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Abstract 

With the continuous development of deep learning theory in the field of medical images, 

information technology-assisted treatment methods represented by medical image segmentation 

technology can help doctors to quickly determine the shape and location of the lesions and improve 

the diagnosis efficiency of brain tumors. Based on deep learning technology, this thesis carries out 

related research work on MRI image segmentation. The main contents are as follows: 

To begin with, acquire and prepare the brain tumor (MRI) image segmentation dataset from 

the official MICCAI Society website. This involves normalizing the images, cropping, and slicing, 

as well as scaling the data to ensure that the dataset meets the input specifications of the deep 

learning model. This paper presents a medical image segmentation method based on an improved 

Swin U-net. Initially, an atrous spatial pyramid pooling module is introduced at the end of the 

encoder to capture multi-scale features, allowing the model to effectively understand image at 

different scales and fully extract contextual information. Subsequently, in the encoder, the original 

blocks are replaced with residual Swin Transformer Blocks, and on the decoder side, replaced with 

deep residual convolution blocks. This replacement preserves the original information and 

alleviates the gradient vanishing issues. Lastly, an attention gate mechanism is introduced in the 

skip connections, enabling the model to focus more on important features within the feature map 

and suppress irrelevant information, thereby improving the model's segmentation accuracy. 

The experimental results show that the improved segmentation model reached a validation 

Intersection over Union (IoU) of 89.47%, an increase of 4.36% over the Swin U-net model, 

demonstrating that it can effectively enhance the accuracy of image segmentation and optimize the 

results of the original model. 

Keywords: semantic segmentation; Residual Transformer U-Net; attention mechanism gate; 

atrous spatial pyramid pooling; Swin Transformer; deep residual convolution 
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Chapter 1 

Introduction 

 

1.1 Research Background 

Brain tumor is a common malignant disease of the brain system. It is a tumor formed by the tissue 

proliferation and partial cells of the human brain under the influence of complex internal and 

external environments, including primary tumors and secondary tumors [1]. The mortality rate 

accounts for 2.4% of the incidence of human tumors. Brain tumors can cause very serious harm to 

the body, causing symptoms such as confusion and memory loss, seriously reducing the patient's 

quality of life. Therefore, the early diagnosis and treatment of patients with brain tumors are of 

great significance. 

Currently, the use of Magnetic Resonance Imaging (MRI) is the best way to diagnose brain 

tumors. It can emit different pulse sequences to obtain different multi-channel brain tumor medical 

images [2], which can be used for image segmentation tasks in different lesion areas of brain 

tumors. However, MRI images may have problems such as random field noise. 

In recent years, the application of computer vision technology in the field of medical image 

segmentation has developed rapidly. Since traditional machine learning requires manual 

annotation of many areas, the actual segmentation process is inefficient, and the result accuracy is 

low. Deep learning technology can effectively help doctors improve the efficiency of image 

processing, complete deep feature extraction of medical images, and improve the accuracy of 

image segmentation. 



1.2 Literature Review 

In recent years, with the development of computer technology, deep learning theory has attracted 

the interest of researchers for its learning method in processing large-scale data and its powerful 

prediction ability [3]. And the application of deep learning in brain tumor (MRI) images has also 

aroused the interest of more and more scientific researchers [4,5].  

Segnet [6] is a deep image semantic segmentation model proposed by Vijay Badrinarayanan 

in 2015, in which each network encoding layer corresponds to a network decoding layer. The 

encoder of the SegNet model uses the first 13 convolutional layers of the VGG16 [7] network, and 

the results of the decoder are input to the SoftMax classifier to complete the classification of image 

pixels. Compared with other semantic segmentation models, the Segnet model inputs low-

resolution feature parameters into the decoder for the first time, significantly reduces the 

parameters, and finally achieves pixel-level classification of images. 

The Fully Convolutional Networks (FCN) segmentation model was proposed by Long 

Jonathan et al. [8] in 2014. The FCN network is a representative work of deep learning theory in 

the field of image segmentation. This model eliminates the constraints of neural networks 

regarding the size of the input image. It is capable of learning features from and performing 

segmentation on images of any size.  Although the fully convolutional network achieves end-to-

end pixel-level classification of images, its disadvantage is that the details of the segmented images 

are not perfect enough. 

