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ABSTRACT

The 802.11 standard, known as WiFi, is currently being used for a wide variety of appli-

cations including Internet of Things (IoT). However, the contention between the tra�c

of IoT stations (STAs) as well as the contention between these flows and regular user-

generated tra�c reduces the energy e�ciency and timeliness of IoT communication. To

remedy this problem, in this thesis, we take the following approaches for mitigating the

challenges faced by WiFi-based IoT networks: First, we highlight the importance of

observability with respect to WiFi networks and how it helps the researchers to bet-

ter examine the dynamics of issues and its causes. We then develop two tools that

enable high-rate monitoring of the Linux networking stack. These tools rely on the

fact that all data tra�c in WiFi networks flows through the Access Point (AP). This

enables us to deploy these tools on only the APs and not each connected device; thus

enabling monitoring of large-scale networks. Second, we enhance this tool by utilizing

the extended Berkeley Packet Filter (eBPF) technology for monitoring of the networks

without modifying any kernel modules to analyze the delays incurred by the packets at

di↵erent parts of the networking subsystem on the APs and also monitor the energy

consumption of the associated STAs. Third, utilizing these tools, we obtain insights

and measurements to design a scheduling algorithm that computes per-packet priorities

vii



to arbitrate the contention between the transmission of IoT packets. This algorithm

employs a least-laxity first (LLF) scheme that assigns priorities based on the remaining

wake-up time of the destination STAs. Fourth, we estimate the interval uplink-request

and downlink-response due to overheads in the wired and wireless networking compo-

nents across the path of the packet from the edge device and server. We facilitate the

STA with the estimated wired and wireless transit delay, such that the STA can utilize

this information to transition to low power sleep state during the packet’s transit; thus,

enhancing the STAs energy e�ciency. Fifth, focusing on the power-save functionality

introduced in next-generation WiFi standard, known as Target Wake-up Time (TWT),

we first, highlight the importance of tra�c characterization and shortcomings of existing

methods. We then propose a transport layer-based tra�c characterization method that

can accurately capture inter-packet and inter-burst intervals on a per-flow basis in the

presence of factors such as channel access and packet preparation delay. By address-

ing the challenges due to the shared nature of WiFi spectrum the contributions in this

thesis provide open-source tools for better understanding the internals of networking

stack and methods for improving the energy e�ciency and quality of service of WiFi

communication in IoT networks.
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Chapter 1

Introduction

1.1 Overview

The Internet of Things (IoT) is the enabler of applications such as remote

medical monitoring, building automation, industrial automation, and smart cities. It

is estimated that there will be about 14.7 billion Internet of Things (IoT) connected

devices in 2023, up from 6.1 billion in 2018 [1]. To o↵er ease of deployment and support

mobility, most of these applications rely on wireless communication. Various wireless

technologies, such as 802.15.4, NB-IoT, LoRa, LTE, and 802.11, are currently being used

to connect these devices [2]. Meanwhile, 802.11 is particularly important due to several

reasons: First, 802.11 networks are widely deployed in home, enterprise, and commercial

environments. Therefore, for example, 802.11-based smart home systems do not require

the installation of additional wireless infrastructure. Second, the power consumption

of 802.11 transceivers has been significantly reduced during the recent years. This has

been achieved by both new chip manufacturing technologies as well as the various power

saving methods proposed for this standard [3, 4, 5, 6, 7, 8, 9]. Third, compared with

cellular networks, 802.11 operates in unlicensed bands and thereby, its usage is free of

charge. Finally, compared to 802.15 technologies, 802.11 o↵ers considerably higher data

rates, which enable the usage of this standard in applications such as medical monitoring

and industrial control [10, 11]. The higher data rate also enables the radio transceiver

to finish its transmission faster and switch to a low-power mode.
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1.2 Problem Statement

Building a WiFi network catering to the needs of e�cient IoT deployments

imposes major challenges that can be broadly categorized into the following: (i) En-

ergy E�ciency : appropriate energy should be utilized for WiFi communication of the

battery-powered and energy-constrained IoT devices, (ii)Observability : power consump-

tion patterns and the e�ciency of last-hop delivery should be monitored to develop novel

and e�cient algorithms, (iii) Timeliness : adequate packet prioritization and schedul-

ing techniques should be developed for orderly delivery in presence of contending tra�c

from other WiFi stations (STAs) in the network. This section elaborates on the research

problems of this thesis.

1.2.1 First Research Problem: Observability and Monitoring of Linux

Networking Stack

Collecting monitoring data from WiFi devices enables researchers to study net-

work operation [12, 13, 14, 15], improve performance [16, 17, 18], and secure these

networks [19, 20, 21, 22]. For example, methods have been proposed to manage chan-

nel assignment to Access Points (APs), control the association of stations, and adjust

transmission power, to mention a few [23, 24, 11]. Although collecting monitoring data

every few seconds would be enough for some algorithms (e.g., channel assignment),

immediate reactions to network dynamics require high-rate, real-time monitoring. A

sample scenario is per-flow and per-packet scheduling methods in dense networks [18].

Also, existing research shows the importance of packet-level analysis for power manage-

ment [25, 16]. We also observe the adoption of data-driven and machine-learning-based

methods for performance enhancement (e.g., delay reduction [14], power management

[26, 27, 28]) and security provisioning [19, 20, 21, 22].
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RESEARCH QUESTION 1.2.1.1 How to design and develop high-rate, real-time, ef-

ficient, and programmable monitoring tool to collect measurements pertaining to the

e�ciency of WiFi communication between APs and stations?

1.2.2 Second Research Problem: Linux Networking Monitoring in an

non-intrusive manner

The WiFi networking stack is complex and includes multiple layers across the

Wireless Network Interface Card (WL-NIC), driver, Linux kernel modules, and user-

space daemons. Although there exist tools that provide visibility into some of these

layers, the performance and range of visibility of these tools are far from what is needed

to analyze these networks and design solutions for performance enhancement e↵ectively.

Due to this shortcoming, a large number of existing works rely on simulation. Also, when

high-rate monitoring is necessary, existing works rely on packet capture and static data

analysis [19, 20, 21]. Another category of works relies on tools that have been primarily

designed for infrequent monitoring and configuration [13, 14]. For example, Linux-based

tools such as iw and ethtool can be used to collect some of the operational data from

the WiFi stack; however, the sampling rate and e�ciency of these tools are far below

what is required for high-rate monitoring. However, these techniques do provide any

flexibility extension to their implemented logic requires modification of the tool or the

kernel. This process is cumbersome and less secure, as any programmatic errors can

lead to failure of whole module or the entire kernel.

RESEARCH QUESTION 1.2.2.1 How to monitor the networking stack without requir-

ing any modifications to the kernel components or modules?

RESEARCH QUESTION 1.2.2.2 Can the delays incurred at networking stack and the
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energy consumption of the STA’s WiFi Network Interface Card (NIC) be analyzed from

the AP without utilizing additional hardware?

1.2.3 Third Research Problem: IoT Tra�c Prioritization

From the timeliness point of view, 802.11 di↵erentiates between real-time (e.g.,

voice and video) and elastic (e.g., email, file transfer) flows by defining voice, video,

best-e↵ort, and background access categories. However, these access categories only

accommodate the four tra�c categories of regular (non-IoT) user devices and cannot

di↵erentiate the existence of IoT tra�c. Therefore, IoT stations su↵er from longer delays

and also waste their energy because of idle listening before their downlink packets are

delivered. Due to the benefits entailed by the Adaptive PSM (APSM) (cf. 2.2.1), we

observe that the state-of-the-art low-power 802.11 transceivers support this mode [29,

30, 6]. However, the tail time duration might also result in a higher energy consumption

if the access point’s downlink tra�c is high and packet transmissions are not properly

scheduled based on energy e�ciency concerns. In other words, when the number of

regular or IoT stations increases, the amount of time spent in the tail time increases

without positively a↵ecting timeliness or energy e�ciency.

RESEARCH QUESTION 1.2.3.1 How to design and develop a scheduling algorithm

that prioritizes IoT tra�c based on the remaining tail time of IoT STAs, such that

the Quality of Service (QoS) and energy e�ciency of the WiFi communication in IoT

networks is improved?
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1.2.4 Fourth Research Problem: Predictive Sleep Scheduling of IoT

Stations

Many IoT applications require the transmission of uplink reports by station and

reception of commands from a server. For example, consider a sample medical applica-

tion where an IoT device reports an event and expects to receive actuation commands in

return. Another example is a security camera that transfers an image whenever motion

is detected and waits for a command to stream video if a particular object is detected.

After the transmission of uplink packet(s), the IoT station has four options with regards

to power saving methods (cf. 2.2.1) before receiving downlink packet(s):

(i) use Continuously Active Mode (CAM),

(ii) use PSM and return to sleep mode and wake up during the next beacon period,

(iii) use APSM and stay in awake mode for a short time duration,

(iv) use Automatic Power Save Delivery (APSD) or Target Wake-up Time (TWT) and

periodically check if the downlink packet has arrived,

Case (i) minimizes delay but does not o↵er any power e�ciency. Case (ii) causes long

end-to-end delays [31, 28] because the station has to wait until the next beacon instance,

even if the actual downlink delivery delay is less than the time remaining until the next

beacon. Besides, the delay considerably increases when the station and server need to

complete multiple rounds of packet exchange to make a decision1. Case (iii) is e↵ective if

the delivery delay is short; otherwise, this case results in power waste in tail time. Case

(iv) results in periodic wakeups and unnecessarily increases channel access contention.

1
Considering user interactions, studies show that every 10 ms increase in network access results in

a 1000 ms increase in page load time [32].
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Therefore, none of these cases are suitable for applications where both delay and energy

e�ciency are the essential performance metrics.

RESEARCH QUESTION 1.2.4.1 How to estimate the total wired and wireless transit

delay between Uplink (UL) and Downlink (DL) and adjust the sleep schedule of the

STAs to maximize energy e�ciency and minimize the additional delay?

1.2.5 Fifth Research Problem: Tra�c Characterization for E�cient

TWT Scheduling in 802.11ax IoT Networks

The newly-introduced 802.11ax standard provides a method called TWT for

assigning service periods to STAs. Compared to the earlier power-saving modes, TWT

allows for potentially higher energy e�ciency and throughput. Specifically, by properly

assigning service periods to STAs, channel contention reduces, packet bu↵ering delay in

the AP drops, and packet aggregation e�ciency enhances [33]. Nevertheless, to realize

the benefits of TWT scheduling, accurate characterization of the tra�c flows of STAs

is required by an AP to allocate service periods that address STAs’ tra�c requirements

[34, 33, 35]. To this end, the most-widely used methods are Channel Utilization (CU)

estimation, packet sni�ng, and Bu↵er Status Report (BSR) [36, 37]. However, as we

will show in this thesis, none of these methods provide high accuracy, especially in the

presence of channel access delay. Another approach is to gradually and dynamically

adjust TWT assignments over time, based on STAs’ demands.

RESEARCH QUESTION 1.2.5.1 How accurately characterize tra�c of the associated

STAs for allocating TWT service periods?
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1.3 Contributions

To achieve the aforementioned objectives, this thesis presents the following

contributions:

(i) We propose MonFi, a publicly-available, open-source tool for high-rate, e�cient,

and programmable monitoring of the WiFi communication stack. With this tool,

regular user-space applications can specify their required measurement parame-

ters, monitoring rate, and measurement collection method as event-based, polling-

based, or a hybrid of both. We also propose methods to ensure deterministic

sampling rate, regardless of the processor load caused by other processes includ-

ing packet switching. In terms of sampling rate and processing e�ciency, we show

that MonFi outperforms the Linux tools used to monitor the communication stack.

(ii) We propose FLIP, a framework for leveraging eBPF (Enhanced-Berkeley Packet

Filter) to augment access points and investigate the performance of WiFi networks.

Using this framework, we focus on two important aspects of monitoring the WiFi

stack. First, considering the high delay experienced by packets at access points,

we show how switching packets from the wired interface to the wireless interface

can be monitored and timestamped accurately at each step. By relying on the

FLIP framework, we build a testbed and investigate the factors a↵ecting packet

delay experienced at access points. Second, we present a novel approach that

allows access points to track the duty-cycling pattern and energy consumption of

their associated stations accurately and without the need for any external energy

measurement tools. We validate the high energy measurement accuracy of FLIP

by empirical experiments and comparisons against a commercial tool.

(iii) We propose Wiotap, an enhanced WiFi access point that includes a downlink

packet scheduling algorithm. In addition to assigning higher priority to IoT tra�c
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compared to regular tra�c, the scheduling algorithm computes per-packet prior-

ities to arbitrate the contention between the transmission of IoT packets. This

algorithm employs a least-laxity first (LLF) scheme that assigns priorities based

on the remaining wake-up time of the destination stations. We confirm the accu-

racy of WIOTAP via empirical evaluation and we utilize simulation to show the

scalability of the proposed system.

(iv) We propose edge-assisted predictive sleep scheduling (EAPS) to adjust the sleep

duration of stations while they are expecting downlink packets. We first imple-

ment a Linux-based access point that enables us to collect parameters a↵ecting

communication latency. Using this access point, we build a testbed that, in ad-

dition to o↵ering tra�c pattern customization, replicates the characteristics of

real-world environments. We then use multiple machine learning algorithms to

predict downlink packet delivery. Our empirical evaluations confirm that with

EAPS the energy consumption of IoT stations is as low as PSM, whereas the

delay of packet delivery is close to the case where the station is always awake.

(v) Finally, we empirically study and reveal that the existing methods (i.e., channel

utilization estimation, packet sni�ng, and bu↵er status report) do not provide

adequate accuracy. To remedy this problem, we propose a tra�c characterization

method that can accurately capture inter-packet and inter-burst intervals on a per-

flow basis in the presence of factors such as channel access and packet preparation

delay. We empirically evaluate the proposed method and confirm its superior

tra�c characterization performance against the existing ones. We also present a

sample TWT allocation scenario that leverages the proposed method to enhance

throughput.
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1.4 Scope

The following clarify the scope of this thesis:

(i) The proposed methods comply by the 802.11 standard specifications. Hence, these

methods can be applied to any application domain that utilizes WiFi-based com-

munication, such as process automation, factory automation, building automation

systems, and intra-vehicle communication.

(ii) This thesis is based on three assumptions: First, wireless communication happens

over a single hop, i.e., between the edge-devices and AP. Second, as WiFi com-

munication utilizes the unlicensed spectrum, high interference will result due to

background tra�c of STAs operating on the same channel. Third, as IoT devices

are energy constrained and IoT tra�c intensity is relative lower compared to other

WiFi devices, it is very important to prioritize the IoT tra�c and optimize the

energy e�ciency of IoT STAs.

(iii) Most commercial WiFi adapters rely on a SoftMAC architecture [38], especially

considering the ease of updating. The WiFi drivers utilized in this thesis are

SoftMAC drivers. SoftMAC drivers implement a part of the MAC layer manage-

ment entity (MLME) in software, thereby utilizing the host system’s processing

resources. Only time-critical MAC functions, such as managing timeouts, inter-

frame spacing, and channel access backo↵, are implemented in the hardware. The

other type of drivers, referred as FullMAC utilizes an additional processor on the

NIC to implement all MAC functions within the firmware.

(iv) As all tra�c passes through the AP, this thesis considers the AP to be an appropri-

ate entity for monitoring the WiFi communication. On the contrary, monitoring

each associated STA via physically attaching probes is not a scalable approach.

9



(v) This thesis does not propose any channel access arbitration mechanism for real-

time packet delivery.

(vi) The methods presented in thesis do not alter any part of the PHY and MAC

layer parameters, such the channel contention parameters mentioned in the 802.11

standard specifications.

(vii) The proposed methods in this thesis uses Qualcomm®Atheros-based WiFi devices,

capable of operating in both STA mode and AP mode utilizing hostapd. This

devices use Linux as there operating system. Additionally, targeting resource-

constrained devices, two widely-used Real-Time Operating Systems (RTOSs):

FreeRTOS [39, 40] and ThreadX [41, 42] are utilized as the STA’s operating sys-

tem.
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1.5 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 provides the

background of this research, and reviews existing literature with respect to (i) WiFi

networking stack monitoring, (ii) power saving techniques used in WiFi networks, and

(iii) packet scheduling methods for enhancing the performance of WiFi-based IoT de-

vices. Chapter 3 presents MonFi, an open-source tool for high-rate, e�cient, and pro-

grammable monitoring of the WiFi communication stack. Chapter 4 presents FLIP,

a framework for leveraging eBPF to augment access points and investigate the perfor-

mance of WiFi networks. Chapter 5 presents WIOTAP, an enhanced WiFi access point

that includes a downlink packet scheduling algorithm. Chapter 6 presents EAPS, to

adjust the sleep duration of stations while they are expecting downlink packets. Chap-

ter 7 presents SATRAC, a framework for tra�c characterization of associated STAs on

the AP for accurate TWT allocations Finally, Chapter 8 concludes this research and

provides directions for future work.
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Chapter 2

Literature Review

2.1 Introduction

This chapter reviews the existing methods applicable to the objective of this

thesis. Therefore, this chapter has three main sections organized as summarized in

Figure 2.1:.

2.2 Power Saving Optimizations in WiFi Networks

2.2.1 Power Saving Methods in 802.11 (a/b/g/n/ac) Standards

The 802.11 standard o↵ers multiple power-saving mechanisms to support energy-

constrained stations. Power Save Mode (PSM) enables the stations to wake up period-

ically and check if the AP has any bu↵ered packet(s) for them. The AP periodically

broadcasts beacon packets at a certain interval, called Beacon Interval (BI), to inform

the stations about their bu↵ered packets. Stations send PS-Poll packet to the AP to

request downlink delivery. PSM significantly increases communication delay because

stations can only receive downlink packets after each beacon instance. The delay prob-

lem further exacerbates with the concurrent transmission of PS-Poll packets and the

accumulation of downlink packets after each beacon instance [43, 44]. To reduce com-

munication delay with AP, APSM requires a station waiting for downlink packets to
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Fig. 2.1: The structure and main observations of the literature review conducted with
respect to the contributions in this thesis.

stay awake for a tail time duration (e.g., 10 ms [7]) after each packet exchange [16].

The tail time may cause idle listening and energy waste, especially if the delay between

uplink and downlink delivery is longer than tail time. Another enhancement of PSM

is APSD, which is available in 802.11n, ac, and ax. APSD allows stations to request

downlink packet delivery by sending NULL packets to the AP [45]. A new power-saving

mechanism introduced in 802.11ax is TWT, which was primarily introduced in 802.11ah

for low-power IoT communication. Using TWT, pairwise agreements between AP and

stations can be established, and stations are allowed to skip receiving beacon packets.

To further reduce the overhead of periodic wake-ups, the new 802.11ba standard spec-

ifies the addition of a low-power Wake-up Radio (WUR) [46, 47]. The primary radio

only wakes up when the station receives a command over the WUR or when the station

needs to perform uplink transmission. Although these power-saving mechanisms allow

stations to reduce their energy consumption significantly, they do not consider the e↵ect

of communication delays caused by bu↵ering, interference, channel access method, and

tra�c category.
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2.2.2 Power Saving Methods 802.11 (ax) Standard

In addition to the power saving methods available in 802.11 (a/b/g/n/ac), TWT

functionality introduced in 802.11ax protocol allows the STAs and AP to negotiate their

sleep-wake schedule. This enables the STAs to wake up only during the scheduled TWT

sessions. The two broad categories of TWT sessions are individual and broadcast, where

the former is an agreement between the AP and a station, and the latter is an agreement

between the AP and multiple stations. A TWT agreement could be used for UL, DL, or

both types of communication. The two most important parameters determined during

the negotiation process are: (i) wake time: the next time the station must wake up for

the first TWT session, (ii) wake interval : the time interval between successive wake-

ups, and (iii) wake duration: the amount of time the station stays awake every wake

interval. The minimum value allowed is 256 µs. If the parameters are only valid for

a single TWT session, the agreement is referred to as explicit TWT. In contrast, an

implicit TWT session uses the defined parameters to repeat the sessions periodically

(unless a new set of parameters are announced). Inside a TWT session, the AP can

either send a trigger frame and assign sub-carriers to the stations, or the session can be

non-triggered enabled. Also, inside a TWT session, the AP may leverage the grouping

mechanism to assign time slots to each station.

TWT reservations are station-initiated, where each station simply requests

TWT schedules based on their respective tra�c patterns. This method either re-

quires support from the applications or the driver modifications are required to provide

application-agnostic tra�c pattern recognition. Thus, station-initiated includes addi-

tional overhead on the computing resources or modification to the driver. Additionally,

each station would in non-coordinated fashion However, the second method of allocat-

ing TWT sessions is AP initiated TWT, where the AP is in charge of assigning TWT

sessions. In AP-initiated TWT, the AP being a centralized entity, has a global over
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view of the entire network, the AP can allocate TWT schedule that works best for

all. We have verified that two of the most popular 802.11ax cards (Intel®AX-200 and

Qualcomm®Atheros QCA6391) comply with AP-initiated TWT.

Yang et al. [37] proposed two methods: the first one strives to maximize the

throughput of all stations, and second one establishes proportional fairness. Using

simulation, they compared the performance of these methods against the basic 802.11

channel access method and showed that the max-throughput method results in highest

throughput. Their proposed solution allocates each Service Period (SP) to only one

station. Qiu et al. [48] proposed a cross-layer TWT parameter selection methods

dependent on the category of the flow and its latency requirements. Utilizing the tra�c

characteristics, such as inter-packet arrival time, they first categorize application type

using machine learning methods. Based on the amount of TWT service period utilized

by the STAs, they adaptively reconfigure the the TWT parameters on the fly. Since

the proposed method is complicated and process-intensive, it has been implemented

on high-end smart phones instead of IoT devices. Nurchis and Bellalta [33] provide an

overview of TWT and its various features. They evaluate the number of messages needed

for establishing periodic and aperiodic individual and broadcast TWT sessions. They

show that DCF results in lower latency when the tra�c rate is less than 4 Mbps per

station. For higher tra�c rates, using TWT allows the AP to schedule concurrent uplink

transmissions, while the STA can perform better packet aggregation because of packet

accumulation between TWT sessions. Chen et al. [34] address the problem of scheduling

uplink TWT service periods to achieve both energy e�ciency and high throughput.

Power saving and packet scheduling methods for 802.11ac and earlier standards have

been proposed in several works [18, 49, 50]. Our work is orthogonal to these methods

and can be leveraged to further enhance the e�ciency of TWT scheduling.
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2.3 Packet Scheduling

2.3.1 Tra�c Prioritization

Since 802.11 networks are used for the exchange of both elastic and real-time

data, the 802.11e standard provides various access categories (AC) [51]. The AC of MAC

frames is determined based on the di↵erentiated services code point (DSCP) field1 of

IP header. This field comprises of di↵erent flagged bits, which when set, conveys to

the lower layers the flow type and enforces IP precedence for per-hop QoS and priority.

This layer-3 field is then mapped to the class of service (CoS) field in the MAC header

[52]. By using CoS mapping, the kernel sets the priority socket bu↵er and enqueues the

packet to the corresponding transmit queue. In the 802.11e protocol, each EDCA queue

behaves as a virtual station and contends for the channel independently according to

the contention parameters specified by the 802.11e standard.

Additionally, almost all Linux systems are capable of administering the manner

in which the packets are sent over a medium by employing queueing disciplines known

as qdisc. Situated between layer-2 and layer-3 of IP stack, qdisc provides several types

of tra�c scheduling (what packet to be sent) and tra�c shaping (how many packets to

be sent per time unit) mechanisms to hand packets over to layer-2.

Packet scheduling mechanisms such as [53] and [54] propose solutions to group

stations such that only a few stations wake up to receive the packets after each beacon

interval. Similarly, [55], [56], and [57] group the stations to limit the level of channel

access contention by stations at any given point in time.

Kwon and Cho [58] assume that the AP is aware of the priorities of the registered

stations. They prioritize packet reception according to the priorities of the stations

1
This field is also know as the type of service (ToS).
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based on their profile information such as the remaining power level of each station. To

reduce the waiting time (and energy consumption) of PSM stations, Rozner et al. [31]

enhance the access point to transmit the packets of these stations before those stations

that do not utilize PSM. The downlink packet scheduler proposed in [59] prioritizes

burst packet delivery after every beacon interval when a station wakes up to receive the

bu↵ered packets at the AP based on historical data and attention fairness. Clients with

smaller attention requests are serviced before the others, thus allowing them to spend

less energy to get one unit of attention, while allowing the clients with larger attention

requests to sleep more compared to other popular scheduling methods, such as priority

round robin and priority first come first serve.

Pyles et al. [28] utilize an application classifier to increase the priority of in-

teractive Android applications. When a high priority application is detected, the WiFi

driver uses the Adaptive PSM mechanism if the rate of packet exchange is beyond a

certain threshold.

Wamser et al. [60] address resource allocation to multimedia tra�c on home

gateways. If the video or audio local playback bu↵er falls below 25s, its flow is moved

to a higher priority queue, and once the bu↵er reaches 40s, the flow is downgraded

to a lower priority queue. Flaithearta et al. [61] proposed an intelligent AP for VoIP

tra�c to address intra-AC prioritization among VoIP flows. This method finds the VoIP

quality using the ITU-T E-Model [62] and the AP sets the DSCP value of the packets

based on network characteristics collected from the RTP Control Protocol (RTCP).

By using the additional higher priority AC VO transmission queue provided by the

802.11aa standard, they divert a few VoIP calls to prioritize them over others. Qazi

et al. [63] propose fine-grained mobile application detection using a machine learning

trainer based on a decision tree ML tool in the control plane. To this end, they use

netstat logs from employee devices along with the flow features (first N packet sizes,
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port numbers, IP address range). In [64], the router dynamically adjusts bandwidth

allocation of flows using Linux’s tc utility. The aggregated bandwidths are computed

for video, web browsing, file transfer, and voice classes using linear utility function [65]

on account of the contextual-priority reports sent by the clients. The authors in [66]

have demonstrated application-aware networking for video streaming. They identify

characteristics of the flows through deep packet inspection and forward them via least

congested links by dynamically changing the routing paths. They have compared the

performance of bandwidth-based and DPI-based path selection mechanisms regarding

bu↵ered playtime in an SDN-enabled network. Afzal et al. [67] proposed a context-aware

resource allocation scheme in wireless multimedia sensor-based WLANS. This method

formulates an optimization problem on the basis of the service requirements of each

flow, and allocates appropriate bandwidth and TXOP to the stations.

2.3.2 RTT and Delay Estimation

Peck et al. [68] propose PSM with adaptive wake-up (PSM-AW), which includes

a metric called PSM penalty to enable the stations to establish their desired energy-delay

tradeo↵. The authors define server delay as the total delay between sending a request

to a server and receiving a reply. Based on Round-Trip Delay (RTT) variations, the

sleep duration is dynamically adjusted to satisfy the desired tradeo↵. Also, the size

of the history window of server variations is dynamically tuned based on the range of

server delay variations. Compared to our work, PSM-AW [68] only considers AP-server

RTT, thereby ignoring the variable and long impact of downlink wireless communica-

tion delay. Besides, since RTT sampling and averaging are performed by stations, it

adds additional load on resource-constrained stations. Furthermore, delay estimation is

directly a↵ected by station-server communication, and estimation accuracy drops as the

interval between transactions increases. In contrast, our work does not impose overhead
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on stations, and once a model is trained, it does not rely on ongoing communication to

compute sleep schedules. Jang et al. [16] proposed an adaptive tail time adjustment

mechanism by relying on inter-packet arrival delays. A moving average scheme is used

to predict inter-packet arrival delay when a burst of packets arrives at a station. The

station stays in the awake mode if the next packet arrival time is before the tail time ex-

piry. If packet delivery is after the expiry, the station may extend its tail time based on

the outcome of an energy-delay tradeo↵ model. In contrast to our work, neither [68] nor

[16] considers the impact of bu↵ering and channel access delay as variable, essential com-

ponents of downlink delivery delay. Furthermore, the e↵ectiveness of these approaches

highly depends on the burst length and variability of end-to-end delays. Specifically,

the moving average scheme employed in [16] would not be e↵ective in IoT scenarios

where most of the bursts are short-lived. Sui et al. [69] propose WiFiSeer, a centralized

decision-making system to help stations choose the AP providing the shortest delay.

WiFiSeer works in two phases: During the learning phase, a set of parameters (such as

RSSI, RTT) are pulled every minute from all APs using SNMP. Then a random forest

model is trained to generate a two-class learning model for classifying APs into high

latency and low latency. A user agent installed on smartphones communicates with the

controller and associates the station with the recommended AP. WiFiSeer is vertical to

our solution to further reduce station-AP delay.

Jang et al. [70] study the overhead of radio switching and show that stations can

achieve significant energy saving during inter-frame delays while the AP is communicat-

ing with other stations. The proposed AP-driven approach, called Snooze, utilizes the

global knowledge of the AP to schedule sleep and awake duration of each station based

on inter-packet delays and tra�c load of the station. To distribute the schedule, the

AP needs to exchange control messages with stations. Compared to Snooze, our work

considers the sensing-actuation pattern of IoT applications and reduces the idle listening
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time between sensing and actuation. In addition, our work takes into account the impact

of interference by measuring channel utilization perceived by the AP. Also, Snooze does

not benefit from APSD. Sheth and Dezfouli [18] propose Wiotap, an AP-based packet

scheduling mechanism for IoT stations that employ APSM. This mechanism uses an

Earliest Deadline First (EDF) scheduling strategy to maximize the chance of packet

delivery before tail time expiry. Rozner et al. [31] propose NAPman, which prioritizes

the delivery of PSM tra�c as long as other stations are not a↵ected. Tozlu et al. [4]

show that increasing AP load has a higher impact on packet loss and RTT, compared

to out-of-band interference. Pei et al. [14] demonstrate that station-AP link delay com-

prises more than 60% of station-server RTT. They also show that more than 50% of

packets experience a delay longer than 20 ms over station-AP links. This delay is longer

than 100 ms for 10% of packets. For TCP tra�c, the authors proposed an approach

to measure the delay of wired latency as well as uplink and downlink channel access

delay. Using the Kendall correlation, they also show that channel utilization, RSSI, and

retry rate are the top three factors a↵ecting station-AP delay. They used a decision

tree model to tune the parameters of APs and reduce the overall delay experienced by

stations. This is in contrast to our work, which o↵ers per-station and fine-grained sleep

scheduling. Primarily designed for VoIP tra�c, Liu et al. [49] propose a mechanism to

reduce contention among stations waking up using APSD to retrieve packets from the

AP. After receiving a burst of voice data, the station measures the tolerable deadline of

incoming packets and informs the AP about its wake up time before switching to sleep

mode. The wake-up instance is approved only if the AP will be idle when the station

wakes up.
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2.4 Linux Network Stack Monitoring

Collecting monitoring data (a.k.a., network inspection, statistics collection)

from WiFi APs makes it possible to study network operation [12, 13, 14, 15], enhance

performance [71, 72, 73, 74], and secure these networks [19, 20, 21, 22]. Measurements

reflecting the state of the network enables making informed decisions on APs, central

controller, and stations. However, the existing works primarily rely on collecting mon-

itoring data at the application and transport-layer levels. Additionally, they rely on

lower sampling rate of collecting monitoring data; whereas, for applications such as

delay prediction and packet scheduling, e�cient and high-rate collection of monitoring

data is necessary.

2.4.1 Sni↵er-based Approaches

Using sni↵er to capture network tra�c has been widely used for network mon-

itoring [75, 76, 77, 78, 79, 16]. Manufacturers have adopted this method in commercial

deployments as well. For example, Cisco Meraki’s MR18 APs include integrated sni↵ers.

However, sni↵er-based approaches add additional cost as they require dedicated hard-

ware and software resources. Specifically, once an additional WL-NIC is added to an

AP, each incoming packet requires the operating system to process an additional packet.

Furthermore, the monitored data obtained from the sni↵er provides only higher-level

information about the tra�c patterns and network characteristics. For example, this

approach does not provide any insight into the delays incurred at each stage of packet

processing. Also, depending on the processing resources available to the sni↵er, it may

miss capturing and logging some packets in dense environments and thus, multiple snif-

fers might be required capture all the packets [80]. In particular, any di↵erence between

the location, type, and antenna gain of the sni↵er and those of the AP’s WL-NIC result
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in discrepancies in the way the two WL-NIC perceive the channel.

2.4.2 eBPF (enhanced Berkeley Packet Filter)

The importance of eBPF has been highlighted by both academia and indus-

try in various application domains such as system monitoring, enhancing security, and

supporting programmability. Contrary to modifying or adding kernel modules, eBPF

programs are verified before being loaded in the kernel, which makes it a safer mech-

anism for accessing kernel memory [81]. Hence, the networking industry is relying on

eBPF in production environments for system profiling and enhancing network functions

by adding programmability to the data plane. For example, Facebook’s Katran [82] and

Sysdig’s Falco [83] use eBPF for implementing a layer-4 load balancer and a Kubernetes

runtime security and monitoring tool, respectively. Netflix has developed Flow Exporter

for observing the per-flow transport layer (i.e., TCP/IP) statistics, and they reported

that the overhead of using the Flow Exporter tool is less than 1% of the processor time;

thereby enabling scalability over many Amazon Web Services (AWS) instances. One

of the most notable technologies enabled by eBPF is eXpress Data Path (XDP) [84],

which allows to tap into the reception path of the network stack prior to any memory

allocation, resulting in significant performance benefits compared to other packet pro-

cessing mechanisms. XDP is actively being used in various domains such as Distributed

Denial-of-Service (DDoS) mitigation and packet inspection at Cloudflare and Facebook.

Despite the wide adoption of eBPF, our work is the first to utilize eBPF for monitoring

WiFi networks.
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2.4.3 Utilizing Linux Tools

Most WiFi NIC drivers are implemented either as an extension of the kernel or

as a loadable kernel module; thus, encapsulating hardware resources within the protected

kernel space memory. To access the data maintained by the NIC and driver, user-space

programs rely on network management tools such as iwconfig, iwpriv, ethtool, and

ifconfig. These tools generally use ioctl, sysfs, or netlink for the communication

between user-space processes and kernel.

ethtool allows for monitoring and configuring NIC. This tool constitutes a

user-space module and a kernel-space module. These two modules communicate via

ioctl, which extends the native Linux system call operations by providing functions

for hardware configurations that use predefined data structures. These functions can be

modified when new functionalities are added to the hardware. However, this may result

in non-backward-compatible updated functions. Thereby, ioctl is not user friendly

and it is di�cult to extend. The information provided by ethtool with the -S (-

statistics) option can be helpful in obtaining channel state information along with

driver statistics such as the number of packets transmitted or received by the NIC. For

example, Airtime Utilization (AU) can be retrieved using ch_time_busy and ch_time.

However, the data retrieved by ethtool is not extensive and does not include some of

the essential data about network performance. For example, per-station statistics, state

of queuing discipline (qdisc), and NIC’s register values, such as current NAV or failed

FCS count, cannot be collected. Additionally, ethtool retrieves all the counters at once,

preventing the user from specifying the list of measurement parameters. This results

in the extra overhead of polling additional registers and driver’s data structures, as

well as searching for the required information in the collected data by user applications.

Additionally, although the NIC updates AU per its internal clock cycle, ethtool reports

AU time in milliseconds granularity, which results in lower accuracy and higher reporting
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delay.

SoftMAC-based wireless drivers commonly provide a debug mode utilizing Vir-

tual File System (VFS). Unlike regular files that reside on disk, VFSs (e.g., sysfs,

procfs, and debugfs) reside in the main memory and facilitate communication between

user-space and kernel-space. These interfaces remain empty unless a user-space process

requests the resources. When requested, the kernel gathers the required measurements

and populates the interface. For example, the ath9k driver utilizes regdump-debugfs

to retrieve the values stored in all registers exposed to the driver by the NIC. A major

shortcoming of debugfs is that it does not allow to query an arbitrary set of regis-

ters of the NIC. This results in a large number of unnecessary PCIe bus interrupts.

Furthermore, data transfer size is limited to one memory page [85].
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Chapter 3

MonFi: A Tool for High-Rate, E�cient,
and Programmable Monitoring of WiFi
Devices

3.1 Introduction

The increasing number of WiFi devices, their stringent communication require-

ments, and the need for higher energy-e�ciency mandate the adoption of novel methods

that rely on monitoring the WiFi communication stack to analyze, enhance communi-

cation e�ciency, and secure these networks.

In this chapter, we present MonFi, a Linux-based, open-source tool for e�cient,

high-rate, and programmable monitoring of WiFi devices1. This tool allows for moni-

toring the complete WiFi stack—NIC, driver, mac80211, cfg80211, hostapd, and qdisc.

The monitoring frequency and the type of measurements collected can be programmat-

ically specified using the user-space component of MonFi. We present methods to mon-

itor the WiFi stack, and also implement and study methods for reducing the overhead

of kernel to user-space communication and stabilizing monitoring rate in the presence of

interfering loads on the processor. Through empirical evaluations, we show the higher

e�ciency of MonFi in terms of monitoring rate, stability of monitoring rate, and proces-

sor utilization, compared to the existing tools. For example, MonFi achieves about 28%

1
The implementation of MonFi can be found at the following link:

https://github.com/SIOTLAB/MonFi
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higher monitoring rate and 16% lower processor utilization compared to debugfs, which

is a widely-used method for monitoring communication stack. Compared to ioctl, the

monitoring rate of MonFi is 21x faster.

As a publicly-available open-source tool, MonFi o↵ers new opportunities in de-

veloping WiFi systems, from smart homes to enterprise networks to real-time industrial

systems. Besides, MonFi reduces the development costs associated with using addi-

tional measurement devices. For example, by providing per-station information, MonFi

eliminates the need for using additional hardware tools to analyze stations’ power status.

