would allow machines to automate tasks that previously
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required direct human involvement. As computer vision essentially seeks to teach machines how to
see and glean understanding from images and video just as people do, there is a potential for great
benefit, but also great harm. Our particular project has a positive focus that could not directly
be used an unethical application, such as a program that reads credit card numbers from public
video recordings. Additionally, we have not contributed to the underlying theory of computer vision
techniques, so our project has not enabled the creation of any harmful products.

Primarily, we see our senior design project as an early effort to expand the applications of
computer vision and combine existing techniques with the specific domains associated with various
problems to improve on current solutions. Anything that requires systematic data entry, pattern
recognition, object identification, and any other observation based task could theoretically be auto-
mated with the proper integration of computer vision techniques with the given problem domain.
Our efforts give testament to, if nothing else, the real possibilities that exist in developing more

efficient and automated solutions to these problems utilizing the field of computer vision.
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Appendix A

Install Guide

A.1 Package Manifest

The installation folder should contain the following files:

e categories.py

e contours.py

e end_to_end.py

e eng.label-patterns
e generate_json.py
e keywords.py

e label.py

e post_process.py

e requirements.txt

e text.py

A.2 Installation Instructions

Product installation is relatively straightforward. Once the install package has been downloaded,
extract the files to the desired directory. In order to run properly the user must have OpenCV (3.0.0
alpha or higher), the Tesseract OCR, and Python (3.4 or higher) installed properly. Once everything
is set up, simply call the end_to_end process located in end_to_end.py to run the software.
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to improve performance of their final system. In the concluding sections, the authors
also compare the performance of their solution against other commercially-available
methods as well as alternate methods proposed in research. Their method generally
outperforms previously implemented methods, but the authors are clear in showing the
data sets and configurations where they are not the optimal solution. This article not
only provides extremely detailed approaches to character and word recognition in real-
world image, but it also emphasizes which approaches work best in which contexts. This
research could be extremely valuable in directing our approach to character recognition
in nutrition labels.

24.7

Tsai, Sam S., et al. “Combining image and text features: a hybrid approach to mobile book spine
recognition”. Proceedings of the 19th ACM international conference on Multimedia. ACM, 2011.

Web.

Tsai and his co-authors approach the problem of identifying book spines by applying
both character and object recognition. Book spines do not have many distinguishing
features other than text, so the authors’ solution uses text recognition to search a
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image database. These results are intelligently combined to increase the accuracy of
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