The symmetric U-shaped segmentation network U-Net [9] is a semantic segmentation 

network improved and proposed by Ronneberger et al. based on the fully convolutional network 

architecture. The U-Net model structure is mainly divided into three parts: down-sampling, up-

sampling and skip connections. The main components of the down-sampling contraction part and 

the up-sampling expansion part are completely symmetrical. The skip connection fuses the low-

level information (providing the basis for object classification) and the high-level information 

(providing the basis for accurate segmentation) in up and down sampling to improve the model. 



Combining U-Net architecture with Transformer has become one of the research hotspots in 

the past two years. Swin U-Net [10] is a U-shaped network with a Transformer as its backbone, 

which utilizes the Transformer to compensate for the deficiencies of U-Net in capturing long-range 

dependencies, thereby improving the semantic segmentation effects of multi-scale and multi-

regional edematous areas. However, the medical images extracted by Swin U-Net still have issues 

such as blurred edges and missed segmentation targets. 

 

1.3 Contribution of the Thesis 

Addressing the issues such as gradient vanishing and the loss of spatial information in classical 

network segmentation models, this paper proposes an image segmentation model based on an 

enhanced Swin U-net architecture. The key contributions of this work are as follows:  

(1) The application of digital image processing techniques such as image normalization, and image 

cropping and slicing to preprocess the dataset, thereby enhancing the dataset's image features.  

(2) The introduction of an atrous spatial pyramid pooling at the encoder's end to extract multi-scale 

brain tumor image features and expand the receptive field.  

(3) The implementation of residual Swin Transformer Blocks in the decoder and residual 

convolutional modules in the encoder to prevent model overfitting.  

(4) The incorporation of attention gate mechanisms within the skip connections to bolster 

important features and suppress irrelevant information.



 

 

Chapter 2 

Method 

 

2.1 Architecture Overview 

This paper builds upon the foundation of Swin U-net to achieve segmentation of brain tumor 

images, with the overall network structure illustrated in the figure 2-1. The enhanced Swin U-net 

network comprises three main parts: an encoder, a decoder, and skip connections. In the encoder 

part, the input image is initially processed through Patch Partition operation, dividing the image 

into equal-sized blocks, which are then altered in channel number through Linear Embedding. 

These blocks are fed into multiple Residual Swin Transformer Blocks and Patch Merging layers. 

At the end of the encoder, an Atrous Spatial Pyramid Pooling (ASPP) [11] module is introduced 

to extract information across different scales, enlarge the receptive field, and capture more detailed 

information. The Residual Swin Transformer Blocks which is motivated by the Swin Transformer 

[12] are tasked with feature extraction, while the Patch Merging serves as a down-sampling 

operation, halving the dimensions of the feature map and doubling the number of channels. The 

decoder part includes multiple residual convolutional modules and transposed convolutions. The 

incorporation of residual connections in both Res-Swin Transformer Blocks and residual 

convolutional modules effectively prevents model overfitting and enhances the model's 

generalization ability. Transposed convolutions mainly serve as up-sampling operations, doubling 

the dimensions of the feature maps and halving the number of channels. The final transposed 

convolution increases the feature map dimensions by four times, without changing the number of 

channels, and then passes through a convolutional layer with a 1×1 kernel to map the learned 



features to the required number of output classes. In the skip connection segment, cross-layer 

connections are made between the residual Swin Transformer Blocks at the encoder end and the 

residual convolutional modules at the decoder end to compensate for any loss of information. 

Additionally, attention gate mechanisms [13] are integrated within the skip connections to focus 

on important information in the feature map and suppress the irrelevant information, thus 

enhancing the precision of image segmentation. 

 

Figure 2-1 Deep Residual Transformer U-net structure. 

 

2.2 Atrous Spatial Pyramid Pooling 

Image segmentation networks are mainly based on an encoder-decoder structure, which employs 

down-sampling to expand the receptive field and up-sampling to restore the original image size. 

However, this network structure can easily result in the loss of crucial semantic feature information, 



and often fail to adequately consider contextual information, leading to significant accuracy 

degradation. The ASPP (Atrous Spatial Pyramid Pooling) module was first introduced by Chen et 

al. [11]. It utilizes parallel atrous convolutions with varying dilation rates to capture features at 

different scales of the image, obtaining varied receptive field features and fusing them. Thereby, it 

can fully consider contextual information, and improve the network's ability to extract detail 

features. 