The rest of this chapter is organized as follows: Section 3.2 overviews the lit-

erature and the tools used to monitor the WiFi stack. We present the design and

implementation of MonFi in Section 3.3. Section 3.4 presents performance evaluation

results. We summarize the chapter in Section 3.5.

3.2 Existing Monitoring Tools

Most WiFi NIC drivers are implemented either as an extension of the kernel or

as a loadable kernel module; thus, encapsulating hardware resources within the protected

kernel space memory. To access the data maintained by the NIC and driver, user-space

programs rely on network management tools such as iwconfig, iwpriv, ethtool, and

ifconfig. These tools generally use ioctl, sysfs, or netlink for the communication

between user-space processes and kernel.

ethtool allows for monitoring and configuring NIC. This tool constitutes a

user-space module and a kernel-space module. These two modules communicate via

ioctl, which extends the native Linux system call operations by providing functions

for hardware configurations that use predefined data structures. These functions can be
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modified when new functionalities are added to the hardware. However, this may result

in non-backward-compatible updated functions. Thereby, ioctl is not user friendly

and it is di�cult to extend. The information provided by ethtool with the -S (-

statistics) option can be helpful in obtaining channel state information along with

driver statistics such as the number of packets transmitted or received by the NIC. For

example, AU can be retrieved using ch_time_busy and ch_time. However, the data re-

trieved by ethtool is not extensive and does not include some of the essential data about

network performance. For example, per-station statistics, state of qdisc, and NIC’s reg-

ister values, such as current NAV or failed FCS count, cannot be collected. Additionally,

ethtool retrieves all the counters at once, preventing the user from specifying the list

of measurement parameters. This results in the extra overhead of polling additional

registers and driver’s data structures, as well as searching for the required information

in the collected data by user applications. Additionally, although the NIC updates AU

per its internal clock cycle, ethtool reports AU time in milliseconds granularity, which

results in lower accuracy and higher reporting delay.

SoftMAC-based wireless drivers commonly provide a debug mode utilizing VFS.

Unlike regular files that reside on disk, VFSs (e.g., sysfs, procfs, and debugfs) reside

in the main memory and facilitate communication between user-space and kernel-space.

These interfaces remain empty unless a user-space process requests the resources. When

requested, the kernel gathers the required measurements and populates the interface.

For example, the ath9k driver utilizes regdump-debugfs to retrieve the values stored in

all registers exposed to the driver by the NIC. A major shortcoming of debugfs is that

it does not allow to query an arbitrary set of registers of the NIC. This results in a large

number of unnecessary PCIe bus interrupts. Furthermore, data transfer size is limited

to one memory page [85].

Using netlink addresses some of the aforementioned challenges. Firstly, since
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it is a socket-based mechanism, netlink can be initiated by both kernel-space and user-

space processes, whereas, VFSs and ioctl can be instantiated only by user-space pro-

cesses. This is particularly useful for event-based data collection. For example, consider

a scenario where the kernel sends measurements to a user-space application whenever a

packet is received. Secondly, netlink facilitates asynchronous communication by storing

messages in queues and initiating the receiver’s reception handler. The receiver can

process the information synchronously or asynchronously. In contrast, ioctl and VFSs

communicate synchronously. netlink can also multicast to multiple processes at once,

whereas, ioctl and VFSs support unicast messages only.

3.3 Design and Implementation of MonFi

In this section, we identify the measurements that are indicative of network

operation and dynamics, and propose methods for collecting these measurements from

various components of the networking stack. We also present methods to achieve moni-

toring rate determinism. Finally, we discuss the monitoring modes provided by MonFi.

3.3.1 Architecture

Figure 3.1 presents the architecture of MonFi. The Controller is a user-space

module that configures and receives measurements from the Collector. The Collector

is a kernel-space module that collects data across the network stack. The Collector is

implemented as a part of the driver to share a set of functions and data structures. The

Collector also interacts with other modules of the communication stack.

In general, current 802.11 drivers are categorized as either SoftMAC or Full-

MAC. SoftMAC drivers implement a part of the MLME in software, thereby utilizing
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Fig. 3.1: The architecture of MonFi. The Controller allows use-space programs to
specify the type, rate, and method of collecting measurements across the WiFi stack.
The Controller collects the requested data from the stack. Various kernel modules have
been modified to facilitate collecting monitoring data from them. Note that the hostapd
daemon is only used when MonFi runs in an AP.

the host system’s processing resources. Only time-critical MAC functions, such as man-

aging timeouts, inter-frame spacing, and channel access backo↵, are implemented in the

hardware. Whereas, FullMAC utilizes an additional processor on the NIC to implement

all MAC functions within the firmware. Currently, most commercial WiFi adapters rely

on a SoftMAC architecture [38], especially considering the ease of updating. Thus, in

this chapter, we assume the underlying WiFi NIC’s driver is a SoftMAC.

To perform the standard AP functionalities, we use hostapd [86], which is

used by Commercial O↵-The-Shelf (COTS) APs. hostapd is a user-space daemon that

handles beacon transmission, authentication, and association of stations.
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3.3.2 Extensive Data Collection Across the Protocol Stack

In this section, we identify and discuss the process of monitoring NIC, driver,

qdisc, and the other components of the WiFi stack.

3.3.2.1 PHY and MAC measurements

WiFi NICs provide I/O memory regions consisting of registers that can be ac-

cessed via the PCIe bus. These registers allow to configure the NIC and obtain its

internal status. Accessor functions, such as ioread32() and iowrite32(), are utilized

to get and set the status of the registers, respectively. The Collector utilizes these

functions to extract register values from the NIC. For example, to compute AU, which

reflects the level of activity on the wireless channel, the Collector fetches the values of

AR_CCCNT and AR_RCCNT registers (available in Atheros chipsets). The former register

stores the time elapsed since the start time of the NIC, and the latter stores the amount

of time the NIC has been sensing activity on the channel. We denote these measure-

ments as T and B, respectively. The AU during an interval t1 to t2 is computed as

(Bt2 � Bt1)/(Tt2 � Tt1).

Most COTS NICs (e.g., Netely NET-900M and Compex WLE900VX) operate

with the reference clock speed of 44 MHz when using the 2.4 GHz band and 40 MHz

when using the 5 GHz band (considering a 20 MHz channel), and update the values of

the registers corresponding to the clock rate. The Collector retrieves the values of these

registers, and then, either decodes them to decimal values and in milliseconds format,

or stores the raw measurements that can be decoded asynchronously when needed. The

Controller also provides the functionality that allows user-space applications to specify

the list of registers or register addresses.

Compared to the legacy 802.11 standards (i.e., a/b/g), the recent standards
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(i.e., n/ac/ax) o↵er numerous physical layer enhancements that result in bit rates be-

yond 600 Mbps. Some of these enhancements are concurrent Multiple-Input Multiple-

Output (MIMO) streams, wider channel bandwidth, and higher-order Modulation Cod-

ing Schemes (MCSs). These parameters can be configured using hostapd’s configuration

file or hostapd_cli reconfigure. hostapd utilizes netlink to communicate with the

WiFi Configuration API—cfg80211. The cfg80211 module acts as a bridge between

user-space and kernel, and provides a unified interface in the form of callback functions

to control the NIC. Each callback implemented in cfg80211 is associated with a cor-

responding function in the driver to configure the NIC. The Collector intercepts the

netlink events triggered by hostapd to keep track of any modifications applied to the

NIC.

The physical layer configuration of the NIC may not necessarily represent the

parameters used by each AP-station pair when communicating. For example, even when

an AP announces supporting 40 MHz channels, the station may not support this chan-

nel width, and instead use a 20 MHz channel. Also, the two ends of a communication

link dynamically change their MCS, based on multiple factors such as Received Sig-

nal Strength Indicator (RSSI) and retransmission rate. Therefore, each link’s physical

layer parameters are essential for characterizing communication e�ciency in terms of

metrics such as throughput and Packet Error Rate (PER) on a per-station basis. To

this end, MonFi collects RSSI, MCS, and the number of MAC layer retransmissions,

on a per-station basis, as follows. The kernel maintains a global list of devices utilizing

the net_device structures in mac80211. The *priv field contains driver-specific struc-

tures and maintains the statistics for respective stations. This field is represented by

ath_softc in Atheros NICs. The Controller module allows user-space applications to

specify the stations that must be monitored. The Collector collects per-station mea-

surements requested by the Controller by polling the corresponding fields of the softc
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data structure and reports them to the Controller along with the MAC address of the

station. In order to avoid data copy, the pointer to the softc data structure is shared

between all tasks in the driver. However, race condition happens when multiple tasks

in the driver try to access softc concurrently. We utilize a mutex lock before accessing

softc to avoid race conditions.

The 802.11 standard supports various power-saving methods to allow stations

to switch to sleep mode and conserve energy. The power state of each associated station

is maintained by mac80211 (cf. Figure 3.1). Whenever a PS-POLL or Null packet is

received by the AP, mac80211 notifies the respective driver about the change in power

state via the drv_sta_notify() function. Whenever the driver receives an update, the

Collector forwards the updated power state and the MAC address of the station to the

Controller.

To reduce the overheads pertaining to channel access and PHY and MAC head-

ers, the MAC layer of high-throughput WiFi standards (i.e., 802.11n/ac/ax) aggregates

multiple MAC protocol data units (MPDUs) into an Aggregated-MAC protocol data

unit (A-MPDU). MonFi monitors the number of packets aggregated in each A-MPDU,

the number of MPDUs currently enqueued in each queue of the driver, and the instance

each packet is sent, as follows. Frame aggregation is performed in the software queues

maintained in the driver. These queues act as bu↵ers between the NIC’s queue and the

upper layers in the protocol stack. When there are multiple packets in a queue of the

driver, they are aggregated into a single MPDU. NIC notifies the driver via a callback

function after processing each packet from the hardware queue. For example, in Atheros

NICs, ath_tx_tasklet() is called for informing the driver to process the next packet

for transmission.
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3.3.2.2 Monitoring qdisc

In Linux systems, there is a qdisc assigned to each NIC to bu↵er egress tra�c.

The Linux kernel introduces a rich set of queuing disciplines between the network sub-

system in the kernel and mac80211, enabling a flexible tra�c control framework. The

e�ciency of the qdisc layer is dependent on its packet scheduling method, the size of

the queues, the rate of incoming tra�c, and the rate of WiFi transmission. When the

queue size is small, the qdisc layer may not be able to absorb bursts of incoming tra�c

while waiting for wireless transmission, thereby causing packet drops. Alternatively,

longer queues may cause long end-to-end delays (a.k.a., bu↵erbloat [12]). Given the

high impact of qdisc on packet scheduling and delay, we collect the number of packets

currently enqueued in each queue of the qdisc layer. By default, every network interface

is assigned a pfifo fast qdisc as its transmission qdisc. This mechanism contains three

bands, and dequeuing from a band occurs when the upper bands are empty. Each vari-

ant of qdisc is implemented as a kernel module (in /net/sched) and contains .enqueue

and .dequeue functions. In MonFi, we modified these kernel modules to report the

status of qdisc by logging the number of packets currently enqueued in each band. Our

current implementation supports pfifo fast and PRIO qdiscs. This method can easily

be applied to other qdiscs such as Hierarchical Token Bucket (HTB).

3.3.3 Monitoring the Host system

In an ideal use-case, the behaviour of packet reception and transmission can be

determined with the help of the data collection methods described earlier in this section.

However, we need to note that the tasks performed by various components of the net-

working sub-systems (e.g., mac80211, driver) and the additional processes introduced

by MonFi are scheduled by the operating system to run on the processor cores available
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in the system. Hence, we evaluate the available and occupied computational resources.

Depending on the available hardware resources, this allows the user to specify moni-

toring parameters (e.g., monitoring rate) that do not impose high processing overhead.

Also, MonFi allows to keep track of the latency between requesting and receiving a

measurement by the Controller. For real-time systems that react to network dynamics,

this latency determines the validity and usefulness of the measurements obtained.

3.3.3.1 Dedicating computing resources to MonFi

Most modern processing platforms are based on Symmetric Multi-Processing

(SMP) architecture consisting of multiple physical processor cores that are capable of

executing multiple threads concurrently. User-space threads, software interrupts, and

hardware interrupts are evenly scheduled to be served by processor cores. Hence, the

performance of MonFi can be easily interfered by background processes and excessive

context switching.

To address this problem, we bind the execution of MonFi’s components with

an isolated processor core, such that no other processes or interrupts are scheduled on

this core. For example, consider an Intel i5 processor that includes two physical cores,

PC1 and PC2, where each core contains two logical cores, LC1/LC3, and LC2/LC4,

respectively. Utilizing isolcpus=1,3 kernel boot parameter, we isolate the physical

core PC1 for operating system and other background tasks. Thus, the physical core

PC2 is dedicated to the execution of MonFi’s components. To this end, first, LC2 is

dedicated to the Controller via sched_affinity() or taskset system calls. Second,

LC4 is dedicated to the driver. Since the Collector is an extension of the driver, it runs on

LC4. Since all the software interrupts executed as the result of hardware interrupts are

scheduled on the same core [87, 88], all the software interrupts generated by the driver

are also scheduled on LC4. Third, utilizing the /proc/interrupts file, we obtain all
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possible components that can generate hardware interrupts and set the smp_affinity

of these components to LC1 and LC3; thereby, no hardware interrupt will be scheduled

on LC2 and LC4.

3.3.4 Sharing the Collected Data with User-space

The Collector shares its data with user-space for further processing. As dis-

cussed in Section 5.2, both procfs and ioctl are less e�cient compared to netlink.

Therefore, we use netlink sockets for communication between kernel-space and user-

space. We simply refer to this method of Collector and Controller communication as

MonFi w/ netlink (MonFi-NL). To further reduce the overhead of this communication,

a memory-mapped region is established for netlink’s receive and transmit bu↵ers. These

bu↵ers are shared by the Controller and Collector to prevent data copying overhead.

We refer to this mechanism as MonFi w/ mmaped-netlink (MonFi-MNL).

User-space applications can use the Controller to specify three types of monitor-

ing modes: (i) Event-based Data Collection (EDC), (ii) Polling-based Data Collection

(PDC), and (iii) Event and Polling-based Data Collection (EPDC), which is a hybrid

of EDC and PDC. We explain these modes as follows.

3.3.4.1 Event-based data collection (EDC)

In this mode, the Collector sends monitoring data to the Controller whenever

an event occurs. The event type is specified by the Controller. For example, sample

events causing the NIC to generate an interrupt are packet reception, channel availability

after Distributed Inter Frame Space (DIFS), and the expiration of software beacon alert

timer (a.k.a., bcntimer used to trigger periodic beacon transmission). NIC interrupts

are handled by the driver to determine the interrupt type and call an appropriate tasklet.
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For example, with Atheros NICs, ath9k_tasklet() and ath_isr() handle interrupts

and then call tasklets such as ath_tx_tasklet() and ath_rx_tasklet(). We have

modified the driver to monitor these interrupts and trigger data collection whenever a

match in the list of events provided by the Controller is found.

3.3.4.2 Polling-based data collection (PDC)

This mode is particularly useful in applications such as channel allocation, sta-

tion hando↵, packet scheduling, and intrusion detection. In this mode, the Controller

collects data from the Collector in fixed or variable intervals, depending on the user-

space application’s demand. Variable intervals can be specified by using various distri-

butions such as the Poisson distribution. We eliminate the overhead of user-space to

kernel-space communication as follows. Measurement collection parameters are passed

by the Controller to the Collector once. These parameters primarily include: (i) the

Inter-Measurement Interval (IMI), either as a fixed value or the parameters of the dis-

tribution used to determine IMI, and (ii) the total number of measurements. Once

received, the Collector generates reports according to IMI configuration. Also, we re-

duce the overhead of Collector to Controller by allowing the Controller to specify when

data must be sent up. Specifically, instead of sending all measurements, the Controller

can instruct the Collector to send upward reports only when the di↵erence from the

previously reported value is higher than a particular value. This threshold is specified

on a per-measurement-type basis.

3.3.4.3 Event and Polling-based Data Collection (EPDC)

In addition to the set of measurements collected at the time of an event, this

mode allows for collecting the past n measurements preceding the occurrence of the
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event. We have implemented a circular queue in the Collector module. At each IMI,

the Collector gathers and places a new measurement into the queue. Once an event

occurs, the Collector sends the most recent measurement, as well as the values in the

circular queue, to the Controller. This approach is particularly useful for time series

analysis and neural network algorithms such as Long Short-Term Memory (LSTM),

which require recent history of n measurements in the temporal domain to estimate the

trend in a time series.

3.4 Performance Evaluation

In this section, we evaluate the monitoring rate and processing overhead of

MonFi when used to monitor the operation of an AP. The wireless NIC used is Compex

WLE900VX, which includes the QCA9880 chipset and supports 3x3 MIMO 802.11ac.

The driver used is ath10k. The processor is a dual-core Core i5. A similar hardware

configuration is used by the station associated with the AP.

3.4.0.1 MonFI vs ioctl and debugfs

We first evaluate monitoring rate and its e↵ect on processor utilization. Using

debugfs, MonFi-NL, and MonFi-MNL, we collect the following parameters: AU, power

state of the associated station, and five registers of the NIC. Using ioctl, we only collect

AU. These experiments were conducted in the presence of regular CPU load, which is

less than 10% and is caused by the normal functioning of the operating system tasks

and AP functionality.

Figure 3.2(a) shows measurement collection rate and Figure 3.2(b) shows av-

erage CPU utilization as a function of IMI. As we reduce IMI, the monitoring rate
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Fig. 3.2: (a) Measurement collection rate (per second) and (b) average CPU utilization
as a function of IMI when using debugfs, ioctl, MonFi-NL, and MonFi-MNL. The
monitoring rate of MonFi-MNL is 28% faster than debugfs.

achieved with each tool increases up to a certain point. The highest monitoring rate is

provided by MonFi-MNL at 48005; whereas, ioctl, debugfs, and MonFi-NL plateau

at 2115, 37481, and 47033 measurements per second, respectively. Although ioctl only

collects AU, it demonstrates significantly lower monitoring rate and higher CPU uti-

lization over all IMI values, compared to the other tools. Specifically, the monitoring

rate of ioctl is 21x slower compared to MonFi-MNL. Compared to MonFi-MNL, the

highest measurement collection rate provided by debugfs is 22% lower and its processor

utilization is 20% higher, on average. Considering the higher performance of MonFi-NL

and MonFi-MNL, we only consider these tools in the rest of studies presented in this

section.

3.4.0.2 Impact of processor load on monitoring performance

We now evaluate how a higher processor utilization caused by a user-space dae-

mon a↵ects monitoring rate. This represents a scenario where a daemon is performing

real-time data analysis and decision making. We utilize the stress-ng tool to gener-

ate a synthetic processor load. We evaluate using both dedicated and non-dedicated

cores for the execution of MonFi processes, as explained in Section 3.3.3.1. Note that
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Fig. 3.3: (a) Measurement collection rate in the presence of a synthetic 30% processor
load. (b) Maximum monitoring rate when the synthetic processor load increases from
35% to 50%. Based on these results, using dedicated cores to achieve deterministic
monitoring performance is essential.

when using dedicated cores, the synthetic load is not scheduled on the cores assigned to

MonFi. Figure 3.3 shows that reducing IMI and increasing processor load a↵ect moni-

toring rate when the cores are shared. Considering MonFi-MNL, Figure 3.3(a) reveals

that using dedicated cores increases the maximum monitoring rate by 1725 compared

to shared cores. Figure 3.3(b) shows that using dedicated cores results in sampling rate

stability versus processor load. When the synthetic load is increased from 35% to 50%,

using dedicated cores achieves a constant monitoring rate of about 47000, while shared

cores drops monitoring rate from 44707 to 38891, on average. These results confirm

the importance of using MonFi with dedicated cores when a stable monitoring rate is

required. Figure 3.3(b) also demonstrates the impact of using mmap-netlink instead of

netlink to achieve a higher monitoring rate. For example, when the synthetic load is

35%, using MonFi-MNL collects 1621 and 1186 measurements higher than MonFi-NL

with and without using dedicated cores, respectively.
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Fig. 3.4: Measurement collection rate (left y-axis) and CPU utilization (right y-axis)
versus packet switching rate for 100-Byte (a) and 1400-Byte (b) packets. These results
show that using dedicated cores is necessary to ensure deterministic monitoring rate in
the presence of packet switching overhead.

3.4.0.3 Impact of packet switching on monitoring performance

In this section, we study the e↵ect of packet switching on the monitoring rate

of MonFi-MNL. Figures 3.4(a) and (b) show the results for 100-Bytes and 1400-Bytes

packets being switched by the AP. These packets are received over the wireless interface

(using the 802.11ac standard) and then switched to the wired interface. We were able

to achieve the maximum throughput of 500 Mbps and 700 Mbps for 100-Byte and 1400-

Byte packets, respectively. Reducing packet size results in a lower throughput due to

the higher overhead of header transmission and waiting time caused by channel access

back-o↵. For a given throughput rate, using smaller packets increases AP’s process-

ing overhead, which is caused by the higher number of interrupts, header processing,

and packet copying operations. As both figures show, using shared cores results in a

significant drop in the number of measurements per second. For example, when using

100-Byte packets, increasing the AP’s switching rate from 100 Mbps to 500 Mbps causes

the number of measurements per second to drop from 46508 to 42525. In contrast, using

dedicated cores shows a relatively steady behaviour (less than 1% variation).

Our results confirm that MonFi can be used on average-grade dual-core APs for
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very high speed, e�cient WiFi stack monitoring. With the denser deployment of APs

and the prevalence of the 802.11ac and ax standards, the need for microsecond-level

monitoring escalates.

3.5 Summary

With the higher number and demand of WiFi devices, supporting e�cient,

high-rate monitoring of the WiFi stack is an essential requirement to analyze network

operation, enhance performance, and enforce security methods. In this chapter, we

presented MonFi, which allows user-space applications to specify the type and rate of

collecting measurements. Our empirical performance evaluations confirm the higher

sampling rate and processing e�ciency of MonFi compared to the existing Linux tools.
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Chapter 4

FLIP: A Framework for Leveraging
eBPF to Augment WiFi Access Points
and Investigate Network Performance

4.1 Introduction

Despite its importance, understanding the operation of the WiFi stack in various

settings is a challenging undertaking for the research community. The WiFi networking

stack is complex and includes multiple layers across the WL-NIC, driver, Linux kernel

modules, and user-space daemons. Although there exist tools that provide visibility

into some of these layers, the performance and range of visibility of these tools are far

from what is needed to analyze these networks and design solutions for performance

enhancement e↵ectively. Due to this shortcoming, a large number of existing works

rely on simulation. Also, when high-rate monitoring is necessary, existing works rely on

packet capture and static data analysis [19, 20, 21]. Another category of works relies

on tools that have been primarily designed for infrequent monitoring and configuration

[13, 14]. For example, Linux-based tools such as iw and ethtool can be used to collect

some of the operational data from the WiFi stack; however, the sampling rate and

e�ciency of these tools are far below what is required for high-rate monitoring.

In this chapter, we present FLIP, a framework to augment the networking stack

of Linux-based WiFi devices using the eBPF technology to collect a wide range of
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monitoring data that can be used for both network operation investigation as well as

developing methods that react to network dynamics. We first study the operation

of the WiFi stack and then show how eBPF can be leveraged to interface with the

components of the WiFi stack to monitor various aspects of network operation. We focus

on two aspects of network performance analysis: First, since existing studies reveal the

considerable e↵ect of packet switching delay in APs [26, 89], we investigate and monitor

the impact of queuing and channel access contention on the delay of switching packets

from the AP’s wired interface to the wireless interface. Using the FLIP framework,

we build a testbed and study how various parameters such as tra�c access category

and the number of stations a↵ect the switching delay. Second, we propose a novel

method to track the duty-cycle pattern and energy consumption of stations. To this

end, we rely on the fact that stations need to inform AP’s whenever they change their

power mode (sleep to awake and vice-versa), as mandated by the 802.11 power save

mechanisms. Therefore, monitoring the driver’s pertaining data structures allows for

tracking stations’ duty cycle pattern. This approach eliminates the need for external

power measurement tools when studying the energy e�ciency of resource-constrained

stations. To show the e↵ectiveness of this approach, we rely on empirical measurements

and compare the accuracy of FLIP with a commercial power monitor. Our results

show that the error of FLIP is 6% compared to a commercial power monitoring tool.

We provide FLIP as a publicly available tool that can be implemented on o↵-the-shelf

APs1.

The rest of this chapter is organized as follows. We present the overall archi-

tecture of FLIP in Section 4.2. In Section 4.3, we first explain the approach employed

to monitor packet switching delay from the wired interface to the wireless interface, and

then present an empirical analysis of this delay. In Section 4.4 we show how FLIP can

1
FLIP implementation can be found at the following link: https://github.com/SIOTLAB/FLIP
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Fig. 4.1: The FLIP architecture for augmenting APs. The right side presents the net-
work stack, and the left side shows the Network State Monitor (NSM) module that relies
on eBPF to interact with the network stack. The dotted arrows denote the collection
of monitoring data. The solid arrows represent the path taken by data packets (wired-
to-wireless switching data-path).

perform passive energy monitoring of stations. We summarize the key contributions

this work in Section 4.5.

4.2 System Architecture

The WiFi stack of commercial, o↵-the-shelf APs includes components that span

WL-NIC, driver, Linux’s kernel-space modules, and user-space daemons. In this section,

we present the architecture of these APs and then explain how eBPF can be leveraged

to enhance visibility into the WiFi stack.
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4.2.1 AP’s Networking Stack

Apart from switching packets between the Wired Network Interface Card (W-

NIC) and WL-NIC, an AP is responsible for operations such as beacon generation and

handling the association and dissociation of stations. These functionalities are enabled

by several components including hostapd,wpa_supplicant, mac80211, driver, qdisc,

and WL-NIC, as illustrated in the right-half of Figure 4.1. hostapd is a user-space

daemon that handles authentication, association, and dissociation of stations. To gen-

erate control and management frames, hostapd configures mac80211 and driver via the

netlink (nl80211) library. The mac80211 module provides a unified interface between

the driver, qdisc, and hostapd. The mac80211 module also administers the MLME

functions for SoftMAC drivers; sample functions are building MAC headers and assign-

ing sequence numbers. SoftMAC drivers implement a part of layer-2 functionalities in

software utilizing host system’s hardware and software resources. On the other hand,

only time-critical MAC functions, such as managing timeouts, inter-frame spacing, and

channel access backo↵, are implemented in the WL-NIC. Currently, most commercial

WL-NICs rely on the SoftMAC architecture [38], especially considering the ease of up-

dating. Similarly, in this chapter, we assume the AP’s driver is based on the SoftMAC

architecture. Finally, the driver is responsible for packet aggregation and transferring

packets to the WL-NIC for transmission on the channel.

4.2.2 Leveraging eBPF for Collecting Monitoring Data from the Ker-

nel

The left-half of Figure 4.1 illustrates the extended Berkeley Packet Filter (eBPF)

infrastructure. eBPF facilitates runtime patching of the kernel image by enabling the

execution of user-defined logic when a system call or a kernel function is executed.
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eBPF programs (written in C) are compiled into byte code utilizing the LLVM-clang

compiler. This byte code is executed in an in-kernel virtual machine, and thus, reduces

context-switching overhead. eBPF programs are attached to probe events (i.e., kprobe

or a tracepoint) that mark as the instantiating points for the execution of user-defined

logic. Tracepoints are required to be manually inserted into the kernel code by utiliz-

ing the TRACE_EVENT() macro. Whereas, kprobes are automatically defined in kernel’s

symbol table (/proc/kallsyms) along with their virtual addresses for almost all system

calls and kernel functions that have been declared as neither inline or static. Hence,

we utilize kprobes because it does not require any modifications to the kernel. For a

particular function (or a system call) in the kernel, BPF system calls replace the in-

struction at the address of the function’s execution with the breakpoint instruction (e.g.,

int3 for x86 platforms). Whenever this breakpoint is hit, the context of the function is

saved and the user-defined logic in the eBPF program is invoked. Once the execution of

user-defined logic completes, kprobe executes the instruction that was replaced by the

breakpoint and continues the kernel’s normal execution path. eBPF also allows access-

ing the kernel-functions’ arguments from user-space via eBPF data structures, a.k.a.,

eBPF Maps. eBPF Maps are transferred to the user-space via a ring bu↵er and can be

accessed by high-level languages such as C, Python and Lua.

The Network State Monitor (NSM) is composed of two components: NSM

user-space (NSM-U) and NSM kernel-space (NSM-K). These components utilize eBPF

to log the timestamps of the kernel functions that are invoked as packets traverse the

stages of the networking stack. Furthermore, the NSM-K module also logs the state of

the function arguments when the function is called for execution, and transfers it the

monitored data to NSM-U via eBPF Maps. In the subsequent sections, we will elaborate

on this method of obtaining monitoring data from the kernel.
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4.3 Delay Analysis of Switching Packets from the Wired

Interface to the Wireless Interface

Once a packet is received over the wired interface of an AP, the packet needs to

pass through multiple queuing disciplines before contending for channel access. Specifi-

cally, the packet will need to contend with other flows both internally in the AP’s queues

and also physically during the CSMA process. Investigating packet switching delay from

the W-NIC to WL-NIC is particularly di�cult because it depends on various factors

including the AP’s tra�c intensity, queuing disciplines used at various layers, airtime

utilization by other APs and stations, and access category of flows. Recent studies show

that the delay experienced at APs is more than 60% of the total communication de-

lay between a station and server, and this delay is between 20ms to 250ms, depending

on tra�c congestion [14, 89, 90, 91]. The queuing disciplines employed by the Linux’s

qdisc, driver and NIC further complicate investigating and understanding the causes of

this delay [12, 92, 90]. Vendors heuristically design device drivers’ packet scheduling

algorithms [12, 92], and the operation of non-open-source drivers is unknown.

In this section, we present a novel approach towards measuring and monitoring

packet delay from the instance it arrive on the AP’s W-NIC until it is transmitted

successfully by the WL-NIC. We then utilize this framework for packet delivery delay

analysis.

4.3.1 Power Saving Methods of 802.11

Since the amount of time spent by packets in the AP is a↵ected by the power

saving mode employed by the station, in this section we first overview the power saving

mechanisms.
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Two of the most widely adopted power save mechanisms are PSM and APSM.

With PSM, each AP periodically (every 102.4 ms) sends a beacon packet, and stations

wake up at beacon instances to check if the Tra�c Indication Message (TIM) bit in a

beacon is set. If the TIM bit is set, the station sends a PS-Poll packet to indicate its

transition to awake state and to retrieve each of the queued packets from the AP. Once

there are no more packet, station immediately transitions to sleep mode. The packets

that arrive at the AP after the transition of the station into sleep mode are queued

until the next beacon instance. For example, in a request-response scenario, whenever

a station sends an uplink request to a server via the AP, the response received from

the server will need to wait until the next beacon announcement. For delay-sensitive

communication, the APSM method allows the station to remain in awake state for a

fixed duration, known as tail-time, after each packet exchange with the AP. Considering

the request-response scenario, if the response arrives before the tail time expiry, it is

immediately delivered to the station.

4.3.2 FLIP’s Methodology for Monitoring Wired-to-wireless Switch-

ing Path

The right-half of Figure 4.1 illustrates the modules along path taken between

the W-NIC to WL-NIC. These delays are illustrated in Figure 4.2 and explained as

follows.

4.3.2.1 Queuing Disciplines (qdisc)

Whenever a packet arrives on the AP’s wired interface at time t1, after the MAC

address table entry lookup, the packet is transferred to the network stack. Residing

between the bridge and the WiFi subsystem, qdisc implements a programmable set of
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Fig. 4.2: Delay components of a data packet being switched from the wired interface to
the wireless interface. The station uses the APSM energy-e�ciency mode.

queues (a.k.a., bands), enabling a flexible tra�c control framework. For example, every

network interface is assigned a qdisc, which is pfifo fast by default [90], consisting of

three bands. The access category of each packet is inferred from the Type of Service

(ToS) field in the IP header, then the packet is enqueued in one of these bands according

to qdisc’s priority map. For example, pfifo fast qdisc’s priority map specifies that a voice

packet is enqueued in the first band, a video packet is enqueued in the second band,

and background and best-e↵ort packets are enqueued in the third band. A packet is

dequeued from a band only when its higher-priority bands are empty. For example,

unless the first band (corresponding to voice) is empty, packets in the second band

(corresponding to video) are not dequeued. Hence, the queuing delay experienced by a

packet enqueued in the lowest-priority queue depends on on the current utilization level

of that queue as well as the utilization of higher-priority queues.
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4.3.2.2 mac80211

Packets are dequeued from the qdisc queues and handed over to the WiFi net-

working subsystem, whenever lower layer queues are not full.2 Specifically, if there is

available space in the mac80211 module, packets are dequeued from qdisc and inserted

into mac80211 queues (at t2), known as software (SW) Queues For each associated sta-

tion, the SW Queues include a queue per access category. Each queue is resembled

by a ieee80211_txq structure. The mac80211 module performs the following functions

whenever a packet is enqueued in its SW Queues at t2. First, in case the destination sta-

tion is in low-power sleep state, the ieee80211_beacon_add_tim function sets the TIM

bit inside the next beacon to be sent at t3. Second, the driver is notified of the pending

packets via drv_wake_tx_queue function. Finally, ieee80211_sta_register_airtime

structure updates the airtime fairness metrics maintained for each station. Recent works

[12] show that qdisc can cause latencies of higher than 100 ms due to increased queue

sizes (a.k.a., bu↵erbloat). To remedy this problem, they propose to disable qdisc, and in-

stead, an integrated tra�c control mechanism (commonly known as FQ CODEL) based

on airtime-fairness of associated stations has been proposed. Several WiFi drivers (e.g.,

ath9k, ath10k, rtl8723) use this approach and employ a round-robin dequeue scheduling

mechanism for each intermediate SW Queue based on the FQ CODEL algorithm. This

ensures that each station is provided with a fair-share of the channel’s airtime.

4.3.2.3 Driver and WL-NIC

The station conveys its transition into awake mode by sending a Null packet

that its power-save-bit is ‘0’. At this point, the driver dequeues the packets from the

SW Queues and passes them to the WL-NIC. WL-NIC includes five hardware (HW)

2
qdiscs such as Token Bucket Filter (TBF) and Common Applications Kept Enhanced (CAKE)

allow to specify the maximum packet dequeue rate.
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Fig. 4.3: Delay components of wired-to-wireless switching delay in the presence of con-
current tra�c. (a) Downlink (DL) video concurrent tra�c. (b) Downlink (DL) best-
e↵ort concurrent tra�c. (c) Uplink (UL) video concurrent tra�c. (d) Uplink (UL)
best-e↵ort concurrent tra�c.

queues. Four of these queues correspond to the voice, video, best-e↵ort, and background

access categories, and the last queue is used for management and control packets. Each

queue is associated with a Distributed Coordination Function (DCF) unit that contends

for channel access according to the Enhanced Distributed Channel Access (EDCA)

parameters specified by the 802.11e amendment. These contention parameters increase

the probability of longer wait times for lower access category queues, thereby prioritizing

higher access categories. The voice and background access categories have the highest

and lowest priorities. Each individual DCF unit contends with other stations, as well

as the DCF queues from the same station. The latter contention is known as internal

or virtual collision. In case of internal collision, the higher-priority access category is

allowed to access the channel. Once a HW Queue obtains access to the channel for

transmission, it transmits the packet to the station and generates an interrupt that

triggers the dequeing of packets from the SW Queues.

4.3.3 Empirical Evaluation of Wired-to-wireless Switching Delay

In this section, we use the FLIP framework for monitoring the delays across the

stages of the WiFi networking stack.

The testbed setup includes an IoT station that utilizes the APSM energy ef-
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ficiency mechanism. The station is associated with a FLIP AP. The testbed includes

additional stations to introduce concurrent network tra�c. The intensity of the traf-

fic generated by these stations is represented as CU in the results. CU is defined as

dactivity/doverall, where dactivity is the time duration the radio sensed a signal higher than

a pre-specified threshold value during time duration doverall. A server (connected to the

AP via the wired interface) sends a ping packet to the IoT station per second. This

packet belongs to the best-e↵ort access category. We refer to this tra�c as the IoT

tra�c. We define cumulative delay as the duration between the time instance a packet

arrives at the W-NIC of the AP and the time instance it is successfully transmitted over

the WL-NIC. Referring to Figure 4.2, we also monitor delay components �a, �b, �c, �d, �e,

defined as follows:

– �a: The time spent by a packet in qdisc,

– �b The interval between the insertion of a packet into the SW Queues and the next

beacon announcement,

– �c: The time duration between the beacon announcement with TIM bit set and the

NULL packet received by the AP,

– �d: The delay incurred in mac80211’s SW Queues, when the HW Queues are full,

– �e: The amount of time spent in the HW Queues when contending for channel access.

It is worth noting that with the recent improvements in Linux wireless networking,

some (new) drivers bypass the qdisc module. The ath9k driver used by the AP in our

testbed implements this approach. Since we observed that �a was always less than 1

ms, we do not show �a in the empirical evaluation results of this chapter. The duration

between the time instance the packet was enqueued in the SW Queues and the beacon
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announcement with the station’s TIM bit set (i.e., �b) depends on the packet arrival

time.

Figure 4.3 presents the components of wired-to-wireless switching delay in the

presence of various channel utilization levels. We consider the impact of di↵erent types

of channel utilization:

– Tra�c direction: (i) DL: when the tra�c direction is from AP to the stations, and

(ii) UL: when the tra�c direction is from stations to the AP,

– We consider the two access categories: video and best e↵ort.

Our results show that the cumulative delay of IoT tra�c increases as CU intensifies.

