
Santa Clara University
Scholar Commons

Interdisciplinary Design Senior Theses Engineering Senior Theses

6-15-2018

CryptKi: Mobile Hardware Wallet
Derrick Chan
Santa Clara University, dchan1@scu.edu

Rowan Decker
Santa Clara University, rdecker@scu.edu

William Nguyen
Santa Clara University, wnguyen@scu.edu

Yuya Oguchi
Santa Clara University, yoguchi@scu.edu

Follow this and additional works at: https://scholarcommons.scu.edu/idp_senior

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Interdisciplinary Design Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Chan, Derrick; Decker, Rowan; Nguyen, William; and Oguchi, Yuya, "CryptKi: Mobile Hardware Wallet" (2018). Interdisciplinary
Design Senior Theses. 38.
https://scholarcommons.scu.edu/idp_senior/38

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/idp_senior?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/idp_senior?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/idp_senior/38?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

SANTA CLARA UNIVERSITY
DEPARTMENT OF COMPUTER ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING

Date: June 14, 2018

I HEREBY RECOMMEND THAT THE DESIGN REPORT PREPARED UNDER MY
SUPERVISION BY

Derrick Chan
Rowan Decker

William Nguyen
Yuya Oguchi

ENTITLED

CryptKi: Mobile Hardware Wallet

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREES OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING
BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

Advisor

Advisor

Department Chair

5CU
Department Chair

CryptKi: Mobile Hardware Wallet

by

Derrick Chan
Rowan Decker
William Nguyen
Yuya Oguchi

Submitted in partial fulfillment of the requirements
for the degrees of

Bachelor of Science in Computer Science and Engineering
Bachelor of Science in Electrical Engineering

School of Engineering
Santa Clara University

Santa Clara, California
June 15, 2018

CryptKi: Mobile Hardware Wallet

Derrick Chan
Rowan Decker
William Nguyen
Yuya Oguchi

Department of Computer Engineering
Department of Electrical Engineering

Santa Clara University
June 15, 2018

ABSTRACT

Cryptocurrencies are rapidly receiving mainstream attention and adoption. As a result, new tech-
nologies are developing to store and transact cryptocurrencies to keep up with a rapidly developing
market. We have developed a way to utilize a mobile phone to communicate with the Ethereum
blockchain in order to monitor and initiate cryptocurrency transactions. The project allows users
to create new Ethereum addresses and to send arbitrary amounts of Ether to existing Ethereum
addresses, while maintaining security for the end user. We conclude that this method of commu-
nication with the Ethereum blockchain is viable and is an avenue for exploration in the future. As
a result from this project, we anticipate a growth of new cryptocurrency applications on mobile
devices. Furthermore, the various security features utilized in this project such as pin randomiza-
tion, mnemonic recovery, and hardware level encryption can be implemented in other applications
to increase security for all users.

Table of Contents

1 Introduction 1
1.1 Motivation and Objective . 1
1.2 What are cryptocurrencies? . 1
1.3 Why do you need a hardware wallet? . 2
1.4 Related Products . 2
1.5 Solution . 2
1.6 Considerations . 2

1.6.1 Why Blockchain Technology Needs Security 2
1.6.2 Virtues of a Good Engineer . 3
1.6.3 Risks and Safety . 4

2 Project and Design 5
2.1 Project Requirements . 6

2.1.1 Specifications and constraints . 6
2.1.2 Android App . 6
2.1.3 Physical Hardware Wallet . 7
2.1.4 Bluetooth Services . 7

2.2 Use Cases . 8
2.2.1 Case Diagram . 8
2.2.2 Task Description . 8

2.3 Activity Diagrams . 11
2.3.1 Setup . 11
2.3.2 Settings . 12
2.3.3 Backup . 13
2.3.4 Restore . 14
2.3.5 Send . 15

2.4 Usage . 16
2.4.1 Setup . 16
2.4.2 Sending a Transaction . 20

2.5 Architectural Diagram . 25
2.6 Phone App . 26
2.7 Block Diagrams . 26

2.7.1 Level 0 . 26
2.7.2 Level 1 . 27

2.8 Cryptography Block Diagram . 28
2.9 Design Rationale . 29

2.9.1 Support for Multiple Cyrptocurrencies . 29
2.9.2 Localization . 29
2.9.3 Connecting to the Ethereum Blockchain . 29
2.9.4 Mobile Application Connection with Hardware Wallet 29
2.9.5 Power . 30
2.9.6 Interacting with the Hardware Wallet . 30

iv

2.9.7 BLE Services . 30
2.9.8 Security . 30

2.10 Technologies Used . 31
2.10.1 Server Backend . 31
2.10.2 Mobile Application . 31
2.10.3 Hardware Wallet . 31

2.11 Development Process . 32
2.11.1 Hardware Wallet . 32
2.11.2 Android App . 33

2.12 Attack Vectors and Mitigations . 34
2.12.1 Pin Access . 34
2.12.2 Man in the Middle Attacks . 34
2.12.3 Power Attacks . 35
2.12.4 Cold Boot Attacks . 35

2.13 Test Plans . 36
2.13.1 Mobile application . 36
2.13.2 Hardware wallet software . 36
2.13.3 System Testing . 36

3 Discussion 37
3.1 Social Concerns . 38
3.2 Economics Considerations . 38
3.3 Usability . 38
3.4 Manufacturing . 38
3.5 Lifelong Learning . 38

4 Conclusion 39
4.1 Lessons Learned . 39
4.2 Future Development . 39
4.3 Summary . 39

5 Appendix 43

A Risk Analysis and Timeline 44
A.1 Risk Analysis . 44
A.2 Budget . 45
A.3 Development Timeline . 47

B Bill of Materials 48

C Schematics 50
C.1 Top Level . 50
C.2 Controller . 51
C.3 Screen Interface . 52

D PCB Layout 53
D.1 Top Layer . 53
D.2 Bottom Layer . 54

E Storage Allocation 55
E.1 Page Allocation . 55
E.2 Ethereum Wallets . 55

v

F Bluetooth Services 56
F.1 Device Service . 56
F.2 Ethereum Service . 56

G Data Types 57
G.1 auth type t . 57
G.2 eth address t . 57
G.3 eth hash t . 57
G.4 eth transaction t . 57

H User Manual 58
H.1 Phone App . 59

H.1.1 Receiving Funds . 59
H.1.2 Drawer . 61
H.1.3 Viewing Transactions . 62
H.1.4 Switching Accounts . 63
H.1.5 Creating a New Account . 64
H.1.6 Changing Nodes . 65

H.2 Hardware Wallet . 66
H.2.1 Settings . 66
H.2.2 Backup . 67
H.2.3 Restore . 68

I Privacy Policy 70

J Source Code 72
J.1 Transaction Signing . 72
J.2 Public Address Generation . 74
J.3 RLP Encoding . 74
J.4 Oled Interface . 76
J.5 BLE Defines . 76
J.6 SDK Defines . 77

K Glossary 79

vi

List of Figures

2.1 Uses Cases . 8
2.2 Setup Activity . 11
2.3 Settings Activity . 12
2.4 Backup Activity . 13
2.5 Restore Activity . 14
2.6 Send Activity . 15
2.7 Hardware Wallet Mockup . 16
2.8 Setup Screen . 16
2.9 Pin Screen . 17
2.10 Connect Screen . 17
2.11 Phone Bluetooth Connect screen . 18
2.12 Setup Complete . 19
2.13 Phone Balance Screen . 20
2.14 Phone Sending a Transaction . 21
2.15 Phone PIN Screen . 22
2.16 Transaction From . 23
2.17 Transaction To . 23
2.18 Transaction Amount . 23
2.19 Transaction Confirm . 24
2.20 Sent Screen . 24
2.21 Canceled Screen . 24
2.22 System Architectural Diagram . 25
2.23 App Software Architecture . 26
2.24 Level 0 Block Diagram . 27
2.25 Level 1 Block Diagram . 27
2.26 Cryptography Block Diagram . 28