The ASPP module mainly has five branches: the first branch is a 1×1 convolution, the second, 

third, and fourth branches are 3×3 atrous convolutions with dilation rates of 4, 8, and 12, 

respectively, and the fifth branch is global average pooling. Atrous convolution allows for the 

expansion of the feature map's receptive field without increasing the number of model parameters. 

The image is then restored to its original size via bilinear interpolation. The overall structure of the 

ASPP module is depicted in Figure 2-2. In this paper, by integrating the ASPP module at the end 

of the residual Swin-transformer encoder, it is possible to fully extract multi-scale information and 

enlarge the receptive field, which also helps the decoder to recover detail information. 

 

 

Figure 2-2 Atrous spatial pyramid pooling module. 



 

2.3 Residual Swin Transformer Module 

With the continuous increase in the number of layers in deep learning network models, issues such 

as overfitting and network degradation become more prevalent, further limiting enhancements in 

model accuracy. To address this issue, He et al. [14] introduced the Res-Net model, which 

incorporates a directed shortcut connection that directly connects the input across layers to the 

output. This approach effectively mitigates the gradient vanishing problem without increasing the 

parameter count, while also capturing more rich semantic features, thereby improving the accuracy 

of image recognition. 

Inspired by Res-Net, this paper incorporates the residual concept into the Swin Transformer 

Block by using a shortcut connection to link the beginning and end of a Swin Transformer Block. 

This is achieved through identity mapping to prevent the phenomenon of gradient disappearance 

in the network model. In this work, modules paired with W-MSA (Window Multi-Head Self 

Attention) and SW-MSA (Shifted Windows Multi-Head Self-Attention) are considered as a single 

Swin Transformer Block. The structure of the residual Swin Transformer Block is depicted in 

Figure 2-3. Experiments have shown that replacing the Swin Transformer Blocks at the encoder 

end with residual Swin Transformer Blocks effectively improves the model's accuracy in 

segmenting brain tumor images. 



 

Figure 2-3 Residual Swin Transformer Block. 

 

2.4 Residual Convolutional Modules 

This paper incorporates the concept of residual blocks from deep residual networks [14], utilizing 

improved convolutional modules with Batch Normalization (BN) and Identity Mapping to replace 

the standard convolutional blocks in the U-Net network. Originally, each convolutional block in 

U-Net consisted of two 3×3 convolution layers and two ReLU activation functions. In the 

improved version, each convolutional block first normalizes the output from the upper layer (BN), 

then extracts image features through a ReLU activation function followed by a 3×3 convolution 

layer. This process is then repeated once more, and finally, the input and output ends are connected 

via direct mapping. The residual convolutional module is illustrated in the figure 2-4. 



 

Figure 2-4 Residual Convolutional Block. 

 

2.5 Attention Gate Mechanism 

Skip connections serve to mitigate information loss by concatenating low-level features from the 

encoder with high-level features from the decoder. However, low-level features often contain a 

significant amount of redundant information and lack specific semantic details, which can impact 

the accuracy of brain tumor image segmentation. To address this, our study introduces attention 

gate mechanism [13] into the skip connections.  

By combining skip connect with attention gate mechanism, the model automatically learns the 

shape and size of the target, emphasizes salient features, and suppresses the feature response of 

irrelevant areas. This is accomplished by a probability-based soft attention to improving model 

sensitivity and accuracy with minimal computational overhead. The detailed structure of attention 

gate is shown in Figure 2-5. 

Initially, feature maps Xu with dimensions H×W×C, upscaled, and Xs, extracted by Residual 

Swin Transformer block with dimensions H×W×C, are processed in parallel. Both undergo a 3×3 



convolution and batch normalization (BN) operations, resulting in feature maps of dimensions 

H×W×(C/2), denoted as Xu′ and Xs′. Then, corresponding elements of Xu′ and Xs′ are added 

together, followed by a ReLU operation. This is succeeded by a 1×1 convolution with an output 

channel count of 1, and then applying BN and a sigmoid activation function to obtain attention 

coefficient weights α with dimensions H×W×1. Finally, Xs is multiplied by α to produce the 

attention feature map Xr with dimensions H×W×C. 

 

 

Figure 2-5 Attention Gate.



 

 

Chapter 3 

Experiments 

 

3.1 Brain Tumor (MRI) Introduction 

3.1.1 Dataset Background 

This paper obtained the BraTs2019 dataset through the official website of the American MICCAI 

Society, which comprises 259 cases of High-Grade Gliomas (HGG) medical images and 76 cases 

of Low-Grade Gliomas (LGG) medical images. Each case includes four modalities: Flair, T1, T2, 

and T1ce, with each modality having an image size of 155×240×240. 