However, we observed that for a particular CU intensity, the values of packet delivery

delays vary depending on the access category and direction of the concurrent tra�c.

As Figure 4.3(b) shows, the median cumulative delay in the presence of 90% best-e↵ort

CU is 27 ms, whereas, as the results of Figure 4.3(a) suggest, the cumulative delay with

90% video CU is 61 ms (i.e., 125% higher). This behavior is justified by the 802.11e

amendment which specifies the channel access contention parameters for the four access

categories. Compared to the best-e↵ort access category, the 802.11e amendment allows

faster, more probable access of video HWQueue to the channel. Additionally, every time

the video HW Queue grabs the channel, it is allows to continuously use the channel for

3.008 ms; whereas, the best-e↵ort HW Queue can send one packet per channel access.

Because of these two reasons, IoT tra�c (best-e↵ort) spends more time in the HW

Queue when competing with video tra�c. When the concurrent tra�c type is best-

e↵ort too, both tra�c get equal access to the channel and delay drops. However, once

the best-e↵ort HW Queue is full due to the higher tra�c rate of concurrent tra�c,

dequeing of packets from SW Queues is halted. Thus, the waiting times of the packet

in the best-e↵ort SW Queues increase as well. This is observed in Figure 4.3 (b) as we
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increase CU. The waiting duration in the SW Queue contributes to about 10% of the

cumulative delay, when best-e↵ort concurrent tra�c consumes 90% of the channel.

We also observe that �c accounts for a significant portion of the total delay.

Specifically, as channel contention due to UL or DL tra�c escalates, this delay increases

too. This is because Null packets are regular data packets belonging to best-e↵ort access

category, and therefore, they need to contend with concurrent tra�c. Additionally, even

when the CU level is low, Null packets are sent at least 7 ms after the beacon. We

observed that this is due to the guard times employed by the station around in each

beacon reception instance.

When the concurrent tra�c is UL (Figures 4.3 (c) and (d)), increasing the

number of stations results in a higher delay of IoT tra�c. From the CSMA point of

view, this is because increasing the number of stations reduces the chance of winning the

channel by the IoT station. However, we observe a similar trend when the concurrent

tra�c is DL and the AP is the only device transmitting packets. As explained in Section

4.3.2.3, the stations compete internally to gain channel access; therefore, increasing the

number of stations receiving concurrent tra�c reduces the chance of channel access for

IoT tra�c.

Discussion. In this section we assumed that the IoT station wake up at all

beacon instances. However, in [93] we showed that stations can skip some beacons

instances and lower the overhead of beacon reception. This is achieved by using a listen

interval value, denoted as ⌧ , that denotes the number of beacons skipped between wake-

ups. For ⌧ > 1, the time spent in SW Queues is highly a↵ected. For a station using

listen interval ⌧ , assume the beacon instances during the listen interval are [tk, ..., tk+⌧ ].

When a ping destined to the IoT station arrives arrives at the AP’s W-NIC during

interval [tk, tk+1), ⌧ beacon packets must be sent before the next wake-up instance of

the station. Similarly, if the packet arrives during interval [tk+1, tk+2), the AP needs to
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send ⌧�1 beacon packets. Therefore, the expected number of beacons sent until station

wake-up is 1
⌧ (⌧ + (⌧ � 1) + ... + 2 + 1) = (⌧ + 1)/2, when ⌧ > 1. The expected wake

up delay is computed as 102.4⇥ (⌧ +1)/2 ms and maximum wake up delay is ⌧ ⇥ 102.4

ms, for ⌧ > 1.

4.4 Passive Monitoring of Stations’ Energy Consumption

In this section, we present a novel method to passively track the duty cycle

and energy consumption of stations by the AP. Specifically, instead of using additional

hardware to measure the energy consumption of stations, we collect the duty cycle

pattern of stations from their associated AP’s driver.

4.4.1 FLIP’s Methodology for Monitoring the Energy Consumption

of Stations

To monitor the duty cycle of stations, we rely on the observation that stations

inform the AP whenever they transition to another mode (sleep to awake and vice-versa).

With PSM, the station sends a PS-Poll packet to the AP to express its transition into

awake mode. The station retrieves queued packets until the more-data field is set to ‘0’

in the data packet sent by the AP, and then transitions into sleep mode. With APSM,

the station can wake up or transition into sleep mode anytime. The station informs the

AP about these transitions by the power-save-bit (‘0’: waking up, ‘1’: transitioning into

sleep state) inside Null packets.

Within the FLIP framework, NSM is capable of keeping track of the timestamp,

type, sub-type, direction, and the power-save-bit of each packets exchanged with the AP.

To reduce processing overhead, the NSM-K module processes the packets belonging to
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the stations whose energy are being monitored. The set of these stations are programmed

using the NSM-U module. Hence, for each station, via the power-save-bit and more-data

fields, NSM logs the instances the station changes its operational mode. This allows

FLIP to keep track of the wake-up duration of the station.

It must be noted that, stations do not inform the AP when they wake up for

beacon reception; therefore, the duty cycle pattern inferred by the approach explained

above does not include the overhead of beacon reception. In order to track the station’s

wake-up instances for beacon reception, we rely on the information provided by hostapd,

mac80211, and driver. Expiration of beacon alert timer (a.k.a., bcntimer) in the WL-

NIC generates an interrupt for beacon transmission. This interrupt is handled by the

ieee80211_beacon_get function, which generates and transmits a beacon. We probe

this function to keep track of the timestamps and the number of beacons sent during the

monitoring duration. However, the stations may not wake up at every beacon instance.

As explained in Section 4.3.3, the stations may specify a listen interval value to reduce

the overhead of beacon reception. The listen interval value is informed by the station to

the AP during the association process; this value is maintained by AP’s hostapd module

(cf. Figure 4.1). NSM-U utilizes the hostapd logs to obtain the listen interval value for

each associated station. With the number of beacons sent during the monitoring period

and the listen interval of the station, the NSM-U module calculates the number of times

the station woke up to receive beacons. To accommodate for time synchronization

inaccuracy, stations allocate guard awake times around beacon reception instances3.

In this section, we assume the station’s wake-up duration per beacon instance is db.

The total duration spent in awake mode by the station is calculated by NSM-U as

 = (db ⇥ cb) +  , where cb denotes number of beacons during the monitoring period

and and  is station awake time inferred from power-save-bit and more-data fields. The

3
This was also observed in Section 4.3.3, where the UL Null packet sent by the station was at least

7 ms after beacon announcement. A thorough study of beacon reception overhead can be found in [93].
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duty cycle during an interval [tm, tn] is computed as D =  
tn�tm

.

To calculate the energy consumed by theWL-NIC, its various operational modes

must be considered: (i) sleep, (ii) reception: when the device is receiving packets,

(iii) idle (a.k.a., idle listening): when the device is ready to receive packets, and (iv)

transmission: when the device is transmitting packet. Devices’ data-sheets provide

the power consumption of these operational modes. Power consumption of idle and

reception modes are very similar, and we denote their power consumption as prx. The

energy consumed during idle and reception modes is calculated as prx ⇥ ( �  tx). To

compute the energy consumed in transmission mode, we need to extract the time spent

by the station transmitting packets. This time is calculated as  tx =
P

8p2P
l(p)
rp

, where

P is the set of packets sent by the station during the monitoring duration, lp is the

length (bits) of packet p, and rp is the physical-layer transmission rate (bps) of packet

p. Within the FLIP framework, NSM-U extracts the data rate and the length of the

received packets from the driver. For example, ath9k maintains the data rate and size of

received packets inside the rs_rate and rs_datalen fields within the ath_rx_status

structure. We calculate the energy consumption during a monitoring period [tm, tn] as

follows: E = prx ⇥ ( �  tx) + ptx ⇥  tx + psleep ⇥ (tn � tm �  ), where ptx is the power

consumption in transmission mode, and psleep is the power consumption of sleep mode.

4.4.2 Empirical Evaluation of the Accuracy of Passive Energy Moni-

toring

We validate the accuracy of FLIP for measuring the duty cycle and energy

consumption of stations’ WL-NIC. We compare passive energy mounting against the

results collected from a commercial energy monitoring tool [94]. In the first set of

experiments, we use CYW43907 [7], which is a low-power, RTOS-based 802.11n SoC
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Fig. 4.4: Comparison of FLIP’s passive energy monitoring versus the energy consump-
tion measured by a commercial power monitoring tool. The x-axis is the incoming data
rate of the station. (a) Awake time ( ) and (b) energy consumption (E). The station
used is CYW43907 operating on APSM with tail-time set to 10ms.

designed for IoT applications. The physical layer communication rate between this

station and the AP is 54 Mbps. We use iperf to exchange tra�c with the station.

The station uses the APSM energy e�ciency mechanism with its tail-time set to 10

ms. Figures 4.4 (a) and (b) compare the awake time and energy consumption results,

respectively. Each experiment is 30 seconds long, each point in the graph is the median

of ten experiments, and error bars represent lower and higher quartiles. These results

confirm that the measurement error of FLIP is within 6% of the baseline.

In the second set of experiments, in addition to the CYW43907 station, we use

WLE900VX [95] which relies on a Linux-based driver. We observed that WLE900VX

does not support tail time below 50 ms, hence, we changed the tail of CYW43907 to

50 ms too. Also, we vary the experiments’ duration to validate the accuracy of passive

monitoring for various experimentation intervals. To this end, we send a ping packet to

the station per second, and vary the total number of pings sent during each experiment.

Figure 4.5 presents the results. These results confirm that the measurement error of

FLIP is within 9% of the baseline for experiments as long as 500 seconds.
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Fig. 4.5: Awake time ( ) and energy consumption (E) of stations measured by FLIP and
a commercial power monitoring tool. The x-axis represents the experiment duration,
which also corresponds with the number of ping packets received by the station. (a)
and (b): The station is CYW43907. (c) and (d): The station is WLE900VX. For both
stations the tail time of APSD is set to 50 ms.

4.5 Summary

In this chapter, we studied the internals of the WiFi networking stack and

demonstrated how various components of this stack handle the operations pertaining

to packet switching at APs and energy-e�cient operation of stations. We then lever-

aged eBPF to augment WiFi APs and performed system monitoring in terms of packet

switching delay and tracking the energy consumption of stations. The empirical studies

of this chapter show how the proposed framework can be used to investigate the oper-

ation of WiFi networks. In addition to investigating various aspects of WiFi networks,

the FLIP framework can also be used to collect monitoring data and develop meth-

ods that react to network dynamics. For example, by providing insights into packet
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switching delay and the instantaneous energy e�ciency of stations, FLIP facilitates the

development of algorithms that manage the steering of stations among APs. Developing

methods that rely on the FLIP framework is left as future work.
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Chapter 5

Enhancing the Energy-E�ciency and
Timeliness of IoT Communication in
WiFi Networks

5.1 Introduction

Contention between the flows of IoT stations as well as the contention between

these flows and regular user-generated tra�c for downlink packet transmission reduces

the energy e�ciency and timeliness of IoT communication. In this chapter, we propose

Wiotap (WiFi IoT access point) to address the problem of joint channel access and power

saving in 802.11-based networks. We assume that the network includes user devices

(such as smartphones and laptops) as well as IoT devices (such as battery powered

medical monitoring devices). For networks with a large number of IoT stations, Wiotap

significantly enhances energy e�ciency by applying per-packet scheduling. In networks,

consisting of both regular and IoT tra�c, Wiotap ensures regular tra�c does not impact

the energy e�ciency of IoT stations. The proposed system includes a least-laxity first

(LLF) packet scheduling mechanism based on the tolerable delay of each packet before

the expiry of the destination station’s tail time. The proposed mechanism introduces

dedicated queues for IoT tra�c and allocates deadline guarantees to each queue based

on the distribution of tolerable delay values collected during a time window. Once a

packet arrives on the access point’s wired interface, if the destination station is awake,

the access point assigns a priority to the packet and pushes it into the selected IoT queue.
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The assigned priority depends on the deadline of this packet relative to the deadline of

all the awake IoT stations. This mechanism reduces the waiting time of IoT stations

and increases the number of packets exchanged during a wake-up period. If the access

point determines that a packet cannot be delivered to its destination station before its

transition into sleep mode, a priority that is higher than that of regular stations’ packets

is assigned to the IoT packet. This mechanism expedites the delivery of packets to IoT

stations after reception of beacon packets during the next wake up period. To enforce

the delivery delay guarantee of queues, we employ a time-division-based tra�c shaping

approach to control the service rate of the queues. Specifically, in this mechanism, time

is divided into service intervals, and the maximum number of packets serviced by each

queue during this interval is limited.

We evaluate the performance of the proposed mechanism using simulation and

testbed. In particular, since Wiotap’s per-packet scheduling is especially applicable to

large-scale deployments, we had to use simulation to demonstrate system scalability.

Based on the simulation results, compared to a regular AP, our solution provides an av-

erage performance improvement of 37%. Additionally, increasing the number of queues

dedicated to IoT tra�c from 2 to 4 can further reduce the duty cycle of IoT stations by

28%.

To confirm the implementation accuracy and performance benefits of Wiotap

even when the number of IoT stations is not high, we have implemented a testbed using

four IoT stations and di↵erent types of regular tra�c generators. To show the impact

of server location on performance, we have changed the location of MQTT to represent

edge and cloud scenarios. The empirical results indicate that Wiotap reduces delay and

energy consumption by up to 52% and 44% in the edge scenario and 41% and 38% in

the cloud scenario.

The remainder of this chapter is organized as follows: Section 5.2 introduces
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power-save modes, tra�c prioritization in 802.11 networks, and the employed system

model. Section 5.3 presents the proposed approach. The implementation details of the

proposed approach are explained in Section 5.4. Sections 5.5 and 5.6 present simulation

and empirical performance evaluations. Finally, Section 5.7 summarizes the chapter and

presents future directions.

5.2 System Overview

In this chapter, we first present an overview of 802.11 in terms tra�c scheduling

and tra�c prioritization. We then present the system overview of EAPS.

5.2.1 Tra�c Prioritization

Since 802.11 networks are used for the exchange of both elastic and real-time

data, the 802.11e standard provides various access categories (AC) [51]. The AC of MAC

frames is determined based on the di↵erentiated services code point (DSCP) field1 of

IP header. This field comprises of di↵erent flagged bits, which when set, conveys to

the lower layers the flow type and enforces IP precedence for per-hop QoS and priority.

This layer-3 field is then mapped to the class of service (CoS) field in the MAC header

[52]. By using CoS mapping, the kernel sets the priority socket bu↵er and enqueues the

packet to the corresponding transmit queue. In the 802.11e protocol, each EDCA queue

behaves as a virtual station and contends for the channel independently according to

the contention parameters specified by the 802.11e standard.

Additionally, almost all Linux systems are capable of administering the manner

in which the packets are sent over a medium by employing queueing disciplines known

1
This field is also know as the type of service (ToS).
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as qdisc. Situated between layer-2 and layer-3 of IP stack, qdisc provides several types

of tra�c scheduling (what packet to be sent) and tra�c shaping (how many packets to

be sent per time unit) mechanisms to hand packets over to layer-2.

5.2.2 System Model

The system is composed of an access point (AP) and stations. There are two

types of stations: (i) regular stations, denoted by s
reg
i , such as smartphones and laptops,

and (ii) IoT stations, denoted by s
iot
i , such as medical IoT devices or industrial robot

arms which perform machine-to-machine communication. Although regular stations

might exchange voice and video tra�c with the AP, we assume that IoT stations are

resource-constrained and therefore, preserving their energy resources is more important

compared to regular stations. In addition, even if the network only includes IoT stations,

we are interested in reducing the energy consumption of all the stations. Once a station

exchanges a packet with the AP, it stays awake for a tail time duration �.

5.3 Scheduling Mechanism

Figure 5.1 shows the queue allocation scheme. On top of the MAC layer, we

introduce IoT queues in addition to the regular queues, in the qdisc layer. Once a packet

for a regular (non-IoT station) arrives on the wired interface of AP, it is pushed into

one of the regular queues, i.e., Qreg
net = {Qvo, Qvi, Qbe, Qbk}, depending on the packet’s

TOS field. Packets destined to IoT stations are pushed into one of the IoT queues, i.e.,

Qiot
net = {Q0, Q1, ..., Q⌘�1}, to accelerate the transmission of these packets. We refer to

Q0 as the base queue and Q1 to Q⌘�1 as the prioritized queues. The queue selection

process is based on a scheduling algorithm that we will present later on. The qdisc
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packets are assigned to the MAC layer queues, i.e., Qmac = {Q0
vo, Q

0
vi, Q

0
be, Q

0
bk}, based

on their priority, as indicated by the arrows in Figure 5.1.

The basic idea of transmission scheduling is to prioritize the packets of IoT

stations to reduce their idle listening time and the number of sleep-awake transitions.

When a packet belonging to an IoT station arrives, if the station is awake, we evaluate

the time left for that station to return to the sleep mode. If the remaining duration

is longer than a threshold, then the packet is accelerated for delivery. In addition, the

acceleration algorithm tries to maximize the chance of packet delivery to all the IoT

stations by taking into account the relative priority of all the packets’ deadlines. We

explain these operations in the rest of this section.

5.3.1 Acceleration Eligibility

A packet is eligible for acceleration if its destination IoT station is still awake

and acceleration results in a packet delivery before the end of the tail time. To this end,

it is essential to keep track of the operational status of all IoT stations and determine the

remaining tail time of awake stations. To determine the remaining duration, however,

it is not possible to simply rely on the sleep/awake schedule of stations because the tail

time is renewed every time a packet is exchanged with the AP. Therefore, it is necessary

to record the time stamp of the last packet exchanged with the AP. Section 5.4 will

present the implementation details.

Assume a packet pj belonging to an IoT station s
iot
i arrives at time t. This

packet is eligible for acceleration if:

�(pj) = �(sioti ) � (t � t̃(sioti )) > Th(sioti ) (5.1)

where �(pj) reflects the delivery laxity of packet pj upon its arrival, �(sioti ) is the tail
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Fig. 5.1: The proposed scheduling algorithm introduces IoT queues in addition to the
regular queues in the qdisc layer. The IoT queues are configured based on the delay
distribution of IoT packets.

time of the station, t is the current time, and t̃(sioti ) is the last time the station has

exchanged a packet with the AP. In addition to decision making about the acceleration

of incoming packets, the computed � values are also used for queue configuration. We

will present Queue Configuration algorithm in Section 5.3.2. If Inequality 5.1 holds for

an incoming packet, then the Enqueue algorithm tries to accelerate the transmission of

this packet by determining a suitable prioritized queue within the set {Q1, Q2, ..., Q⌘�1}.

We will present this algorithm in Section 5.3.3. If Inequality 5.1 does not hold, then

the packet is simply pushed into the base queue Q0 to increase its priority compared to

regular tra�c. The base queue expedites the delivery of this packet compared to regular

tra�c during the next wake up time.

The threshold value Th(sioti ) depends on channel access contention, physical

layer rate, link reliability between the AP and the station, and the rate of regular

tra�c. For example, if multiple transmissions are required to reach the station, then

the threshold value should be long enough to account for the retransmissions. Since all

the qdisc IoT queues are mapped to MAC layer’s queue Q
0
vo, to measure these delays,
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we record the time interval between the instance an IoT packet arrives in Q
0
vo until its

successful delivery to the destination node. These values are stored in a circular array

Tx.

5.3.2 Queue Configuration

In this section we present the operation of Queue Configuration algorithm,

which assigns priorities to the IoT queues to enable fine-grained prioritization of IoT

packets.

We denote the set of queues devoted to IoT packets asQiot
net = {Q0, Q1, ..., Q⌘�1}.

While queue Q0 is used to simply prioritize IoT packets that are not acceleration eligi-

ble, the rest of the queues are configured by the Queue Configuration algorithm to o↵er

deadline-aware acceleration. Associated with each prioritized queue Qi 2 {Q1, ..., Q⌘�1}

is a maximum tolerable delay (MTD) value, denoted as M(Qi). The MTD of a queue

reflects the maximum delay experienced by the packets of that queue until transmission.

This is to ensure that the deadline of the packets bu↵ered in that queue satisfy their

delivery deadline requirement.

The purpose of queue configuration is to assign the MTD of the IoT queues

based on the distribution of packet laxities computed by Equation 5.1. Whenever a new

� value is computed for an incoming IoT packet, the value is inserted into a circular

queue denoted as �. The main idea is to divide the range of deadlines into two equal

intervals and configure the MTD of queues based on the number of deadline entries that

fall in each interval. Each interval is then broken into two more intervals, and the same

process is repeated until MTD values are assigned to all the queues.

The Queue Configuration algorithm is presented in Algorithm 1. The high

level function queue_conf() computes the minimum and maximum of the laxity values
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stored in the circular queue �. These values, in addition to the minimum and maximum

index of the IoT queues, are passed to function qc(), which is recursively called to assign

MTDs to queues. This function first computes the mid point of laxity values in the range

[�min,�max]. The number of queues assigned to the left and right side of the queue

correspond to the distribution of laxity values around the mid value. If the number of

queues assigned to the left side is equal to one, then the MTD of that queue is equal to

the �mid of that iteration. If the number of assigned queues is more than one, then the

function is recursively called to configure left side queues. Queue allocation to the right

side is performed in a similar manner. If the number of queues assigned to the right

side is equal to one, then the MTD of that queue is equal to the �max of that iteration.

The time complexity of this algorithm is O(n) because the division process continues

until all the queues are configured individually.
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Algorithm 1: Queue Configuration Algorithm

1 function queue_conf()

2 � = {�i}N
i=1 ;

3 �min = mini �i;

4 �max = maxi �i;

5 Imax = ⌘ � 1;

6 Imin = 0;

7 qa(�min, �max, Imin, Imax);

8 function qc(�min, �max , Imin, Imax)

9 �mid = �min + (�max ��min)/2;

10 q = Imax � Imin + 1;

11 Wleft = 0;

12 Wright = 0;

13 for every entry �i in � do
14 if �i � �min and �i  �mid then
15 Wleft + +;

16 if �i > �mid and �i  �max then
17 Wright + +;

18 Wtotal = Wleft + Wright;

19 Wleft = Wleft/Wtotal;

20 Wright = Wright/Wtotal;

21 W 0
left = Wleft ⇥ q;

22 W 0
right = Wright ⇥ q;

23 W 0
left =

j
W 0

left + 0.5
k
;

24 W 0
right =

j
W 0

right + 0.5
k
;

25 if W 0
left + W 0

right == q + 1 then
26 randomly reduce the number of left or right queues by one;

27 /*allocate queue to the values less than or equal to �mid/*

28 if W 0
left == 1 then

29 M(Q⌘�1) = �mid;

30 else if W 0
left > 1 then

31 left end = ⌘ � 1;

32 left start = ⌘ � W 0
left + 1;

33 qc(�min, �mid, left start, left end);

34 /*allocate queue to the values greater than �mid/*

35 if W 0
right == 1 then

36 M(QImin) = �max;

37 else if W 0
right > 1 then

38 left start = ⌘ � W 0
left;

39 right end = left start � 1;

40 right start = left start � right queues;
41 qc(�mid, �max, right start, right end);
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5.3.3 Enqueue Algorithm

A packet pj satisfying Inequality 5.1 might be assigned to a prioritized IoT

queue if the following condition is satisfied,

9i 2 [1, ⌘ � 1] | �(pj)  M(Qi). (5.2)

If none of the IoT queues can satisfy the above condition, then the packet is

inserted into the base IoT queue Q0. If Condition 5.2 is satisfied, then a least-laxity first

(LLF) scheduling strategy is employed to assign packets to the prioritized queues. To

this end, the packet is added to the queue with the highest MTD value that can satisfy

the delivery deadline. In other words, the index of the eligible queue, denoted as i, is

found as follows:

argmin
i2[1,⌘�1]

�
�(pj)  M(Qi)

�
. (5.3)

However, it should be noted that the deadline of a queue does not only reflect

the transmission duration of the packets in that queue. Instead, for each Qi, its deadline

is the deadline of its next higher priority queue (i.e., Qi+1) plus the duration required

to transmit the packets in Qi. Therefore, to guarantee a maximum transmission delay

for the packets of each queue, the following inequality must be true,

M(Qi+1) + D(Qi) < M(Qi), 1 < i < ⌘ � 2 (5.4)

where D(Qj) is the delay of transmitting the packets in queue Qj. However, to ensure

the validity of the above inequality, it is essential to limit the number of packets serviced

by each queue per time unit. We employ a time-division-based mechanism to satisfy
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this requirement. For each queue i 2 [1, ⌘ � 1] we define its service capacity as

S̄(Qi) = b(M(Qi) � M(Qi+1))/µTxc (5.5)

where µTx is the average of the values stored in the circular array Tx. In other words,

service capacity represents the number of serviceable packets per service period. Since

for the highest priority queue

S̄(Q⌘�1) = bM(Q⌘�1)/µTxc , (5.6)

service period is defined as the MTD of the lowest priority queue, i.e., M(Q1). In order

to enforce service capacities, in addition to the S̄(Qi) values assigned to each queue, the

number of packets that have been added to each queue during the current service period

is maintained by the Enqueue algorithm. For each queue Qi this value is denoted by

S(Qi). No more packets are inserted into a queue Qi during the current service period if

S(Qi) � S̄(Qi). The S(Qi) counters are reset at the beginning of each M(Q1) interval.

Enforcing service capacity imposes another limitation on finding an appropriate

queue for an acceleration eligible IoT packet. In other words, it is possible that the

MTD of a packet satisfies the incoming packet’s delivery deadline, but the queue has

exceeded the maximum number of allowable insertions in the current service period.

More formally, the index i returned by formula 5.3 does not satisfy Equation 5.5. In

this case, the search for an appropriate queue continues towards higher priority queues.

Therefore, to ensure a sustained guarantee of deliver deadlines, Condition 5.3 must be

revised as follows,

argmin
i2[1,⌘�1]

�
�(pj)  M(Qi) and S(Qi) < S̄(Qi)

�
. (5.7)
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Algorithm 2 shows the packet enqueue process. This algorithm tries to find

a prioritized queue for the incoming packet if the packet deadline is higher than the

threshold we discussed in Inequality 5.1 (cf. Line 5). The algorithm then pushes the

packet into the base queue if the packet deadline is longer than the MTD of the lowest

priority queue (cf. Line 6). Please note that the service capacity of this queue is not

taken into account since there is no deadline guarantee o↵ered by this queue. If the

packet has not been inserted into the base queue, then the algorithm verifies if the

deadline is lower than that of the highest priority queue. In this case, the packet is

pushed into the queue if the queue is capable of serving more packets during the current

service period (cf. Line 10). Otherwise, the packet is inserted into the base queue (cf.

Line 14) since it is evident that the other queues cannot satisfy the deadline requirement

of this packet. If none of the above two boundary cases hold, the algorithm tries to find

a queue that satisfies the deadline requirement and is capable of serving more packets

during the current service period (cf. Line 18). Please note that, since the packet service

rate of each queue is limited, after the completion of this loop, the algorithm dos not

necessarily push the packet into the lowest priority queue that can satisfy the packet

deadline. In the end, if no prioritized queue was found, the packet is inserted into the

base queue. The time complexity of this algorithm is O(n) because if the boundary

values do not hold the algorithm need to evaluate the eligibility of all the queues.

5.4 Implementation

Figure 5.2 presents the implementation architecture of Wiotap in Linux-based

APs. The implementation is composed of four main modules: (i) Scheduler mod-

ule, which includes a kernel-space sub-module (S-KNL), and a user-space sub-module

(S-USL), (ii) WiFi Logger (WiLog) module, and (iii) qdisc module.

76



Algorithm 2: Enqueue Algorithm

1 function enqueue(pi)

2 ⌘ = |Q|;

3 siot
i is the destination of packet pj ;

4 �(pj) = �(siot
i ) � (t � t̃(siot

i ));

5 if �(pj) > Th(siot
i ) then

6 if �(pj) > M(Q1) then

7 insert pj into Q0;

8 return;

9 else if �(pj)  M(Q⌘�1) then

10 if S(Q⌘�1) < S̄(Q⌘�1) then

11 S(Q⌘�1) + +;

12 insert pj into Q⌘�1;

13 return;

14 else

15 insert pj into Q0;

16 return;

17 else

18 for k = 1 to ⌘ � 1 do

19 if �(pj) < M(Qk) then

20 if S(Qk) < S̄(Qk) then

21 S(Qk) + +;

22 insert pj into Qk;

23 return;

24 insert pj into Q0;

25 return;

The S-USL module runs the Queue Configuration and Enqueue algorithms. The

S-KNL module modifies the TOS field in the IP header of IoT packets according to the

queue number specified by S-USL. The WiLog module keeps track of the operational

status of IoT stations. Finally, the TOS field set by the S-KNL module is used by the

qdisc kernel module to push the packet into the appropriate queue.

The Wiotap system also includes the hostapd daemon [96], which is a user-

space software capable of enabling a WiFi radio as an AP. This daemon communicates
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Fig. 5.2: Implementation architecture of the proposed Wiotap access point.

with cfg80211 through nl80211.

5.4.1 WiFi Logger Module (WiLog)

The proposed scheduling mechanism requires knowledge about the current sta-

tus of IoT stations regarding their sleep/awake status and the remaining tail duration

of awake stations. The WiLog module is responsible for providing the S-USL module

with this information. To this end, Wiotap is equipped with one additional wireless

NIC to overhear all the packets and collect the required information. Specifically, the

WiLog module keeps track of both data and NULL packet exchange activities. Also,

this module includes the circular array Tx explained in Section 5.3.1. The capacity of

this array is 100 in our implementation.

5.4.2 Scheduler Module

The scheduler is implemented in two parts: user space and kernel space, which

are referred to as S-USL and S-KNL modules, respectively. To avoid floating-point

78



calculations in the kernel space [97], the S-USL module, which includes the Queue

Configuration and Enqueue algorithms, is implemented in the user space. The S-KNL

module uses the netfilter [98] components located in the Linux kernel to grab the packets

arriving on the Ethernet interface. Specifically, we use the PREROUTING mode, where all

the packets are intercepted before the routing decision has been made. If the destination

of an arriving packet is an IoT station, the S-KNL module requests the S-USL module

to determine the most appropriate queue for this packet. S-USL collects t̃(sioti ) and µTx

from the WiLog module. After determining a queue, S-USL instructs S-KNL to modify

the IP header of the packet to reflect the new TOS value determined. After modifying

the IP header, we recalculate the checksum and pass the packet to the qdisc module to

place it in the proper queue. The circular queue � used to hold the packet laxity values

is implemented in the S-USL module. The size of this queue in our implementation is

100.

5.4.3 qdisc Module

By default, every network interface is assigned a pfifo_fast as its transmit

queuing mechanism [99, 100, 101]. pfifo_fast implements a simple three-band priori-

tization scheme based on the 8-bit TOS field in the IP header [102]. Within each band,

FIFO rules apply. However, as long as packets are waiting in band 0, band 1 cannot

be processed. A similar policy is applied to band 1 and band 2. Hence, pfifo_fast

always processes band-0’s tra�c regardless of the number and rates of contending flows

[99]. PRIO qdisc is a classfull-configurable alternative of pfifo_fast and enable users

to configure the number of queues/bands. In this work, we use a modified version of

PRIO qdisc. To establish a mapping between the TOS field and queues, we have used

priomap to associate the TOS values to the bands. The implemented PRIO queuing

discipline can provide up to n + 4 queues in the qdisc layer, where n queues are used
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for IoT stations and four queues for the regular stations. Also, the per-queue statistics

(number of packets in each queue) is maintained by the PRIO qdisc kernel module and

communicated to S-KNL module through netlink sockets.

5.5 Simulation Results

This section presents performance evaluation in large-scale scenarios using a

simulation tool that we have developed using OMNet++ [103]. The reason we present

simulation results before empirical results is that the performance benefits of Wiotap

are in particular revealed in scenarios with a large number of IoT stations.

The AP is placed in the center of a 50m⇥50m area. Both regular and IoT

stations are randomly placed in this area. The IoT stations are normally in sleep mode.

Each IoT station wakes up every 4 seconds and reports an event to a server. The

server, in response, sends back a reply to the station. We refer to this process as a

transaction. The tail time duration is 10ms and beacon interval is 100ms. Regular

tra�c intensity refers to the percentage of AP bandwidth utilized by regular stations.

When this percentage is between 95% to 99%, we refer to it as near-saturation (NSat).

To measure energy e�ciency, we compute the average duty cycle of all IoT stations.

We compare the performance of the proposed approach against two baselines:

(i) R-AP : a regular AP that does not perform any IoT flow prioritization, and (ii) SQ-

AP : a single-queue IoT prioritization mechanism that pushes IoT packets in the base

queue Q0. Please note that the second approach employs a simple FIFO scheduling of

IoT tra�c and does not o↵er deadline-based intra-IoT tra�c prioritization. Each point

shows the median of 50 experiments where each experiment includes 30 transactions.

Error bars demonstrate upper and lower quartiles.
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Figure 5.3 shows the duty cycle per IoT station versus network density. Even

when the number of stations is 50, the duty cycle achieved with Wiotap is 37% less

than that of R-AP (and SQ-AP). Please note that in this figure, R-AP and SQ-AP

show similar results because there is no di↵erence between assigning IoT packets to Q0

or a regular queue (i.e., Qreg
net) when no regular tra�c is present. Therefore, these results

reveal the main advantage of Wiotap regarding deadline-aware packet scheduling in

large-scale IoT networks by using multiple IoT queues and assigning per-packet priority

levels among the IoT stations.

Next, we keep the regular tra�c constant at 75% and increase the number of

IoT stations. Figure 5.4 presents the results. Compared to R-AP and SQ-AP, Wiotap

shows 39% and 37% reduction in duty cycle when the number of IoT stations is 50,

respectively. Also, when the number of IoT stations is increased from 50 to 100, R-AP

and Wiotap show around 35% and 15% increase in duty cycle, respectively. Although

SQ-AP shows lower duty cycle compared to R-AP by prioritizing IoT packets over

regular tra�c, its performance is significantly lower than that of Wiotap since it does
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not perform deadline-based scheduling.

Figure 5.5 depicts the performance improvement achieved by Wiotap versus

the intensity of regular tra�c when 75 IoT stations exist in the network. The average

performance improvement in the presence of 25% regular tra�c compared to R-AP and

SQ-AP are 39% and 38%, respectively. By “average” we refer to the performance im-

provement of the proposed approach when using 4, 16, and 64 IoT queues compared

to the baselines. Also, in the presence of NSat regular tra�c, the average performance

improvement compared to R-AP and SQ-AP are 61% and 38%, respectively. These re-

sults, in particular, show the impact of increasing regular tra�c on the energy e�ciency

of IoT stations when R-AP or SQ-AP are used. For example, when using R-AP, increas-

ing regular tra�c from 25% to NSat increases the duty cycle of IoT stations by 65%.

Even in high-capacity networks with a few number of regular devices, an attacker might

generate a DoS attack to saturate the network and compromise the energy e�ciency of

IoT stations.

Figure 5.6(a) shows the impact of the number of queues on duty cycle. We

observe a decaying trend in duty cycle for all the test conditions because increasing the

number of IoT queues enhances the granularity of intra-IoT tra�c prioritization. This

figure shows that increasing the number of IoT queues from 2 to 4 results in 28% lower

duty cycle on average for all the cases. After that, the duty cycle is reduced by around

5% when the number of queues is increased to 64. This behavior is because not all the

queues available would be fully utilized as the queue filling rate depends on the amount

of concurrent tra�c. In general, certain conditions raise the importance of higher-

granularity packet scheduling: increasing the number and tra�c rate of IoT stations,

increasing the standard deviation of RTT, various tail time values of IoT stations. As

Figure 5.6(b) shows, increasing the mean and standard deviation of RTT enhances the

benefits of using more number of queues.
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5.6 Empirical Evaluation

This section presents the testbed setup methodology and the empirical perfor-

mance evaluation of the proposed system. Although Wiotap has been primarily designed

to ensure deadline-aware scheduling of large-scale IoT networks, the results of this sec-

tion show that the proposed solution enhances performance even in networks with a

small number of IoT stations.

5.6.1 Testbed

Figure 5.7 shows the testbed architecture. The testbed has been set up as

follows.

5.6.1.1 Hardware

We used Cypress CYW43907 [7, 104] as MQTT clients. CYW43907 o↵ers a low-

power design, is equipped with an ARM Cortex-R4 processor, and supports 802.11g/n.

The AP has been implemented using an Intel NUC machine, which includes an Intel
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Wireless-AC 7265 card acting as the AP interface. We also added a Linksys AE1200

N300 to the AP for the WiLog module. We configured the AP to operate in 802.11e

mode with 54Mbps capacity.

5.6.1.2 Publish/subscribe model

Due to its widespread use in IoT applications, we have adopted MQTT [105],

which is based on the publisher/subscriber model. The broker is the point of contact

between the publisher and the subscribers, and maintains a list of topics. Each pub-

lisher publishes to a topic, and the broker forwards the published messages to all the

subscribers interested in the topic. In this chapter, we refer to the process of publishing

a message and receiving a response as a transaction.

5.6.1.3 Background tra�c

Many media-centric applications (such as video calling and gaming) use UDP as

the transport layer protocol [106] [107]. In addition, recently, application layer protocols
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over UDP, such as Google’s Quick UDP Internet Connections (QUIC) protocol is being

widely adopted, representing over 7% of all the tra�c on the Internet [108, 109]. Hence,

UDP tra�c can easily saturate a heterogeneous WiFi network by consuming most of

the bandwidth [110, 111]. To mimic this behavior, we generate UDP tra�c using a C

program that runs on a client and sends data flows to the tra�c generator server. The

program is capable of both setting the class of services (COS) to associate an AC with

each packet and controlling inter-packet transmission delays to adjust the amount of

channel utilization. A similar program runs on a server to continuously sends back the

received UDP packets to the tra�c generator.