A.1 Year Development Timeline . 47

H.1 Account QR Code . 59
H.2 Share Account Address . 60
H.3 App Drawer . 61
H.4 Transactions List . 62
H.5 Accounts Screen . 63
H.6 New Account Screen . 64
H.7 Changing Ethereum Node . 65
H.8 Settings Screen . 66
H.9 Brightness Setting . 66
H.10 Start Backup . 67
H.11 Backup Words Screen . 67
H.12 Verify Backup . 67
H.13 Restore Screen . 68
H.14 Start Restore . 68

vii

H.15 Restore Screen . 68
H.16 Suggestions Screen . 69
H.17 Restore Complete . 69

viii

List of Tables

2.1 Services . 27

A.1 Risk Table . 45
A.2 Budget . 46

B.1 Bill of Materials . 49

E.1 Flash Pages . 55
E.2 Ethereum Wallet Flash Storage . 55

F.1 Services . 56
F.2 Device Service Characteristics . 56
F.3 Ethereum Service Characteristics . 56

ix

Chapter 1

Introduction

1.1 Motivation and Objective

Cryptocurrencies are a type of decentralized currency which are accessible, reliable, and secure.
They cannot be counterfeited and can be freely traded without the use of a third party. Currently,
there only a few ways people can access their cryptocurrency to accept and enact transactions. We
plan to create a more secure and mobile way for people to use cryptocurrencies.

1.2 What are cryptocurrencies?

Cryptocurrencies are a type of decentralized online currency that utilizes blockchain technology.
What it means to be decentralized is that there is no single supplier of information. Rather, ev-
erybody has the same copy of the same information. This information is known as the blockchain.
Having multiple people possess the same information may seem counterintuitive and wasteful but
there are many benefits to not having a single repository of information.

Firstly, in order for any new information to be added to the shared data, everyone has to agree
to add that information to the record. The implication here is that adding false data is impossible
because you would need a majority of people to agree to add false information. Additionally, there
are software safeguards in place that validate any attempt to submit data. Furthermore, since
everyone has the same copy of the same data, the data cannot be deleted or retroactively changed.
The redundant storage of information guarantees that multiple copies will survive data failures and
that past data cannot be mutated

Blockchain technology is useful for cryptocurrencies because now, the blockchain acts as a ledger
for all transactions done. Since an individual cannot change the blockchain, false transactions cannot
be created. Since false transactions cannot be created, counterfeit currency cannot be created.
Finally, because the blockchain is decentralized and completely virtual, anyone can exchange money
with anyone else at any time. There are no additional fees or restrictions for sending funds to
people in other countries. Cryptocurrencies promise on-demand transactions for everyone, which is
beneficial for any currency system. [2]

1

1.3 Why do you need a hardware wallet?

Let us introduce the concept of a hardware wallet with an analogy to debit cards. Just like debit
cards, a hardware wallet can be used to buy goods and services. Like a debit card, you can not
spend more money then you currently possess with a hardware wallet. However, if you lose your
debit card, you are at risk of losing all of your money because all of the information needed to make
a transaction is on the card. Whereas a hardware wallet requires additional information that is not
on the wallet to initiate a transaction.

The main benefit of using a hardware wallet is maintaining security. One of the fundamental flaws
of cryptocurrencies is that you have to maintain your own security. There is no central authority that
will provide insurance for lost or stolen funds. A hardware wallet mitigates the risk of having your
funds stolen by providing various security measures to protect your private key. In this context, a
private key is what enables a transaction to be sent. If your private key is compromised, anyone can
send money from your account to any other account. A hardware wallet protects your private key
by isolating your private key from the outside world. This protects your private key from malware
like keyloggers or trojans.

1.4 Related Products

The two main competitors in this market are the Trezor [3] and the Ledger Nano S [4]. Both
are hardware wallets and support multiple cyrptocurrencies like Bitcoin, Litecoin, and Ethereum.
Both of these products connect to a desktop computer via a USB interface. This means that both
wallets do not have a way to interface with a mobile phone. Additionally, both products have known
security flaws and availability issues.

1.5 Solution

Our solution to current cryptocurrency transaction issues is to create a hardware wallet that is
easily accessible from the Android app. The wallet will act as a form of multi-factor authentication
and provide a separate, secure, area for accounts to reside. The wallet will use explicit physical
interaction as a signature and as a confirmation method for transactions.

1.6 Considerations

1.6.1 Why Blockchain Technology Needs Security

Blockchain technology is an emerging technology that promises a way to create decentralized systems
and nodes that all agree with each other. This technology creates the platform for decentralization
but does not inherently provide a comprehensive security for the end user. Essentially, the user can
use the blockchain technology but the technology has no guarantee that the users data will remain
secure.

The goal of this project is to provide tools that enable users to more securely use blockchain
currencies like Ethereum. The main ethical consideration for this venture is the expectation of
privacy. Given recent breaches like Equifax, decentralized systems are growing in popularity in light
of big financial institutions losing trust. The main ethical framework that can be employed here is
the concept of the common good. People need access to banking institutions. People need security
to protect their funds and assets. In this world, people need money. We are providing a framework
to build a system that puts trust into individual persons.

The common good framework ensures that ethical decisions are driven by the idea that acts
must promote the benefit of all people. The platform we are building is for the common good.
The ultimate goal is to provide a method to securely transmit money and to provide a safe way to

2

store the money. These goals relate to the common good because these technologies will benefit the
economy because it promotes people to exchange money. A stronger world economy will lead to a
higher standard of living for all. A currency system not backed by a single government would allow
everyone to use the same currency. People would have the ability to trade goods with people in
di↵erent countries with no transaction fees and minimal lag time. A single currency enables people
to interact directly with each other in an increasingly interconnected world.

1.6.2 Virtues of a Good Engineer

Techno-social sensitivity

Technology has quickly changed the world. It has given people the ability to communicate across
the globe instantaneously. Technology is now poised to allow people to transfer funds quickly and
securely without the reliance of a central or national institution. This is especially helpful for
developing countries where there is not a formal infrastructure to provide these abilities to their
people.

Respect for nature

Our project helps reduce the reliance on paper money hopefully leading to reduction in the waste
products associated with the production of money. Our project will only have to be produced and
purchased once but can then continue to be used without requiring additional physical resources.

Commitment to the public good

Every so often, we experience major economic crisis. This result in damages to individuals, com-
panies and countries all around the world now that the world is all financially interconnected. The
vulnerable individuals who are a↵ected by these crises could lose their assets and be left with nothing.
With our product, we are promoting use of cryptocurrency, which acts as a secondary independent
economy. This prevents the whole economy from crashing down as crisis in one economy is only the
half of the whole economy. While economic crisis will still hurt many, our product which promotes
the cryptocurrency economy cushions the damage.

Teamwork

Our project has helped us realize the importance of communication. The project contains many
separate yet interconnected parts: PCB design, ARM firmware programming, Android development,
etc. For instance, the firmware could not have be written until there was a physical device to test on,
and the Android app relies upon using a consistent communication protocol with the board. Any
changes to the parameters the board looks for will require changes in the app. This required us to
document standards so that everyone could stay on the same page and make a working ecosystem.

Courage

Our project requires courage because it is in a very new field that most people do not know about.
This makes it tough to advertise and explain our project to the layperson. Furthermore, as just a
group of four college students it may be tough for others to trust our implementation with their own
financial security. Finally, as the technology is quickly changing we are forced to find information
not from formal writeups and documentation but from peering through code which can be tough.

3

1.6.3 Risks and Safety

Risks

The main risks involved with our project is someone gaining access to our clients cryptocurrency.
Attackers can attempt to gain access through both physical attacks and cyber attacks. Physical
attacks may include but are not limited to coercing someone to hand over the hardware and tell the
attacker security pin number used for transaction authorization. The cyber attacks mainly include
finding flaws in software or hardware and using the vulnerability to gain ways to access data in
unauthorized ways. Another method of cyber attack is done through random guessing. While it
is unlikely for anyone to guess someones pin code or message randomly, it is not 0%. Our clients
are often not aware of the exact math and e↵ort behind our hardware and it is often di�cult to
explain in simple terms to our clients as the process is fairly complex, but it is possible to notify
users that there are still potential risks involved with our product even though the whole project
revolves around increasing protection.