The BraTs dataset is primarily composed of brain tumor (MRI) images and its four modalities 

are: T1-weighted imaging(T1), T2-weighted imaging(T2), T1-weighted contrast-enhanced (T1ce), 

and Fluid-Attenuated Inversion Recovery (Flair). T1 sequences can depict various cross-sectional 

anatomical details; T2 sequences can determine the location and size of lesions; T1ce sequences 

involve administering a contrast agent before MRI to differentiate enhanced tumors from necrosis; 

Flair suppresses the bright signal of cerebrospinal fluid, clearly displaying the entire tumor, but it 

cannot distinguish necrotic components. The brain tumor imaging results are shown in Figure 3-1, 

with images from left to right corresponding to Flair, T1, T2, and T1ce, along with the ground truth 

(GT). 



 

(a) Flair                    (b) T1                     (c) T2                     (d) T1ce                     (e) GT 

Figure 3-1 Brain tumor (MRI) image. 

3.1.2 Dataset Label 

In the BraTs dataset, the segmentation of brain tumor (MRI) images is standardized as follows: the 

background brain tissue is labeled as 0, necrotic tumor (NET) as 1, peritumoral edema (ED) as 2, 

and the enhancing tumor region (ET) as 4 [15]. The segmentation task in this paper requires the 

accurate differentiation of three distinct cancerous regions within the cases: the whole tumor region 

(WT), the tumor core (TC), and the enhancing tumor region (ET). The whole tumor (WT) 

encompasses necrotic (NET), edematous (ED), and enhancing tumor (ET) regions, which means 

WT includes labels 1, 2, and 4. The tumor core (TC) consists of necrotic (NET) and enhancing 

tumor (ET) regions, indicated by labels 1 and 4, while the ET (enhancing tumor region) is denoted 

by label 4. The specific segmentation tasks will be as indicated in Table 3-1, and the brain tumor 

(MRI) images will be illustrated as shown in Figure 3-2. 

Table 3-1 Brain tumor segmentation tasks. 

Serial  Task Region Region  Label Data 

1 Whole Tumor (WT) Whole Tumor  1，2，4 

2 Tumor Core (TC) Excluding Edema 1，4 

3 Enhancing Tumor (ET) Severe Tumor 4 

 



 

Figure 3-2 Brain tumor (MRI) image. 

(The red area represents necrosis, the yellow area indicates the enhancing tumor, and the 

green area signifies edema.) 

 

3.2 Image Preprocessing 

3.2.1 Dataset Acquisition  

The training dataset for BraTs2019 was accessed through the official website of the MICCAI 

Society. However, since the dataset does not include a test set, and considering that a small number 

of training samples might lead to model overfitting during network training, it was planned to 

divide the BraTs2019 dataset into a training set, test set, and validation set in a 3:1:1 ratio. 

3.2.2 Data Reading  

Using the SimpleITK toolkit, which is dedicated to medical image processing in Python, MR 

(Magnetic Resonance) medical images in nii.gz format were converted into arrays in the form of 

W×H×Z three-dimensional .npy files. 

3.2.3 Multimodal Image Standardization  

As each sequence in the BraTs dataset represents a different modality, the image contrast varies 

across sequences. Therefore, the z-score method is applied to standardize all modal images, setting 

the mean of the data within each modality to 0 and the standard deviation to 1, resulting in a normal 

distribution for the entire modality data. 



During the standardization of modality data, the concept of percentiles from statistics was 

employed, using the 99th and 1st percentiles as the boundaries to identify and correct outliers, 

improving the accuracy of the model algorithm training. 

3.2.4 Image Cropping 

The MRI images in the BraTs dataset are all sized 240×240, but a large proportion of the image is 

occupied by black (non-informative) space, while the brain tumor is relatively small, affecting the 

balance of the dataset. To improve the model's performance in segmenting the target regions of 

images and reduce background noise, the original modality images were cropped to 224×224. 

3.2.5 Slicing and Integration  

Given that medical images are three-dimensional, but the plan is to construct a two-dimensional 

neural network, the NumPy library was used to slice the three-dimensional .npy files into two-

dimensional data. Additionally, since each case data is multimodal, slices from the same case of 

different modalities were combined into multi-channel data. Since the size of each modality slice 

is 224×224, and there are four modalities per case, the images saved in .npy format are 224×224×4 

in size. For the label images' slicing, they are directly saved in a 224×224 .npy data format.  