5.6.1.4 Energy measurement platform

In order to measure energy consumption, we have used EMPIOT [112]. This

platform enables us to accurately measure the energy consumption of a code snippet

running on the IoT devices. Specifically, by annotating the code running on the IoT

boards, the start and stop of energy measurement can be accurately controlled. The EM-

PIOT platform’s basic sampling rate is 500Ksps, which are then averaged and streamed

to the control software as 1Ksps. The maximum accuracy error of this platform is 4%

compared to the existing high-end commercial products.

The IoT client boards (CYW43907) include components that increase the min-

imum achievable energy consumption compared to the SoCs only. Therefore, in order to

merely take into account the energy consumption of 802.11 communication, we need to

collect the base energy consumption of the board when the transceiver is in sleep mode.

Our measurements show that the base current consumption is approximately 160mA,

and wireless communication increases this value to about 250mA. By subtracting the

base power consumption from the results collected during experiments, we report the

average energy consumption of the board per MQTT transaction.
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5.6.2 Methodology

The testbed has been used to run a series of experiments in the presence of

various types and rates of background tra�c. To represent a request-response scenario,

IoT stations subscribe to their published topic to ensure that the client will receive the

published messages from the broker. When referring to energy in the results, we show the

energy consumed by publishing a message and getting the reply back, which is referred

to as a transaction. We perform the experiments considering MQTT’s QoS 1 and QoS

2 modes. The former ensures that the message is delivered at least once, and the latter

ensures the message is delivered exactly once. Although QoS 2 has higher overhead in

terms of latency and number of packets exchanged while publishing a message, it is the

preferred QoS mechanism for mission-critical applications. We run 50 transactions for

each AC and background tra�c rate, and depict the median and error bars to show the

lower and higher quartiles. All the experiments were conducted after 12am to minimize

the impact of nearby APs.

Based on the location of the MQTT broker, we have implemented edge and

cloud computing scenarios. In the edge scenario, the broker is directly connected to the

AP through an Ethernet cable. The mean and standard deviation of RTT are around

3ms and 2ms in this scenario, respectively. In the cloud scenario, we have placed the

MQTT broker in a server located in Oregon, US, and the AP and IoT devices are

located in Santa Clara, US. We observed that the mean and standard deviation of RTT

are 30ms and 10ms, respectively. These scenarios, in particular, enable us to see the

impact of round-trip-time (RTT) on energy consumption. Specifically, the RTT of edge

and cloud scenarios are less than and more than the tail time, respectively.
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Fig. 5.8: Average delay per MQTT transaction versus the di↵erent levels of background
tra�c in the edge computing scenario. (a) and (b) show transaction duration, and (c)
and (d) show transaction energy consumption.

5.6.3 Results and discussions

Figures 5.8 and 5.9 demonstrate the result for the edge and cloud scenarios,

respectively. The maximum and average performance improvement of Wiotap in the

edge scenario are 52% and 36% in terms of delay and 44% and 18% in terms of energy.

For the cloud scenario, the maximum and average performance improvement are 41%

and 18% in terms of delay and 38% and 13% in terms of energy.

When the broker is at the network edge, the response packets usually reach

the AP within the tail-time of the station. Depending on the deadline of this packet

compared to other IoT stations, Wiotap prioritizes the packet to ensure its delivery

before its deadline. In the cloud computing scenario, the network latency is usually

larger than the tail-time, and stations will have to habitually wake up again during the

next beacon interval to retrieve downlink packets from the AP. But this time, as our
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Fig. 5.9: Average delay per MQTT transaction versus the di↵erent levels of background
tra�c in the cloud computing scenario. (a) and (b) show transaction duration, and (c)
and (d) show transaction energy consumption.

solution prioritizes the packets over background tra�c, the station spends less time in

idle listening mode. Therefore, compared to the edge scenario, more energy is spent in

the cloud scenario on average per station per transaction.

As the results show, the energy consumption of IoT station is higher in the

presence of AC VO compared to AC BK and AC BE. Besides, the rate of background

tra�c has higher impact on the energy consumption of IoT station for higher-priority

background flows. We justify this behaviour as follows. The regular tra�c regularly fills

up the EDCA queues of corresponding ACs. Whenever a burst of IoT tra�c occurs, the

priority of IoT packets is promoted at the qdisc layer. However, since we do not modify

the 802.11e EDCAF (Enhanced Distributed Channel Access Function) at the MAC

layer, although the IoT tra�c has the highest priority, it would only have a higher chance

of being transmitted while contending with the existing tra�c in the EDCA queues. In
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a statistical sense, the transmission probability of IoT tra�c is higher compared to

lower priority ACs due to the lower values of CWmin, CWmax, and AIFS for high-

priority ACs (IoT tra�c). However, the random backo↵ time chosen by lower-priority

ACs adds some amount of uncertainty, resulting in scenarios, such that lower-priority

flows gain channel access before higher-priority flows [113]. More specifically, to avoid

the starvation of low-priority flows, the 802.11e MAC layer prioritization only o↵ers a

higher probability of transmission for higher priority ACs, and does not guarantee that

the higher priority AC packets will always be sent before the lower priority packets

[114, 115].

5.7 Summary

In this chapter, we proposed Wiotap, which is an 802.11 access point serving

IoT and regular stations. Wiotap enhances the energy e�ciency and timeliness of IoT

stations in large-scale networks by applying per-packet scheduling of IoT packets based

on their power state. In addition, Wiotap ensures the high e�ciency of IoT stations in

the presence of regular tra�c and protects them against DoS attacks.

The performance and applicability of the proposed approach can be enhanced

by integrating context awareness. For example, detecting application layer protocol

eliminates the burden of manually identifying IoT devices. Also, analyzing per-device

tra�c pattern enables the AP to control the power status of stations by sending man-

agement packets. To extend the proposed mechanism to scenarios with multiple APs

and mobile stations, a software-defined networking architecture can be employed to col-

lect the required data (such as packet laxities) from multiple APs and run the proposed

algorithms centrally.
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Chapter 6

EAPS: Edge-Assisted Predictive Sleep
Scheduling for 802.11 IoT Stations

6.1 Introduction

Many IoT applications require the transmission of uplink reports by station and

reception of commands from a server. For example, consider a sample medical applica-

tion where an IoT device reports an event and expects to receive actuation commands in

return. Another example is a security camera that transfers an image whenever motion

is detected and waits for a command to stream video if a particular object is detected.

Adjusting the sleep schedule or the STAs, such the STAs transition to the low-power

sleep until the DL response is ready to be delivered requires an accurate estimation of the

delay between UL and DL packets. This delay is composed of the following components:

First, the uplink packet received over the wireless interface must be sent over the wired

interface. The second component is the interval between the instance the packet leaves

the AP until a response is received from the server. Third, once the reply is received,

the packet must compete with other downlink packets and be delivered to the station

in awake mode. In this chapter, we show that computing the third delay component is

particularly challenging because it depends on various factors, including channel utiliza-

tion, the intensity of uplink and downlink communication, access category of packets,

and AP’s bu↵er status. We propose a novel mechanism called edge-assisted predictive

sleep scheduling (EAPS) to reduce the idle listening time and energy consumption of
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stations when waiting for downlink packets. At a high level, EAPS works as follows:

Once an uplink packet is received from an IoT station, the delivery delay is computed

using machine learning techniques. The estimated delay is then conveyed to the station

using a high-priority data-plane queue. The station then switches into sleep mode and

wakes up at the scheduled time to retrieve downlink packet.

We perform an empirical evaluation of delay prediction and its impact on energy

e�ciency and timeliness in scenarios where IoT stations communicate with cloud and

edge servers. In terms of delay, EAPS outperforms PSM by 45% in the cloud scenario

and by 84% in the edge scenario. The energy consumption of EAPS is 26% lower in the

cloud scenario and 6% in the edge scenario, compared to PSM. In the edge scenario,

the delay of EAPS is close to that of APSM, while its energy e�ciency is improved by

37%. In the cloud scenario, EAPS improves delay and energy e�ciency by 41% and

46%, respectively, compared to APSM.

The rest of this chapter is organized as follows. We present delay components

and implementation details of the AP in Section 6.2. We present the edge-assisted

sleep scheduling mechanism in Section 6.3. Section 6.4 presents empirical performance

evaluations. Section 6.6 summarizes the key contributions of this chapter.

6.2 Delay Analysis and AP Development

6.2.1 Delay Components

As Figure 6.1 shows, at time t1 the station grasps the channel and transmits

its uplink packet. This uplink packet may represent a single uplink packet sent by the

station or the last packet of a burst of uplink packets. After this, the station waits to

receive downlink packet(s) from the AP. We refer to the process of uplink and downlink
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Fig. 6.1: The end-to-end delay components between a station and a server. The pre-
diction of �c is particularly challenging because it is a↵ected by several factors such as
tra�c rate, channel utilization, and bu↵ering mechanisms employed by Linux’s qdisc
and wireless NIC’s driver.

packet exchange as a transaction. In event-driven applications, the downlink packet is

usually a command message issued by a server in response to the message sent by the

station. The goal of this chapter is to inform the station about the delivery time of

downlink packet. Therefore, we enable the station to switch to sleep mode and wake up

when the downlink delivery is about to happen.

To reduce the waiting time for downlink packet delivery, the station transitions

into sleep mode after the reception of a control packet at t2 and wakes up at t7 to

request and receive the downlink packet. The sleep duration is conveyed to the station

by the AP through a control packet sent at t2. Therefore, we need to estimate the delay

between t1 to t7. To this end, we first modify a Linux-based AP.

6.2.2 AP Development

The current AP architectures do not provide the necessary tools to collect and

apply predictive scheduling [27]. In this section, we present an AP architecture that

allows us to collect the features necessary for predictive scheduling. Figure 6.2 presents
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Fig. 6.2: The AP architecture developed and used in this chapter. The Collector module
communicates with various kernel and user-space components to collect a set of features
required for delay prediction. The Scheduler estimates the sleep duration and conveys
it to the station. This figure primarily focuses on the wired-to-wireless interfaces path
to compute �c. Some of the modules required to collect other delay components (�a and
�b) are not included in this figure.

the modules we developed on a Linux-based AP. The user-space components of the

AP are Collector and Scheduler. The Collector is responsible for collecting all the

features required to predict delay. This information is then shared with and used by the

Scheduler to train a model, estimate the sleep duration, and dispatch the schedule. The

information collected by the Collector is stored in the physical memory (using mmap)

to reduce data access delay. The Collector module includes the following modules:

The Sniffer module utilizes the libpcap library to capture the timestamp of packets

as soon as they are sent or received by the wireless NIC. The NetMon module records

packet exchange instances over the wired interface as well as incoming data rate over this

interface. The NetQMon and MACQMon are responsible for keeping track of the utilization

of qdisc and MAC layer queues, respectively. The ChUMon module captures channel

utilization.
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To perform the standard AP functionalities, we use hostapd [86], which is a

user-space daemon that handles beacon transmission, authentication, and association

of stations. The underlying hardware includes an Atheros AR9462 wireless NIC, ath9k

driver, a Core i3 processor, and 8 GB of RAM. The AP operates in 802.11n mode, uses

two antennas, and supports up to 144 Mbps. We explain the implementation detail of

the AP in the next three sections.

6.2.3 Communication Delay Between AP and Server

Once the AP receives an uplink packet, it is stored in the qdisc of wired interface,

then the packet is sent over the wired interface. The qdisc is the scheduling mechanism

employed by the kernel to schedule the transmission of packets while switching them

between two interfaces. This bu↵ering delay, denoted as �a = t3 � t1, depends on

the di↵erence between the rate of incoming wireless uplink packets (destined to the

wired interface) and the rate of transmitting these packets over the wired interface.

The primary types of networks considered in this chapter are smart home environments

where an AP is connected to an Internet modem, and campus and business deployments

where APs communicate via an Ethernet infrastructure. In such networks, the speed of

APss’ wired interface is fixed and usually higher than the wireless interface. This are

reasonable assumptions because: First, in enterprise environments, APs are connected

to switches via Ethernet links supporting at least 1 Gbps. This may also be true in a

residential environment where the AP is connected to a local processing server through

Ethernet [116]. For residential environments, also, cable modems and fiber-to-the-home

(FTTH) provide data rates higher than wireless. Second, the uplink speed between

a home modem and an Internet provider is fixed. For example, DOCSIS employs a

combination of TDMA and CDMA for deterministic channel access.
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Based on these observations, we estimate �a, denoted as �0a, by using the number

of packets currently in the qdisc of wired interface (not shown in Figure 6.2). We have

modified the qdisc module to communicate the number of packets in this bu↵er with

NetMon. For each packet pi in qdisc, the Scheduler computes  (pi) = 8 ⇥ (s(pi) +

hmac + hphy)/lwired
out , where  (pi) is the time required to transmit pi, s(pi) is the packet

size (bytes), hmac is the MAC header size (bytes), hphy is the physical header size (bytes),

and l
wired
out is the transmission bit rate supported by the wired link. The switching delay

is therefore computed as �0a =
P

8pi2qdisc  (pi).

The delivery delay between the AP and the server, i.e., t4�t3 and t6�t5, depend

on various factors and primarily on the number of hops between these two nodes. Based

on this number, we consider edge and cloud computing scenarios. Edge computing is

employed in latency-sensitive and mission-critical applications to minimize the latency

and overhead of communication over the wired network [117]. In the cloud computing

scenario, the server is located at least a few hops away from the AP. For both cases,

to measure this delay (denoted as �0b), we use a moving average, which is the standard

approach used by various protocols such as TCP to estimate RTT [118, 119]. To this

end, we modify the netfilter [98] kernel module to communicate with the NetMon

module and timestamp t3 as the instance the packet is sent to the wired NIC, and t6 as

the instance the packet has arrived in the AP.

6.2.4 AP to Station Delivery Delay

An incoming packet from the wired interface first passes through ingress driver

queues. Subsequently, the packet is processed by the netfilter module. The packet is

then queued in the qdisc. Finally, the packets are queued in the EDCA queues inside

the wireless NIC’s driver. These packets are served according to the channel contention
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parameters specified by the 802.11e standard. Each driver queue contends (individually)

for channel access before packet transmission.

Here we mainly focus on the delay between the arrival of a downlink packet

through the AP’s wired interface and its transmission through the wireless interface.

This delay is denoted as �c = t7 � t6. It is particularly challenging to model and pre-

dict this delay because it is a↵ected by several factors such as queuing strategy and

queue utilization at the qdisc and MAC layer, channel utilization, number of stations,

and link quality. However, in addition to the high complexity of bu↵ering mechanisms

implemented by wireless drivers such as ath9k and ath10k [12, 92], the actual opera-

tion of non-open source drivers is not known, which makes it impossible to develop a

mathematical model of bu↵ering delay. Therefore, we follow a data-driven approach to

predict �c. The predicted value is denoted as �0c. The Collector module time stamps the

switching delay between the wired and wireless interfaces. The time of packet arrival

from the downlink transmission is determined by the Sniffer module, which in turn

informs the Collector. During t6 to t8, the Collector also collects statistics regarding the

status of queues and channel condition. The collected parameters are explained in the

following sections.

6.2.4.1 Input tra�c rate through wired interface

The incoming tra�c through wired interface, denoted as rwired
in (bytes/second),

impacts the current and future utilization of wireless interface’s qdisc and driver queues.

Hence, the NetMon module communicates with wired interface’s driver to collect incom-

ing tra�c rate.
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6.2.4.2 qdisc queues

Every network interface is assigned a qdisc, which is pfifo fast by default [90].

This mechanism contains three bands, and dequeuing from a band only happens when

its upper bands are empty. The PRIO qdisc is a classful configurable alternative of

pfifo fast and enables us to configure the number of bands. To enqueue the packets of

each Access Category (AC) in its own queue, we implement four queues in this layer.

These queues are denoted by Q = {qvo, qvi, qbe, qbk}. We have modified the PRIO kernel

module to communicate with the NetQMon module to collect the number of packets in

each qdisc band.

With PRIO qdisc, the queuing delay experienced by a packet enqueued in the

lowest priority queue not only depends on the current utilization level of that queue,

but also on the number of packets in the higher priority queues. In addition to the

four queues mentioned above, we have also included an additional queue—called control

queue—that is assigned the highest priority level. We will utilize this queue in order to

implement the highest-priority data plane used to send the control packet that conveys

sleep schedules to stations. We will explain this packet later. It is worth mentioning

that, although our implementation utilizes the PRIO qdisc (the default policy used in

several Linux distributions), the concept can easily be extended to other types of qdiscs,

such as Hierarchical Token Bucket (HTB).

6.2.4.3 Wireless channel condition

Both interference and channel utilization are the main channel condition pa-

rameters that a↵ect packet transmission delay. The duration and intensity of these pa-

rameters depend on various factors, such as the number of contending stations and APs,

burst size, TXOP, and the transmission power of nearby stations and APs. Therefore,
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accounting for the e↵ect of channel condition through measuring the factors (mentioned

above) would be very challenging. Instead, we collect three parameters to capture the

e↵ect of interference and channel utilization on the delay of packet transmission. The

first parameter is channel utilization (cu), which refers to the amount of time the AP or

its associated stations are transmitting. The second parameter is the number of MAC

layer retransmissions (w) performed by the AP to deliver packets to stations. The third

parameter is the channel’s noise level (cn), which reflects the activity of nearby wireless

devices (such as other APs and stations, ZigBee, and Bluetooth devices).

Most 802.11 drivers maintain counters that represent channel utilization rate.

For example, the rate of updating ch_time_busy reflects channel utilization during a

sampling interval. The ChUMon module is responsible to extract these counters from

the driver. We realized that the interval of obtaining channel utilization impacts mea-

surement accuracy. We obtained the peak accuracy, in terms of Kendall’s correlation

coe�cient, when the frequency of polling cu is 10 ms. Additionally, the granularity of

the measurements also decreases as we increase the frequency of polling channel uti-

lization. This is because the counters use millisecond granularity. For example, if the

sampling frequency is 10 ms, the granularity of cu obtained in percentage is 10%.

6.2.4.4 Driver’s transmission queues

Using Enhanced Distributed Coordination Function (EDCF), packets arriving

at the MAC layer are categorized and inserted into one of the four queues assigned

to each station inside the driver. The categorization relies on the IP header’s ToS

field. These queues are denoted by Q̂ = {q̂vo, q̂vi, q̂be, q̂bk}. Each queue behaves like

a virtual station that contends for channel access independently. In case of internal

collision between two or more queues, the higher priority queue is granted the trans-

mission opportunity. The status of these queues are monitored by the MACQMon module
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through communicating with the driver. Considering the size of these queues allows the

prediction models to account for the e↵ect of packet aggregation and packet bursting.

Specifically, for each AC, packet aggregation is applied if a station’s queue includes more

than one packet. Also, depending on the AC, a burst of packets may be sent without

contending for the channel on a per-packet basis.

6.2.4.5 Summary of the features collected

The Scheduler interacts with Collector to gather the features necessary for

delay prediction. In summary, the developed AP enables us to collect the following

features periodically:

Cu,Cn,R
wired
in ,W,Qvo,Qvi,Qbe,Qbk,

bQvo,
bQvi,

bQbe,
bQbk

(6.1)

where Cu, Cn, R, W, Q, and bQ, represent the list of channel utilization values, list of

channel noise values, list of incoming tra�c rate values over wired interface, list of MAC

layer downlink retransmission values, list of the utilization values of qdisc queues (for

each AC), and list of the utilization values of driver queues (for each AC), respectively.

Each list includes periodically collected values. For example, assuming that each list

contains k + 1 values, list Cu is represented as follows:

Cu = [cu(t
0 � k ⇥ �), cu(t

0 � (k � 1) ⇥ �), ...,

cu(t
0 � �), cu(t

0)]
(6.2)

where cu(t0) is the last sampled channel utilization value, and � refers to sampling

interval. In our implementation, � = 10 ms. We did not use a shorter sampling interval

because of the significant increase in processor utilization (> 30%). Implementing a
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more e�cient AP architecture is a future work.

In addition to the features collected periodically, we add two features that are

collected once per prediction. First, since each AC uses its own channel access and

Transmit Opportunity (TXOP) parameters, we include the AC of the transaction as a

feature. Second, we use �0a + �
0
b because the predicted delay (�0c) depends on the interval

between the uplink packet and the arrival of downlink packet over the wired interface.

For example, if the server delay is expected to be 30 ms, the prediction for �c should be

made for a packet that would arrive at the AP in 30 ms.

6.2.5 Schedule Announcement

When a predicted delay value is computed, the Scheduler creates a UDP con-

trol packet to send the value to the station. This packet includes �0a, �
0
b, and �

0
c, as well

as the standard deviation of prediction error, where each value is encoded as one byte.

The value of each byte reflects duration in milliseconds. This data packet is sent using

a dedicated queue with highest priority. When this control packet reaches the station

at t2, the station immediately transitions into sleep state for �0a + �
0
b + �

0
c � (t2 � t1).

Note that the AP shares the relative wake-up time with the station. Since the AP has

computed wake-up schedule at time t1, the station needs to measure t2� t1 and subtract

it from the shared value. The station can simply use a timer to measure t2 � t1.

At the end of the sleep interval, the station wakes up and informs the AP about

its transition into awake mode. This is achieved by relying on APSD, which is supported

by the state-of-the-art wireless NICs. To this end, at t7 (in Figure 6.1), the station wakes

up and sends a NULL packet to the AP, conveying that the station is ready for receiving

a packet. The AP responds by sending one or multiple downlink packets starting at

t8. As per the 802.11e amendment, multiple packets can be sent during a Transmission
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Opportunity (TXOP) without having to contend for channel access. For example, if the

tra�c belongs to the voice AC, the AP uses a 1.504 ms slot (as long as packets exists)

for downlink delivery.

6.3 Predictive Scheduling

In this section, we first present tra�c characterization methods and our testbed

setup, which are then used for realistic tra�c generation, model training, and evaluation.

We also discuss the various stages of the statistical learning and modeling process and

empirically study the performance of multiple machine learning algorithms in terms of

delay prediction accuracy.

6.3.1 Tra�c Generation

As explained in the previous sections, AP modification is necessary to collect

the features required for predictive scheduling. Also, we need to introduce controlled

changes in the tra�c pattern of the environment to study the impact of these changes

on prediction accuracy. Therefore, it is required to have a testbed that represents the

tra�c pattern of real-world environments as well as controllability over tra�c generation

parameters. To achieve this, we systematically characterize and compare the scenarios

generated in our testbed with those collected in real-world environments.

A burst, denoted as bi, is defined as a train of packets in either UL or DL

direction with inter-arrival time less than a threshold value ✓ [120]. Resembling 802.11

tra�c, Figure 6.3 illustrates a series of bursts. The duration (in seconds) of a burst bi

is denoted by d(bi). g(bi) refers to the gap (in seconds) between two consecutive bursts

bi and bi+1.
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Fig. 6.3: Tra�c characterisation.

To generate tra�c flows representative of various levels of network dynamics in

real-world environments, we have developed a testbed that includes two types of stations:

(i) stations such as laptops, smartphones, and IoT devices, and (ii) four Raspberry Pi

boards to control tra�c generation pattern. Each RPi runs four threads, where each

thread can be involved in a downlink, uplink, or bidirectional flow. This enables us to

introduce up to 16 additional controlled flows into the network. The implementation

of tra�c control capability is composed of a set of Python scripts that use the iperf

tool under the hood. A central controller is in charge of setting the parameters of

tra�c flows. Among the flow parameters, we can modify AC, transport layer protocol,

packet size, bit rate, burst size, and inter-burst interval. Also, we note that sharing

flow characteristics by consecutive flows is more likely. To represent this behavior, after

each burst, the controller either repeats the process of tra�c selection or chooses the

same parameters for the next burst based on a variability parameter denoted by ⌫.

Specifically, a higher value of ⌫ results in a higher dynamicity. Hence, we use ⌫ = 0.9

to generate high dynamicity (HD) tra�c, and ⌫ = 0.1 to generate less diverse tra�c

referred to as normal dynamicity (ND). Also, for voice and video ACs, UDP is preferred

because it is the dominant transport protocol for real-time tra�c.

As demonstrated in [120], capturing network dynamics can be achieved by fo-

cusing on characterizing burstiness. Additionally, Xiao et al. [121] characterized a

flow as regularly bursty when the standard deviation of the inter-burst intervals (g(·)

seconds) and burst sizes (s(·) bytes) are relatively smaller. Otherwise, the flow is char-
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acterized as randomly bursty. However, based on Xiao’s metrics for burstiness, tra�c

with fewer bursts per unit time can still have a high standard deviation of s(·) and g(·).

Hence, we consider burst frequency (i.e., number of bursts per second) and burst size

for calculating tra�c burstiness. Additionally, due to the di↵erence in the scale of those

two parameters, we normalize the burst rate (per second) in the range [0, 1]. We define

tra�c burstiness, denoted by B, as follows:

B =

✓
1 � 1

M

◆
⇥
 PN

i=1 s(bi)

N

!
(6.3)

where N is the number of bursts in the dataset, s(bi) is the size of burst bi (in bytes),

and M is average number of bursts per second.

In addition to tra�c burstiness, we define another metric that represents tra�c

dynamicity based on various aspects including burst size, burst duration, inter-burst

interval, and the AC of the packets in each burst. This metric, which we refer to as

dynamicity and is denoted by D, is defined as follows:
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(6.4)

where,

z(bi) =
|pvo(bi) � pvo(bi�1)|

pvo(bi�1)
+

|pvi(bi) � pvi(bi�1)|
pvi(bi�1)

+

|pbe(bi) � pbe(bi�1)|
pbe(bi�1)

+
|pbk(bi) � pbk(bi�1)|

pbk(bi�1)

(6.5)

Here, px(bi) is number of packets belonging to an AC x in a burst bi. Parameter

z(bi) reflects the change in the number of packets belonging to each AC in each burst

compared to that in the previous burst.
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6.3.2 Data Collection

We use the metrics mentioned above and compare datasets generated in our

testbed against those collected in multiple real-world environments. Figure 6.4 presents

the results. In general, we observe that the ND scenario resembles real tra�c. The HD

scenario o↵ers higher network dynamics, which is essential to study the robustness of

predictive scheduling.

When generating data in our testbed, the type of each transaction is selected

from the voice, video, background, and best-e↵ort ACs with equal probability. The inter-

transaction delays are uniformly distributed between 1 ms and 500 ms. In addition to

the features discussed in §6.2, we also collect �a, �b, and �c values per transaction. We

split each dataset, such that 70% of it is used for training and the remaining 30% is used

for validation. We use independent datasets, referred to as the test datasets, consisting

of 10,000 data points for evaluating the performance and robustness of each modelling

approach in the ND and HD scenarios.

6.3.3 Data Pre-processing

We focus on delay prediction for �c < 100 ms, for two reasons: First, considering

edge computing scenarios, observing RTTs more than 100 ms is very unlikely. Second,

almost all commercial APs implement 102.4 ms as their beaconing period. Therefore,

all stations wake up every 102.4 ms to synchronize with AP beacons and check if the

AP has any bu↵ered packets.

The feature set varies in terms of ranges and units. For example, cu varies from

0 to 100%, whereas cn varies from �95 to �66 dBm. Since this would result in dispro-

portional treatment of the features by the machine learning algorithms, we scale each

of the features into the range [�1,+1]. Furthermore, the dataset contains more sam-
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Fig. 6.4: (a) Standard deviation of burst size, (b) standard deviation of burst interval,
(c) burstiness (B), and (d) dynamicity (D) of tra�c generated by our testbed compared
to tra�c captured in real-world environments. ND and HD refer to normal and high
dynamicity, respectively.

ples (transactions) with delay range [1, 50] ms, compared to samples in range [50, 100]

ms. We under-sample the majority bins to prevent the algorithms from generalizing the

results for the packets whose actual delay is higher.

6.3.4 Regression Models

Given the continuous nature of the target variable, we identify predicting �c as

a regression problem. The methods that we use are Random Forest Regressor (RFR),

Gradient Boosting Regressor (GBR), Extra Trees Regressor (ETR) and Histogram-

Based Gradient Boosting Regressor (HBR), which are widely-used ensemble learning

methods for regression. We also use (deep) neural networks, which are more e↵ective in

areas such as predicting time-series data.

Referring back to Eq. 6.2, whenever a prediction must be made, we use: (i)

the closest set of features collected at t
0, and (ii) a weighted average of the last k
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measurements collected before t
0. For example, we use cu(t0) and cu(t̄) =

Pk
i=1 wi ⇥

cu(t0 � i⇥ �) for channel utilization. Here, cu(t̄) is called the feature history of channel

utilization, k denotes the length of feature history, and wi refers to the individual weights

assigned to the past feature values such that
Pk

i=1 wi = 1. More recent feature values

are assigned larger weights. For example, when k = 2, w1 = 0.75 and w2 = 0.25. When

k > 2, w1 = 0.5 and w2 = 0.25 (i.e., half of the remaining weight-budget of 0.5), and

this process continues recursively until all k weights are assigned. With this method

applied to all the features summarized in §6.2.4.5, we can capture network dynamics

and dependency of the predictions on previous feature history with models that do not

support back propagation.

In ensemble learning, final prediction can either be calculated by the average of

the predictions of the model trained on random subsets of data (bagging) or calculated

via sequentially training the model using prediction success on the previous sample of

the dataset (boosting). RFR is an example of the bagging approach and operates by

constructing several decision trees during training and makes predictions based on the

outputs of the individual trees. RFR runs e�ciently on large and high-dimensional

datasets. GBR is an example of the boosting approach. Each tree outputs a prediction

value at di↵erent splits that can be added together, allowing subsequent models to

modify error in predictions. HBR is a variant of GBR. Since it is a histogram-based

estimator, HBR can reduce the number of splitting points by binning input samples,

and therefore improves performance when dealing with large datasets. ETR creates

decision stumps at variable tree depths. The features and splits are selected randomly,

and are less computationally expensive than other tree-based algorithms.

Neural Networks (NN) have been studied extensively in the past decade for

their e�ciency in learning complex data features for making predictions. Multilayer

perceptrons (MLP) is one such variant of feed-forward neural networks that does not
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allow feedback loops, thereby resulting in data progressing in a single direction over the

network from input to output. One of the biggest drawbacks of using such a network

is its lack of memory, i.e., it treats each instance of the input time-series independently

and predictions are independent of the history of past inputs to the network. Recur-

rent Neural Networks (RNN) are a class of neural networks in which the predictions

are based on the current and past inputs, and therefore they are suitable for making

predictions about �c using historical network features. A specific variant of RNN is

LSTM [122], which is able to track dependencies of output predictions on input history.

The network retains a memory equal to the number of lookbacks that allow the flow

of information from the previous timesteps [123]. Lookback is defined as the number

of timesteps—transactions in our particular application—that are unfolded for back-

propagation. Simply put, transaction history is the number of previous transactions

in the temporal domain that aids in predicting the delay of the current transaction by

providing contextual information.

For the ensemble learning methods, we use scikit-learn library and tune the

hyper parameters using grid search and a validation dataset to obtain the highest per-

formance on the training data to avoid over-fitting. For the MLP and LSTM model,

we use Tensorflow and Keras library [124]. Also, we utilize early stopping mechanism

(on the validation dataset) to prevent over-fitting. The optimal MLP model contains

five dense layers, each consisting of 32, 20, 16, 10, 8 neurons, respectively, and ReLu

activation function. The optimal LSTM model contains one LSTM layer followed by

three dense layers, each consisting of 20 neurons and ReLu activation function. We

use a stateless LSTM model, which is the default setting in Keras library. Hence, the

inputs to LSTM layer are: (i) hidden cell states that carry information about previous

timesteps (transactions), and (ii) feature values of the current timestep. Note that the

latter input includes feature values collected at t0 as well as the weighted average of the
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Fig. 6.5: MAE of machine learning algorithms versus the number of samples (transac-
tions) in training dataset for (a) Normal Dynamicity (ND), and (b) High Dynamicity
(HD) scenarios. Results are averaged over all ACs. ETR converges the fastest, and
LSTM requires up to 3x more data points compared to ETR.

past k measurements. The input to the dense layer (after LSTM layer) is the last hid-

den state of LSTM layer. While training both the LSTM and MLP models, we tested

batch sizes from 10 to 1000. We observed that training duration decreases as the batch

size increases. However, we use the batch size of 100 transactions for evaluating the

models because the models started overfitting with larger batch sizes. Both the MLP

and LSTM models contain an output layer and were trained using Adam optimizer [125]

with learning rate of 0.01.

6.3.5 Model Evaluation

We used the test dataset for all evaluations. Figure 6.5 illustrates the Mean

Absolute Error (MAE) of �0c as a function of the size of training data. For better visibility,

we used Savitzky–Golay filter and also added markers at regular intervals in Figure 6.5.

We observed that the performance of ETR converges at the fastest rate, utilizing 15000

and 20000 data points for training under the ND and HD tra�c, respectively. Whereas,

due to the higher complexity of neural networks, MLP requires 20000 data points in
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Fig. 6.6: MAE of machine learning algorithms with respect to feature history in (a)
Normal Dynamicity (ND), and (b) High Dynamicity (HD) scenarios. Results are aver-
aged over all ACs.

the ND scenario and 35000 data points in the HD scenarios. LSTM requires 30000 data

points in the ND and 50000 data points in the HD scenario, thereby showing slower

convergence compared to MLP. Based on these results, for the rest of the evaluations

presented in this chapter, we use the required number of data points that are needed

by each algorithm for performance convergence.

Figure 6.6 quantifies the e↵ect of feature history (k in Eq. 6.2). For all the

algorithms, MAE decreases significantly in both HD and ND scenarios when we include

feature history. This decrease continues up to 30 ms, beyond which it does not result

in performance enhancement. Feature history helps the model to anticipate features’

trend and accurately predict �c that would be incurred by the downlink packet shortly.

Therefore, in addition to the most recent record, we include the weighted average of

three preceding feature values (corresponding to a total of the preceding 40 ms of feature

values) to train the models.

Figure 6.7 compares the performance of the machine learning algorithms versus

the AC of transactions. Averaged over all ACs, the MAE (in millisecond) of algorithms

in the ND scenario are: RFR: 1.43, ETR: 1.26, GBR: 1.49, HBR: 1.28, MLP: 1.24, and
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Fig. 6.7: MAE of machine learning algorithms versus transaction’s AC in (a) Normal
Dynamicity (ND), and (b) High Dynamicity (HD) scenarios. MAE of VO and VI packets
is lower than BK and BE packets.

LSTM: 1.16. For the HD scenarios the MAE values are: RFR: 2.49, ETR: 2.17, GBR:

2.69, HBR: 2.27, MLP: 2.12, and LSTM: 2.01. On average for the ND and HD scenarios,

the MAE of LSTM is 14% lower for all ACs, compared to the average MAE of all the

other machine learning algorithms.

Figure 6.7 also shows that the MAE of VO and VI packets is lower than BK

and BE packets. The reason is that the packets of these ACs are prioritized over higher

ACs at the qdisc layer (using PRIO qdisc) as well as the driver’s queues (using EDCA).

This results in lower delays incurred by the downlink packets and lower unpredictability

caused by the transmission of packets in higher priority queues.

Figure 6.8 presents the Empirical Cumulative Distribution Function (ECDF)

of the deviation of �0c from �c. The 95th percentile of error (�0c � �c) for all machine

learning algorithms is less than ±5.3 ms in case of ND scenario and ±10.6 ms for the

HD scenario.

Transactions may occur at random time instances and result in irregular time-

series. With feature history, we provide the models with a limited amount of historical

measurements. For example, if the inter-transaction interval is longer than 40 ms (i.e.,
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Fig. 6.8: ECDF of prediction errors (|�0c � �c|) while utilizing various machine learning
algorithms in (a) Normal Dynamicity (ND), and (b) High Dynamicity (HD) scenarios.
All machine learning algorithms are able to predict �0c for 95% of the packets with an
error of ±5.3 ms in case of ND scenario, and ±10.6 ms for the HD scenario. We have
used markers in the inset graph for better visibility.

feature history of the current transaction), the information about the previous state

of the network is not considered in prediction. In this case, using transaction history

is particularly beneficial when multiple transactions occur during similar network con-

ditions. Since LSTM predicts based on the current and past transactions’ inputs, we

estimate the e↵ect of transaction history on the MAE of this model. Figure 6.9 shows

the results. We observe that MAE decreases for up to five lookbacks. This means, on

average, five transactions occur during similar network conditions.

Figure 6.10 presents the prediction execution time of all the machine learning

algorithms on a dual-core 2.4 GHz Core-i3 processor. Each marker shows the median

of time taken to predict each data point in the test dataset, and the error bars present

lower and upper quartiles. We observed that HBR is the fastest (24 µs median and 0.046

µs standard deviation) for prediction, whereas LSTM is the longest (48 µs median and

3 µs standard deviation). However, the time taken to predict the delay in case of LSTM

is still considerably shorter than a packet transmission time. For example, with a 1400

bytes packet sent over a 54 Mbps link, the ratio of prediction duration to transmission
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Fig. 6.10: Processing time of the pre-
diction algorithms.

duration is 48µs/207µs.

6.4 Empirical Evaluation

In this section, we present an empirical evaluation of EAPS versus the power

saving mechanisms of 802.11. Since the empirical measurements of prediction accuracy

(§6.3.5) confirm the superiority of LSTM compared to other algorithms, we use this

algorithm to compare the performance of EAPS against the power saving methods

of 802.11 standard. Note that LSTM requires about 3x more training data for its

performance to converge, compared to other algorithms (cf. Figure 6.5). Hence, in

scenarios where it is not possible to collect large datasets for training, either ETR or

MLP can be used.