The Public

The public for our project are people familiar with cryptocurrencies who are looking for a secure
way to transfer funds while on the go. The people at risk are those who make transactions from a
mobile device that may be tampered with. Our goal is to limit the risk for these people. We believe
that any risks introduced by our device will be less likely and less impactful than to those who do
not have it.

Informed Consent

Our project will describe the devices operation on a website, allowing people to make an informed
decision before purchasing the device. Delivered along with the project will be a piece of paper once
again outlining the terms for those who may not have read them online. If a person would not like
to use the device they are not forced to. Ultimately while we try to provide a more secure interface,
we are unable to guarantee with complete certainty that a person will not lose funds.

4

Chapter 2

Project and Design

5

2.1 Project Requirements

These are the requirements necessary to achieve the design goal set forth. This section is broken down
into three subsections, the mobile app, the physical hardware wallet, and the Bluetooth services.
Each of these sections include the functional and non-functional requirements. In this context, a
functional requirement is a design decision that is fundamental to the overall project and is a decision
that describes what the system does. A non-functional requirement describes how the system should
be.

2.1.1 Specifications and constraints

There are also several specifications and constrains that must be met by the project as a whole:

• The cost must be less than $50 USD. Other current competitors on hardware wallet market
marks their prices starting at around $70. marking our product price at below $50 will allow
us to become competitive alternative to current existing products.

• The size must be smaller than 50cm2 as that is an approximate size of credit cards. The
hardware wallet must be smaller than that to fit in wallet along with other cards to be portable.

• The power consumption of hardware wallet must be under 10mA when active. In order to
maintain longevity of the device, it needs to use low power in order to let the device work for
longer time without changing the battery.

2.1.2 Android App

The Android App is an integral part of the design goal for this project. The project utilizes the
smart phone app to communicate with the overall Ethereum block chain. Furthermore, the mobile
app connects to the bluetooth hardware wallet and serve as the controller for the wallet. Originally,
an iOS app was planned. Instead, we opted to focus only the Android app where a future iOS release
will copy the Android app’s functionality and aesthetic.

Functional Requirements

• Communicates with an Ethereum full node

• Utilizes Bluetooth Low Energy (BLE) services to communicate with a hardware wallet

• Uses multi-factor authentication

• QR code reader

• App on the PlayStore for Android

• Retrieves data from the Ethereum Blockchain

• Displays address information

Non-Functional Requirements

• Simple and intuitive design

• Easy to interact

• Minimize system resource usage

• Responsive

• Be a secure platform

6

2.1.3 Physical Hardware Wallet

The hardware wallet is one of the fundamental pieces of this project. The wallet will provide an
additional layer of security for this system.

Functional

• Utilizes Openssl and keccak-256 to generate public/private keys

• Generates signed Ethereum transactions

• Implements two-factor authentication

• Uses Bluetooth Low Energy services to send data to an Android phone

• Screen brightness adjustment

• Displays private key as a mnemonic phrase on setup

• Restore account from a mnemonic phrase.

Non-Functional

• Portable size

• Durable housing

• Minimize attack vectors

2.1.4 Bluetooth Services

Bluetooth technology allows communication and data transfer between devices without using phys-
ical cables between. Bluetooth is also categorized as low energy. These traits made Bluetooth a
good choice for the hardware wallet.

Functional Requirements

• Uses a vendor specific UUID

• Sends transaction information

• Connects to devices within a reachable distance

Non-Functional Requirements

• Low energy consumption

• Maintains a stable connection to the phone

• Private connection

• Small size to fit on hardware wallet

7

2.2 Use Cases

This section of the report details how the end user interacts with the hardware wallet. For this
project, there are two relevant actors: sender and receiver. The main action that a sender will
take is to initiate cryptocurrency transactions. The receiver undertakes a more passive role in this
exchange because the main action the receiver takes is supplying an address for the sender to send
funds to.

2.2.1 Case Diagram

Figure 2.1: Uses Cases

2.2.2 Task Description

To use our product, users will go through several steps to make a transaction. Let’s say a user
wants to purchase a product from a vendor. If it is the user’s first time using the hardware wallet,
then they will download our mobile application and connect to the hardware wallet via bluetooth
connection through the app. At this point, the user will go through an account creation process
to create an Ethereum address. Once the account is connected to an address, the user can send a
transaction to the vendor to pay for the product.

8

If a user wants to check their account, they may do so through the mobile application. If they
have already created an account, they can check transaction history on the mobile device.

In case a user wants to completely reset the account, the user will be able to reset their device
either from the phone app or the hardware wallet.

This section will describe the individual aspects of each use case. Each case will have its own
goal and actors. The goal describes why a particular actor would want to use the project. The
precondition for each use case is the set of conditions that must be true before the beginning of a
use case.

A) Name: Initial Bluetooth Connection
Goal of use case: Provide the basic setup for the hardware wallet. This includes installing the mobile
application and connecting the hardware wallet to the phone.
Actors of use case: The sender
Pre-conditions: A mobile phone running iOS or Android and the hardware wallet.
Steps:

1. Power on the wallet and begin setup

2. Create a security pin

3. Download the app from your respective app store

4. Open the app and navigate to the connection interface

5. Initiate the Bluetooth connection on the mobile app and find the name of hardware wallet
from list of bluetooth device list

6. Press the connect button on the hardware wallet to complete the pairing process

Post-Conditions: The sender will have the mobile app installed and the hardware wallet connected
to their phone.
Exceptions: Pairing failures
B) Name: Create an Ethereum wallet

Goal of use case: Create an Ethereum wallet that will be stored on the hardware wallet.
Actors of use case: The sender
Pre-Conditions: The mobile app and the hardware wallet
Steps:

1. Initiate the account creation process on the mobile app

2. The hardware wallet will create an Ethereum address

3. The backup codes will be displayed on the hardware wallet

4. Copy the secret words to a safe place

Post-Conditions: An Ethereum address that will be able to send and receive funds and a private
key that will be used to recover the account.
Exceptions: None

C) Name: Send Transaction
Goal of use case: Initiate a new transaction that will be sent to an Ethereum address.
Actors of use case: The sender and receiver
Pre-conditions: The sender must have some amount of Ethereum that can be sent. The receiver
must make their address public. The mobile app must be connected to the hardware wallet via
Bluetooth
Steps:

9

1. Initiate a transaction from the mobile app

2. Input the transaction amount, destination address, gas limit

3. Confirm the details and send the transaction to the hardware wallet

4. Confirm the transaction on the wallet

5. The app will submit the signed transaction to the Ethereum blockchain.

Post-Conditions: A new transaction is submitted to the Ethereum blockchain.
Exceptions: User cancels the transaction

D) Name: Receiving a Transaction
Goal of use case: Transfer Ethereum to a recipient.
Actors of use case: The sender and receiver
Pre-conditions: The receiver must have a valid Ethereum address.
Steps:

1. Publicize the receiving address

2. Have another user send funds to that address

Post-Conditions: The transaction will be shown in the recipients app
Exceptions: None

E) Name: Factory reset
Goal of use case: Reset the hardware wallet in case the user is no longer the owner of the device
whether on purpose such as gifting or on accident such as losing the device or having it stolen.
Actors of use case: The user
Pre-conditions: Must have set up and paired the device with the phone application
Steps:

1. Open phone application.

2. Navigate to the factory reset option.

3. Enter PIN to confirm the reset.

Post-Conditions:
Exceptions: None

10

2.3 Activity Diagrams

This section of the report describes the actions that a user will take while utilizing this system.