 

3.3 Experiment Environment 

The experiments in this article were performed on a system running the Windows 10 operating 

system with DirectX 12 support. The computer is equipped with 16GB of RAM and an Nvidia 

RTX 4090 GPU. Python 3.8 was utilized as the development language, with PyTorch 1.8.1 serving 

as the development framework. 

To prevent overfitting due to overtraining, this study adopted the Early Stopping strategy to 

control whether learning should be halted. Training would continue only if the results were better 

than the best recorded; otherwise, it would terminate. The training was scheduled for 250 epochs 

with an early_stop parameter of 20 and a batch size of 18. At the beginning of training, the learning 

rate (Lr) was set at 0.0003 with a momentum of 0.9, decreasing by 0.0001 each epoch until training 



concluded. The Adam optimizer was used to adjust the learning rate and update the network 

weights. 

 

3.4 Loss Function 

The loss function is utilized to quantify the discrepancy between the predicted values and the 

ground truth; a smaller loss function value signifies better model robustness. Dice Loss was 

proposed to address the issue of imbalance between positive and negative samples in semantic 

segmentation tasks. It originates from the Dice Similarity Coefficient, a metric used to evaluate 

the similarity between samples. The calculation is given by 

                                                                            𝑆(𝑋, 𝑌) = 1 −
2|𝑋∩𝑌|

|𝑋|+|𝑌|
                                                      (3-1) 

where X and Y represent the set of points contained in the actual and predicted contour regions, 

respectively. 

Dice Loss is a region-based loss function, meaning that the loss and gradient value for the 

current pixel is related to the prediction of that pixel as well as the true results (ground truth) of 

other pixels. A Dice coefficient value closer to 0 indicates higher similarity between predictions 

and ground truth, thus a higher model accuracy; conversely, a value closer to 1 indicates lower 

similarity and, therefore, lower model accuracy. 

 

3.5 Evaluation Metrics 

To assess the segmentation accuracy of the model, this paper employs three evaluation metrics: 

Dice Similarity Coefficient (DSC), Sensitivity, and Positive Predictive Value (PPV) [16]. The Dice 

Similarity Coefficient measures the degree of closeness between the model's segmentation 

predictions and the annotated results. A Dice value closer to 1 indicates a smaller disparity between 

prediction and annotation, thus more accurate predictions. The Positive Predictive Value (PPV) is 

the ratio of the predicted tumor regions that are also annotated as tumor to all regions predicted as 



tumor by the model and a higher PPV value suggests a lower rate of false positives. Sensitivity 

reflects the ratio of correctly predicted tumor regions to all annotated tumor regions, representing 

the true positive rate of the network's segmentation and a lower value indicates a higher rate of 

false negatives. The formulas are as follows:  

                                                                          𝐷𝑖𝑐𝑒 = 2𝑇𝑃

𝐹𝑃+2𝑇𝑃+𝐹𝑁
                                                 (3-2) 

                                                                                 𝑃𝑃𝑉 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
                                                   (3-3) 

                                                                     𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                            (3-4) 

Where TP (True Positive) is the number of pixels predicted as tumor that are also annotated 

as tumor, FP (False Positive) is the number of pixels predicted as tumor but annotated as non-

tumor, TN (True Negative) is the number of pixels predicted as non-tumor that are also annotated 

as non-tumor, and FN (False Negative) is the number of pixels predicted as non-tumor but 

annotated as tumor. 



 

 

Chapter 4 

Analysis of Experiment Result 

 

4.1 Comparison Experiment 

To objectively assess the segmentation performance of the proposed method, deep Residual 

Transformer U-Net, were compared with those of prominent CNN segmentation models such as 

U-Net, Attention U-Net, Dense U-Net, Nested U-Net, DeepRes U-Net, and Transformer 

segmentation models like Trans U-Net and Swin U-Net under the same experimental conditions 

and dataset. As shown in Table 4-1. 

Table 4-1 Results of model comparison experiments. 