6.4.1 Testbed

Our testbed includes four IoT stations (cameras and Amazon Echo), four Rasp-

berry Pi boards, regular stations (smartphones and laptops), an AP, and a server. We

refer to the IoT stations as station. Each station is a Cypress CYW43907 [7], which
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is a low-power 802.11n SoC designed for IoT applications. To represent a real-world

scenario a↵ected by variable background interference, the testbed is located in a res-

idential environment surrounded by APs belonging to multiple households. Also, the

four Raspberry Pi boards are used to control network dynamicity and variability in �c.

To represent the request-response behavior of IoT tra�c, for each uplink packet

sent, the server responds by sending a downlink packet back to the station.1 The

exchange of an uplink packet and receiving its response is referred to as a transaction.

In all the figures of this section, each marker shows the median of 1000 transactions

and the error bars present lower and upper quartiles. We use the EMPIOT tool [112]

to measure the energy and delay of each transaction. This tool samples voltage and

current at approximately 500,000 samples per second. These samples are then averaged

and streamed at 1 Ksps. The current and voltage resolution of this platform are 100

µA and 4 mV, respectively.

We use two scenarios to evaluate the performance of EAPS with respect to

varying AP-server delays (i.e., �b in Figure 6.1): edge, and cloud computing. In the

former, the server is directly connected to the AP, and in the latter, we use an Amazon

AWS server in Oregon, USA. Note that in both cases the sleep schedules are computed

at the edge and by the AP the station is associated with.

6.4.2 Baselines and EAPS Variations

The baselines are PSM, APSM, and CAM. Using PSM, after an uplink packet,

the station goes back into sleep mode and wakes up at each beacon instance to check

for downlink packet delivery. With APSM, instead of going back into sleep right after

packet exchange, the station stays in the awake mode for 10 ms. With CAM, the station

1
Note that the case where multiple uplink and downlink packets are exchanged is simply supported

as explained in §6.2.
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Fig. 6.11: Cumulative distribution function of prediction error (�0c��c) for (a) voice, and
(b) background ACs. Prediction error of voice AC is lower than that of background AC.
Depending on the application’s energy-delay tradeo↵, the station may wake up before,
on, or after the predicted time.

always stays in awake mode. Note that for CAM, we measure only the delay and energy

consumption of transactions (only the time interval between the uplink and downlink

packets).

To study energy-delay tradeo↵s, we use three versions of EAPS, derived based

on observations concerning prediction error. To justify the importance of these three

versions, we first present the distribution of prediction errors in Figure 6.11 for voice and

background ACs. Based on the distribution for each AC, the station can either choose

to wake up at (i) �0 � 2�, (ii) �0 + 2�, or (iii) �0, where �0 = �
0
a + �

0
b + �

0
c. We call these

cases EAPS with Early wake-up (EAPS-E), EAPS with Late wake-up (EAPS-L), and

EAPS with Mid wake-up (EAPS-M), respectively. Intuitively, EAPS-E reduces delay

with a higher energy consumption, EAPS-L reduces energy with a longer delay, and

EAPS-M establishes a tradeo↵ between energy and delay. Note that EAPS-E is only

applicable if �0 � 2� > 0.
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Fig. 6.12: Performance comparison of EAPS with 802.11 power saving mechanisms in
ND conditions for all ACs. (a) and (b) show the average per-transaction energy and
duration in cloud scenario, respectively. (c) and (d) show the average per-transaction
energy and duration in edge scenario, respectively.

Energy Consumption | Cloud Scenario Transaction Duration | Cloud Scenario Energy Consumption | Edge Scenario Transaction Duration | Edge Scenario
HD
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Fig. 6.13: Performance comparison of EAPS with 802.11 power saving mechanisms in
HD conditions for all ACs. (a) and (b) show the average per-transaction energy and
duration in cloud scenario, respectively. (c) and (d) show the average per-transaction
energy and duration in edge scenario, respectively.

6.4.3 Results

Figures 6.12 and 6.13 illustrate the average energy consumption and duration

of transactions when the station is communicating with edge and cloud computing

platforms under ND and HD conditions, respectively.

In the cloud computing scenario, CAM and EAPS incur an average round trip

delay of 35 ms and 42 ms, respectively, while EAPS consumes 63% less energy. This

is because EAPS conserves energy expenditure by switching to sleep mode and waking

up right before the packet is ready for transmission at AP. In contrast, CAM needs to

stay in awake mode until the response is received. Reduction in energy consumption

of EAPS compared to CAM reduces to 30% in edge environment due to the shorter
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duration spent in awake mode to receive the downlink packet.

With PSM, the station immediately transitions to sleep mode after transmitting

each uplink packet. While this results in less energy consumption compared to CAM,

transactions su↵er about 55 ms higher delay on average because the earliest opportunity

for downlink packet delivery is after the next beacon instance. The transaction duration

of EAPS is 62% lower compared to PSM on average across all the ACs. With APSM, the

station remains in idle state for 10 ms after each packet exchange. This is beneficial only

in specific scenarios. For example, in the edge scenario, the station receives its downlink

packet within the tail time (similar to CAM). However, when the round trip delay is more

than 10 ms, the station has to wake up again to retrieve the downlink packet after the

next beacon announcement, thereby resulting in higher energy consumption compared

to PSM. On average, for both edge and cloud scenarios, the energy consumption of

APSM is 30% higher compared to PSM. In contrast, the energy consumption of EAPS

is 20% and 43% lower than PSM and APSM, respectively. Also, the transaction duration

of PSM, APSM, and EAPS are 77 ms, 10 ms, and 12 ms in edge computing scenario,

and 77 ms, 72 ms, and 42 ms in cloud computing scenario.

EAPS allows each node to choose between EAPS-E, EAPS-M, or EAPS-L, ac-

cording to application requirements. As our results show, with EAPS-E, the station

su↵ers from slightly higher energy consumption because it wakes up early, waits for the

packet to be received from the AP, and then transitions into sleep mode. In the case of

EAPS-L, since the station wakes up 2 ⇥ � after the predicted delay, the probability of

immediate packet delivery is higher once the station wakes up, and the station can imme-

diately transition to sleep mode once the packet is received. Thus, energy consumption

of EAPS-L is 14% lesser compared to EAPS-E, whereas, the transaction duration of

EAPS-L is 18% higher than EAPS-E. EAPS-M balances the trade o↵ between energy

consumption and transaction duration.
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6.5 Discussion

Wake-up radio. WUR mechanisms such as 802.11ba [46, 47] can be used to

enhance EAPS in several ways. For example, as soon as a station finishes sending its

uplink packet(s), the primary radio can switch into sleep mode, and the station will

receive the schedule message via its low-power WUR. The primary radio will then wake

up at the scheduled time to receive the downlink packet. To further reduce the idle

energy caused by prediction inaccuracy, the WUR can be scheduled to wake up at

�
0 � 2� and wait for a command to wake up the primary radio. As another example,

once the downlink packet arrives on the wired interface of the AP, the AP uses EAPS

to compute the packet delivery delay. Assuming that the wake-up delay of the primary

radio is � [46], the AP sends the wake-up packet at �0 � � to make sure the station’s

primary radio will be awake on time for downlink delivery.

Mesh networks. As discussed in §6.2.3, the primary types of networks used

in this chapter are smart home environments where an AP is connected to an Internet

modem, and campus and business deployments where APs communicate via an Ethernet

infrastructure. EAPS can also be used in mesh deployments. In this case, the backbone

communication between APs (mesh nodes) introduces a wireless-to-wireless switching

delay. This delay primarily depends on the bandwidth di↵erence between the backbone

link (AP-AP) and access links (AP-station). For example, assume a 160 MHz channel

(in the 5 GHz band) is used to form the backbone, while each AP operates on a 20 MHz

or 40 MHz channel (in the 2.4 GHz band). This configuration is prevalent because most

of the existing IoT stations operate in the 2.4 GHz band, and WiFi mesh systems are

usually tri-band and dedicate a channel (in the 5 GHz band) to their backbone. With

this configuration, the delay caused by the backbone would be negligible and a method

similar to that mentioned in §6.2.3 can be used to measure the delay from each AP to
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the server. If backbone links su↵er from congestion and significant interference, EAPS

can be used to predict packet switching delay over the backbone. As an alternative,

more e�cient strategy, EAPS could run on a central machine and allow the stations

to receive their downlink packet from the AP o↵ering the lowest delay. We leave these

enhancements as future works.

Computation o✏oading. If the AP is not powerful enough to train the model,

the training could be o✏oaded to a cloud or fog computing platform. In any case, edge

computing is essential to perform scheduling immediately and convey the sleep schedule

to the station.

6.6 Summary

In this chapter, we proposed the design, implementation, and evaluation of a

predictive scheduling mechanism, named EAPS, which allows IoT stations to transition

to sleep mode and wake up when their downlink packet(s) is expected to be delivered.

The proposed solution benefits from edge computing, meaning that sleep scheduling

is performed at the network edge and by the AP. We presented an AP architecture

capable of collecting queues status, channel condition, and packet transmission and

reception instances. Once the AP receives an uplink packet, a machine learning model

is used to compute the sleep delay, and the station is informed about its schedule using

a high-priority data plane. Using empirical evaluations, we confirmed the significant

enhancement of EAPS in terms of energy e�ciency and transaction delay.

EAPS can be used to augment the power saving mechanisms of 802.11 such as

APSD and TWT (introduced in 802.11ah and 802.11ax). The next generation of IoT

stations that support TWT can set up their wake up time based on the sleep schedule

computed by AP. By protecting IoT stations against the e↵ect of concurrent tra�c and
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interference, EAPS is a particularly useful method in scenarios where both regular and

IoT stations exist. EAPS can lower the energy cost of households and reduce the impact

of IoT on global ICT energy footprint.
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Chapter 7

Tra�c Characterization for E�cient
TWT Scheduling in 802.11ax IoT
Networks

7.1 Introduction

The newly-introduced 802.11ax standard provides a method called TWT for

assigning service periods to STAs. Compared to the earlier power-saving modes, TWT

allows for potentially higher energy e�ciency and throughput. Specifically, by properly

assigning service periods to STAs, channel contention reduces, packet bu↵ering delay in

the AP drops, and packet aggregation e�ciency enhances [33]. Nevertheless, to realize

the benefits of TWT scheduling, accurate characterization of the tra�c flows of STAs

is required by an AP to allocate service periods that address STAs’ tra�c requirements

[34, 33, 35].

In this chapter, we argue that accurate characterization of the tra�c pattern of

STAs is necessary to allocate TWT service periods that result in both high throughput

and energy e�ciency. For example, consider an IoT device collecting a batch of sensor

samples every few seconds. The process of sample collection from an Analog-to-Digital

Converter (ADC), packet preparation, and transfer from the application subsystem to

the NIC introduce a non-negligible inter-packet interval that would result in bandwidth

waste if not utilized by other STAs. In this chapter, we study and reveal that the ex-
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isting tra�c characterization methods demonstrate the following shortcomings: (i) CU

provides only the accumulated channel time usage by all the STAs; (ii) packet sni�ng ap-

proach is a↵ected by channel access delay and collision; (iii) in addition to being a↵ected

by channel access delay, some devices generate BSR only when requested by the AP, and

also, the reported values are fixed for all the MPDUs inside an A-MPDU. To address

these shortcomings, we propose Source-assisted Tra�c Characterization (SATRAC), a

method similar to In-band Network Telemetry (INT) in the tra�c generation source.

We leverage the eBPF technology to add the di↵erence between packet generation time

instances to the TCP Options field (for TCP tra�c) or IP Options (for UDP tra�c).

This information allows the AP to accurately and quickly determine tra�c generation

patterns and assign TWT service periods to STAs. We compare the performance of

SATRAC against the existing methods and show its superior performance and robust-

ness against factors such as CU and channel access delay.

The rest of this chapter is organized as follows. Motivation for tra�c character-

ization is given in Section 7.2. Section 7.3 studies the shortcomings of existing methods.

We present the design and evaluation of SATRAC in Section 7.4. We summarize a few

salient features of this chapter in Section 7.5.

7.2 Tra�c Pattern Analysis

This section analyzes the characteristics of network tra�c generated in real-

world IoT scenarios. We separate micro-bursts and macro-bursts and justify the impor-

tance of tra�c characterization for TWT assignment.

We consider the following IoT scenarios: (i) Sensor: We use an RTOS devel-

opment kit (CYW54907) for collecting accelerometer readings. Whenever the device

enters the sample collection phase, it collects 3920 samples, which results in 5880 bytes
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<latexit sha1_base64="CPuMvwlLPsfiqkB0HCf1QuNG0nU=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFclaQIupKiG5cV+oImhJvJtB06eTAzEUrIyo2/4saFIm79Bnf+jZM2C209cOFwzr3ce4+fcCaVZX0bK6tr6xubla3q9s7u3r55cNiVcSoI7ZCYx6Lvg6ScRbSjmOK0nwgKoc9pz5/cFn7vgQrJ4qitpgl1QxhFbMgIKC155okTUK7Ayxo5vsZOCGpMgGft3Mv8vOqZNatuzYCXiV2SGirR8swvJ4hJGtJIEQ5SDmwrUW4GQjHCaV51UkkTIBMY0YGmEYRUutnsjRyfaSXAw1joihSeqb8nMgilnIa+7izulIteIf7nDVI1vHIzFiWpohGZLxqmHKsYF5nggAlKFJ9qAkQwfSsmYxBAlE6uCMFefHmZdBt126rb9xe15k0ZRwUdo1N0jmx0iZroDrVQBxH0iJ7RK3oznowX4934mLeuGOXMEfoD4/MHgkCYfw==</latexit><latexit sha1_base64="CPuMvwlLPsfiqkB0HCf1QuNG0nU=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFclaQIupKiG5cV+oImhJvJtB06eTAzEUrIyo2/4saFIm79Bnf+jZM2C209cOFwzr3ce4+fcCaVZX0bK6tr6xubla3q9s7u3r55cNiVcSoI7ZCYx6Lvg6ScRbSjmOK0nwgKoc9pz5/cFn7vgQrJ4qitpgl1QxhFbMgIKC155okTUK7Ayxo5vsZOCGpMgGft3Mv8vOqZNatuzYCXiV2SGirR8swvJ4hJGtJIEQ5SDmwrUW4GQjHCaV51UkkTIBMY0YGmEYRUutnsjRyfaSXAw1joihSeqb8nMgilnIa+7izulIteIf7nDVI1vHIzFiWpohGZLxqmHKsYF5nggAlKFJ9qAkQwfSsmYxBAlE6uCMFefHmZdBt126rb9xe15k0ZRwUdo1N0jmx0iZroDrVQBxH0iJ7RK3oznowX4934mLeuGOXMEfoD4/MHgkCYfw==</latexit><latexit sha1_base64="CPuMvwlLPsfiqkB0HCf1QuNG0nU=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFclaQIupKiG5cV+oImhJvJtB06eTAzEUrIyo2/4saFIm79Bnf+jZM2C209cOFwzr3ce4+fcCaVZX0bK6tr6xubla3q9s7u3r55cNiVcSoI7ZCYx6Lvg6ScRbSjmOK0nwgKoc9pz5/cFn7vgQrJ4qitpgl1QxhFbMgIKC155okTUK7Ayxo5vsZOCGpMgGft3Mv8vOqZNatuzYCXiV2SGirR8swvJ4hJGtJIEQ5SDmwrUW4GQjHCaV51UkkTIBMY0YGmEYRUutnsjRyfaSXAw1joihSeqb8nMgilnIa+7izulIteIf7nDVI1vHIzFiWpohGZLxqmHKsYF5nggAlKFJ9qAkQwfSsmYxBAlE6uCMFefHmZdBt126rb9xe15k0ZRwUdo1N0jmx0iZroDrVQBxH0iJ7RK3oznowX4934mLeuGOXMEfoD4/MHgkCYfw==</latexit><latexit sha1_base64="CPuMvwlLPsfiqkB0HCf1QuNG0nU=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFclaQIupKiG5cV+oImhJvJtB06eTAzEUrIyo2/4saFIm79Bnf+jZM2C209cOFwzr3ce4+fcCaVZX0bK6tr6xubla3q9s7u3r55cNiVcSoI7ZCYx6Lvg6ScRbSjmOK0nwgKoc9pz5/cFn7vgQrJ4qitpgl1QxhFbMgIKC155okTUK7Ayxo5vsZOCGpMgGft3Mv8vOqZNatuzYCXiV2SGirR8swvJ4hJGtJIEQ5SDmwrUW4GQjHCaV51UkkTIBMY0YGmEYRUutnsjRyfaSXAw1joihSeqb8nMgilnIa+7izulIteIf7nDVI1vHIzFiWpohGZLxqmHKsYF5nggAlKFJ9qAkQwfSsmYxBAlE6uCMFefHmZdBt126rb9xe15k0ZRwUdo1N0jmx0iZroDrVQBxH0iJ7RK3oznowX4934mLeuGOXMEfoD4/MHgkCYfw==</latexit>

�2 < TB
<latexit sha1_base64="bbaYOQS1CtCxWEgJoR4aaXNBRnw=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiRF0IWLUjcuK/QFTQiTyaQdOpmEmYlQQlZu/BU3LhRx6ze482+ctFlo64ELh3Pu5d57/IRRqSzr26isrW9sblW3azu7e/sH5uFRX8apwKSHYxaLoY8kYZSTnqKKkWEiCIp8Rgb+9LbwBw9ESBrzrpolxI3QmNOQYqS05JmnTkCYQl7WzOENdCKkJhixrJt7WTuveWbdalhzwFVil6QOSnQ888sJYpxGhCvMkJQj20qUmyGhKGYkrzmpJAnCUzQmI005ioh0s/kbOTzXSgDDWOjiCs7V3xMZiqScRb7uLO6Uy14h/ueNUhVeuxnlSaoIx4tFYcqgimGRCQyoIFixmSYIC6pvhXiCBMJKJ1eEYC+/vEr6zYZtNez7y3qrXcZRBSfgDFwAG1yBFrgDHdADGDyCZ/AK3own48V4Nz4WrRWjnDkGf2B8/gBOVphd</latexit><latexit sha1_base64="bbaYOQS1CtCxWEgJoR4aaXNBRnw=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiRF0IWLUjcuK/QFTQiTyaQdOpmEmYlQQlZu/BU3LhRx6ze482+ctFlo64ELh3Pu5d57/IRRqSzr26isrW9sblW3azu7e/sH5uFRX8apwKSHYxaLoY8kYZSTnqKKkWEiCIp8Rgb+9LbwBw9ESBrzrpolxI3QmNOQYqS05JmnTkCYQl7WzOENdCKkJhixrJt7WTuveWbdalhzwFVil6QOSnQ888sJYpxGhCvMkJQj20qUmyGhKGYkrzmpJAnCUzQmI005ioh0s/kbOTzXSgDDWOjiCs7V3xMZiqScRb7uLO6Uy14h/ueNUhVeuxnlSaoIx4tFYcqgimGRCQyoIFixmSYIC6pvhXiCBMJKJ1eEYC+/vEr6zYZtNez7y3qrXcZRBSfgDFwAG1yBFrgDHdADGDyCZ/AK3own48V4Nz4WrRWjnDkGf2B8/gBOVphd</latexit><latexit sha1_base64="bbaYOQS1CtCxWEgJoR4aaXNBRnw=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiRF0IWLUjcuK/QFTQiTyaQdOpmEmYlQQlZu/BU3LhRx6ze482+ctFlo64ELh3Pu5d57/IRRqSzr26isrW9sblW3azu7e/sH5uFRX8apwKSHYxaLoY8kYZSTnqKKkWEiCIp8Rgb+9LbwBw9ESBrzrpolxI3QmNOQYqS05JmnTkCYQl7WzOENdCKkJhixrJt7WTuveWbdalhzwFVil6QOSnQ888sJYpxGhCvMkJQj20qUmyGhKGYkrzmpJAnCUzQmI005ioh0s/kbOTzXSgDDWOjiCs7V3xMZiqScRb7uLO6Uy14h/ueNUhVeuxnlSaoIx4tFYcqgimGRCQyoIFixmSYIC6pvhXiCBMJKJ1eEYC+/vEr6zYZtNez7y3qrXcZRBSfgDFwAG1yBFrgDHdADGDyCZ/AK3own48V4Nz4WrRWjnDkGf2B8/gBOVphd</latexit><latexit sha1_base64="bbaYOQS1CtCxWEgJoR4aaXNBRnw=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiRF0IWLUjcuK/QFTQiTyaQdOpmEmYlQQlZu/BU3LhRx6ze482+ctFlo64ELh3Pu5d57/IRRqSzr26isrW9sblW3azu7e/sH5uFRX8apwKSHYxaLoY8kYZSTnqKKkWEiCIp8Rgb+9LbwBw9ESBrzrpolxI3QmNOQYqS05JmnTkCYQl7WzOENdCKkJhixrJt7WTuveWbdalhzwFVil6QOSnQ888sJYpxGhCvMkJQj20qUmyGhKGYkrzmpJAnCUzQmI005ioh0s/kbOTzXSgDDWOjiCs7V3xMZiqScRb7uLO6Uy14h/ueNUhVeuxnlSaoIx4tFYcqgimGRCQyoIFixmSYIC6pvhXiCBMJKJ1eEYC+/vEr6zYZtNez7y3qrXcZRBSfgDFwAG1yBFrgDHdADGDyCZ/AK3own48V4Nz4WrRWjnDkGf2B8/gBOVphd</latexit>

�3 > TB
<latexit sha1_base64="s+Pi0fq+HlTDPgvoRt90L3SG6bw=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiQq6EpK3bis0Bc0IUwmk3boZBJmJkIJWbnxV9y4UMSt3+DOv3HSZqGtBy4czrmXe+/xE0alsqxvo7Kyura+Ud2sbW3v7O6Z+wc9GacCky6OWSwGPpKEUU66iipGBokgKPIZ6fuT28LvPxAhacw7apoQN0IjTkOKkdKSZx47AWEKedlFDm+gEyE1xohlndzLWnnNM+tWw5oBLhO7JHVQou2ZX04Q4zQiXGGGpBzaVqLcDAlFMSN5zUklSRCeoBEZaspRRKSbzd7I4alWAhjGQhdXcKb+nshQJOU08nVncadc9ArxP2+YqvDazShPUkU4ni8KUwZVDItMYEAFwYpNNUFYUH0rxGMkEFY6uSIEe/HlZdI7b9hWw76/rDdbZRxVcAROwBmwwRVogjvQBl2AwSN4Bq/gzXgyXox342PeWjHKmUPwB8bnD1MYmGA=</latexit><latexit sha1_base64="s+Pi0fq+HlTDPgvoRt90L3SG6bw=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiQq6EpK3bis0Bc0IUwmk3boZBJmJkIJWbnxV9y4UMSt3+DOv3HSZqGtBy4czrmXe+/xE0alsqxvo7Kyura+Ud2sbW3v7O6Z+wc9GacCky6OWSwGPpKEUU66iipGBokgKPIZ6fuT28LvPxAhacw7apoQN0IjTkOKkdKSZx47AWEKedlFDm+gEyE1xohlndzLWnnNM+tWw5oBLhO7JHVQou2ZX04Q4zQiXGGGpBzaVqLcDAlFMSN5zUklSRCeoBEZaspRRKSbzd7I4alWAhjGQhdXcKb+nshQJOU08nVncadc9ArxP2+YqvDazShPUkU4ni8KUwZVDItMYEAFwYpNNUFYUH0rxGMkEFY6uSIEe/HlZdI7b9hWw76/rDdbZRxVcAROwBmwwRVogjvQBl2AwSN4Bq/gzXgyXox342PeWjHKmUPwB8bnD1MYmGA=</latexit><latexit sha1_base64="s+Pi0fq+HlTDPgvoRt90L3SG6bw=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiQq6EpK3bis0Bc0IUwmk3boZBJmJkIJWbnxV9y4UMSt3+DOv3HSZqGtBy4czrmXe+/xE0alsqxvo7Kyura+Ud2sbW3v7O6Z+wc9GacCky6OWSwGPpKEUU66iipGBokgKPIZ6fuT28LvPxAhacw7apoQN0IjTkOKkdKSZx47AWEKedlFDm+gEyE1xohlndzLWnnNM+tWw5oBLhO7JHVQou2ZX04Q4zQiXGGGpBzaVqLcDAlFMSN5zUklSRCeoBEZaspRRKSbzd7I4alWAhjGQhdXcKb+nshQJOU08nVncadc9ArxP2+YqvDazShPUkU4ni8KUwZVDItMYEAFwYpNNUFYUH0rxGMkEFY6uSIEe/HlZdI7b9hWw76/rDdbZRxVcAROwBmwwRVogjvQBl2AwSN4Bq/gzXgyXox342PeWjHKmUPwB8bnD1MYmGA=</latexit><latexit sha1_base64="s+Pi0fq+HlTDPgvoRt90L3SG6bw=">AAACBnicbVDLSsNAFJ3UV62vqEsRBovgqiQq6EpK3bis0Bc0IUwmk3boZBJmJkIJWbnxV9y4UMSt3+DOv3HSZqGtBy4czrmXe+/xE0alsqxvo7Kyura+Ud2sbW3v7O6Z+wc9GacCky6OWSwGPpKEUU66iipGBokgKPIZ6fuT28LvPxAhacw7apoQN0IjTkOKkdKSZx47AWEKedlFDm+gEyE1xohlndzLWnnNM+tWw5oBLhO7JHVQou2ZX04Q4zQiXGGGpBzaVqLcDAlFMSN5zUklSRCeoBEZaspRRKSbzd7I4alWAhjGQhdXcKb+nshQJOU08nVncadc9ArxP2+YqvDazShPUkU4ni8KUwZVDItMYEAFwYpNNUFYUH0rxGMkEFY6uSIEe/HlZdI7b9hWw76/rDdbZRxVcAROwBmwwRVogjvQBl2AwSN4Bq/gzXgyXox342PeWjHKmUPwB8bnD1MYmGA=</latexit>

(bi)
<latexit sha1_base64="3qZ4dLc6uxMrN4xoxiyJzO6HEzQ=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiDEy9ATs3kLevEYwSyQDKGn05M06Vno7hHCkI/w4kERr36PN//GziKo6IOCx3tVVNXzYsGVxvjDyqytb2xuZbdzO7t7+wf5w6O2ihJJWYtGIpJdjygmeMhammvBurFkJPAE63iT67nfuWdS8Si809OYuQEZhdznlGgjdYreIOWz80G+gG1ccvBlHWG75FSqFxVDytVSrVxDjo0XKMAKzUH+vT+MaBKwUFNBlOo5ONZuSqTmVLBZrp8oFhM6ISPWMzQkAVNuujh3hs6MMkR+JE2FGi3U7xMpCZSaBp7pDIgeq9/eXPzL6yXar7spD+NEs5AuF/mJQDpC89/RkEtGtZgaQqjk5lZEx0QSqk1CORPC16fof9Iu2Q62ndtyoXG1iiMLJ3AKRXCgBg24gSa0gMIEHuAJnq3YerRerNdla8ZazRzDD1hvnzMmj3s=</latexit><latexit sha1_base64="3qZ4dLc6uxMrN4xoxiyJzO6HEzQ=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiDEy9ATs3kLevEYwSyQDKGn05M06Vno7hHCkI/w4kERr36PN//GziKo6IOCx3tVVNXzYsGVxvjDyqytb2xuZbdzO7t7+wf5w6O2ihJJWYtGIpJdjygmeMhammvBurFkJPAE63iT67nfuWdS8Si809OYuQEZhdznlGgjdYreIOWz80G+gG1ccvBlHWG75FSqFxVDytVSrVxDjo0XKMAKzUH+vT+MaBKwUFNBlOo5ONZuSqTmVLBZrp8oFhM6ISPWMzQkAVNuujh3hs6MMkR+JE2FGi3U7xMpCZSaBp7pDIgeq9/eXPzL6yXar7spD+NEs5AuF/mJQDpC89/RkEtGtZgaQqjk5lZEx0QSqk1CORPC16fof9Iu2Q62ndtyoXG1iiMLJ3AKRXCgBg24gSa0gMIEHuAJnq3YerRerNdla8ZazRzDD1hvnzMmj3s=</latexit><latexit sha1_base64="3qZ4dLc6uxMrN4xoxiyJzO6HEzQ=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiDEy9ATs3kLevEYwSyQDKGn05M06Vno7hHCkI/w4kERr36PN//GziKo6IOCx3tVVNXzYsGVxvjDyqytb2xuZbdzO7t7+wf5w6O2ihJJWYtGIpJdjygmeMhammvBurFkJPAE63iT67nfuWdS8Si809OYuQEZhdznlGgjdYreIOWz80G+gG1ccvBlHWG75FSqFxVDytVSrVxDjo0XKMAKzUH+vT+MaBKwUFNBlOo5ONZuSqTmVLBZrp8oFhM6ISPWMzQkAVNuujh3hs6MMkR+JE2FGi3U7xMpCZSaBp7pDIgeq9/eXPzL6yXar7spD+NEs5AuF/mJQDpC89/RkEtGtZgaQqjk5lZEx0QSqk1CORPC16fof9Iu2Q62ndtyoXG1iiMLJ3AKRXCgBg24gSa0gMIEHuAJnq3YerRerNdla8ZazRzDD1hvnzMmj3s=</latexit><latexit sha1_base64="3qZ4dLc6uxMrN4xoxiyJzO6HEzQ=">AAAB7nicdVDJSgNBEK2JW4xb1KOXxiDEy9ATs3kLevEYwSyQDKGn05M06Vno7hHCkI/w4kERr36PN//GziKo6IOCx3tVVNXzYsGVxvjDyqytb2xuZbdzO7t7+wf5w6O2ihJJWYtGIpJdjygmeMhammvBurFkJPAE63iT67nfuWdS8Si809OYuQEZhdznlGgjdYreIOWz80G+gG1ccvBlHWG75FSqFxVDytVSrVxDjo0XKMAKzUH+vT+MaBKwUFNBlOo5ONZuSqTmVLBZrp8oFhM6ISPWMzQkAVNuujh3hs6MMkR+JE2FGi3U7xMpCZSaBp7pDIgeq9/eXPzL6yXar7spD+NEs5AuF/mJQDpC89/RkEtGtZgaQqjk5lZEx0QSqk1CORPC16fof9Iu2Q62ndtyoXG1iiMLJ3AKRXCgBg24gSa0gMIEHuAJnq3YerRerNdla8ZazRzDD1hvnzMmj3s=</latexit>

(Bi)
<latexit sha1_base64="Ck96WS7CzVDvzRsWZFlhoHmaeAI=">AAAB7nicdVBNSwMxEJ2tX7V+VT16CRahXkpWira3Ui8eK9gPaJeSTbNtaDa7JFmhLP0RXjwo4tXf481/Y9quoKIPBh7vzTAzz48F1wbjDye3tr6xuZXfLuzs7u0fFA+POjpKFGVtGolI9XyimeCStQ03gvVixUjoC9b1p9cLv3vPlOaRvDOzmHkhGUsecEqMlbrl5jDl8/NhsYQrl/Wq69YQruAlLHFxvYaryM2UEmRoDYvvg1FEk5BJQwXRuu/i2HgpUYZTweaFQaJZTOiUjFnfUklCpr10ee4cnVllhIJI2ZIGLdXvEykJtZ6Fvu0MiZno395C/MvrJyaoeSmXcWKYpKtFQSKQidDidzTiilEjZpYQqri9FdEJUYQam1DBhvD1KfqfdC5sLBX3tlpqNLM48nACp1AGF66gATfQgjZQmMIDPMGzEzuPzovzumrNOdnMMfyA8/YJ5F2PRg==</latexit><latexit sha1_base64="Ck96WS7CzVDvzRsWZFlhoHmaeAI=">AAAB7nicdVBNSwMxEJ2tX7V+VT16CRahXkpWira3Ui8eK9gPaJeSTbNtaDa7JFmhLP0RXjwo4tXf481/Y9quoKIPBh7vzTAzz48F1wbjDye3tr6xuZXfLuzs7u0fFA+POjpKFGVtGolI9XyimeCStQ03gvVixUjoC9b1p9cLv3vPlOaRvDOzmHkhGUsecEqMlbrl5jDl8/NhsYQrl/Wq69YQruAlLHFxvYaryM2UEmRoDYvvg1FEk5BJQwXRuu/i2HgpUYZTweaFQaJZTOiUjFnfUklCpr10ee4cnVllhIJI2ZIGLdXvEykJtZ6Fvu0MiZno395C/MvrJyaoeSmXcWKYpKtFQSKQidDidzTiilEjZpYQqri9FdEJUYQam1DBhvD1KfqfdC5sLBX3tlpqNLM48nACp1AGF66gATfQgjZQmMIDPMGzEzuPzovzumrNOdnMMfyA8/YJ5F2PRg==</latexit><latexit sha1_base64="Ck96WS7CzVDvzRsWZFlhoHmaeAI=">AAAB7nicdVBNSwMxEJ2tX7V+VT16CRahXkpWira3Ui8eK9gPaJeSTbNtaDa7JFmhLP0RXjwo4tXf481/Y9quoKIPBh7vzTAzz48F1wbjDye3tr6xuZXfLuzs7u0fFA+POjpKFGVtGolI9XyimeCStQ03gvVixUjoC9b1p9cLv3vPlOaRvDOzmHkhGUsecEqMlbrl5jDl8/NhsYQrl/Wq69YQruAlLHFxvYaryM2UEmRoDYvvg1FEk5BJQwXRuu/i2HgpUYZTweaFQaJZTOiUjFnfUklCpr10ee4cnVllhIJI2ZIGLdXvEykJtZ6Fvu0MiZno395C/MvrJyaoeSmXcWKYpKtFQSKQidDidzTiilEjZpYQqri9FdEJUYQam1DBhvD1KfqfdC5sLBX3tlpqNLM48nACp1AGF66gATfQgjZQmMIDPMGzEzuPzovzumrNOdnMMfyA8/YJ5F2PRg==</latexit><latexit sha1_base64="Ck96WS7CzVDvzRsWZFlhoHmaeAI=">AAAB7nicdVBNSwMxEJ2tX7V+VT16CRahXkpWira3Ui8eK9gPaJeSTbNtaDa7JFmhLP0RXjwo4tXf481/Y9quoKIPBh7vzTAzz48F1wbjDye3tr6xuZXfLuzs7u0fFA+POjpKFGVtGolI9XyimeCStQ03gvVixUjoC9b1p9cLv3vPlOaRvDOzmHkhGUsecEqMlbrl5jDl8/NhsYQrl/Wq69YQruAlLHFxvYaryM2UEmRoDYvvg1FEk5BJQwXRuu/i2HgpUYZTweaFQaJZTOiUjFnfUklCpr10ee4cnVllhIJI2ZIGLdXvEykJtZ6Fvu0MiZno395C/MvrJyaoeSmXcWKYpKtFQSKQidDidzTiilEjZpYQqri9FdEJUYQam1DBhvD1KfqfdC5sLBX3tlpqNLM48nACp1AGF66gATfQgjZQmMIDPMGzEzuPzovzumrNOdnMMfyA8/YJ5F2PRg==</latexit>

Fig. 7.1: Micro-burst and macro-burst characterization.

((3920⇥ 12 bits)/8); these bytes are then sent via a TCP connection. (ii) Camera: We

built a security camera using Raspberry Pi (RPi) camera module (version 2) attached

to a RPi 3B+. The camera continuously captures and sends images via a TCP connec-

tion. Each images is processed by the H.264 codec. (iii) Video Streaming: A YouTube

video is streaming on an Amazon Echo Show device. All the experiments were run in

interference-free environments.

To build a generalized tra�c analysis framework, we consider three inter-packet

intervals and use the tra�c structure of Figure 7.1. A micro-burst, denoted as bi, is

defined as a train of packets with inter-arrival time less than a specific threshold value

Tb [120, 50]. The interval between packets in a micro-burst is denoted as �1. If the

interval between two packets is larger than Tb but less than TB, a new micro-burst is

detected. The interval between micro-bursts is denoted as �2. If the interval between

packets is larger than TB, a new macro-burst is detected. A macro-burst is represented

as Bi, and the interval between macro-bursts is denoted as �3.

Figure 7.2 presents the results for the Sensor scenario.