2.3.1 Setup

Figure 2.2: Setup Activity

The Figure 2.2 shows list of steps a user will go through to set up the hardware wallet for the first
time.

11

2.3.2 Settings

Figure 2.3: Settings Activity

The Figure 2.3 shows menu screen actions. Users have several options on the menu screen to select
from. They may select di↵erent options with up and down buttons and start the selected action
using the right key.

12

2.3.3 Backup

Figure 2.4: Backup Activity

The Figure 2.4 shows diagram for creating a backup. The hardware wallet will display list of words
that will be used for back up. At this point user will write them down. Once written down, the
hardware wallet will verify that user actually wrote them down by testing the user what the keywords
were.

13

2.3.4 Restore

Figure 2.5: Restore Activity

The Figure 2.5 shows diagram for restoring an account on hardware wallet. In order to do so, the
user will start restore process and enter all keywords that were initially set up when creating an
account. If all the words match, the account is restored.

14

2.3.5 Send

Figure 2.6: Send Activity

The Figure 2.6 shows diagram for sending a transaction. First the user inputs relevant transaction
information onto the phone application. Both addresses used in the transaction are checked. Once
those are verified, the amount and gas used in the transaction is also verified. Finally, the confir-
mation screen for the transaction is displayed, at which point a user may decline; which stops the
transaction, or accepts to send the transaction and receive a confirmation on the hardware wallet,
and transaction id on phone application.

15

2.4 Usage

Figure 2.7: Hardware Wallet Mockup

The hardware wallet will have a screen and four buttons arranged in a plus formation.

2.4.1 Setup

Figure 2.8: Setup Screen

16

This screen will be displayed when the hardware wallet is powered on for the first time. As mentioned
on the display pressing, any key will begin the setup process.

Figure 2.9: Pin Screen

This screen allows the user to set a security pin to use for future connections. This prevents
other people from being able to use the device. Pressing the up and down buttons will increase and
decrease the value of the current digit respectively. Pressing right will move onto the next digit, and
after all digits are entered progresses to the next screen. Pressing left will allow previous digits to
be modified.

Figure 2.10: Connect Screen

The screen displays the name that will appear on a list of bluetooth devices allowing for easier
pairing from a phone. The device will automatically advance to the next screen once it has detected
a bluetooth connection.

17

Figure 2.11: Phone Bluetooth Connect screen

On the mobile application, a list of available hardware wallets will be displayed. Upon pressing
”Pair”, the hardware wallet and the phone will be connected via Bluetooth.

18

Figure 2.12: Setup Complete

Once the device is paired and the backup words have been verified then the setup is complete.
Pressing any button will move onto the main menu.

19

2.4.2 Sending a Transaction

Figure 2.13: Phone Balance Screen

When the user opens the app or has received a transaction, the user can see their balance.

20

Figure 2.14: Phone Sending a Transaction

On the mobile application, the user will be prompted to enter in a valid address to send funds
to. After this, the user will then be prompted to enter in an Ethereum amount to transfer and the
gas transaction fee.

21

Figure 2.15: Phone PIN Screen

Before sending a transaction on the mobile application, the user will be prompted to enter a
PIN that they created when they setup the device. This will ensure an extra level of security by
preventing other people with access to your phone from sending funds.

22

Figure 2.16: Transaction From

When the user initiates a transaction from their phone, this screen will automatically be displayed
on the device. Inspecting the address will allow the user to filter out any transactions they did not
initiate. Pressing any button moves to the next screen.

Figure 2.17: Transaction To

The recipient will be displayed for confirmation. Pressing any button moves to the next screen.

Figure 2.18: Transaction Amount

The amount and gas (transaction fee) will then be displayed. Pressing any button moves to the
next screen.

23

Figure 2.19: Transaction Confirm

At this point the user will be able to cancel or send the transaction. As an added level of security
a verification image will be displayed allowing for quick visual confirmation. If the image matches
the one generated on the phone then the information has not been tampered with. Pressing left
cancels the transaction, pressing right sends it.

Figure 2.20: Sent Screen

When the user confirms the transaction, the sent screen will be shown.

Figure 2.21: Canceled Screen

When the user denies the transaction, the canceled screen will be shown.

24

2.5 Architectural Diagram

This section describes how the individual software and hardware components interact to form the
hardware wallet. The hardware wallet design is described in the block diagrams.

Figure 2.22: System Architectural Diagram

The system level architecture is described by figure 2.22. This diagram shows how each compo-
nent interacts with every other component. The blockchain component is a server backend running
Parity. Parity is a server software designed to communicate with the Ethereum blockchain. The
phone app acts as a communication layer between the hardware wallet and the blockchain. The
main function of the phone app is to provide a GUI for the user as well as sending and receiving
data from the blockchain. The final component is the hardware wallet. The hardware wallet receives
transaction information from the phone app via a BLE connection. The hardware wallet will then
generate and sign a valid Ethereum transaction. Next, the wallet will send that transaction to the
phone and then the phone will send the transaction to the blockchain.

25

2.6 Phone App

Originally Phone apps will be implemented for iOS as well as Android. Despite the di↵erent im-
plementation methods, the development team plans on utilizing the same software architecture for
both. The phone app will use a model view controller architecture to implement the functions de-
scribed in the requirements section. A model view controller architecture is beneficial here because
each of the functions are compartmentalized and are focused on one task.

The app itself will act as the controller for the two data models. If the user requests for a
transaction to be submitted to the network, the phone app will send the required transaction infor-
mation to the hardware wallet. The hardware wallet will then respond back with a valid Ethereum
transaction. The phone app will then send that information to the blockchain and respond back to
the user. By using a model view controller, the user will have a smooth experience.

The models in this system represent Ethereum data. The app communicates with the di↵erent
models by using JSON remote procedure calls (RPC) and BLE. JSON RPC is a standardized method
to communicate with servers. In this context, the phone app would utilize RPC to tell the server
to send a message to the Ethereum blockchain. The message can range from sending transactions
to getting network status. The phone app utilizes BLE to send transaction information to the
hardware wallet. The wallet’s responsibility is to manipulate that data and return a valid Ethereum
transaction.

Figure 2.23: App Software Architecture

2.7 Block Diagrams

2.7.1 Level 0

This diagram describes overall diagram of hardware wallet. At a surface level, the hardware wallet
takes in transaction information, which include: the amount of Ethereum to send, the address of the
recipient, the gas amount used in the transaction, and a pin number to confirm the transaction. As
a result of a successful pin match, a signed transaction with appropriate values are produced from
the hardware wallet which will be sent back to the phone and then to the network.

26

Transaction Information
Hardware Wallet Signed Transaction

Pin

Figure 2.24: Level 0 Block Diagram

Table 2.1: Services
Module Hardware Wallet

Inputs
Transaction info (68+ bytes)
Pin (4-6 bytes)

Outputs Signed transaction (100 bytes)
Functionality Will sign a transaction

2.7.2 Level 1

This diagram describes the major components of the hardware wallet PCB. At its core is a micro-
controller responsible for all computations. The microcontroller is connected to a secure element
to retrieve keys for the wallet, and a wireless transceiver to transmit and receive information from
the phone. It is possible for all three of these blocks to be contained within one SOC (System On
a Chip). The microcontroller will receive user input via buttons attached over GPIO and display
output on a screen connected to the SPI bus. A power supply will power the whole board.

Transaction
Info

PIN

Microcontroller Display

Wireless
Transceiver

Signed
Transaction

Buttons

Secure Element

BLE

BLE

BLE

SPIGPIO

nRF52PCB

Power
Supply

Figure 2.25: Level 1 Block Diagram

27

2.8 Cryptography Block Diagram

Figure 2.26: Cryptography Block Diagram

This implementation is the standard for all Ethereum compatible clients to use. Any modifications to
the transaction generation or public address generation would create incompatibilities. The one area
of possible modification would be to add additional steps between the HW Entropy and the Private
Key. For instance in the future we could implement BIP32 to create Hierarchical Deterministic
Wallets, allowing for multiple currencies o↵ of a single seed.