Method    Avg Sensitivity                           Avg PPV                             Avg Dice 

 

FCN8s 

 

U-net 

 

0.8715 

 

0.8931 

0.8809 

 

0.8895 

0.8587 

 

0.8742 

Attention U-Net 

 

0.8795 

 

0.9026 

 

0.8743 

 

Dense U-Net [17] 

 

Nested U-Net [18] 

 

DeepRes U-Net [19] 

 

Swin U-Net 

 

Trans U-Net [20] 

 

Proposed Method 

0.8743 

 

0.8926 

 

0.9059 

 

0.8581 

 

0.9001 

 

0.9178 

0.8882 

 

0.9044 

 

0.9160 

 

0.8529 

 

0.9166 

 

0.9254 

0.8621 

 

0.8833 

 

0.8981 

 

0.8316 

 

0.8943 

 

0.9092 

(The best value under each metric is bolded.) 



The Attention U-Net showed a significant improvement in average PPV among the CNN 

architecture comparison segmentation models, with an increase of 1.31% over U-Net. This 

indicates that the integration of AG (Attention Gates) into the U-Net base significantly enhances 

the model's performance. Therefore, the incorporation of AG based on Transformer for brain tumor 

image segmentation was considered in the design process of this study.  

The proposed deep Residual Transformer U-Net model achieved the best results in three 

evaluation metrics of average sensitivity, average PPV, and average Dice. The model's average 

sensitivity of 0.9178 showed improvements of 2.47%, 3.83%, 4.35%, 2.52%, and 1.19% over the 

CNN segmentation models U-Net, Attention U-Net, Dense U-Net, Nested U-Net, and DeepRes U-

Net respectively, and 5.97% and 1.77% over the Transformer segmentation models Swin U-Net 

and Trans U-Net respectively. The average PPV reached 0.9254, showing increases of 3.59%, 

2.28%, 3.72%, 2.1%, 0.94%, 7.25%, and 0.88% compared to the seven segmentation models, 

reflecting the improved model's high similarity between segmentation results and true values. The 

average Dice coefficient reached 0.9092, indicating increases of 3.5%, 3.49%, 4.71%, 2.59%, 

1.11%, 7.76%, and 1.49% compared to the seven models mentioned, demonstrating the model's 

accurate identification of tumor parts.  

For a more intuitive comparison of different models on the segmentation results, the study 

visualized the results of the experiments. The visualizations, as shown in Figure 4-1, reveal that 

the model proposed in this paper is closer to the true labels, capable of accurately segmenting finer 

brain tumor targets, and significantly improves the instances of mis-segmentation and missed 

segmentation, resulting in the best segmentation performance. 



 

       (a)                (b)                (c)                (d)                (e)                (f)              (g)             (h) 

Figure 4-1 Visualization of segmentation results of different methods. 

((a) Ground Truth; (b) proposed method; (c) Swin U-Net; (d) Trans U-Net; (e) Nested U-

Net; (f) Dense U-Net; (g) Attention U-Net; (h) DeepRes U-Net.) 

In summary, the proposed model shows a high similarity between segmentation results and 

true values, better identifying brain tumor images and outperforming the other eight models in 

segmentation performance, effectively enhancing the segmentation accuracy of brain tumor 

images. 

 

4.2 Ablation Study 

4.2.1 The influence of proposed module on model performance 

To validate the effectiveness of the introduced modules, this paper uses the Swin U-Net as the 

baseline model, sequentially stacking the Residual Swin Transformer Block, the Residual 

Convolutional Module, ASPP, and the Attention Gate mechanism onto the baseline for ablation 



experiments. These experiments evaluate the impact of each module on the model's segmentation 

accuracy through performance metrics. The results of the ablation experiments are shown in Table 

4-2. "Res-Swin" represents the Residual Swin Transformer Block, "CNN-decoder" indicates the 

Residual Convolutional Module, "ASPP" stands for Atrous Spatial Pyramid Pooling, and "AG" 

refers to the Attention Gates. 

Table 4-2 Comparison of evaluation result of ablation experiment. 

Serial  Baseline   Res-Swin    CNN-decoder    ASPP     AG     Avg Sensitivity     Avg PPV    Avg Dice 

 

1 

 

2 

 

 √                                                                                       0.8581 

 

     √              √                                                                     0.9117           

  

           

 

 

 

0.8529         0.8316 

 

0.8983         0.8921 

 

3 

 

     √              √                     √                                              0.9087                                   

 
 

0.9158         0.8998 

 

4 

 

5 

      √             √                     √                    √                        0.9092 

   
      √              √                      √                     √             √          0.9178 

       

 

                               

0.9125         0.8910 

 

0.9254         0.9092                           

(The best value under each metric is bolded.) 