We observe that even within a micro-burst, the mean interval between packets

(�1) is about 400 µs. This delay is caused by packet preparation delay and the timing

requirements of the 802.11 standard (e.g., channel access contention, SIFS, DIFS). Re-

garding packet preparation delay, we modified the code and added probes to each stage

of the packet preparation process and observed that, for example, the transmission of a

packet from driver to NIC introduces a non-negligible delay of about 28 µs. Comparing
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Inter-packet Interval
(a)

(�1) [ms]
<latexit sha1_base64="pOCDKtQbrqKZieUJSLGLGhSN/8c=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyURQcFN0Y3LCvYBTQiTyaQdOjMJMxMhhPorblwo4tYPceffOG2z0NYDFw7n3Mu994Qpo0o7zrdVWVvf2Nyqbtd2dvf2D+zDo55KMolJFycskYMQKcKoIF1NNSODVBLEQ0b64eR25vcfiVQ0EQ86T4nP0UjQmGKkjRTY9aYXEaZRULjTM+8aDrnyA7vhtJw54CpxS9IAJTqB/eVFCc44ERozpNTQdVLtF0hqihmZ1rxMkRThCRqRoaECcaL8Yn78FJ4aJYJxIk0JDefq74kCcaVyHppOjvRYLXsz8T9vmOn4yi+oSDNNBF4sijMGdQJnScCISoI1yw1BWFJzK8RjJBHWJq+aCcFdfnmV9M5brtNy7y8a7Zsyjio4BiegCVxwCdrgDnRAF2CQg2fwCt6sJ+vFerc+Fq0Vq5ypgz+wPn8AbP6T9w==</latexit><latexit sha1_base64="pOCDKtQbrqKZieUJSLGLGhSN/8c=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyURQcFN0Y3LCvYBTQiTyaQdOjMJMxMhhPorblwo4tYPceffOG2z0NYDFw7n3Mu994Qpo0o7zrdVWVvf2Nyqbtd2dvf2D+zDo55KMolJFycskYMQKcKoIF1NNSODVBLEQ0b64eR25vcfiVQ0EQ86T4nP0UjQmGKkjRTY9aYXEaZRULjTM+8aDrnyA7vhtJw54CpxS9IAJTqB/eVFCc44ERozpNTQdVLtF0hqihmZ1rxMkRThCRqRoaECcaL8Yn78FJ4aJYJxIk0JDefq74kCcaVyHppOjvRYLXsz8T9vmOn4yi+oSDNNBF4sijMGdQJnScCISoI1yw1BWFJzK8RjJBHWJq+aCcFdfnmV9M5brtNy7y8a7Zsyjio4BiegCVxwCdrgDnRAF2CQg2fwCt6sJ+vFerc+Fq0Vq5ypgz+wPn8AbP6T9w==</latexit><latexit sha1_base64="pOCDKtQbrqKZieUJSLGLGhSN/8c=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyURQcFN0Y3LCvYBTQiTyaQdOjMJMxMhhPorblwo4tYPceffOG2z0NYDFw7n3Mu994Qpo0o7zrdVWVvf2Nyqbtd2dvf2D+zDo55KMolJFycskYMQKcKoIF1NNSODVBLEQ0b64eR25vcfiVQ0EQ86T4nP0UjQmGKkjRTY9aYXEaZRULjTM+8aDrnyA7vhtJw54CpxS9IAJTqB/eVFCc44ERozpNTQdVLtF0hqihmZ1rxMkRThCRqRoaECcaL8Yn78FJ4aJYJxIk0JDefq74kCcaVyHppOjvRYLXsz8T9vmOn4yi+oSDNNBF4sijMGdQJnScCISoI1yw1BWFJzK8RjJBHWJq+aCcFdfnmV9M5brtNy7y8a7Zsyjio4BiegCVxwCdrgDnRAF2CQg2fwCt6sJ+vFerc+Fq0Vq5ypgz+wPn8AbP6T9w==</latexit><latexit sha1_base64="pOCDKtQbrqKZieUJSLGLGhSN/8c=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQNyURQcFN0Y3LCvYBTQiTyaQdOjMJMxMhhPorblwo4tYPceffOG2z0NYDFw7n3Mu994Qpo0o7zrdVWVvf2Nyqbtd2dvf2D+zDo55KMolJFycskYMQKcKoIF1NNSODVBLEQ0b64eR25vcfiVQ0EQ86T4nP0UjQmGKkjRTY9aYXEaZRULjTM+8aDrnyA7vhtJw54CpxS9IAJTqB/eVFCc44ERozpNTQdVLtF0hqihmZ1rxMkRThCRqRoaECcaL8Yn78FJ4aJYJxIk0JDefq74kCcaVyHppOjvRYLXsz8T9vmOn4yi+oSDNNBF4sijMGdQJnScCISoI1yw1BWFJzK8RjJBHWJq+aCcFdfnmV9M5brtNy7y8a7Zsyjio4BiegCVxwCdrgDnRAF2CQg2fwCt6sJ+vFerc+Fq0Vq5ypgz+wPn8AbP6T9w==</latexit>

Inter-burst Interval
(b)

(�2) [ms]
<latexit sha1_base64="xKttAlzofBi5JzcUMTaGFbtf+Zs=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSxCvZSkCApeil48VrC10ISw2WzapbubsLsRQqh/xYsHRbz6Q7z5b9y2OWjrg4HHezPMzAtTRpV2nG+rsra+sblV3a7t7O7tH9iHR32VZBKTHk5YIgchUoRRQXqaakYGqSSIh4w8hJObmf/wSKSiibjXeUp8jkaCxhQjbaTArje9iDCNgqI9PfOu4JArP7AbTsuZA64StyQNUKIb2F9elOCME6ExQ0oNXSfVfoGkppiRac3LFEkRnqARGRoqECfKL+bHT+GpUSIYJ9KU0HCu/p4oEFcq56Hp5EiP1bI3E//zhpmOL/2CijTTRODFojhjUCdwlgSMqCRYs9wQhCU1t0I8RhJhbfKqmRDc5ZdXSb/dcp2We3fe6FyXcVTBMTgBTeCCC9ABt6ALegCDHDyDV/BmPVkv1rv1sWitWOVMHfyB9fkDbouT+A==</latexit><latexit sha1_base64="xKttAlzofBi5JzcUMTaGFbtf+Zs=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSxCvZSkCApeil48VrC10ISw2WzapbubsLsRQqh/xYsHRbz6Q7z5b9y2OWjrg4HHezPMzAtTRpV2nG+rsra+sblV3a7t7O7tH9iHR32VZBKTHk5YIgchUoRRQXqaakYGqSSIh4w8hJObmf/wSKSiibjXeUp8jkaCxhQjbaTArje9iDCNgqI9PfOu4JArP7AbTsuZA64StyQNUKIb2F9elOCME6ExQ0oNXSfVfoGkppiRac3LFEkRnqARGRoqECfKL+bHT+GpUSIYJ9KU0HCu/p4oEFcq56Hp5EiP1bI3E//zhpmOL/2CijTTRODFojhjUCdwlgSMqCRYs9wQhCU1t0I8RhJhbfKqmRDc5ZdXSb/dcp2We3fe6FyXcVTBMTgBTeCCC9ABt6ALegCDHDyDV/BmPVkv1rv1sWitWOVMHfyB9fkDbouT+A==</latexit><latexit sha1_base64="xKttAlzofBi5JzcUMTaGFbtf+Zs=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSxCvZSkCApeil48VrC10ISw2WzapbubsLsRQqh/xYsHRbz6Q7z5b9y2OWjrg4HHezPMzAtTRpV2nG+rsra+sblV3a7t7O7tH9iHR32VZBKTHk5YIgchUoRRQXqaakYGqSSIh4w8hJObmf/wSKSiibjXeUp8jkaCxhQjbaTArje9iDCNgqI9PfOu4JArP7AbTsuZA64StyQNUKIb2F9elOCME6ExQ0oNXSfVfoGkppiRac3LFEkRnqARGRoqECfKL+bHT+GpUSIYJ9KU0HCu/p4oEFcq56Hp5EiP1bI3E//zhpmOL/2CijTTRODFojhjUCdwlgSMqCRYs9wQhCU1t0I8RhJhbfKqmRDc5ZdXSb/dcp2We3fe6FyXcVTBMTgBTeCCC9ABt6ALegCDHDyDV/BmPVkv1rv1sWitWOVMHfyB9fkDbouT+A==</latexit><latexit sha1_base64="xKttAlzofBi5JzcUMTaGFbtf+Zs=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSxCvZSkCApeil48VrC10ISw2WzapbubsLsRQqh/xYsHRbz6Q7z5b9y2OWjrg4HHezPMzAtTRpV2nG+rsra+sblV3a7t7O7tH9iHR32VZBKTHk5YIgchUoRRQXqaakYGqSSIh4w8hJObmf/wSKSiibjXeUp8jkaCxhQjbaTArje9iDCNgqI9PfOu4JArP7AbTsuZA64StyQNUKIb2F9elOCME6ExQ0oNXSfVfoGkppiRac3LFEkRnqARGRoqECfKL+bHT+GpUSIYJ9KU0HCu/p4oEFcq56Hp5EiP1bI3E//zhpmOL/2CijTTRODFojhjUCdwlgSMqCRYs9wQhCU1t0I8RhJhbfKqmRDc5ZdXSb/dcp2We3fe6FyXcVTBMTgBTeCCC9ABt6ALegCDHDyDV/BmPVkv1rv1sWitWOVMHfyB9fkDbouT+A==</latexit>

Fig. 7.2: Inter-packet intervals for the Sen-
sor scenario. �1 is caused by packet prepa-
ration delay and transmission parameters of
802.11 standard. The di↵erence between �1
and �2 is due to sample collection delay.
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(a)
(�1)[µs]

<latexit sha1_base64="Myf5LeBvRmIUlUY8z7k1PV+gNh4=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxC3ZREBF0W3bisYB+QhDCZTNqhM5MwMxFqKP6KGxeKuPU/3Pk3TtsstPXAhcM593LvPVHGqNKO821VVlbX1jeqm7Wt7Z3dPXv/oKvSXGLSwSlLZT9CijAqSEdTzUg/kwTxiJFeNLqZ+r0HIhVNxb0eZyTgaCBoQjHSRgrto4YfE6ZRWLiTM+j5PIcqCO2603RmgMvELUkdlGiH9pcfpzjnRGjMkFKe62Q6KJDUFDMyqfm5IhnCIzQgnqECcaKCYnb9BJ4aJYZJKk0JDWfq74kCcaXGPDKdHOmhWvSm4n+el+vkKiioyHJNBJ4vSnIGdQqnUcCYSoI1GxuCsKTmVoiHSCKsTWA1E4K7+PIy6Z43Xafp3l3UW9dlHFVwDE5AA7jgErTALWiDDsDgETyDV/BmPVkv1rv1MW+tWOXMIfgD6/MHIUKUWw==</latexit><latexit sha1_base64="Myf5LeBvRmIUlUY8z7k1PV+gNh4=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxC3ZREBF0W3bisYB+QhDCZTNqhM5MwMxFqKP6KGxeKuPU/3Pk3TtsstPXAhcM593LvPVHGqNKO821VVlbX1jeqm7Wt7Z3dPXv/oKvSXGLSwSlLZT9CijAqSEdTzUg/kwTxiJFeNLqZ+r0HIhVNxb0eZyTgaCBoQjHSRgrto4YfE6ZRWLiTM+j5PIcqCO2603RmgMvELUkdlGiH9pcfpzjnRGjMkFKe62Q6KJDUFDMyqfm5IhnCIzQgnqECcaKCYnb9BJ4aJYZJKk0JDWfq74kCcaXGPDKdHOmhWvSm4n+el+vkKiioyHJNBJ4vSnIGdQqnUcCYSoI1GxuCsKTmVoiHSCKsTWA1E4K7+PIy6Z43Xafp3l3UW9dlHFVwDE5AA7jgErTALWiDDsDgETyDV/BmPVkv1rv1MW+tWOXMIfgD6/MHIUKUWw==</latexit><latexit sha1_base64="Myf5LeBvRmIUlUY8z7k1PV+gNh4=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxC3ZREBF0W3bisYB+QhDCZTNqhM5MwMxFqKP6KGxeKuPU/3Pk3TtsstPXAhcM593LvPVHGqNKO821VVlbX1jeqm7Wt7Z3dPXv/oKvSXGLSwSlLZT9CijAqSEdTzUg/kwTxiJFeNLqZ+r0HIhVNxb0eZyTgaCBoQjHSRgrto4YfE6ZRWLiTM+j5PIcqCO2603RmgMvELUkdlGiH9pcfpzjnRGjMkFKe62Q6KJDUFDMyqfm5IhnCIzQgnqECcaKCYnb9BJ4aJYZJKk0JDWfq74kCcaXGPDKdHOmhWvSm4n+el+vkKiioyHJNBJ4vSnIGdQqnUcCYSoI1GxuCsKTmVoiHSCKsTWA1E4K7+PIy6Z43Xafp3l3UW9dlHFVwDE5AA7jgErTALWiDDsDgETyDV/BmPVkv1rv1MW+tWOXMIfgD6/MHIUKUWw==</latexit><latexit sha1_base64="Myf5LeBvRmIUlUY8z7k1PV+gNh4=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxC3ZREBF0W3bisYB+QhDCZTNqhM5MwMxFqKP6KGxeKuPU/3Pk3TtsstPXAhcM593LvPVHGqNKO821VVlbX1jeqm7Wt7Z3dPXv/oKvSXGLSwSlLZT9CijAqSEdTzUg/kwTxiJFeNLqZ+r0HIhVNxb0eZyTgaCBoQjHSRgrto4YfE6ZRWLiTM+j5PIcqCO2603RmgMvELUkdlGiH9pcfpzjnRGjMkFKe62Q6KJDUFDMyqfm5IhnCIzQgnqECcaKCYnb9BJ4aJYZJKk0JDWfq74kCcaXGPDKdHOmhWvSm4n+el+vkKiioyHJNBJ4vSnIGdQqnUcCYSoI1GxuCsKTmVoiHSCKsTWA1E4K7+PIy6Z43Xafp3l3UW9dlHFVwDE5AA7jgErTALWiDDsDgETyDV/BmPVkv1rv1MW+tWOXMIfgD6/MHIUKUWw==</latexit>

(�2)[ms]
<latexit sha1_base64="VzHAFkj1END7zggMXtz3nad57wg=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZSkCHosevFYwbZCGsJmM22X7iZhd6OU2J/ixYMiXv0l3vw3btsctPXBwOO9GWbmhSlnSjvOt1VaW9/Y3CpvV3Z29/YP7OphVyWZpNChCU/kfUgUcBZDRzPN4T6VQETIoReOr2d+7wGkYkl8pycp+IIMYzZglGgjBXa13o+AaxLkzekZ9oTyA7vmNJw58CpxC1JDBdqB/dWPEpoJiDXlRCnPdVLt50RqRjlMK/1MQUromAzBMzQmApSfz0+f4lOjRHiQSFOxxnP190ROhFITEZpOQfRILXsz8T/Py/Tg0s9ZnGYaYrpYNMg41gme5YAjJoFqPjGEUMnMrZiOiCRUm7QqJgR3+eVV0m02XKfh3p7XWldFHGV0jE5QHbnoArXQDWqjDqLoET2jV/RmPVkv1rv1sWgtWcXMEfoD6/MHM4mTTQ==</latexit><latexit sha1_base64="VzHAFkj1END7zggMXtz3nad57wg=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZSkCHosevFYwbZCGsJmM22X7iZhd6OU2J/ixYMiXv0l3vw3btsctPXBwOO9GWbmhSlnSjvOt1VaW9/Y3CpvV3Z29/YP7OphVyWZpNChCU/kfUgUcBZDRzPN4T6VQETIoReOr2d+7wGkYkl8pycp+IIMYzZglGgjBXa13o+AaxLkzekZ9oTyA7vmNJw58CpxC1JDBdqB/dWPEpoJiDXlRCnPdVLt50RqRjlMK/1MQUromAzBMzQmApSfz0+f4lOjRHiQSFOxxnP190ROhFITEZpOQfRILXsz8T/Py/Tg0s9ZnGYaYrpYNMg41gme5YAjJoFqPjGEUMnMrZiOiCRUm7QqJgR3+eVV0m02XKfh3p7XWldFHGV0jE5QHbnoArXQDWqjDqLoET2jV/RmPVkv1rv1sWgtWcXMEfoD6/MHM4mTTQ==</latexit><latexit sha1_base64="VzHAFkj1END7zggMXtz3nad57wg=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZSkCHosevFYwbZCGsJmM22X7iZhd6OU2J/ixYMiXv0l3vw3btsctPXBwOO9GWbmhSlnSjvOt1VaW9/Y3CpvV3Z29/YP7OphVyWZpNChCU/kfUgUcBZDRzPN4T6VQETIoReOr2d+7wGkYkl8pycp+IIMYzZglGgjBXa13o+AaxLkzekZ9oTyA7vmNJw58CpxC1JDBdqB/dWPEpoJiDXlRCnPdVLt50RqRjlMK/1MQUromAzBMzQmApSfz0+f4lOjRHiQSFOxxnP190ROhFITEZpOQfRILXsz8T/Py/Tg0s9ZnGYaYrpYNMg41gme5YAjJoFqPjGEUMnMrZiOiCRUm7QqJgR3+eVV0m02XKfh3p7XWldFHGV0jE5QHbnoArXQDWqjDqLoET2jV/RmPVkv1rv1sWgtWcXMEfoD6/MHM4mTTQ==</latexit><latexit sha1_base64="VzHAFkj1END7zggMXtz3nad57wg=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZSkCHosevFYwbZCGsJmM22X7iZhd6OU2J/ixYMiXv0l3vw3btsctPXBwOO9GWbmhSlnSjvOt1VaW9/Y3CpvV3Z29/YP7OphVyWZpNChCU/kfUgUcBZDRzPN4T6VQETIoReOr2d+7wGkYkl8pycp+IIMYzZglGgjBXa13o+AaxLkzekZ9oTyA7vmNJw58CpxC1JDBdqB/dWPEpoJiDXlRCnPdVLt50RqRjlMK/1MQUromAzBMzQmApSfz0+f4lOjRHiQSFOxxnP190ROhFITEZpOQfRILXsz8T/Py/Tg0s9ZnGYaYrpYNMg41gme5YAjJoFqPjGEUMnMrZiOiCRUm7QqJgR3+eVV0m02XKfh3p7XWldFHGV0jE5QHbnoArXQDWqjDqLoET2jV/RmPVkv1rv1sWgtWcXMEfoD6/MHM4mTTQ==</latexit>

Fig. 7.3: Inter-packet intervals for
the Camera scenario. �2 is about
33 ms, corresponding to 30 fps.

Figures 7.2(a) and (b), the interval between micro-bursts is a↵ected by sample collection

delay. Specifically, this delay is caused by the communication between the processor and

ADC over the Serial Peripheral Interface (SPI) to collect samples [126]. Therefore, �2

would increase if a higher number of samples must be collected per round.

Figure 7.3 shows the inter-burst intervals for the Camera scenario. Each micro-

burst constitutes multiple packets. The camera captures a frame and then prepares

multiple packets to send the frame. The amount of data in each frame depends on

the resolution of the video stream requested (e.g., 480p, 720p, 1080p). As we see in

Figure 7.3(b), the interval between micro-bursts (�2) is about 33 ms, which corresponds

to 30 fps. Figure 7.4 shows the results for video streaming scenario. The mean interval

between macro-bursts (�3) is 10 seconds, the mean interval between micro-bursts (�2) is

2 ms, and the mean interval between packets of a micro-burst (�1) is 9 µs.

These studies demonstrate the intervals between packets in a micro-burst, the

intervals between micro-bursts, and the interval between macro-bursts. Characterizing

these delays is essential for three purposes: (i) allocating TWT service periods based

on each STA’s demands, (ii) utilizing inter-packet intervals by other STAs to enhance
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Inter-packet Interval

(a)

Inter-burst Interval

(b)
(�2) [ms]

<latexit sha1_base64="xKttAlzofBi5JzcUMTaGFbtf+Zs=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSxCvZSkCApeil48VrC10ISw2WzapbubsLsRQqh/xYsHRbz6Q7z5b9y2OWjrg4HHezPMzAtTRpV2nG+rsra+sblV3a7t7O7tH9iHR32VZBKTHk5YIgchUoRRQXqaakYGqSSIh4w8hJObmf/wSKSiibjXeUp8jkaCxhQjbaTArje9iDCNgqI9PfOu4JArP7AbTsuZA64StyQNUKIb2F9elOCME6ExQ0oNXSfVfoGkppiRac3LFEkRnqARGRoqECfKL+bHT+GpUSIYJ9KU0HCu/p4oEFcq56Hp5EiP1bI3E//zhpmOL/2CijTTRODFojhjUCdwlgSMqCRYs9wQhCU1t0I8RhJhbfKqmRDc5ZdXSb/dcp2We3fe6FyXcVTBMTgBTeCCC9ABt6ALegCDHDyDV/BmPVkv1rv1sWitWOVMHfyB9fkDbouT+A==</latexit><latexit sha1_base64="xKttAlzofBi5JzcUMTaGFbtf+Zs=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSxCvZSkCApeil48VrC10ISw2WzapbubsLsRQqh/xYsHRbz6Q7z5b9y2OWjrg4HHezPMzAtTRpV2nG+rsra+sblV3a7t7O7tH9iHR32VZBKTHk5YIgchUoRRQXqaakYGqSSIh4w8hJObmf/wSKSiibjXeUp8jkaCxhQjbaTArje9iDCNgqI9PfOu4JArP7AbTsuZA64StyQNUKIb2F9elOCME6ExQ0oNXSfVfoGkppiRac3LFEkRnqARGRoqECfKL+bHT+GpUSIYJ9KU0HCu/p4oEFcq56Hp5EiP1bI3E//zhpmOL/2CijTTRODFojhjUCdwlgSMqCRYs9wQhCU1t0I8RhJhbfKqmRDc5ZdXSb/dcp2We3fe6FyXcVTBMTgBTeCCC9ABt6ALegCDHDyDV/BmPVkv1rv1sWitWOVMHfyB9fkDbouT+A==</latexit><latexit sha1_base64="xKttAlzofBi5JzcUMTaGFbtf+Zs=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSxCvZSkCApeil48VrC10ISw2WzapbubsLsRQqh/xYsHRbz6Q7z5b9y2OWjrg4HHezPMzAtTRpV2nG+rsra+sblV3a7t7O7tH9iHR32VZBKTHk5YIgchUoRRQXqaakYGqSSIh4w8hJObmf/wSKSiibjXeUp8jkaCxhQjbaTArje9iDCNgqI9PfOu4JArP7AbTsuZA64StyQNUKIb2F9elOCME6ExQ0oNXSfVfoGkppiRac3LFEkRnqARGRoqECfKL+bHT+GpUSIYJ9KU0HCu/p4oEFcq56Hp5EiP1bI3E//zhpmOL/2CijTTRODFojhjUCdwlgSMqCRYs9wQhCU1t0I8RhJhbfKqmRDc5ZdXSb/dcp2We3fe6FyXcVTBMTgBTeCCC9ABt6ALegCDHDyDV/BmPVkv1rv1sWitWOVMHfyB9fkDbouT+A==</latexit><latexit sha1_base64="xKttAlzofBi5JzcUMTaGFbtf+Zs=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSxCvZSkCApeil48VrC10ISw2WzapbubsLsRQqh/xYsHRbz6Q7z5b9y2OWjrg4HHezPMzAtTRpV2nG+rsra+sblV3a7t7O7tH9iHR32VZBKTHk5YIgchUoRRQXqaakYGqSSIh4w8hJObmf/wSKSiibjXeUp8jkaCxhQjbaTArje9iDCNgqI9PfOu4JArP7AbTsuZA64StyQNUKIb2F9elOCME6ExQ0oNXSfVfoGkppiRac3LFEkRnqARGRoqECfKL+bHT+GpUSIYJ9KU0HCu/p4oEFcq56Hp5EiP1bI3E//zhpmOL/2CijTTRODFojhjUCdwlgSMqCRYs9wQhCU1t0I8RhJhbfKqmRDc5ZdXSb/dcp2We3fe6FyXcVTBMTgBTeCCC9ABt6ALegCDHDyDV/BmPVkv1rv1sWitWOVMHfyB9fkDbouT+A==</latexit>

Inter-burst Interval

(c)
(�1) [µs]

<latexit sha1_base64="7xdbvSqzX/MCCo+SQCCL5fKcg4o=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSxC3ZREBAU3RTcuK9gHJCFMJpN26MwkzEyEErvwV9y4UMStv+HOv3HaZqGtBy4czrmXe++JMkaVdpxva2l5ZXVtvbJR3dza3tm19/Y7Ks0lJm2cslT2IqQIo4K0NdWM9DJJEI8Y6UbDm4nffSBS0VTc61FGAo76giYUI22k0D6s+zFhGoWFOz71r6Dn8xyqILRrTsOZAi4StyQ1UKIV2l9+nOKcE6ExQ0p5rpPpoEBSU8zIuOrnimQID1GfeIYKxIkKiun9Y3hilBgmqTQlNJyqvycKxJUa8ch0cqQHat6biP95Xq6Ty6CgIss1EXi2KMkZ1CmchAFjKgnWbGQIwpKaWyEeIImwNpFVTQju/MuLpHPWcJ2Ge3dea16XcVTAETgGdeCCC9AEt6AF2gCDR/AMXsGb9WS9WO/Wx6x1ySpnDsAfWJ8/XhOVBg==</latexit><latexit sha1_base64="7xdbvSqzX/MCCo+SQCCL5fKcg4o=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSxC3ZREBAU3RTcuK9gHJCFMJpN26MwkzEyEErvwV9y4UMStv+HOv3HaZqGtBy4czrmXe++JMkaVdpxva2l5ZXVtvbJR3dza3tm19/Y7Ks0lJm2cslT2IqQIo4K0NdWM9DJJEI8Y6UbDm4nffSBS0VTc61FGAo76giYUI22k0D6s+zFhGoWFOz71r6Dn8xyqILRrTsOZAi4StyQ1UKIV2l9+nOKcE6ExQ0p5rpPpoEBSU8zIuOrnimQID1GfeIYKxIkKiun9Y3hilBgmqTQlNJyqvycKxJUa8ch0cqQHat6biP95Xq6Ty6CgIss1EXi2KMkZ1CmchAFjKgnWbGQIwpKaWyEeIImwNpFVTQju/MuLpHPWcJ2Ge3dea16XcVTAETgGdeCCC9AEt6AF2gCDR/AMXsGb9WS9WO/Wx6x1ySpnDsAfWJ8/XhOVBg==</latexit><latexit sha1_base64="7xdbvSqzX/MCCo+SQCCL5fKcg4o=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSxC3ZREBAU3RTcuK9gHJCFMJpN26MwkzEyEErvwV9y4UMStv+HOv3HaZqGtBy4czrmXe++JMkaVdpxva2l5ZXVtvbJR3dza3tm19/Y7Ks0lJm2cslT2IqQIo4K0NdWM9DJJEI8Y6UbDm4nffSBS0VTc61FGAo76giYUI22k0D6s+zFhGoWFOz71r6Dn8xyqILRrTsOZAi4StyQ1UKIV2l9+nOKcE6ExQ0p5rpPpoEBSU8zIuOrnimQID1GfeIYKxIkKiun9Y3hilBgmqTQlNJyqvycKxJUa8ch0cqQHat6biP95Xq6Ty6CgIss1EXi2KMkZ1CmchAFjKgnWbGQIwpKaWyEeIImwNpFVTQju/MuLpHPWcJ2Ge3dea16XcVTAETgGdeCCC9AEt6AF2gCDR/AMXsGb9WS9WO/Wx6x1ySpnDsAfWJ8/XhOVBg==</latexit><latexit sha1_base64="7xdbvSqzX/MCCo+SQCCL5fKcg4o=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GSxC3ZREBAU3RTcuK9gHJCFMJpN26MwkzEyEErvwV9y4UMStv+HOv3HaZqGtBy4czrmXe++JMkaVdpxva2l5ZXVtvbJR3dza3tm19/Y7Ks0lJm2cslT2IqQIo4K0NdWM9DJJEI8Y6UbDm4nffSBS0VTc61FGAo76giYUI22k0D6s+zFhGoWFOz71r6Dn8xyqILRrTsOZAi4StyQ1UKIV2l9+nOKcE6ExQ0p5rpPpoEBSU8zIuOrnimQID1GfeIYKxIkKiun9Y3hilBgmqTQlNJyqvycKxJUa8ch0cqQHat6biP95Xq6Ty6CgIss1EXi2KMkZ1CmchAFjKgnWbGQIwpKaWyEeIImwNpFVTQju/MuLpHPWcJ2Ge3dea16XcVTAETgGdeCCC9AEt6AF2gCDR/AMXsGb9WS9WO/Wx6x1ySpnDsAfWJ8/XhOVBg==</latexit>

(�3) [s]
<latexit sha1_base64="yOXpGPA15dboPGPJ1Qom9K1U4p8=">AAAB+3icbVDLSsNAFJ34rPVV69LNYBHqpiQqKLgpunFZwT4gCWEyuWmHTh7MTMQS8ituXCji1h9x5984bbPQ1gMXDufcy733+ClnUpnmt7Gyura+sVnZqm7v7O7t1w7qPZlkgkKXJjwRA59I4CyGrmKKwyAVQCKfQ98f3079/iMIyZL4QU1ScCMyjFnIKFFa8mr1phMAV8TLz4tT5xrb0vVqDbNlzoCXiVWSBirR8WpfTpDQLIJYUU6ktC0zVW5OhGKUQ1F1MgkpoWMyBFvTmEQg3Xx2e4FPtBLgMBG6YoVn6u+JnERSTiJfd0ZEjeSiNxX/8+xMhVduzuI0UxDT+aIw41gleBoEDpgAqvhEE0IF07diOiKCUKXjquoQrMWXl0nvrGWZLev+otG+KeOooCN0jJrIQpeoje5QB3URRU/oGb2iN6MwXox342PeumKUM4foD4zPH5+Dk4I=</latexit><latexit sha1_base64="yOXpGPA15dboPGPJ1Qom9K1U4p8=">AAAB+3icbVDLSsNAFJ34rPVV69LNYBHqpiQqKLgpunFZwT4gCWEyuWmHTh7MTMQS8ituXCji1h9x5984bbPQ1gMXDufcy733+ClnUpnmt7Gyura+sVnZqm7v7O7t1w7qPZlkgkKXJjwRA59I4CyGrmKKwyAVQCKfQ98f3079/iMIyZL4QU1ScCMyjFnIKFFa8mr1phMAV8TLz4tT5xrb0vVqDbNlzoCXiVWSBirR8WpfTpDQLIJYUU6ktC0zVW5OhGKUQ1F1MgkpoWMyBFvTmEQg3Xx2e4FPtBLgMBG6YoVn6u+JnERSTiJfd0ZEjeSiNxX/8+xMhVduzuI0UxDT+aIw41gleBoEDpgAqvhEE0IF07diOiKCUKXjquoQrMWXl0nvrGWZLev+otG+KeOooCN0jJrIQpeoje5QB3URRU/oGb2iN6MwXox342PeumKUM4foD4zPH5+Dk4I=</latexit><latexit sha1_base64="yOXpGPA15dboPGPJ1Qom9K1U4p8=">AAAB+3icbVDLSsNAFJ34rPVV69LNYBHqpiQqKLgpunFZwT4gCWEyuWmHTh7MTMQS8ituXCji1h9x5984bbPQ1gMXDufcy733+ClnUpnmt7Gyura+sVnZqm7v7O7t1w7qPZlkgkKXJjwRA59I4CyGrmKKwyAVQCKfQ98f3079/iMIyZL4QU1ScCMyjFnIKFFa8mr1phMAV8TLz4tT5xrb0vVqDbNlzoCXiVWSBirR8WpfTpDQLIJYUU6ktC0zVW5OhGKUQ1F1MgkpoWMyBFvTmEQg3Xx2e4FPtBLgMBG6YoVn6u+JnERSTiJfd0ZEjeSiNxX/8+xMhVduzuI0UxDT+aIw41gleBoEDpgAqvhEE0IF07diOiKCUKXjquoQrMWXl0nvrGWZLev+otG+KeOooCN0jJrIQpeoje5QB3URRU/oGb2iN6MwXox342PeumKUM4foD4zPH5+Dk4I=</latexit><latexit sha1_base64="yOXpGPA15dboPGPJ1Qom9K1U4p8=">AAAB+3icbVDLSsNAFJ34rPVV69LNYBHqpiQqKLgpunFZwT4gCWEyuWmHTh7MTMQS8ituXCji1h9x5984bbPQ1gMXDufcy733+ClnUpnmt7Gyura+sVnZqm7v7O7t1w7qPZlkgkKXJjwRA59I4CyGrmKKwyAVQCKfQ98f3079/iMIyZL4QU1ScCMyjFnIKFFa8mr1phMAV8TLz4tT5xrb0vVqDbNlzoCXiVWSBirR8WpfTpDQLIJYUU6ktC0zVW5OhGKUQ1F1MgkpoWMyBFvTmEQg3Xx2e4FPtBLgMBG6YoVn6u+JnERSTiJfd0ZEjeSiNxX/8+xMhVduzuI0UxDT+aIw41gleBoEDpgAqvhEE0IF07diOiKCUKXjquoQrMWXl0nvrGWZLev+otG+KeOooCN0jJrIQpeoje5QB3URRU/oGb2iN6MwXox342PeumKUM4foD4zPH5+Dk4I=</latexit>

Fig. 7.4: Inter-packet intervals for the Video Streaming scenario.

Fig. 7.5: Packets per second with respect di↵erent MCS values

throughput, and (iii) enhancing packet aggregation performance, which results in shorter

communication delays and higher energy e�ciency.

For example, suppose a TWT service period ends before sending all the packets

of a micro-burst. In this case, the STA either needs to wait until the next TWT service

period (causing communication delay) or contend with other STAs for channel access

(lower energy e�ciency).

To confirm the feasibility of utilizing inter-packet intervals within a micro-burst

by other STAs, we measure the actual packet (1500 bytes) transmission rate in an

802.11ax testbed.

As Figure 7.5 shows, with MCS 5, a STA can send about 24000 packets/second,

which means the duration of each packet is around 41 µs. Therefore, in most of the
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aforementioned cases, one or more STAs can utilize inter-packet and inter-burst inter-

vals.

7.3 Tra�c Characterization via Channel Utilization, BSR,

and Packet Sni�ng

In this section, we study the shortcomings of the three available and most-widely

used tra�c characterization methods.

7.3.1 Channel Utilization (CU)

CU is defined as tactivity/ttotal, where tactivity is the time duration the NIC has

sensed signal power higher than a pre-specified threshold value during time duration

toverall. CU values can be collected from the driver via various methods such as the

‘proc’ file system (procfs) in Linux. However, since the information provided by CU is

cumulative, it cannot be used to characterize per-STA tra�c patterns.

7.3.2 Packet Sni�ng

Several real-world deployments and COTS enterprise APs utilize an external

NIC operating as a sni↵er to monitor the tra�c patterns of STAs [36]. Since each AP

acts as the central point of communication for all the tra�c to and from the STAs,

collecting an AP’s driver logs can also be utilized for determining the tra�c pattern of

STAs.

The shortcomings of this approach are as follows. First, in addition to requiring

extra hardware (e.g., additional NIC), the sni↵ed packets must be processed by the AP’s
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operating system and user application; thereby increasing processing overhead. Second,

any inconsistency between the hardware and antenna configurations of the AP’s primary

NIC and those of the sni↵er results in a mismatch between the sni↵ed packets and those

exchanged by the AP’s primary radio [127]. Third, and even more importantly, the

timestamps of sni↵ed packets do not represent the actual packet generation instances

by STAs. This is due to factors such as channel access contention delay, internal prior-

itization of packets belonging to di↵erent ACs, and packet preparation delay. We will

further analyze this method in Section 7.4.

7.3.3 Bu↵er Status Report (BSR)

In the 802.11ac standard, the Queue Size (QS) sub-field, contained inside the

QoS Control field, reports the total data queued in the STA’s queues. The AP primarily

utilizes this information to allocate TXOP to each STA. BSR is a new functionality

recently introduced in the 802.11ax standard to enhance the exchange of information

on the transmission bu↵er size of STAs. For example, compared to the QS field, BSR

provides more specific information, such as the Queue size of the highest-priority AC.

The Queue Size All (QSA) field of BSR conveys the cumulative amount of data in all

queues.

In this section, we reveal the challenges of using BSR for tra�c characterization.

First, the 802.11ax standard does not mandate the inclusion of queue statistics in each

packet. To verify this, we have selected several COTS 802.11ax NICs and noticed

that Intel AX200 and Realtek RTL8852A transmit BSR intermittently, based on the

amount of tra�c queued. In contrast, Compex WLT639 includes a BSR in every packet.