28

2.9 Design Rationale

This hardware wallet is essentially a secure way to complete a transaction between the user and the
blockchain. There were many options to choose from and those that were chosen were done so after
on careful review of pros and cons of each.

2.9.1 Support for Multiple Cyrptocurrencies

For this project, we are initially targeting only Ethereum. Consideration was given to developing a
mobile wallet for other cryptocurrencies like Bitcoin but we ultimately chose to focus on Ethereum
due to the stability of the platform and the technology.

2.9.2 Localization

For the moment we are targeting English for our proof of concept as it is the main language of the
group members. In the future both the app and hardware wallet could be translated into multiple
languages.

2.9.3 Connecting to the Ethereum Blockchain

There are two ways to connect to the blockchain, a full node and a light node. Connecting via a full
node provides the most up to date information because a full node stores the entire blockchain on
the local machine. A light node stores just a portion of the blockchain on the local machine.

For a mobile application, a full node is impractical to implement due to the fact that an entire
Ethereum blockchain is about 12 GB big, which is an unreasonable amount of data to store in a
smart phone. Additionally, the smart phone would constantly need to stay synced and connected
to other peers on the Ethereum network. These features are fine for a dedicated server but would
negatively impact a smartphone user’s experience.

A light node is better suited for a mobile application because of the way the technology stays up
to date with the Ethereum blockchain. A light node only keeps track of data that the node deems
relevant. In this scenario, a user can track a list of wallets and keep information about those wallets
up to date. However, like the full node, the light node needs to be connected to peers in order to
stay current.

Instead of running a full node or a light node on the user’s smartphone, we will utilize a remote
node. With this architecture, each instance of the mobile application will connect to the same
server backend. The benefit of this configuration is that the server will constantly be connected
to the Ethereum network and therefore will remain up to date with the current blockchain state.
Furthermore, the main storage needs will be on the server instead of the mobile application. For
the more privacy conscious, users will be able to host their own nodes.

2.9.4 Mobile Application Connection with Hardware Wallet

There are numerous ways to connect devices together. The other hardware wallets connect to a
computer via a USB connection. For a mobile wallet, a wired connection is not practical. No
consumer wants a wire connected to their phone whenever they want to make a transaction. The
better solution is to use a wireless connection.

WiFi has the issue of changing IP addresses making it di�cult for the phone and wallet to
communicate over changing network conditions. Additionally there may be situations where the
user is not near a wifi hotspot.

NFC is short range making it infeasible to do longer activities such as entering a PIN without
moving the devices too far apart.

Bluetooth is a better solution as the phone and wallet create a persistent bond that does not rely
upon other devices. Bluetooth is a commonly adopted standard and all major smartphones support
the Bluetooth standard.

29

2.9.5 Power

In order to power the hardware wallet we will need some form of battery power. Alkaline batteries
are too large for our portable form factor. Traditional Lithium Polymer (LiPo) batteries are also
fairly large and require charge protection circuits. For these reasons we have opted to use a coin cell
battery as they are small, cheaply available, and supply the required 3V to power our circuits. As an
additional benefit the battery’s discharge curve fits nicely within the acceptable range for both our
microcontroller and screen meaning that we do not require any voltage regulators, reducing both
cost, pcb space, and current draw.

2.9.6 Interacting with the Hardware Wallet

Because we want the user to be able to confirm transactions on the hardware wallet we need some
method for the user to interact with the device. The competitors, Trezor and Ledger, both use
two buttons to accomplish this. Unfortunately this leads to awkward sequences for the user. For
instance, pressing both buttons at the same time to navigate to the next didgit. We believe that
four buttons arranged in an up, down, left, right configuration will provide the most comfortable
navigation between screens without taking up too much physical space.

2.9.7 BLE Services

The bluetooth services will be split by use. A main device service will be responsible for unlocking
the device (by transmitting a pin) and changing settings such as the brightness.

A second service dedicated to the ethereum client will be created. This service will allow creating
an account, listing accounts, and sending transactions. In the future additional services for more
cryptocurrencies could be added.

Each service and characteristic must have a unique ID. To accomplish this we have a randomly
generated 128bit vendor specific UUID listed in Appendix F.

As bluetooth can only send binary strings, we require structured data so we are utilizing msgpack.
This provides a compact way to send arrays, dictionaries, strings, and numbers all in a single binary
stream.

2.9.8 Security

Our main security is keeping the wallet’s private keys, o↵ phones and computers. By keeping them
contained on a separate device running no other processes there are much fewer attack vectors. We
are also enforcing a mandatory PIN code thus making any transactions require something you have
(the wallet) and something you know (the pin). The device will automatically wipe itself after a
number of incorrect PINs have been entered adding protection against thieves. In the event that the
device is stolen the backup code created during setup can be used to restore the account to a new
device preventing loss of funds. We have also enabled Man In the Middle (MITM) protection for our
bluetooth connections helping to prevent interception, and as an additional layer display a checksum
image that would no longer match if the data was somehow tampered with. No transactions are sent
without explicit user interaction preventing any unauthorized use by other apps or malware. We will
be deploying as many security technologies as possible on the device including signed firmware, and
stack protection. We will use preexisting cryptographic libraries to reduce the chance of inadvertently
adding implementation flaws.

30

2.10 Technologies Used

This section will describe the technologies used in this project and will be divided into three sub-
sections. For all coding aspects, we will utilize Github to enforce version control.

2.10.1 Server Backend

The server utilizes Parity to run an Ethereum full node. Parity is written in Rust and provides the
full functionality to communicate with the Ethereum blockchain. The main functionality that the
project utilizes is the JSON RPC interface to communicate with the backend. Using Parity enabled
us to focus on building the hardware wallet as well as the associated application because all of the
server communication links are already built for us.

2.10.2 Mobile Application

The mobile application was initially be targeted toward Android users. For the Android app, we
utilized Android Studio as the main IDE. Like Xcode, Android Studio has di↵erent emulation modes,
documentation, as well as APIs. The main testing platform that we will use will be a Google Pixel 2
XL. Android Studio has two main languages: Java and Kotlin. We opted to use Kotlin as it provides
easier access to null safety checks and other useful features that plain java does not provide.

2.10.3 Hardware Wallet

Components

We chose to use Nordic Semiconductor’s NRF52 series chips for our microcontroller. These devices
have a high clock speed, large amount of flash, and most importantly Bluetooth, and NFC support.
Additionally the chip has a hardware random number generator and acceleration for many common
cryptographic functions which will be useful for our project.

For the display we chose to use a small OLED screen. This provides a high degree of contrast
increasing visibility and also features a lower current draw than other technologies. Because the
screen uses SPI we are able to have quick redraws if necessary.

Software

To design our schematic and pcb we used Kicad in order to keep all aspects of our project open
source. For the same reason we used the standard GCC toolchain to compile the firmware allowing
development on any platform with no fees. We are using Nordic’s software libraries to ease the
firmware development.

Tools

For debugging and firmware upload we are using the J-Link Edu. Test revision boards were produced
o↵ campus.

31

2.11 Development Process

2.11.1 Hardware Wallet

Circuit Design

In keeping would our open and accountable spirit we designed our PCB in KiCAD, an open source
electronics design suite [5].

Controller

The heart of this project is a microcontroller responsible for providing entropy to generate private
keys, persistently storing keys, and computing cryptographic signatures to create transactions. In-
stead of also requiring a separate microcontroller for bluetooth communication, we leveraged the fact
that Nordic provides a series of chips that contain all the required functionality in a single package.
The specific chip we utilized was the NRF52840. [6]. As an added bonus the S140 Soft Device is
prettified which will ease FCC testing if we apply for certification [7]. To integrate this chip into
our design we utilized their reference design with a few minor modifications to ease manufacturing
such as increase tolerances [8]. To make sure our modifications would not negatively impact the
operation of the chip all of the PCB guidelines were followed [9]. The full schematic and PCB
can be found in Appendix D. To program these chips we purchased a J-Link which is capable
of flashing most ARM chips [10]. In order to spead up development while waiting on these PCBs
to be produced and delivered we opted to order Nordic’s Development Kits as a known working
implementation for the software to be built upon [11].