From Table 4-2, it can be observed that the introduction of the Residual Swin Transformer 

Block improved the model's average sensitivity by 5.36% compared to the baseline model. Further 

additions of the Residual Convolutional Module increased the average PPV by 1.75%, and 

subsequent additions of the ASPP module and AG mechanism improved the average sensitivity, 

average PPV, and average Dice by 0.91%, 0.96%, and 0.94%, respectively. This further confirms 

that the four modules proposed in this study can effectively enhance the precision of brain tumor 

image segmentation. 

For a more intuitive comparison of the impact of each module on the segmentation results, 

the study visualized the results of the ablation experiments. The visualizations, as shown in Figure 

4-2, reveal that the original Swin U-net model had noticeable issues with under-segmentation and 

mis-segmentation. However, with the gradual integration of the Res-Swin, Residual Convolutional 

Module, ASPP, and AG, the target became more accurate and clearer. The segmentation effect of 

the model became closer to the real labels, and the phenomena of mis-segmentation and under-



segmentation were reduced. This conclusively demonstrates that the model proposed in this paper 

can effectively improve the results of brain tumor image segmentation. 

 

  (a)                      (b)                      (c)                      (d)                     (e)                     (f) 

Figure 4-2 Visualization of segmentation results in ablation experiments. 

((a) Ground Truth; (b) Swin U-Net; (c) + Res-Swin; (d) + Res-Swin + CNN-decoder; (e) + 

Res-Swin + CNN-decoder + ASPP; (f) + Res-Swin + CNN-decoder + ASPP + AG.) 

4.2.2 The influence of the number of AG on model performance 

To further investigate the impact of the number of Attention Gates (AG) in skip connections on 

model performance, experiments were conducted with varying quantities of AG within the skip 

connections of the model structure. AGs were added sequentially at the resolutions of 1/16, 1/8, 

and 1/4 scale in the skip connections. The experimental results are shown in Table 4-3. Where AG 

= 0 indicates no AG incorporation in skip connections, and AG = 3 corresponds to the deep 

Residual Transformer U-Net model proposed in this paper. As can be observed from Table 4-3, the 

segmentation accuracy of the model improves with an increasing number of skip connections. 

Therefore, to enhance the final segmentation accuracy, this paper sets the number of AGs to 3, 

resulting in the optimal model performance. 

Table 4-3 The influence of the number of AG connections on the model performance. 

The number of AG Avg Sensitivity                 Avg PPV                             Avg Dice 

 

AG = 0 

 

AG = 1 

 

0.8880 

 

0.8938 

0.9041 

 

0.8973 

0.8801 

 

0.8800 

AG = 2 

 

0.8999 

 

0.8964 

 

0.8838 

 

AG = 3 0.9178 0.9254 0.9092 



(The best value under each metric is bolded.) 



 

 

Chapter 5 

Conclusion 

 

This paper combines the residual Swin Transformer, residual convolutional modules, AG, and 

ASPP to propose an improved Swin U-Net based image segmentation model, the deep Residual 

Transformer U-Net, which achieves precise segmentation of brain tumor MRI images. Building 

upon the original Swin U-Net architecture, the model integrates an ASPP module to merge features 

of brain tumor images at different scales and increase the receptive field. It employs residual Swin 

Transformer blocks and residual convolutional modules for the encoder and decoder layers, 

respectively, preserving original feature information and effectively preventing overfitting. 

Attention Gate mechanisms are introduced into the skip connections to enhance important features 

and suppress irrelevant information.  

Experimental results show that the proposed model outperforms the other eight CNN 

segmentation models and Transformer image segmentation models in brain tumor image 

segmentation tasks. The study also demonstrates that incorporating Attention Gates into the hybrid 

Transformer and CNN segmentation models can effectively improve the segmentation accuracy 

of brain tumor images.  

Although the proposed method has achieved significant improvements, there still exists an 

issue with insufficient detail in the segmentation and the model's complexity is relatively high. 

Future work will aim to further optimize the deep Residual Transformer U-Net network to reduce 

its complexity. Additionally, we will utilize traditional signal processing algorithms to improve our 



model [21], classify different medical images for higher segmentation fidelity [22], apply our 

model to new areas [23] and design lightweight segmentation model to reduce training cost for 

green AI [24]. 
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