Additionally, none of the APs and STAs we evaluated support requesting or generating

BSR manually.
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<latexit sha1_base64="GLxVPqA+mdnRi4r09e74KEtnpDc=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBhZREirqs6MKNUMG0hTaUyXTSDp08mJmIJeRX3LhQxK0/4s6/cZpmoa0HBg7n3Ms9c7yYM6ks69sorayurW+UNytb2zu7e+Z+tS2jRBDqkIhHouthSTkLqaOY4rQbC4oDj9OON7me+Z1HKiSLwgc1jakb4FHIfEaw0tLArPYDrMbST6/uWjfOILWzbGDWrLqVAy0TuyA1KNAamF/9YUSSgIaKcCxlz7Zi5aZYKEY4zSr9RNIYkwke0Z6mIQ6odNM8e4aOtTJEfiT0CxXK1d8bKQ6knAaensyTLnoz8T+vlyj/0k1ZGCeKhmR+yE84UhGaFYGGTFCi+FQTTATTWREZY4GJ0nVVdAn24peXSfusbp/XG/eNWvO0qKMMh3AEJ2DDBTThFlrgAIEneIZXeDMy48V4Nz7moyWj2DmAPzA+fwCwx5Qo</latexit>

AMPDU1
<latexit sha1_base64="QtsvpiMaPvwxZkL3VeJxbt9ThRY=">AAAB+3icbVBNS8NAFHzxs9avWI9egkXwICUpRT1W9OBFqGDaQhvKZrtpl242YXcjlpC/4sWDIl79I978N27THLR1YGGYeY83O37MqFS2/W2srK6tb2yWtsrbO7t7++ZBpS2jRGDi4ohFousjSRjlxFVUMdKNBUGhz0jHn1zP/M4jEZJG/EFNY+KFaMRpQDFSWhqYlX6I1FgG6dVd68YdpPUsG5hVu2bnsJaJU5AqFGgNzK/+MMJJSLjCDEnZc+xYeSkSimJGsnI/kSRGeIJGpKcpRyGRXppnz6wTrQytIBL6cWXl6u+NFIVSTkNfT+ZJF72Z+J/XS1Rw6aWUx4kiHM8PBQmzVGTNirCGVBCs2FQThAXVWS08RgJhpesq6xKcxS8vk3a95pzXGveNavOsqKMER3AMp+DABTThFlrgAoYneIZXeDMy48V4Nz7moytGsXMIf2B8/gCyTZQp</latexit>

AMPDU2
<latexit sha1_base64="chqCyWMZuKGWAuW0GdzkrrrK80M=">AAAB+3icbVBNS8NAFHzxs9avWI9egkXwICXRoh4revAiVDBtoQ1ls920SzebsLsRS8hf8eJBEa/+EW/+G7dpDto6sDDMvMebHT9mVCrb/jaWlldW19ZLG+XNre2dXXOv0pJRIjBxccQi0fGRJIxy4iqqGOnEgqDQZ6Ttj6+nfvuRCEkj/qAmMfFCNOQ0oBgpLfXNSi9EaiSD9OqueeP207Ms65tVu2bnsBaJU5AqFGj2za/eIMJJSLjCDEnZdexYeSkSimJGsnIvkSRGeIyGpKspRyGRXppnz6wjrQysIBL6cWXl6u+NFIVSTkJfT+ZJ572p+J/XTVRw6aWUx4kiHM8OBQmzVGRNi7AGVBCs2EQThAXVWS08QgJhpesq6xKc+S8vktZpzTmv1e/r1cZJUUcJDuAQjsGBC2jALTTBBQxP8Ayv8GZkxovxbnzMRpeMYmcf/sD4/AGz05Qq</latexit>

AMPDU3
<latexit sha1_base64="ltH+yMQjXH4SyeMdqUFTzU+hw0E=">AAAB+3icbVBNS8NAFHypX7V+xXr0EiyCBymJFPVY0YMXoYJpC20om+2mXbrZhN2NWEL+ihcPinj1j3jz37hNc9DWgYVh5j3e7Pgxo1LZ9rdRWlldW98ob1a2tnd298z9altGicDExRGLRNdHkjDKiauoYqQbC4JCn5GOP7me+Z1HIiSN+IOaxsQL0YjTgGKktDQwq/0QqbEM0qu71o07SBtZNjBrdt3OYS0TpyA1KNAamF/9YYSTkHCFGZKy59ix8lIkFMWMZJV+IkmM8ASNSE9TjkIivTTPnlnHWhlaQST048rK1d8bKQqlnIa+nsyTLnoz8T+vl6jg0kspjxNFOJ4fChJmqciaFWENqSBYsakmCAuqs1p4jATCStdV0SU4i19eJu2zunNeb9w3as3Too4yHMIRnIADF9CEW2iBCxie4Ble4c3IjBfj3fiYj5aMYucA/sD4/AG1WZQr</latexit>

AMPDU4

<latexit sha1_base64="bVs1pBNxIhnJcESV2F7pNzn4YTE=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4kJJIfSwrunAjVDBtoQ1lMp20QycPZiZiCfkVNy4UceuPuPNvnKZZaOuBgcM593LPHC/mTCrL+jaWlldW19ZLG+XNre2dXXOv0pJRIgh1SMQj0fGwpJyF1FFMcdqJBcWBx2nbG19P/fYjFZJF4YOaxNQN8DBkPiNYaalvVnoBViPpp1d3zRunn55lWd+sWjUrB1okdkGqUKDZN796g4gkAQ0V4VjKrm3Fyk2xUIxwmpV7iaQxJmM8pF1NQxxQ6aZ59gwdaWWA/EjoFyqUq783UhxIOQk8PZknnfem4n9eN1H+pZuyME4UDcnskJ9wpCI0LQINmKBE8YkmmAimsyIywgITpesq6xLs+S8vktZpzT6v1e/r1cZJUUcJDuAQjsGGC2jALTTBAQJP8Ayv8GZkxovxbnzMRpeMYmcf/sD4/AG235Qs</latexit>

AMPDU5
<latexit sha1_base64="rtuTyPeVJiRp3Z80DZjpn2ltr3U=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4kJJIqS4runAjVDBtoQ1lMp20QycPZiZiCfkVNy4UceuPuPNvnKZZaOuBgcM593LPHC/mTCrL+jZWVtfWNzZLW+Xtnd29ffOg0pZRIgh1SMQj0fWwpJyF1FFMcdqNBcWBx2nHm1zP/M4jFZJF4YOaxtQN8ChkPiNYaWlgVvoBVmPpp1d3rRtnkDaybGBWrZqVAy0TuyBVKNAamF/9YUSSgIaKcCxlz7Zi5aZYKEY4zcr9RNIYkwke0Z6mIQ6odNM8e4ZOtDJEfiT0CxXK1d8bKQ6knAaensyTLnoz8T+vlyj/0k1ZGCeKhmR+yE84UhGaFYGGTFCi+FQTTATTWREZY4GJ0nWVdQn24peXSfu8Zjdq9ft6tXlW1FGCIziGU7DhAppwCy1wgMATPMMrvBmZ8WK8Gx/z0RWj2DmEPzA+fwC4ZZQt</latexit>

AMPDU6
<latexit sha1_base64="iO31VF2vrp8FlTi0oLiJyUFMzio=">AAAB+3icbVBNS8NAFHzxs9avWI9egkXwICWRYj1W9OBFqGDaQhvKZrtpl242YXcjlpC/4sWDIl79I978N27THLR1YGGYeY83O37MqFS2/W2srK6tb2yWtsrbO7t7++ZBpS2jRGDi4ohFousjSRjlxFVUMdKNBUGhz0jHn1zP/M4jEZJG/EFNY+KFaMRpQDFSWhqYlX6I1FgG6dVd68YdpI0sG5hVu2bnsJaJU5AqFGgNzK/+MMJJSLjCDEnZc+xYeSkSimJGsnI/kSRGeIJGpKcpRyGRXppnz6wTrQytIBL6cWXl6u+NFIVSTkNfT+ZJF72Z+J/XS1Rw6aWUx4kiHM8PBQmzVGTNirCGVBCs2FQThAXVWS08RgJhpesq6xKcxS8vk/Z5zbmo1e/r1eZZUUcJjuAYTsGBBjThFlrgAoYneIZXeDMy48V4Nz7moytGsXMIf2B8/gC565Qu</latexit>

AMPDU7
<latexit sha1_base64="GP9XVAIWA30w9VpHsDzGHb7ROfY=">AAAB+3icbVBNS8NAFHzxs9avWI9egkXwICWRoj1W9OBFqGDaQhvKZrtpl242YXcjlpC/4sWDIl79I978N27THLR1YGGYeY83O37MqFS2/W2srK6tb2yWtsrbO7t7++ZBpS2jRGDi4ohFousjSRjlxFVUMdKNBUGhz0jHn1zP/M4jEZJG/EFNY+KFaMRpQDFSWhqYlX6I1FgG6dVd68YdpI0sG5hVu2bnsJaJU5AqFGgNzK/+MMJJSLjCDEnZc+xYeSkSimJGsnI/kSRGeIJGpKcpRyGRXppnz6wTrQytIBL6cWXl6u+NFIVSTkNfT+ZJF72Z+J/XS1TQ8FLK40QRjueHgoRZKrJmRVhDKghWbKoJwoLqrBYeI4Gw0nWVdQnO4peXSfu85lzU6vf1avOsqKMER3AMp+DAJTThFlrgAoYneIZXeDMy48V4Nz7moytGsXMIf2B8/gC7cZQv</latexit>

AMPDU8
<latexit sha1_base64="Zwg66WzH5NvPnmnlzSX/fjfWB6E=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4kJJI8bGr6MKNUMG0hTaUyXTSDp08mJmIJeRX3LhQxK0/4s6/cZpmoa0HBg7n3Ms9c7yYM6ks69tYWl5ZXVsvbZQ3t7Z3ds29SktGiSDUIRGPRMfDknIWUkcxxWknFhQHHqdtb3w99duPVEgWhQ9qElM3wMOQ+YxgpaW+WekFWI2kn17dNW+cfnqZZX2zatWsHGiR2AWpQoFm3/zqDSKSBDRUhGMpu7YVKzfFQjHCaVbuJZLGmIzxkHY1DXFApZvm2TN0pJUB8iOhX6hQrv7eSHEg5STw9GSedN6biv953UT5F27KwjhRNCSzQ37CkYrQtAg0YIISxSeaYCKYzorICAtMlK6rrEuw57+8SFqnNfusVr+vVxsnRR0lOIBDOAYbzqEBt9AEBwg8wTO8wpuRGS/Gu/ExG10yip19+APj8we895Qw</latexit>

AMPDU9
<latexit sha1_base64="4Pb6IcBxS4IpkDXjXLQ/We9m7uQ=">AAAB/HicbVDNSsNAGNzUv1r/oj16WSyCBymJFPVY0YMXoYJpC20Im+2mXbrZhN2NEEJ8FS8eFPHqg3jzbdymOWjrwMIw8318s+PHjEplWd9GZWV1bX2julnb2t7Z3TP3D7oySgQmDo5YJPo+koRRThxFFSP9WBAU+oz0/On1zO89EiFpxB9UGhM3RGNOA4qR0pJn1ochUhMZZFd3nRvHy2wrzz2zYTWtAnCZ2CVpgBIdz/wajiKchIQrzJCUA9uKlZshoShmJK8NE0lihKdoTAaachQS6WZF+Bwea2UEg0joxxUs1N8bGQqlTENfTxZRF72Z+J83SFRw6WaUx4kiHM8PBQmDKoKzJuCICoIVSzVBWFCdFeIJEggr3VdNl2AvfnmZdM+a9nmzdd9qtE/LOqrgEByBE2CDC9AGt6ADHIBBCp7BK3gznowX4934mI9WjHKnDv7A+PwBJPeUYg==</latexit>
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Fig. 7.6: Tra�c characteristics and BSR values for a flow with increasing burst size.
The blue squares denote the number of packets in the succeeding A-MPDU, and the
red curve represents BSR’s QSA field of packets received by the AP. The results show
that the reported bu↵er size is fixed for all the MPDUs inside an A-MPDU.

Secondly, by empirical analysis of packet exchange traces, we observed that for

those 802.11ax devices that include BSR in each packet, all the MPDUs included in

an A-MPDU report the same value even though the payloads they are carrying have

been generated at di↵erent time instances. The reported value is the state of queues

before the transmission of A-MPDU. To demonstrate this behavior, we captured BSR

values by a STA using Compex WLT639. Also, to generate various A-MPDU sizes,

we gradually increase the amount of data pushed by the application to the transport

layer socket. Figure 7.6 shows the number of packets per A-MPDU (left y-axis) and

the QSA values in BSR (right y-axis). The squares denote the number of MPDUs in

the succeeding A-MPDU, and red curve denotes QSA value reported by each incoming

packet. As the results show, the BSR value reported per A-MPDU is fixed and reports

the amount of data in the driver’s bu↵er plus the size of A-MPDU being sent. In gen-

eral, assume the QSA (denoted as Q) values are received at time instances tn and tn+1

from a STA. The amount of tra�c generation during this interval can be represented as:

Qtn+1 � Qtn +
P

[tn,tn+1)
ptx, where Qtn+1 and Qtn represent the received BSR values at

time tn+1 and tn, respectively, and
P

[tn,tn+1)
ptx is the sum of the size of packets trans-

mitted by the STA during time interval [tn, tn+1), which excludes the packet received at
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tn+1. In summary, the BSR approach neither provides the actual data generation time

instances nor provides real-time snapshots of driver’s queue sizes.

Since BSR does not provide any timing information, we augment it as follows

to estimate packet generation time instances. We refer to this method as BSR0 and

evaluate it in Section 7.4.3. Assume the BSR values received from two packets at time

instances tn and tn+1 are Qtn and Qtn+1 . If Qtn+1 > Qtn , we estimate inter-packet

generation instances during interval tn+1 to tn as (tn+1 � tn)/((Qtn+1 �Qtn)/ptx), where

ptx is the packet size. If Qtn+1 < Qtn , we use the time instance of sni↵ed packets.

7.4 Source-assisted Tra�c Characterization

In this section, we propose a method named Source-assisted Tra�c Character-

ization (SATRAC) and evaluate it in terms of tra�c characterization accuracy and its

e↵ect on TWT allocation.

7.4.1 Design and Implementation

The basic idea of SATRAC is that, if we keep track of packet generation time

instances in each STA, the AP can construct the tra�c pattern of the STA, regardless

of the e↵ect of packet preparation delay, channel access contention, interference, and

packet loss. To this end, we require each STA to modify packets in their protocol stack’s

data-path and add timing information—an approach similar to INT. In order to reduce

packet overhead, instead of including an absolute timestamp in each packet, we include

only a 2-byte value encoding the di↵erence between the generation time of the current

packet and the previous packet of the same flow. To this end, the STA computes a unique

5-tuple hash value for each flow and keeps track of the timestamp of the last generated
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packet. In this chapter, to simplify compatibility with existing implementations, we

chose the TCP header’s Options field to include timing information. Alternatively, for

non-TCP tra�c, the timing information can be added to the IP header’s Options field.

In order to add timing information to packets, we consider two approaches, as

follows.

7.4.1.1 Packet Modification in the MAC or NIC

As explained in Section 7.2, packet preparation increases inter-packet delay. To

capture packet processing delay, we need to add timing information to each packet when

it is ready to be sent; therefore, we need to add the timing information when the packet

arrives in the NIC. However, since modifying NIC’s firmware is infeasible, the alternative

is to add timing information when MAC processing completes and add driver-to-NIC

hando↵ delay as a constant value to this delay. The challenge with this approach is that

any modification to the TCP header requires recalculation of TCP checksum and MAC

checksum, and any changes to the IP header requires MAC checksum recalculation; in

both cases, packet preparation overhead is unnecessarily increased.

7.4.1.2 Packet Modification in the TCP Layer

To eliminate the need for checksum recalculation, we add timing information

in the TCP layer when the TCP protocol prepares the TCP header. To account for

packet preparation delay, we add the delays caused by the IP layer, MAC layer, and

driver-to-NIC hando↵ to the timing information.

A straightforward approach to modifying the TCP Options field on Linux sys-

tems is to use setsockopt; however, only a specific set of options can be modified with

this API. An alternative is to craft a raw packet with appropriate TCP Options fields
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hardcoded; nevertheless, this method requires modifying the applications. Instead of

these two approaches, we leverage eBPF and build an application-agnostic middleware

for setting the TCP Options field (note that this approach can be used for setting the

IP Options field as well). This eBPF module can easily be executed from the user-space

on each STA to embed the timing information without any modifications to the kernel’s

code-base. Also, this approach eliminates the need to modify applications, as it acts

as a shim layer between applications and the transport layer. eBPF enables real-time

patching of the Linux kernel by allowing users to insert user-defined logic (programs)

into the kernel. eBPF programs are associated with hook points that are triggered on

the execution of either a syscall or a kernel function. We use BPF_PROG_TYPE_SOCK_OPS

program type that allows the modification of socket options on a per-packet basis. When

an event, such as sendmsg call, TCP connection, or TCP retransmit timeout occurs,

bpf_sock_ops structure is returned, which provides the context of the event along with

the “op” field identifying the source of the event. We hook our eBPF program to the

tcp_write_options function, which is responsible for adding the TCP Options field.

For measuring packet preparation delay, similarly, we use eBPF hooks in the TCP and

MAC layer. For driver-to-NIC delay, the driver is modified to measure the duration of

Direct Memory Access (DMA) transactions.

Since APs usually run Linux, a similar eBPF program extracts and parses the

values included in TCP Options field of packets received from STAs to characterize

uplink tra�c. For characterizing downlink tra�c, the same AP module keeps track of

the packet arrival instances on the AP’s wired NIC for each STA. In this chapter, we

primarily address characterizing uplink tra�c though.

The implementation of SATRAC on RTOS-based STAs depends on their pro-

tocol stack used. On a platform using ThreadX with NetXDuo stack, we simply added

timers to the TCP and driver codes to measure packet preparation delay. Also, to
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embed the timing information in TCP Options field, we modified the TCP code.

7.4.2 Analytical Comparison

Figure 7.7 presents a simple scenario. Row (a) shows that at each time instance

t1, t2, t3 and t4, the application generates  bytes. The interval between data generation

instances is denoted as �. Row (b) shows that each  -byte message is segmented into

three packets. The interval between these packet generations, denoted as �1, depends on

packet preparation delay. The third (c) and fourth rows (d) present the actual packet

transmission instances (note that the time instances are similar).

When using BSR (row (c)), the STA includes in each packet the amount of data

in the bu↵er. For example, the packet generated at time t1 is transmitted at time t2,1,

and this packet indicates only the bu↵er size at the beginning of packet transmission

(2 ). Since the packet does not convey packet generation time, this data could have

been generated any time during the time interval between the transmission of this packet

and the previous packet. Additionally, if the four packets transmitted sequentially at

time instance t3,1 are aggregated as an A-MPDU, all these four packets report value 2 

(as explained in Section 7.3.3), further a↵ecting the accuracy of tra�c characterization.

Similarly, the packet sni�ng method cannot be used for identifying packet generation

times. Specifically, as it can be observed, the packet transmission instances do not

represent packet generation instances. Also, note that BSR and packet sni�ng methods

cannot be used to determine a STA’s required CU during a specific time period because

we need to know the interval during which packets have been generated to calculate

CU.

Using MonFi, the di↵erence between packet generation timestamps is added to

each packet. Regardless of packet transmission time, the first packet of each micro-burst
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� � 2�1
<latexit sha1_base64="xCPK3BUGTniQbUNr1CJWGcwwhJA=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAR3FiSIuiyqAuXFewFmhAmk0k7dHJh5kSoofgqblwo4tb3cOfbOGmz0NYfBj7+cw7nzO+ngiuwrG9jaXlldW29slHd3Nre2TX39jsqySRlbZqIRPZ8opjgMWsDB8F6qWQk8gXr+qProt59YFLxJL6HccrciAxiHnJKQFueeejcMAEEn+GGExTk5fbEM2tW3ZoKL4JdQg2VannmlxMkNItYDFQQpfq2lYKbEwmcCjapOpliKaEjMmB9jTGJmHLz6fUTfKKdAIeJ1C8GPHV/T+QkUmoc+bozIjBU87XC/K/WzyC8dHMepxmwmM4WhZnAkOAiChxwySiIsQZCJde3YjokklDQgVV1CPb8lxeh06jbVt2+O681r8o4KugIHaNTZKML1ES3qIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Znz/9aJRG</latexit><latexit sha1_base64="xCPK3BUGTniQbUNr1CJWGcwwhJA=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAR3FiSIuiyqAuXFewFmhAmk0k7dHJh5kSoofgqblwo4tb3cOfbOGmz0NYfBj7+cw7nzO+ngiuwrG9jaXlldW29slHd3Nre2TX39jsqySRlbZqIRPZ8opjgMWsDB8F6qWQk8gXr+qProt59YFLxJL6HccrciAxiHnJKQFueeejcMAEEn+GGExTk5fbEM2tW3ZoKL4JdQg2VannmlxMkNItYDFQQpfq2lYKbEwmcCjapOpliKaEjMmB9jTGJmHLz6fUTfKKdAIeJ1C8GPHV/T+QkUmoc+bozIjBU87XC/K/WzyC8dHMepxmwmM4WhZnAkOAiChxwySiIsQZCJde3YjokklDQgVV1CPb8lxeh06jbVt2+O681r8o4KugIHaNTZKML1ES3qIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Znz/9aJRG</latexit><latexit sha1_base64="xCPK3BUGTniQbUNr1CJWGcwwhJA=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAR3FiSIuiyqAuXFewFmhAmk0k7dHJh5kSoofgqblwo4tb3cOfbOGmz0NYfBj7+cw7nzO+ngiuwrG9jaXlldW29slHd3Nre2TX39jsqySRlbZqIRPZ8opjgMWsDB8F6qWQk8gXr+qProt59YFLxJL6HccrciAxiHnJKQFueeejcMAEEn+GGExTk5fbEM2tW3ZoKL4JdQg2VannmlxMkNItYDFQQpfq2lYKbEwmcCjapOpliKaEjMmB9jTGJmHLz6fUTfKKdAIeJ1C8GPHV/T+QkUmoc+bozIjBU87XC/K/WzyC8dHMepxmwmM4WhZnAkOAiChxwySiIsQZCJde3YjokklDQgVV1CPb8lxeh06jbVt2+O681r8o4KugIHaNTZKML1ES3qIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Znz/9aJRG</latexit><latexit sha1_base64="xCPK3BUGTniQbUNr1CJWGcwwhJA=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAR3FiSIuiyqAuXFewFmhAmk0k7dHJh5kSoofgqblwo4tb3cOfbOGmz0NYfBj7+cw7nzO+ngiuwrG9jaXlldW29slHd3Nre2TX39jsqySRlbZqIRPZ8opjgMWsDB8F6qWQk8gXr+qProt59YFLxJL6HccrciAxiHnJKQFueeejcMAEEn+GGExTk5fbEM2tW3ZoKL4JdQg2VannmlxMkNItYDFQQpfq2lYKbEwmcCjapOpliKaEjMmB9jTGJmHLz6fUTfKKdAIeJ1C8GPHV/T+QkUmoc+bozIjBU87XC/K/WzyC8dHMepxmwmM4WhZnAkOAiChxwySiIsQZCJde3YjokklDQgVV1CPb8lxeh06jbVt2+O681r8o4KugIHaNTZKML1ES3qIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Znz/9aJRG</latexit>

�1
<latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit>

�1
<latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit>

t3
<latexit sha1_base64="XFbtUvClHYGLoPW7wr/0SFdERxs=">AAAB7HicdVBNSwMxEM3Wr1q/qh69BIvgqWSr1PZW9OKxgmsL7VKyabYNzWaXZFYoS3+DFw+KePUHefPfmG0rqOiDgcd7M8zMCxIpDBDy4RRWVtfWN4qbpa3tnd298v7BnYlTzbjHYhnrbkANl0JxDwRI3k00p1EgeSeYXOV+555rI2J1C9OE+xEdKREKRsFKHgyys9mgXCFVYlGv45y4DeJa0mw2arUmducWIRW0RHtQfu8PY5ZGXAGT1JieSxLwM6pBMMlnpX5qeELZhI54z1JFI278bH7sDJ9YZYjDWNtSgOfq94mMRsZMo8B2RhTG5reXi395vRTChp8JlaTAFVssClOJIcb553goNGcgp5ZQpoW9FbMx1ZSBzadkQ/j6FP9P7mpVl1Tdm/NK63IZRxEdoWN0ilx0gVroGrWRhxgS6AE9oWdHOY/Oi/O6aC04y5lD9APO2yckhI7n</latexit><latexit sha1_base64="XFbtUvClHYGLoPW7wr/0SFdERxs=">AAAB7HicdVBNSwMxEM3Wr1q/qh69BIvgqWSr1PZW9OKxgmsL7VKyabYNzWaXZFYoS3+DFw+KePUHefPfmG0rqOiDgcd7M8zMCxIpDBDy4RRWVtfWN4qbpa3tnd298v7BnYlTzbjHYhnrbkANl0JxDwRI3k00p1EgeSeYXOV+555rI2J1C9OE+xEdKREKRsFKHgyys9mgXCFVYlGv45y4DeJa0mw2arUmducWIRW0RHtQfu8PY5ZGXAGT1JieSxLwM6pBMMlnpX5qeELZhI54z1JFI278bH7sDJ9YZYjDWNtSgOfq94mMRsZMo8B2RhTG5reXi395vRTChp8JlaTAFVssClOJIcb553goNGcgp5ZQpoW9FbMx1ZSBzadkQ/j6FP9P7mpVl1Tdm/NK63IZRxEdoWN0ilx0gVroGrWRhxgS6AE9oWdHOY/Oi/O6aC04y5lD9APO2yckhI7n</latexit><latexit sha1_base64="XFbtUvClHYGLoPW7wr/0SFdERxs=">AAAB7HicdVBNSwMxEM3Wr1q/qh69BIvgqWSr1PZW9OKxgmsL7VKyabYNzWaXZFYoS3+DFw+KePUHefPfmG0rqOiDgcd7M8zMCxIpDBDy4RRWVtfWN4qbpa3tnd298v7BnYlTzbjHYhnrbkANl0JxDwRI3k00p1EgeSeYXOV+555rI2J1C9OE+xEdKREKRsFKHgyys9mgXCFVYlGv45y4DeJa0mw2arUmducWIRW0RHtQfu8PY5ZGXAGT1JieSxLwM6pBMMlnpX5qeELZhI54z1JFI278bH7sDJ9YZYjDWNtSgOfq94mMRsZMo8B2RhTG5reXi395vRTChp8JlaTAFVssClOJIcb553goNGcgp5ZQpoW9FbMx1ZSBzadkQ/j6FP9P7mpVl1Tdm/NK63IZRxEdoWN0ilx0gVroGrWRhxgS6AE9oWdHOY/Oi/O6aC04y5lD9APO2yckhI7n</latexit><latexit sha1_base64="XFbtUvClHYGLoPW7wr/0SFdERxs=">AAAB7HicdVBNSwMxEM3Wr1q/qh69BIvgqWSr1PZW9OKxgmsL7VKyabYNzWaXZFYoS3+DFw+KePUHefPfmG0rqOiDgcd7M8zMCxIpDBDy4RRWVtfWN4qbpa3tnd298v7BnYlTzbjHYhnrbkANl0JxDwRI3k00p1EgeSeYXOV+555rI2J1C9OE+xEdKREKRsFKHgyys9mgXCFVYlGv45y4DeJa0mw2arUmducWIRW0RHtQfu8PY5ZGXAGT1JieSxLwM6pBMMlnpX5qeELZhI54z1JFI278bH7sDJ9YZYjDWNtSgOfq94mMRsZMo8B2RhTG5reXi395vRTChp8JlaTAFVssClOJIcb553goNGcgp5ZQpoW9FbMx1ZSBzadkQ/j6FP9P7mpVl1Tdm/NK63IZRxEdoWN0ilx0gVroGrWRhxgS6AE9oWdHOY/Oi/O6aC04y5lD9APO2yckhI7n</latexit>

�1
<latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit>

�1
<latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit>

�1
<latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit>

�1
<latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit><latexit sha1_base64="bG5qhr4VjlQANeh7S/Xeh5Dg024=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPbUDabSbt0swm7G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqBlSj4BJbhhuB3VQhjQOBnWB8O/M7T6g0T+SDmaTox3QoecQZNVZ67IcoDB3k3nRQrbl1dw6ySryC1KBAc1D96ocJy2KUhgmqdc9zU+PnVBnOBE4r/UxjStmYDrFnqaQxaj+fXzwlZ1YJSZQoW9KQufp7Iqex1pM4sJ0xNSO97M3E/7xeZqJrP+cyzQxKtlgUZYKYhMzeJyFXyIyYWEKZ4vZWwkZUUWZsSBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYwkPAMr/DmaOfFeXc+Fq0lp5g5hj9wPn8Ag3mQzA==</latexit>

t4
<latexit sha1_base64="qLUqgcXFaTMjLuuI/n4SvE+C4sI=">AAAB7XicdVBNSwMxEM3Wr1q/qh69BIvgqWRLqe2t6MVjBfsB7VKyabaNzWaXZFYoS/+DFw+KePX/ePPfmG0rqOiDgcd7M8zM82MpDBDy4eTW1jc2t/LbhZ3dvf2D4uFRx0SJZrzNIhnpnk8Nl0LxNgiQvBdrTkNf8q4/vcr87j3XRkTqFmYx90I6ViIQjIKVOjBMq3M8LJZImVjUajgjbp24ljQa9Uqlgd2FRUgJrdAaFt8Ho4glIVfAJDWm75IYvJRqEEzyeWGQGB5TNqVj3rdU0ZAbL11cO8dnVhnhINK2FOCF+n0ipaExs9C3nSGFifntZeJfXj+BoO6lQsUJcMWWi4JEYohw9joeCc0ZyJkllGlhb8VsQjVlYAMq2BC+PsX/k06l7JKye1MtNS9XceTRCTpF58hFF6iJrlELtRFDd+gBPaFnJ3IenRfnddmac1Yzx+gHnLdPfXSPEg==</latexit><latexit sha1_base64="qLUqgcXFaTMjLuuI/n4SvE+C4sI=">AAAB7XicdVBNSwMxEM3Wr1q/qh69BIvgqWRLqe2t6MVjBfsB7VKyabaNzWaXZFYoS/+DFw+KePX/ePPfmG0rqOiDgcd7M8zM82MpDBDy4eTW1jc2t/LbhZ3dvf2D4uFRx0SJZrzNIhnpnk8Nl0LxNgiQvBdrTkNf8q4/vcr87j3XRkTqFmYx90I6ViIQjIKVOjBMq3M8LJZImVjUajgjbp24ljQa9Uqlgd2FRUgJrdAaFt8Ho4glIVfAJDWm75IYvJRqEEzyeWGQGB5TNqVj3rdU0ZAbL11cO8dnVhnhINK2FOCF+n0ipaExs9C3nSGFifntZeJfXj+BoO6lQsUJcMWWi4JEYohw9joeCc0ZyJkllGlhb8VsQjVlYAMq2BC+PsX/k06l7JKye1MtNS9XceTRCTpF58hFF6iJrlELtRFDd+gBPaFnJ3IenRfnddmac1Yzx+gHnLdPfXSPEg==</latexit><latexit sha1_base64="qLUqgcXFaTMjLuuI/n4SvE+C4sI=">AAAB7XicdVBNSwMxEM3Wr1q/qh69BIvgqWRLqe2t6MVjBfsB7VKyabaNzWaXZFYoS/+DFw+KePX/ePPfmG0rqOiDgcd7M8zM82MpDBDy4eTW1jc2t/LbhZ3dvf2D4uFRx0SJZrzNIhnpnk8Nl0LxNgiQvBdrTkNf8q4/vcr87j3XRkTqFmYx90I6ViIQjIKVOjBMq3M8LJZImVjUajgjbp24ljQa9Uqlgd2FRUgJrdAaFt8Ho4glIVfAJDWm75IYvJRqEEzyeWGQGB5TNqVj3rdU0ZAbL11cO8dnVhnhINK2FOCF+n0ipaExs9C3nSGFifntZeJfXj+BoO6lQsUJcMWWi4JEYohw9joeCc0ZyJkllGlhb8VsQjVlYAMq2BC+PsX/k06l7JKye1MtNS9XceTRCTpF58hFF6iJrlELtRFDd+gBPaFnJ3IenRfnddmac1Yzx+gHnLdPfXSPEg==</latexit><latexit sha1_base64="qLUqgcXFaTMjLuuI/n4SvE+C4sI=">AAAB7XicdVBNSwMxEM3Wr1q/qh69BIvgqWRLqe2t6MVjBfsB7VKyabaNzWaXZFYoS/+DFw+KePX/ePPfmG0rqOiDgcd7M8zM82MpDBDy4eTW1jc2t/LbhZ3dvf2D4uFRx0SJZrzNIhnpnk8Nl0LxNgiQvBdrTkNf8q4/vcr87j3XRkTqFmYx90I6ViIQjIKVOjBMq3M8LJZImVjUajgjbp24ljQa9Uqlgd2FRUgJrdAaFt8Ho4glIVfAJDWm75IYvJRqEEzyeWGQGB5TNqVj3rdU0ZAbL11cO8dnVhnhINK2FOCF+n0ipaExs9C3nSGFifntZeJfXj+BoO6lQsUJcMWWi4JEYohw9joeCc0ZyJkllGlhb8VsQjVlYAMq2BC+PsX/k06l7JKye1MtNS9XceTRCTpF58hFF6iJrlELtRFDd+gBPaFnJ3IenRfnddmac1Yzx+gHnLdPfXSPEg==</latexit>

t2
<latexit sha1_base64="jKuRvcics8n/TkgBjY1kdDMNMXM=">AAAB7XicdVBNSwMxEM36WetX1aOXYBE8lewitb0VvXisYD+gXUo2zbax2c2SzApl6X/w4kERr/4fb/4bs20FFX0w8Hhvhpl5QSKFAUI+nJXVtfWNzcJWcXtnd2+/dHDYNirVjLeYkkp3A2q4FDFvgQDJu4nmNAok7wSTq9zv3HNthIpvYZpwP6KjWISCUbBSGwaZN8ODUplUiEW1inPi1ohrSb1e87w6ducWIWW0RHNQeu8PFUsjHgOT1JieSxLwM6pBMMlnxX5qeELZhI54z9KYRtz42fzaGT61yhCHStuKAc/V7xMZjYyZRoHtjCiMzW8vF//yeimENT8TcZICj9liUZhKDArnr+Oh0JyBnFpCmRb2VszGVFMGNqCiDeHrU/w/aXsVl1Tcm/Ny43IZRwEdoxN0hlx0gRroGjVRCzF0hx7QE3p2lPPovDivi9YVZzlzhH7AefsEemiPEA==</latexit><latexit sha1_base64="jKuRvcics8n/TkgBjY1kdDMNMXM=">AAAB7XicdVBNSwMxEM36WetX1aOXYBE8lewitb0VvXisYD+gXUo2zbax2c2SzApl6X/w4kERr/4fb/4bs20FFX0w8Hhvhpl5QSKFAUI+nJXVtfWNzcJWcXtnd2+/dHDYNirVjLeYkkp3A2q4FDFvgQDJu4nmNAok7wSTq9zv3HNthIpvYZpwP6KjWISCUbBSGwaZN8ODUplUiEW1inPi1ohrSb1e87w6ducWIWW0RHNQeu8PFUsjHgOT1JieSxLwM6pBMMlnxX5qeELZhI54z9KYRtz42fzaGT61yhCHStuKAc/V7xMZjYyZRoHtjCiMzW8vF//yeimENT8TcZICj9liUZhKDArnr+Oh0JyBnFpCmRb2VszGVFMGNqCiDeHrU/w/aXsVl1Tcm/Ny43IZRwEdoxN0hlx0gRroGjVRCzF0hx7QE3p2lPPovDivi9YVZzlzhH7AefsEemiPEA==</latexit><latexit sha1_base64="jKuRvcics8n/TkgBjY1kdDMNMXM=">AAAB7XicdVBNSwMxEM36WetX1aOXYBE8lewitb0VvXisYD+gXUo2zbax2c2SzApl6X/w4kERr/4fb/4bs20FFX0w8Hhvhpl5QSKFAUI+nJXVtfWNzcJWcXtnd2+/dHDYNirVjLeYkkp3A2q4FDFvgQDJu4nmNAok7wSTq9zv3HNthIpvYZpwP6KjWISCUbBSGwaZN8ODUplUiEW1inPi1ohrSb1e87w6ducWIWW0RHNQeu8PFUsjHgOT1JieSxLwM6pBMMlnxX5qeELZhI54z9KYRtz42fzaGT61yhCHStuKAc/V7xMZjYyZRoHtjCiMzW8vF//yeimENT8TcZICj9liUZhKDArnr+Oh0JyBnFpCmRb2VszGVFMGNqCiDeHrU/w/aXsVl1Tcm/Ny43IZRwEdoxN0hlx0gRroGjVRCzF0hx7QE3p2lPPovDivi9YVZzlzhH7AefsEemiPEA==</latexit><latexit sha1_base64="jKuRvcics8n/TkgBjY1kdDMNMXM=">AAAB7XicdVBNSwMxEM36WetX1aOXYBE8lewitb0VvXisYD+gXUo2zbax2c2SzApl6X/w4kERr/4fb/4bs20FFX0w8Hhvhpl5QSKFAUI+nJXVtfWNzcJWcXtnd2+/dHDYNirVjLeYkkp3A2q4FDFvgQDJu4nmNAok7wSTq9zv3HNthIpvYZpwP6KjWISCUbBSGwaZN8ODUplUiEW1inPi1ohrSb1e87w6ducWIWW0RHNQeu8PFUsjHgOT1JieSxLwM6pBMMlnxX5qeELZhI54z9KYRtz42fzaGT61yhCHStuKAc/V7xMZjYyZRoHtjCiMzW8vF//yeimENT8TcZICj9liUZhKDArnr+Oh0JyBnFpCmRb2VszGVFMGNqCiDeHrU/w/aXsVl1Tcm/Ny43IZRwEdoxN0hlx0gRroGjVRCzF0hx7QE3p2lPPovDivi9YVZzlzhH7AefsEemiPEA==</latexit>

�
<latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit>

�
<latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit>

�
<latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit>

�
<latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit><latexit sha1_base64="17uENeVNbGzAf0rC1EQQVr4Zn7Q=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoYxnBxEByhL3NJFmyu3fs7gnhyF+wsVDE1j9k579xL7lCEx8MPN6bYWZelAhurO9/e6W19Y3NrfJ2ZWd3b/+genjUNnGqGbZYLGLdiahBwRW2LLcCO4lGKiOBj9HkNvcfn1AbHqsHO00wlHSk+JAzanOplxjer9b8uj8HWSVBQWpQoNmvfvUGMUslKssENaYb+IkNM6otZwJnlV5qMKFsQkfYdVRRiSbM5rfOyJlTBmQYa1fKkrn6eyKj0pipjFynpHZslr1c/M/rpnZ4HWZcJalFxRaLhqkgNib542TANTIrpo5Qprm7lbAx1ZRZF0/FhRAsv7xK2hf1wK8H95e1xk0RRxlO4BTOIYAraMAdNKEFDMbwDK/w5knvxXv3PhatJa+YOYY/8D5/ACQ/jko=</latexit>