Screen

In order to display the transaction information clearly we need a sharp screen with high contrast.
Organic LED screens fit this roll perfectly with their 6500 nits of brightness. We decided specifically
to use an SSD1306 based display due to their cheap price and wide availability [12]. Many of these
screens feature a SPI interface allowing quick communication with microcontrollers. To interface
with the screen without requiring a separate breakout board, the supporting hardware was integrated
into our schematic [13]. The software protocol was determined from the chip’s data sheet.

Power

The device is powered with a single lithium-ion coin cell battery. These batteries provide a nominal
3V power and drop o↵ voltage of 2V which falls squarely in line with the acceptable input ranges
for all the ICs we used. Because of this no voltage regulation circuitry needed to be designed.

Bluetooth

The first step to developing a bluetooth protocol was creating a unique 128 bit vendor ID that can
be used for all of our functionalities. At the basis is a that is used to uniquely identify our devices.
From there two services were created, one to managed the device (such as setup and unlocking)
and another for managing ethereum wallets (listing accounts, and sending transactions). Both of
these services have unique addresses based upon the vendor ID. In the future more services could
be created for other cryptocurrencies or features. Each service has one or more characteristics that
can be written to or read from. Unfortunately these characteristics act as raw byte streams and
have no formatting. To add formatted data ontop of this protocol we implemented MessagePack, a
serialization and deserialization protocol [14].

32

Firmware

Once we had working hardware and an established protocol, work began on the firmware. Most
of the device firmware utilizes the NordicSDK and is based upon its example projects [15]. The
micro-ecc library is required for some of its features [16]. The first order of business was getting
bluetooth advertising working. After the device showed on our phones then work on implementing
the new services began. The next step was getting text to display on the screen, followed by
handling button presses. At this state we could then enter a pin. After that we had to get flash
storage working so that the entered settings would be remembered between power losses. At this
point the device could be successfully setup. The final part of the firmware development was the
actually sign transactions. For the cryptography we utilized the trezor-crypto repository due to its
many algorithms in the C language, large amount of testing, and real world usage [17]. In order to
create Ethereum transactions we had to create functions that encoded and decoded RLP formatted
messages. Our implementation follows the psuedocode found in the Ethereum Wiki [18]. After
implementing these libraries we could then compute signatures.

2.11.2 Android App

UI

At first the App used mocked data in order to allow the UI to be developed while the firmware was in
progress. The Android App follows many of the best practices, including using the Support Library
to provide a consistent UI between platform versions [19]. We also utilize some newer libraries such
as LiveData to keep the displayed information and backend model in sync [20]. To ensure that
users don’t type invalid transaction information such as malformed addresses or negative amounts,
we added in the DataValidator library [21]. To persistently store data such as account icons, colors,
and other metadata the Room library was used [22]. The ZXing library was used to handle the
scanning of QR codes for ease of entering recipients [23]. The MaterialDrawer library provided
the basis of navigation and account selection, and the ColorPicker library allowed choosing unique
colors for each account [24] [25]. Finally, Splitties was used to provide miscellaneous niceties such
as a simpler interface to preferences [26].

Bluetooth

After the firmware was in a working state, the bluetooth communication code began to be inte-
grated. The BleGattCourotines library was chosen for our Bluetooth backend as it provides pro-
tection against race conditions and other issues that would result in messages otherwise not being
delivered [27]. MsgPack-Java was used to provide the android side of the Msgpack protocol used to
communicate with the hardware wallet [28]. After implementing these two libraries and using the
specific addresses decided upon for our protocol, the communication with the hardware wallet was
working and could retrieve real data from the device.

Ethereum Network

After getting communication with the wallet working, the final step was talking to the remote node.
In order to broadcast transactions to the network we hosted a Parity node. This node has an open
port that accepts formatted requests on the users behalf [29]. The communication between the
phone and remote node is accomplished through Google’s Volley library [30]. Together, Volley and
Parity allowed us to retrieve account information, submit transactions to the network, and more.
At this point we had a fully working demo.

33

2.12 Attack Vectors and Mitigations

This section details the di↵erent possible attack vectors for a mobile cryptocurrency wallet. The
design group created the wallet with these considerations in mind to help create a more secure
ecosystem. Without these considerations, massive loss of user trust and financial loss can occur.
Most of the systems that we have implemented are variations of two factor authentication. The
main reason for this design decision is because two factor authentication is a tried and true way to
deter and protect against most attacks.

However, there are concessions to be made here. If an attacker has physical access to the hardware
wallet, a sophisticated enough attacker can probably derive a private key from the internals of a
wallet though power analysis or modifying the actual hardware in the wallet. Additionally, this
system cannot protect against so called ”rubber mallet” attacks. In this form of attack, the attacker
threatens the user with physical harm (such as with a rubber mallet) in order to get the user to give
up pin numbers or access codes.

The following sections describe how the design team responded and mitigated known attack
vectors.

2.12.1 Pin Access

One of the biggest attack vectors that must be mitigated is if the user’s pin is compromised. If the
user’s pin is compromised, it is possible for an attacker to initiate transactions with the hardware
wallet. This may occur in a number of ways, the primary way being an attacker watches the user
input the pin. This is mostly mitigated by having the mobile application provide a randomized
number pad when inputting the user’s pin [31]. This solution mitigates the problem by ensuring
that the attacker cannot simply memorize the pattern that the user inputs. Overall, this adds an
additional layer of security because the attacker needs to know the actual pin number rather than
just observing the user.

Furthermore, if a user’s pin is compromised, the attacker would also need access to either the
mobile phone and the hardware wallet. Due to how the system is built, a transaction cannot be
completed without both components. So, in addition to stealing your pin, the attacker would also
have to steal the hardware wallet in order to steal funds from that particular hardware wallet.

2.12.2 Man in the Middle Attacks

Since we are utilizing BLE to transmit data, it is possible for an outside authority to inspect the
data that is sent between the mobile phone and the hardware wallet. However, BLE sends encrypted
packets by default, which adds a layer of security to the exchange. Furthermore, sensitive data is
never transmitted over BLE. The two pieces of sensitive data are the Ethereum account’s private
key and the user’s pin number. The data that is sent are the various transaction details such as,
transaction destination, amount, nonce, etc. The data here is not inherently sensitive, but if the
data is changed the desired outcome changes.

This brings us to the second aspect of a man in the middle attack. It is technically possible
for the attacker to intercept a BLE packet mid flight, change the contents, then forward it to the
original destination. Our system mitigates this problem by implementing two factor authentication
for all transactions. The transaction request originates from the mobile device and those transaction
details are sent to the hardware wallet. If the details are changed mid flight, the wallet will display
the wrong transaction details. The user will then simply deny the transaction request. If the signed
result is tampered with between the wallet and the phone, the the signature will no longer be valid,
and the transaction thus void. This protects against any modification of the recipient, amount, or
other transaction details from 3rd parties or the phone once the details have been confirmed on the
wallet’s screen by a user.

In the same vein, TREZOR and Ledger used to have a problem called a vanity attack. In this
attack, the malicious actor would generate a new Ethereum address and match the last eight or so
digits with the user’s intended destination address. As a result, because the TREZOR and Ledger

34

used to display only the last 8 digits of an address during the transaction verification it was possible
for the user to send the funds to the wrong account. Albeit, only if the attacker was capable of
intercepting the transaction request and changing the details before the user realized. A single vanity
attack only takes a couple of hours to compute an address with the same 8 last digits as the target
address [32]. The way to mitigate this type of attack is to display the full destination address in
order to ensure to the user that that is the intended address. Another thing to note is that in order
to spoof more than 8 digits, the computation time and cost will increase exponentially. Therefore,
it is su�cient to display 12 of the 20 digits of the destination address because an attacker simply
does not have the time or the resources to spoof all 12 digits.

2.12.3 Power Attacks

This particular section comes from a voltage analysis via USB of a Trezor wallet performed by Dr.
Jochen Hoenicke [33].

If the user loses physical access to the hardware wallet, little can be done to prevent an attacker
from stealing funds. In this example, the attacker managed to derive the private key of an address
by examining the power consumption done during key generation. One way we mitigated this issue
was by ensuring that no cryptographic functions occur if the device is locked. Another method to
mitigate this attack is employing power smoothing hardware that masks the waveform and power
consumption.

Power attacks are sophisticated attacks because it requires direct physical access to the hardware
wallet and specialized equipment. Essentially, a power attack is an attempt to peer into the black
box and reverse engineer the contents within. This attack is feasible, but again, unlikely to occur.
The time and e↵ort required to acquire the private key outweighs the potential financial gains.

2.12.4 Cold Boot Attacks

This attack is a side-channel attack that attempts to read data from physical memory. This is
possible because even though physical memory is volatile, the stored data does not immediately
decay upon loss of power. If an attacker uses this method on our hardware wallet, it is possible
for the attacker to derive the private key. However, the attacker would need physical access to the
device, will require the device to be unlocked, and specialized equipment. We did not explicitly
create a mitigation method for this problem due to the low likelihood of this attack happening. One
way to mitigate this attack is to encrypt all memory contents, however, the device would require
more power and slow down due to the additional instructions necessary to encrypt/decrypt every
operation requiring memory. Additionally, the decryption key would need to be stored in memory,
so for this scheme to be viable, the processor must load the decryption key, decrypt the data, do an
operation, then reincrypt the data. This is an impractical solution because an attacker can simply
cut power when the data is decrypted.

Lastly, a more practical solution is to simply prevent any operation unless the device is unlocked.
If the device is unlocked then it most likely means that the user is around the device and the device
is ”safe”. However, this is not a perfect solution because if the pin is compromised, the hardware
wallet would start doing operations and therefore be susceptible to a cold boot attack.

35

2.13 Test Plans

This section will detail how the di↵erent software and hardware components were tested. The server
used a test blockchain to maintain a clean testing platform. The main benefit of a test blockchain
is that no other users can use it. Other people can not add transactions or add network load. This
keeps the network in a deterministic state.

2.13.1 Mobile application

The mobile application has a couple of distinct modules that was tested. One of the main modules
is the code that will handle the various remote procedure calls (RPC). The various RPC were tested
using unit testing. Each call can be individually tested because there is documentation on expected
input/output for each RPC.

Another module that the app has is a BLE communication module. The main testing that
was done was to ensure accurate transmission of data. Fortunately, the Bluetooth stack has error
recovery which was used to make sure that the app can communicate with the wallet. Again, the
main testing here is unit testing because each of the BLE communication methods needed to be
checked and verified for accurate data.

Another aspect that was tested is the UI. There are testing frameworks built into Android and
were utilized to test the mobile app. The purpose of these tests was to ensure that the UI behaved
as expected. Furthermore, we tested the app using blackbox testing and as if we were an end user
using the application.

2.13.2 Hardware wallet software

The hardware wallet has a di↵erent suite of testing procedures that was done. Firstly, the wallet
was tested to generate Ethereum public/private keys. The testing procedure was done by writing
unit tests. The desired outcome for the tests were determined by the public/private key generation
done by o�cial Ethereum clients. Other unit tests that were done were the mnemonic phrase tests.
The wallet needed to be able to generate these phrases accurately and must be able to display these
accurately.

The wallet settings need to be tested as well. Specifically, factory reset, display brightness, and
Bluetooth connectivity needs to be tested and verified to be working.

2.13.3 System Testing

After testing each independent component, full system testing will occur. The testing procedure
needs to include sending and receiving information directly from the blockchain. This can be done
by writing an initialization file for the blockchain. The initialization file in conjunction with wiping
the test blockchain ensures that all of our tests will be run from the same starting point. We can
also add scripts to populate the test blockchain with initial data to simulate real conditions.

36

Chapter 3

Discussion

37

3.1 Social Concerns

The creation of our hardware wallet will undoubtedly raise social concerns about our product.
Specifically, the security of the device and the technologies used in securing funds. Our device aims
to be as secure as possible with multiple security features to protect from various attack vectors.
The wallet acts as a part of two-step authentication and will provide security for a user’s funds.

3.2 Economics Considerations

Introducing our hardware wallet for cheaper price can create more competition in the hardware
wallet market which are sold at relatively high prices. This competition can help drive prices for
hardware wallets down which makes them more accessible to the general public. Making the product
also allows everyone to make online transactions safer in the midst of controversy about the safety
of the cryptocurrencies where companies with low securities had their cryptocurrency funds stolen.
This step towards more safety in cryptocurrencies can further promote the use of such currency
knowing that it will not only be convenient, but also safer.

3.3 Usability

One of the main features for our hardware wallet is mobility. Most existing hardware wallets works
via a connection to a laptop or desktop through a USB cable. This means transactions can only be
made with a computer, which can be inconvenient at times. If a user wants to use cryptocurrencies
on the go, then the hardware wallet must be portable and powered on its own for better usability
which our hardware wallet accomplishes. Considering everything is moving towards digitization and
portability is becoming a key factor into our daily lives, there is a high chance that cryptocurrencies
will one day be integrated into daily use at co↵ee shops, restaurants, etc. That is why our group
decided to increase the usability by using coin battery to power the hardware wallet, which will last
for hours of use. Each transaction will only take seconds of use at a time, so this battery is more
than enough to power it for very long time.

3.4 Manufacturing

Our implementation of a hardware wallet uses Nordic Semiconductor’s NRF52 series chips as a
microcontroller. This microcontroller fulfills all of our needs while being cheap to purchase. Our
design also allows for software updates without a need to purchase an entirely new hardware wallet.
The wallet also features a standard Litium Polymer battery which will provide hours of use while
also being cheap and readily available.

3.5 Lifelong Learning

Working on the hardware wallet has prepared us for the future of cryptocurrencies. The group
understands how blockchain and Ethereum work and its potential in the future. The group also
understands the various security features implemented in the hardware wallet.

38

Chapter 4

Conclusion

4.1 Lessons Learned

The biggest lesson learned was learning how to integrate multiple discrete systems to work well
together. During our implementation, each individual system worked fine but combining the three
modules caused things to break in unexpected ways. This problem was mostly mitigated through
good coding practices and open communication.

Specifically, we learned a lot about the functions in the Bluetooth Protocol. We learned the
limitations of Bluetooth as well as how di↵erent devices handshake and communicate with one
another. We learned a lot about how the Ethereum network signs, validates, and mine transactions
as well as how to communicate with the blockchain. Again, communicating data and systems to
di↵erent modules was the main lesson learned because all of these amazing systems exist in the
world already, it is up to new developers to understand the old system so that a new system can
interlink and build.

4.2 Future Development

This project could turn into a business. Given the right resources and project guidance, the hardware
wallet can be deployed to communicate with the real Ethereum network. Before that happens,
there are multiple aspects that can be improved on this project. For instance, an iOS app should
be developed so that almost all smartphone users can be included. Improvements on the PCB
and manufacturing can be made so that this can become a commercial product as well as testing
the hardware wallet on our custom PCB instead of using Nordic’s testing kit. Additionally, more
firmware can be added so that the mobile wallet can support di↵erent cryptocurrencies like Bitcoin.
Multiple account support for Ethereum could also be implemented for the hardware wallet. Future
development work will be posted on CryptKi.com

4.3 Summary

In this project, we built a mobile hardware wallet application that is capable of communicating with
the Ethereum blockchain. The project can send transactions and other, independent clients on the
blockchain can verify that the transaction that we generate is a valid transaction. There are two
distinct parts that we created, the mobile application and the mobile hardware wallet. The mobile
application can view transactions, initiate a new transaction, and explore the Ethereum blockchain.
The mobile application implements various security features in order to maintain data integrity such
as pin randomization and two factor authentication.