2� � ptx
<latexit sha1_base64="5Ckrn+FS7VXWvVwqXiorGp+DEhw=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBD0GvXiMYB6QxDA7mU2GzO4OM71qWPIfXjwo4tV/8ebfOEn2oIkFDUVVN91dvpLCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMHGiGa+zWMa65VPDpYh4HQVK3lKa09CXvOmPrqd+84FrI+LoDseKd0M6iEQgGEUr3Vc6yghyRlQvxadJr1hyy+4MZJl4GSlBhlqv+NXpxywJeYRMUmPanquwm1KNgkk+KXQSwxVlIzrgbUsjGnLTTWdXT8iJVfokiLWtCMlM/T2R0tCYcejbzpDi0Cx6U/E/r51gcNlNRaQS5BGbLwoSSTAm0whIX2jOUI4toUwLeythQ6opQxtUwYbgLb68TBqVsueWvdvzUvUqiyMPR3AMp+DBBVThBmpQBwYanuEV3pxH58V5dz7mrTknmzmEP3A+fwC5SZIA</latexit><latexit sha1_base64="5Ckrn+FS7VXWvVwqXiorGp+DEhw=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBD0GvXiMYB6QxDA7mU2GzO4OM71qWPIfXjwo4tV/8ebfOEn2oIkFDUVVN91dvpLCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMHGiGa+zWMa65VPDpYh4HQVK3lKa09CXvOmPrqd+84FrI+LoDseKd0M6iEQgGEUr3Vc6yghyRlQvxadJr1hyy+4MZJl4GSlBhlqv+NXpxywJeYRMUmPanquwm1KNgkk+KXQSwxVlIzrgbUsjGnLTTWdXT8iJVfokiLWtCMlM/T2R0tCYcejbzpDi0Cx6U/E/r51gcNlNRaQS5BGbLwoSSTAm0whIX2jOUI4toUwLeythQ6opQxtUwYbgLb68TBqVsueWvdvzUvUqiyMPR3AMp+DBBVThBmpQBwYanuEV3pxH58V5dz7mrTknmzmEP3A+fwC5SZIA</latexit><latexit sha1_base64="5Ckrn+FS7VXWvVwqXiorGp+DEhw=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBD0GvXiMYB6QxDA7mU2GzO4OM71qWPIfXjwo4tV/8ebfOEn2oIkFDUVVN91dvpLCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMHGiGa+zWMa65VPDpYh4HQVK3lKa09CXvOmPrqd+84FrI+LoDseKd0M6iEQgGEUr3Vc6yghyRlQvxadJr1hyy+4MZJl4GSlBhlqv+NXpxywJeYRMUmPanquwm1KNgkk+KXQSwxVlIzrgbUsjGnLTTWdXT8iJVfokiLWtCMlM/T2R0tCYcejbzpDi0Cx6U/E/r51gcNlNRaQS5BGbLwoSSTAm0whIX2jOUI4toUwLeythQ6opQxtUwYbgLb68TBqVsueWvdvzUvUqiyMPR3AMp+DBBVThBmpQBwYanuEV3pxH58V5dz7mrTknmzmEP3A+fwC5SZIA</latexit><latexit sha1_base64="5Ckrn+FS7VXWvVwqXiorGp+DEhw=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBD0GvXiMYB6QxDA7mU2GzO4OM71qWPIfXjwo4tV/8ebfOEn2oIkFDUVVN91dvpLCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMHGiGa+zWMa65VPDpYh4HQVK3lKa09CXvOmPrqd+84FrI+LoDseKd0M6iEQgGEUr3Vc6yghyRlQvxadJr1hyy+4MZJl4GSlBhlqv+NXpxywJeYRMUmPanquwm1KNgkk+KXQSwxVlIzrgbUsjGnLTTWdXT8iJVfokiLWtCMlM/T2R0tCYcejbzpDi0Cx6U/E/r51gcNlNRaQS5BGbLwoSSTAm0whIX2jOUI4toUwLeythQ6opQxtUwYbgLb68TBqVsueWvdvzUvUqiyMPR3AMp+DBBVThBmpQBwYanuEV3pxH58V5dz7mrTknmzmEP3A+fwC5SZIA</latexit>

(a)

(b)

t3,1
<latexit sha1_base64="qKbcTzqz3XO+C3A28hawL+rqXk4=">AAAB7nicdVDLSgNBEJyNrxhfUY9eBoPgQcJMlJjcgl48RjAPSJYwO5lNhsw+mOkVwpKP8OJBEa9+jzf/xtkkgooWNBRV3XR3ebGSBgj5cHIrq2vrG/nNwtb2zu5ecf+gbaJEc9HikYp012NGKBmKFkhQohtrwQJPiY43uc78zr3QRkbhHUxj4QZsFEpfcgZW6sAgPT+js0GxRMrEolrFGaE1Qi2p12uVSh3TuUVICS3RHBTf+8OIJ4EIgStmTI+SGNyUaZBciVmhnxgRMz5hI9GzNGSBMG46P3eGT6wyxH6kbYWA5+r3iZQFxkwDz3YGDMbmt5eJf3m9BPyam8owTkCEfLHITxSGCGe/46HUgoOaWsK4lvZWzMdMMw42oYIN4etT/D9pV8qUlOntRalxtYwjj47QMTpFFF2iBrpBTdRCHE3QA3pCz07sPDovzuuiNecsZw7RDzhvn/7dj1g=</latexit><latexit sha1_base64="qKbcTzqz3XO+C3A28hawL+rqXk4=">AAAB7nicdVDLSgNBEJyNrxhfUY9eBoPgQcJMlJjcgl48RjAPSJYwO5lNhsw+mOkVwpKP8OJBEa9+jzf/xtkkgooWNBRV3XR3ebGSBgj5cHIrq2vrG/nNwtb2zu5ecf+gbaJEc9HikYp012NGKBmKFkhQohtrwQJPiY43uc78zr3QRkbhHUxj4QZsFEpfcgZW6sAgPT+js0GxRMrEolrFGaE1Qi2p12uVSh3TuUVICS3RHBTf+8OIJ4EIgStmTI+SGNyUaZBciVmhnxgRMz5hI9GzNGSBMG46P3eGT6wyxH6kbYWA5+r3iZQFxkwDz3YGDMbmt5eJf3m9BPyam8owTkCEfLHITxSGCGe/46HUgoOaWsK4lvZWzMdMMw42oYIN4etT/D9pV8qUlOntRalxtYwjj47QMTpFFF2iBrpBTdRCHE3QA3pCz07sPDovzuuiNecsZw7RDzhvn/7dj1g=</latexit><latexit sha1_base64="qKbcTzqz3XO+C3A28hawL+rqXk4=">AAAB7nicdVDLSgNBEJyNrxhfUY9eBoPgQcJMlJjcgl48RjAPSJYwO5lNhsw+mOkVwpKP8OJBEa9+jzf/xtkkgooWNBRV3XR3ebGSBgj5cHIrq2vrG/nNwtb2zu5ecf+gbaJEc9HikYp012NGKBmKFkhQohtrwQJPiY43uc78zr3QRkbhHUxj4QZsFEpfcgZW6sAgPT+js0GxRMrEolrFGaE1Qi2p12uVSh3TuUVICS3RHBTf+8OIJ4EIgStmTI+SGNyUaZBciVmhnxgRMz5hI9GzNGSBMG46P3eGT6wyxH6kbYWA5+r3iZQFxkwDz3YGDMbmt5eJf3m9BPyam8owTkCEfLHITxSGCGe/46HUgoOaWsK4lvZWzMdMMw42oYIN4etT/D9pV8qUlOntRalxtYwjj47QMTpFFF2iBrpBTdRCHE3QA3pCz07sPDovzuuiNecsZw7RDzhvn/7dj1g=</latexit><latexit sha1_base64="qKbcTzqz3XO+C3A28hawL+rqXk4=">AAAB7nicdVDLSgNBEJyNrxhfUY9eBoPgQcJMlJjcgl48RjAPSJYwO5lNhsw+mOkVwpKP8OJBEa9+jzf/xtkkgooWNBRV3XR3ebGSBgj5cHIrq2vrG/nNwtb2zu5ecf+gbaJEc9HikYp012NGKBmKFkhQohtrwQJPiY43uc78zr3QRkbhHUxj4QZsFEpfcgZW6sAgPT+js0GxRMrEolrFGaE1Qi2p12uVSh3TuUVICS3RHBTf+8OIJ4EIgStmTI+SGNyUaZBciVmhnxgRMz5hI9GzNGSBMG46P3eGT6wyxH6kbYWA5+r3iZQFxkwDz3YGDMbmt5eJf3m9BPyam8owTkCEfLHITxSGCGe/46HUgoOaWsK4lvZWzMdMMw42oYIN4etT/D9pV8qUlOntRalxtYwjj47QMTpFFF2iBrpBTdRCHE3QA3pCz07sPDovzuuiNecsZw7RDzhvn/7dj1g=</latexit>

t2,1
<latexit sha1_base64="fE7KN0SYUdest5XX9aLvl0iTXF8=">AAAB7nicdVBNSwMxEJ2tX7V+VT16CRbBg5Rkkdreil48VrC20C4lm2bb0OwHSVYoS3+EFw+KePX3ePPfmG0rqOiDgcd7M8zM8xMptMH4wymsrK6tbxQ3S1vbO7t75f2DOx2nivE2i2Wsuj7VXIqIt40wkncTxWnoS97xJ1e537nnSos4ujXThHshHUUiEIwaK3XMIHPPyGxQruAqtqjVUE5IHRNLGo266zYQmVsYV2CJ1qD83h/GLA15ZJikWvcIToyXUWUEk3xW6qeaJ5RN6Ij3LI1oyLWXzc+doROrDFEQK1uRQXP1+0RGQ62noW87Q2rG+reXi395vdQEdS8TUZIaHrHFoiCVyMQo/x0NheLMyKkllClhb0VsTBVlxiZUsiF8fYr+J3duleAquTmvNC+XcRThCI7hFAhcQBOuoQVtYDCBB3iCZydxHp0X53XRWnCWM4fwA87bJ/1Wj1c=</latexit><latexit sha1_base64="fE7KN0SYUdest5XX9aLvl0iTXF8=">AAAB7nicdVBNSwMxEJ2tX7V+VT16CRbBg5Rkkdreil48VrC20C4lm2bb0OwHSVYoS3+EFw+KePX3ePPfmG0rqOiDgcd7M8zM8xMptMH4wymsrK6tbxQ3S1vbO7t75f2DOx2nivE2i2Wsuj7VXIqIt40wkncTxWnoS97xJ1e537nnSos4ujXThHshHUUiEIwaK3XMIHPPyGxQruAqtqjVUE5IHRNLGo266zYQmVsYV2CJ1qD83h/GLA15ZJikWvcIToyXUWUEk3xW6qeaJ5RN6Ij3LI1oyLWXzc+doROrDFEQK1uRQXP1+0RGQ62noW87Q2rG+reXi395vdQEdS8TUZIaHrHFoiCVyMQo/x0NheLMyKkllClhb0VsTBVlxiZUsiF8fYr+J3duleAquTmvNC+XcRThCI7hFAhcQBOuoQVtYDCBB3iCZydxHp0X53XRWnCWM4fwA87bJ/1Wj1c=</latexit><latexit sha1_base64="fE7KN0SYUdest5XX9aLvl0iTXF8=">AAAB7nicdVBNSwMxEJ2tX7V+VT16CRbBg5Rkkdreil48VrC20C4lm2bb0OwHSVYoS3+EFw+KePX3ePPfmG0rqOiDgcd7M8zM8xMptMH4wymsrK6tbxQ3S1vbO7t75f2DOx2nivE2i2Wsuj7VXIqIt40wkncTxWnoS97xJ1e537nnSos4ujXThHshHUUiEIwaK3XMIHPPyGxQruAqtqjVUE5IHRNLGo266zYQmVsYV2CJ1qD83h/GLA15ZJikWvcIToyXUWUEk3xW6qeaJ5RN6Ij3LI1oyLWXzc+doROrDFEQK1uRQXP1+0RGQ62noW87Q2rG+reXi395vdQEdS8TUZIaHrHFoiCVyMQo/x0NheLMyKkllClhb0VsTBVlxiZUsiF8fYr+J3duleAquTmvNC+XcRThCI7hFAhcQBOuoQVtYDCBB3iCZydxHp0X53XRWnCWM4fwA87bJ/1Wj1c=</latexit><latexit sha1_base64="fE7KN0SYUdest5XX9aLvl0iTXF8=">AAAB7nicdVBNSwMxEJ2tX7V+VT16CRbBg5Rkkdreil48VrC20C4lm2bb0OwHSVYoS3+EFw+KePX3ePPfmG0rqOiDgcd7M8zM8xMptMH4wymsrK6tbxQ3S1vbO7t75f2DOx2nivE2i2Wsuj7VXIqIt40wkncTxWnoS97xJ1e537nnSos4ujXThHshHUUiEIwaK3XMIHPPyGxQruAqtqjVUE5IHRNLGo266zYQmVsYV2CJ1qD83h/GLA15ZJikWvcIToyXUWUEk3xW6qeaJ5RN6Ij3LI1oyLWXzc+doROrDFEQK1uRQXP1+0RGQ62noW87Q2rG+reXi395vdQEdS8TUZIaHrHFoiCVyMQo/x0NheLMyKkllClhb0VsTBVlxiZUsiF8fYr+J3duleAquTmvNC+XcRThCI7hFAhcQBOuoQVtYDCBB3iCZydxHp0X53XRWnCWM4fwA87bJ/1Wj1c=</latexit>

� � 2�1
<latexit sha1_base64="xCPK3BUGTniQbUNr1CJWGcwwhJA=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAR3FiSIuiyqAuXFewFmhAmk0k7dHJh5kSoofgqblwo4tb3cOfbOGmz0NYfBj7+cw7nzO+ngiuwrG9jaXlldW29slHd3Nre2TX39jsqySRlbZqIRPZ8opjgMWsDB8F6qWQk8gXr+qProt59YFLxJL6HccrciAxiHnJKQFueeejcMAEEn+GGExTk5fbEM2tW3ZoKL4JdQg2VannmlxMkNItYDFQQpfq2lYKbEwmcCjapOpliKaEjMmB9jTGJmHLz6fUTfKKdAIeJ1C8GPHV/T+QkUmoc+bozIjBU87XC/K/WzyC8dHMepxmwmM4WhZnAkOAiChxwySiIsQZCJde3YjokklDQgVV1CPb8lxeh06jbVt2+O681r8o4KugIHaNTZKML1ES3qIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Znz/9aJRG</latexit><latexit sha1_base64="xCPK3BUGTniQbUNr1CJWGcwwhJA=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAR3FiSIuiyqAuXFewFmhAmk0k7dHJh5kSoofgqblwo4tb3cOfbOGmz0NYfBj7+cw7nzO+ngiuwrG9jaXlldW29slHd3Nre2TX39jsqySRlbZqIRPZ8opjgMWsDB8F6qWQk8gXr+qProt59YFLxJL6HccrciAxiHnJKQFueeejcMAEEn+GGExTk5fbEM2tW3ZoKL4JdQg2VannmlxMkNItYDFQQpfq2lYKbEwmcCjapOpliKaEjMmB9jTGJmHLz6fUTfKKdAIeJ1C8GPHV/T+QkUmoc+bozIjBU87XC/K/WzyC8dHMepxmwmM4WhZnAkOAiChxwySiIsQZCJde3YjokklDQgVV1CPb8lxeh06jbVt2+O681r8o4KugIHaNTZKML1ES3qIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Znz/9aJRG</latexit><latexit sha1_base64="xCPK3BUGTniQbUNr1CJWGcwwhJA=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAR3FiSIuiyqAuXFewFmhAmk0k7dHJh5kSoofgqblwo4tb3cOfbOGmz0NYfBj7+cw7nzO+ngiuwrG9jaXlldW29slHd3Nre2TX39jsqySRlbZqIRPZ8opjgMWsDB8F6qWQk8gXr+qProt59YFLxJL6HccrciAxiHnJKQFueeejcMAEEn+GGExTk5fbEM2tW3ZoKL4JdQg2VannmlxMkNItYDFQQpfq2lYKbEwmcCjapOpliKaEjMmB9jTGJmHLz6fUTfKKdAIeJ1C8GPHV/T+QkUmoc+bozIjBU87XC/K/WzyC8dHMepxmwmM4WhZnAkOAiChxwySiIsQZCJde3YjokklDQgVV1CPb8lxeh06jbVt2+O681r8o4KugIHaNTZKML1ES3qIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Znz/9aJRG</latexit><latexit sha1_base64="xCPK3BUGTniQbUNr1CJWGcwwhJA=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAR3FiSIuiyqAuXFewFmhAmk0k7dHJh5kSoofgqblwo4tb3cOfbOGmz0NYfBj7+cw7nzO+ngiuwrG9jaXlldW29slHd3Nre2TX39jsqySRlbZqIRPZ8opjgMWsDB8F6qWQk8gXr+qProt59YFLxJL6HccrciAxiHnJKQFueeejcMAEEn+GGExTk5fbEM2tW3ZoKL4JdQg2VannmlxMkNItYDFQQpfq2lYKbEwmcCjapOpliKaEjMmB9jTGJmHLz6fUTfKKdAIeJ1C8GPHV/T+QkUmoc+bozIjBU87XC/K/WzyC8dHMepxmwmM4WhZnAkOAiChxwySiIsQZCJde3YjokklDQgVV1CPb8lxeh06jbVt2+O681r8o4KugIHaNTZKML1ES3qIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Znz/9aJRG</latexit>

� � 2�1
<latexit sha1_base64="xCPK3BUGTniQbUNr1CJWGcwwhJA=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAR3FiSIuiyqAuXFewFmhAmk0k7dHJh5kSoofgqblwo4tb3cOfbOGmz0NYfBj7+cw7nzO+ngiuwrG9jaXlldW29slHd3Nre2TX39jsqySRlbZqIRPZ8opjgMWsDB8F6qWQk8gXr+qProt59YFLxJL6HccrciAxiHnJKQFueeejcMAEEn+GGExTk5fbEM2tW3ZoKL4JdQg2VannmlxMkNItYDFQQpfq2lYKbEwmcCjapOpliKaEjMmB9jTGJmHLz6fUTfKKdAIeJ1C8GPHV/T+QkUmoc+bozIjBU87XC/K/WzyC8dHMepxmwmM4WhZnAkOAiChxwySiIsQZCJde3YjokklDQgVV1CPb8lxeh06jbVt2+O681r8o4KugIHaNTZKML1ES3qIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Znz/9aJRG</latexit><latexit sha1_base64="xCPK3BUGTniQbUNr1CJWGcwwhJA=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAR3FiSIuiyqAuXFewFmhAmk0k7dHJh5kSoofgqblwo4tb3cOfbOGmz0NYfBj7+cw7nzO+ngiuwrG9jaXlldW29slHd3Nre2TX39jsqySRlbZqIRPZ8opjgMWsDB8F6qWQk8gXr+qProt59YFLxJL6HccrciAxiHnJKQFueeejcMAEEn+GGExTk5fbEM2tW3ZoKL4JdQg2VannmlxMkNItYDFQQpfq2lYKbEwmcCjapOpliKaEjMmB9jTGJmHLz6fUTfKKdAIeJ1C8GPHV/T+QkUmoc+bozIjBU87XC/K/WzyC8dHMepxmwmM4WhZnAkOAiChxwySiIsQZCJde3YjokklDQgVV1CPb8lxeh06jbVt2+O681r8o4KugIHaNTZKML1ES3qIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Znz/9aJRG</latexit><latexit sha1_base64="xCPK3BUGTniQbUNr1CJWGcwwhJA=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAR3FiSIuiyqAuXFewFmhAmk0k7dHJh5kSoofgqblwo4tb3cOfbOGmz0NYfBj7+cw7nzO+ngiuwrG9jaXlldW29slHd3Nre2TX39jsqySRlbZqIRPZ8opjgMWsDB8F6qWQk8gXr+qProt59YFLxJL6HccrciAxiHnJKQFueeejcMAEEn+GGExTk5fbEM2tW3ZoKL4JdQg2VannmlxMkNItYDFQQpfq2lYKbEwmcCjapOpliKaEjMmB9jTGJmHLz6fUTfKKdAIeJ1C8GPHV/T+QkUmoc+bozIjBU87XC/K/WzyC8dHMepxmwmM4WhZnAkOAiChxwySiIsQZCJde3YjokklDQgVV1CPb8lxeh06jbVt2+O681r8o4KugIHaNTZKML1ES3qIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Znz/9aJRG</latexit><latexit sha1_base64="xCPK3BUGTniQbUNr1CJWGcwwhJA=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAR3FiSIuiyqAuXFewFmhAmk0k7dHJh5kSoofgqblwo4tb3cOfbOGmz0NYfBj7+cw7nzO+ngiuwrG9jaXlldW29slHd3Nre2TX39jsqySRlbZqIRPZ8opjgMWsDB8F6qWQk8gXr+qProt59YFLxJL6HccrciAxiHnJKQFueeejcMAEEn+GGExTk5fbEM2tW3ZoKL4JdQg2VannmlxMkNItYDFQQpfq2lYKbEwmcCjapOpliKaEjMmB9jTGJmHLz6fUTfKKdAIeJ1C8GPHV/T+QkUmoc+bozIjBU87XC/K/WzyC8dHMepxmwmM4WhZnAkOAiChxwySiIsQZCJde3YjokklDQgVV1CPb8lxeh06jbVt2+O681r8o4KugIHaNTZKML1ES3qIXaiKJH9Ixe0ZvxZLwY78bHrHXJKGcO0B8Znz/9aJRG</latexit>

�
<latexit sha1_base64="ZWRIo6K/4YPaaJFpMuXpqvzq8as=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnvcmY2ZllZlYIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VpYIb6/vf3srq2vrGZmGruL2zu7dfOjhsGJVphnWmhNKtiBoUXGLdciuwlWqkSSSwGQ1vpn7zCbXhSj7YUYphQvuSx5xR66RG5xaFpd1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuL8rV6zyOAhzDCZxBAJdQhTuoQR0YPMIzvMKbp7wX7937mLeuePnMEfyB9/kDYIyO/A==</latexit><latexit sha1_base64="ZWRIo6K/4YPaaJFpMuXpqvzq8as=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnvcmY2ZllZlYIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VpYIb6/vf3srq2vrGZmGruL2zu7dfOjhsGJVphnWmhNKtiBoUXGLdciuwlWqkSSSwGQ1vpn7zCbXhSj7YUYphQvuSx5xR66RG5xaFpd1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuL8rV6zyOAhzDCZxBAJdQhTuoQR0YPMIzvMKbp7wX7937mLeuePnMEfyB9/kDYIyO/A==</latexit><latexit sha1_base64="ZWRIo6K/4YPaaJFpMuXpqvzq8as=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnvcmY2ZllZlYIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VpYIb6/vf3srq2vrGZmGruL2zu7dfOjhsGJVphnWmhNKtiBoUXGLdciuwlWqkSSSwGQ1vpn7zCbXhSj7YUYphQvuSx5xR66RG5xaFpd1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuL8rV6zyOAhzDCZxBAJdQhTuoQR0YPMIzvMKbp7wX7937mLeuePnMEfyB9/kDYIyO/A==</latexit><latexit sha1_base64="ZWRIo6K/4YPaaJFpMuXpqvzq8as=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnvcmY2ZllZlYIIf/gxYMiXv0fb/6Nk2QPmljQUFR1090VpYIb6/vf3srq2vrGZmGruL2zu7dfOjhsGJVphnWmhNKtiBoUXGLdciuwlWqkSSSwGQ1vpn7zCbXhSj7YUYphQvuSx5xR66RG5xaFpd1S2a/4M5BlEuSkDDlq3dJXp6dYlqC0TFBj2oGf2nBMteVM4KTYyQymlA1pH9uOSpqgCcezayfk1Ck9EivtSloyU39PjGlizCiJXGdC7cAselPxP6+d2fgqHHOZZhYlmy+KM0GsItPXSY9rZFaMHKFMc3crYQOqKbMuoKILIVh8eZk0ziuBXwnuL8rV6zyOAhzDCZxBAJdQhTuoQR0YPMIzvMKbp7wX7937mLeuePnMEfyB9/kDYIyO/A==</latexit>

(c)

(d)

Micro-burst

2�
<latexit sha1_base64="fokfy1LOpz9JKgRO0KyLm0oiHwY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyG/1U80G15tbdBcg68QpSgwKtQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni2Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroJci7TzKBky0VRJohJyPxzMuQKmRFTSyhT3N5K2JgqyozNp2JD8FZfXiftRt1z697DVa15W8RRhjM4h0vw4BqacA8t8IEBh2d4hTdHOi/Ou/OxbC05xcwp/IHz+QOVuY6G</latexit><latexit sha1_base64="fokfy1LOpz9JKgRO0KyLm0oiHwY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyG/1U80G15tbdBcg68QpSgwKtQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni2Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroJci7TzKBky0VRJohJyPxzMuQKmRFTSyhT3N5K2JgqyozNp2JD8FZfXiftRt1z697DVa15W8RRhjM4h0vw4BqacA8t8IEBh2d4hTdHOi/Ou/OxbC05xcwp/IHz+QOVuY6G</latexit><latexit sha1_base64="fokfy1LOpz9JKgRO0KyLm0oiHwY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyG/1U80G15tbdBcg68QpSgwKtQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni2Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroJci7TzKBky0VRJohJyPxzMuQKmRFTSyhT3N5K2JgqyozNp2JD8FZfXiftRt1z697DVa15W8RRhjM4h0vw4BqacA8t8IEBh2d4hTdHOi/Ou/OxbC05xcwp/IHz+QOVuY6G</latexit><latexit sha1_base64="fokfy1LOpz9JKgRO0KyLm0oiHwY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVbyG/1U80G15tbdBcg68QpSgwKtQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni2Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroJci7TzKBky0VRJohJyPxzMuQKmRFTSyhT3N5K2JgqyozNp2JD8FZfXiftRt1z697DVa15W8RRhjM4h0vw4BqacA8t8IEBh2d4hTdHOi/Ou/OxbC05xcwp/IHz+QOVuY6G</latexit> 2�
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Fig. 7.7: (a): Data generation time instances by application. (b): Packet generation
time instances. (c): Packet transmission instances. This row shows the time instance
of packet capture by sni↵er, as well as the BSR value of each packet. (d): Packet
transmission instances and timing information added to each packet by SATRAC.

has the time stamp � � 2�1, and the second and third packets include timestamp �1.

This method allows the AP to determine both � and �1 to characterize tra�c accurately.

7.4.3 Empirical Evaluations of SATRAC

In this section, we empirically compare the performance of SATRAC versus

packet sni�ng (Section 7.3.2) and BSR0 (Section 7.3.3). We use an 802.11ax testbed

including one AP and multiple STAs running Linux. We characterize the accuracy of

tra�c characterization for one STA. Other STAs are used to introduce variations in CU.

We consider two CU scenarios: (i) low, where the measured CU is around 15%, and (ii)

high, where the measured CU is around 70%. We evaluate the accuracy of SATRAC
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Fig. 7.8: Empirical comparison of SATRAC versus the baseline (actual data genera-
tion time instances), packet sni�ng, and BSR0 in low (a) and high (b) CU scenarios.
SATRAC demonstrates the highest accuracy even in the presence of high CU.

when inter-packet intervals are small. To this end, a STA runs a program that generates

and sends a 1400-byte message every 500 µs. Since TCP employs a bu↵ering delay of

about 200 ms to accumulate data before transmission, we utilize the TCP_NODELAY flag

for the TCP socket to send the generated data as soon as received from the application.

Also, we are using the voice AC for the transmission of generated packets. Note that

this AC does not employ packet aggregation (i.e., A-MPDU). To establish a baseline for

accuracy comparison, we denote the actual data generation instances by the application

as baseline.

Figure 7.8 presents the results collected in low and high CU scenarios. We

can observe that the baseline curve is not a perfect vertical bar. The variations of the

baseline are caused by multiple factors, including timer inaccuracy, context switching,

the delay in copying data from the user-space to the kernel-space, and the delay in

logging time stamps. The closest curve to the baseline curve is that of SATRAC, in

both low and high CU scenarios, which demonstrates the high accuracy of this approach.
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Fig. 7.9: Sequential and overlapping TWT allocations to three STAs. Throughput, CU,
and number of transmissions are per second. The three scenarios refer to incrementally
higher CU levels by the STAs. By leveraging SATRAC, the AP assigns a service period
to multiple STAs to enhance both CU and throughput.

Note that some of the timing inaccuracies a↵ecting the baseline also a↵ect SATRAC;

context switching delay and copying data from user-space to kernel-space are sample

factors. Nevertheless, while both packet sni�ng and BSR0 approaches are considerably

a↵ected in the high CU scenario, the accuracy of SATRAC remains una↵ected. We also

observe that although the accuracy of tra�c characterization is slightly improved by

using BSR0 values, the accuracy of this method is considerably a↵ected by increasing

CU.

7.4.4 Sample TWT Allocation Scenario

To show the benefits of utilizing SATRAC for TWT allocation, we use a testbed

including three STAs. First, similar to the existing works [48, 37], we assign non-

overlapping service periods to the STAs; we refer to this approach as ‘sequential’ alloca-

tion. Then, we enable the AP to characterize tra�c, determine the potential for higher

channel utilization, and assign overlapping service periods to the STAs; this is referred
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to as ‘overlapping’ allocation. By changing the packet generation instances of each STA,

we adjust inter-packet intervals and introduce various CU levels, corresponding to three

scenarios. The results are presented in Figure 7.9. We observe that the overlapping al-

location enhances throughput and CU, while the number of retransmissions (caused by

collisions) are slightly increased. For example, in Scenario-3 where the mean per-STA

CU is 36% in the sequential allocation, the overlapping allocation increases the mean

to 86%. Although the overlapping allocation increases the mean number of retransmis-

sions per second from 10 to 14, these are 0.00025% and 0.00035% of the total number of

transmissions per second, respectively. Therefore, this results confirm the e↵ectiveness

of accurate tra�c characterization for TWT allocation.

7.5 Summary

Allocation of TWT service periods to IoT STAs requires accurate tra�c charac-

terization to meet applications’ demands while enhancing energy e�ciency and through-

put. In this chapter, we empirically studied tra�c burstiness and the causes of inter-

packet delays in WiFi-based IoT networks. We analyzed the shortcomings of existing

tra�c characterization methods and introduced a novel approach based on packet mod-

ification in the source STA’s protocol stack. We showed that using eBPF to embed

inter-packet generation times in TCP (or IP headers) provides an e↵ective solution for

determining per-flow tra�c patterns in AP.

While in this chapter we focused on tra�c characterization and TWT allocation

in the time domain, the proposed method can be used to enhance the allocation of

Resource Units (RUs) to STAs in 802.11ax networks. In particular, by enhancing the

accuracy of conveying STAs’ demands to the AP, more e�cient time and frequency

(TWT and RU) allocation algorithms can be developed.
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Chapter 8

Conclusion and Future Work

The works presented in this thesis addresses the challenges of (i) designing

methods for accurate and high-rate data collection in WiFi networks, (ii) developing

scheduling algorithms for enhancing the energy e�ciency and timeliness of last-hop

communication in IoT networks, and (iii) accurately determining tra�c characteristics

for TWT schedules in WiFi 6. This chapter presents the achievements of this research

and the potential areas of future work The following summarizes the potential areas of

future research:

(i) Chapter 3 proposes a framework that facilitate high-rate monitoring of the Linux

networking stack. The open-sourced, publicly available MonFi tool provide two

modules, i.e., the Controller, which is responsible for the receiving the statistics

collection parameters from the users, whereas, the Collector is responsible of col-

lecting the statistics across di↵erent parts of the networking stack. Furthermore

MonFi tool provides three modes of statistics collection: (i) polling-based, (ii)

event-based, and (iii) hybrid approach to cater to di↵erent measurement collec-

tion requirement according to applications on hand. The current implementation

utilizes the Atheros ath9k driver, however, in future, this tool can easily be ex-

tended, such that it can operate with all SoftMAC-based WiFi drivers.

(ii) Chapter 4 provides a non-intrusive and highly secure framework for the monitor-

ing of networking stack. It utilizes the eBPF technology that enables runtime

patching of Linux kernel. Utilizing this framework, we extensively studied the
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delays incurred by a packet across di↵erent components of the networking stack

at the AP. Furthermore, we also proposed and evaluated a method of estimating

the energy consumption of the WiFi subsystem of connected STAs on via the AP.

We intend to extend utilize FLIP for monitoring and examining other aspects of

WiFi communication, such as the causes of packet retransmissions in future.

(iii) Chapter 5 proposed a scheduling algorithm for prioritizing packets based on the

remaining tail-time of the stations’ PSM tail-time. The performance and applica-

bility of the proposed approach can be enhanced by integrating context awareness.

For example, detecting application layer protocol eliminates the burden of manu-

ally identifying IoT devices. Additionally, to extend the proposed mechanism to

scenarios with multiple APs and mobile stations, a software-defined networking

architecture can be employed to collect the required data (such as packet laxities)

from multiple APs and run the proposed algorithms centrally. Another area of

future work is to evaluate the reliability of communication considering di↵erent

factors, such as multipath fading, MIMO, and transmission power. These dynamic

factors are challenging to be described or calculated by mathematical models. In-

vestigating energy harvesting techniques in addition to the 802.11 PSM techniques

to extend the system’s lifetime is left as a future work too.

(iv) Chapter 6 proposed a design for estimating the RTT of a request-response, that

can be utilized by the STA’s NIC to switch to low-power sleep state until the

response (DL packet) is ready for delivery. Thus, conserving energy, while main-

taining the minimum delay requirements. Specifically, the performance of several

machine learning algorithms were evaluated with respect to the prediction accu-

racy of wireless transit delay considering features such as the channel utilization,

MAC layer retransmission, queue statistics, etc. Extending the implementation of

EAPS for next-generation WiFi 6 standard is left as future work. Additionally, the
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accuracy of the delay prediction can be further enhanced by taking into consider-

ation other variables that a↵ect the wireless conditions in WiFi communication.

(v) Chapter 7 focuses on the improving the observability of tra�c characteristics in

order to accurately allocate TWT sessions in next-generation WiFi 6 standard.

In particular, we evaluated common methods used for tra�c characterization and

discuss the shortcomings of each. We proposed a method based on the eBPF

technology that can be utilized by the STA to facilitate the AP with informa-

tion about inter-packet generation interval. Hence, the non-trivial task of tra�c

characterization can be o✏oaded to AP. As a future work, we intend to utilize

this platform for developing novel TWT schedule allocation algorithms. In this

work, we characterize tra�c in three common applications in IoT domain, such a

sensor that collects and sends the data to a central controller, a security camera,

and a video streaming device. In future, the performance of SATRAC can also be

evaluated for other IoT centric applications.
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List of Notations

Table 8.1: Summary of key notations and abbreviations
Notation Meaning

 Station Awake Time

E Energy Consumed by Station

siot
i An IoT station

sreg
i A regular station

Qiot
net Set of IoT queues (in the qdisc layer)

Qreg
net Set of regular queues (in the qdisc layer)

Qi An IoT queue

⌘ Number of IoT queues

� Tail time duration

t̃ Last activity time of a station

�(pi) Deadline of packet pi

� A circular queue holding D(pi) values

M(Qi) Maximum tolerable deadline of queue Qi

D(Qi) Duration of transmitting packets currently in Qi

S(Qi) Packets serviced by queue Qi during service period

S̄(Qi) Service size of queue Qi

Tx A circular queue holding packet transmission delays

µTx Average packet transmission duration
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Glossary

A-MPDU Aggregated-MAC protocol data unit

AC Access Category

ADC Analog-to-Digital Converter

AP Access Point

APSD Automatic Power Save Delivery

APSM Adaptive PSM

AU Airtime Utilization

AWS Amazon Web Services

BI Beacon Interval

BSR Bu↵er Status Report

CAM Continuously Active Mode

COTS Commercial O↵-The-Shelf

CU Channel Utilization

DCF Distributed Coordination Function

DDoS Distributed Denial-of-Service

DIFS Distributed Inter Frame Space

157



DL Downlink

DMA Direct Memory Access

EAPS-E EAPS with Early wake-up

EAPS-L EAPS with Late wake-up

EAPS-M EAPS with Mid wake-up

eBPF extended Berkeley Packet Filter

ECDF Empirical Cumulative Distribution Function

EDC Event-based Data Collection

EDCA Enhanced Distributed Channel Access

EDCF Enhanced Distributed Coordination Function

EDF Earliest Deadline First

EPDC Event and Polling-based Data Collection

ETR Extra Trees Regressor

GBR Gradient Boosting Regressor

HBR Histogram-Based Gradient Boosting Regressor

HTB Hierarchical Token Bucket

IMI Inter-Measurement Interval

INT In-band Network Telemetry

IoT Internet of Things
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LSTM Long Short-Term Memory

MAE Mean Absolute Error

MCS Modulation Coding Scheme

MIMO Multiple-Input Multiple-Output

MLME MAC layer management entity

MLP Multilayer perceptrons

MonFi-MNL MonFi w/ mmaped-netlink

MonFi-NL MonFi w/ netlink

MPDU MAC protocol data unit

NIC Network Interface Card

NN Neural Networks

NSM Network State Monitor

NSM-K NSM kernel-space

NSM-U NSM user-space

PDC Polling-based Data Collection

PER Packet Error Rate

PSM Power Save Mode

qdisc queuing discipline

QoS Quality of Service
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QS Queue Size

QSA Queue Size All

RFR Random Forest Regressor

RNN Recurrent Neural Networks

RPi Raspberry Pi

RSSI Received Signal Strength Indicator

RTOS Real-Time Operating System

RTT Round-Trip Delay

RU Resource Unit

SATRAC Source-assisted Tra�c Characterization

SMP Symmetric Multi-Processing

SP Service Period

SPI Serial Peripheral Interface

STA station

TIM Tra�c Indication Message

ToS Type of Service

TWT Target Wake-up Time

TXOP Transmit Opportunity

UL Uplink
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VFS Virtual File System

W-NIC Wired Network Interface Card

WL-NIC Wireless Network Interface Card

WUR Wake-up Radio

XDP eXpress Data Path
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