The mobile hardware wallet is a hardware based solution that uses an nRF-52840 microprocessor
from Nordic Semiconductor. The wallet was programmed with C and implements the algorithm to

39

CryptKi.com

generate new Ethereum wallets. The wallet is capable of storing the private key for Ethereum
accounts and is capable of verifying transactions and sending transactions received through BLE.
The user is also able to recover a private key. Upon address creation, the wallet generates a mnemonic
code for the user. The hardware wallet implements the features set forth by the requirements.

Overall, the system is fairly robust with few known security risks. Further penetration testing
must be done to determine how secure the hardware wallet really is. The current system has multiple
ways to maintain security while not being cumbersome to the user. Simple two factor authentication
and data integrity measures are enough to mitigate all but the most sophisticated attack vectors.

40

Bibliography

[1] http://www.ethdocs.org/en/latest/.

[2] https://www.coindesk.com/information/what-is-ethereum/.

[3] TREZOR, “O�cial TREZOR Shop,” https://shop.trezor.io.

[4] Ledger, “Ledger Wallet - Products list: hardware wallets and accessories,”
https://www.ledgerwallet.com/products.

[5] “KiCad EDA,” http://kicad-pcb.org/.

[6] Nordic Semiconductor, “nRF52840 Product Specification,”
http://infocenter.nordicsemi.com/pdf/nRF52840 PS v1.0.pdf, Mar. 16, 2018.

[7] ——, “S140 SoftDevice Specification,”
http://infocenter.nordicsemi.com/pdf/S140 SDS v1.1.pdf, Mar. 20, 2018.

[8] ——, “nRF52 Series Reference Layout,” http://infocenter.nordicsemi.com/index.jsp?topic=
%2Fcom.nordic.infocenter.nrf52%2Fdita%2Fnrf52%2Fpdflinks%2Fref layout.html, May 30,
2018.

[9] Kristin, “General PCB design guidelines for nRF52 series,” https://devzone.nordicsemi.com/
tutorials/b/hardware-and-layout/posts/general-pcb-design-guidelines-for-nrf52, Jul. 011,
2016.

[10] SEGGER, “J-Link / J-Trace User Guide,”
https://www.segger.com/downloads/jlink/UM08001, May 24, 2018.

[11] Nordic Semiconductor, “nRF52840 Preview Development Kit User Guide,”
http://infocenter.nordicsemi.com/pdf/nRF52840 PDK User Guide v1.2.pdf, Jan. 19, 2018.

[12] Solomon Systech Limited, “128 x 64 Dot Matrix OLED/PLED Segment/Common Driver with
Controller,” https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf, Apr. 2008.

[13] Rene van der Meer, “SSD1306 1.3 OLED SPI breakout board,”
https://blog.oshpark.com/2017/07/25/ssd1306-1-3%E2%80%B3-oled-spi-breakout-board/,
Jul. 25, 2017.

[14] https://github.com/ludocode/mpack.

[15] “Software Development Kit for the nRF51 Series and nRF52,”
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF5-SDK.

[16] https://github.com/kmackay/micro-ecc.

[17] https://github.com/trezor/trezor-crypto.

[18] https://github.com/ethereum/wiki/wiki/RLP.

41

http://www.ethdocs.org/en/latest/
https://www.coindesk.com/information/what-is-ethereum/
https://shop.trezor.io
https://www.ledgerwallet.com/products
http://kicad-pcb.org/
http://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.0.pdf
http://infocenter.nordicsemi.com/pdf/S140_SDS_v1.1.pdf
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52%2Fdita%2Fnrf52%2Fpdflinks%2Fref_layout.html
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52%2Fdita%2Fnrf52%2Fpdflinks%2Fref_layout.html
https://devzone.nordicsemi.com/tutorials/b/hardware-and-layout/posts/general-pcb-design-guidelines-for-nrf52
https://devzone.nordicsemi.com/tutorials/b/hardware-and-layout/posts/general-pcb-design-guidelines-for-nrf52
https://www.segger.com/downloads/jlink/UM08001
http://infocenter.nordicsemi.com/pdf/nRF52840_PDK_User_Guide_v1.2.pdf
https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
https://blog.oshpark.com/2017/07/25/ssd1306-1-3%E2%80%B3-oled-spi-breakout-board/
https://github.com/ludocode/mpack
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF5-SDK
https://github.com/kmackay/micro-ecc
https://github.com/trezor/trezor-crypto
https://github.com/ethereum/wiki/wiki/RLP

[19] “Support Library,” https://developer.android.com/topic/libraries/support-library, May 8,
2018.

[20] “Livedata Overview,” https://developer.android.com/topic/libraries/architecture/livedata,
Jun. 12, 2018.

[21] https://github.com/Ilhasoft/data-binding-validator.

[22] “Save data in a local database using Room,”
https://developer.android.com/training/data-storage/room/, May 15, 2018.

[23] https://github.com/journeyapps/zxing-android-embedded.

[24] https://github.com/zsmb13/MaterialDrawerKt.

[25] https://github.com/TurkiAlkhatib/Material-Color-Picker.

[26] https://github.com/LouisCAD/Splitties.

[27] https://github.com/Beepiz/BleGattCoroutines.

[28] https://github.com/msgpack/msgpack-java.

[29] Parity Ethereum Documentation, “JSON RPC API - Wiki,”
https://wiki.parity.io/JSONRPC.

[30] “Volley overview,” https://developer.android.com/training/volley, Apr. 25, 2018.

[31] SatoshiLabs, “Entering your PIN - TREZOR User Manual 1.0 documentation,”
https://doc.satoshilabs.com/trezor-user/enteringyourpin.htm, May 30, 2018.

[32] K. Kreder, “Hardware Wallet Vulnerabilities,”
https://blog.gridplus.io/hardware-wallet-vulnerabilities-f20688361b88, Oct. 24, 2017.

[33] J. Hoenicke, “Extracting the Private Key from a TREZOR,”
https://jochen-hoenicke.de/trezor-power-analysis, Nov. 15, 2015.

[34] A. ”bunnie” Huang, “Keeping Secrets in Hardware: the Microsoft XBoxTM Case Study,” May
26, 2002.

[35] R. Carbone and C. Bean and M. Salois, “An in-depth analysis of the cold boot attack,” Jan.
2011.

[36] https://github.com/ethereum/blockies.

[37] Bluetooth Special Interest Group, “GATT Overview,”
https://www.bluetooth.com/specifications/gatt/generic-attributes-overview, 2018.

[38] “Using Gradle - Kotlin Programming Language,”
https://kotlinlang.org/docs/reference/using-gradle.html.

42

https://developer.android.com/topic/libraries/support-library
https://developer.android.com/topic/libraries/architecture/livedata
https://github.com/Ilhasoft/data-binding-validator
https://developer.android.com/training/data-storage/room/
https://github.com/journeyapps/zxing-android-embedded
https://github.com/zsmb13/MaterialDrawerKt
https://github.com/TurkiAlkhatib/Material-Color-Picker
https://github.com/LouisCAD/Splitties
https://github.com/Beepiz/BleGattCoroutines
https://github.com/msgpack/msgpack-java
https://wiki.parity.io/JSONRPC
https://developer.android.com/training/volley
https://doc.satoshilabs.com/trezor-user/enteringyourpin.htm
https://blog.gridplus.io/hardware-wallet-vulnerabilities-f20688361b88
https://jochen-hoenicke.de/trezor-power-analysis
https://github.com/ethereum/blockies
https://www.bluetooth.com/specifications/gatt/generic-attributes-overview
https://kotlinlang.org/docs/reference/using-gradle.html

Chapter 5

Appendix

43

Appendix A

Risk Analysis and Timeline

A.1 Risk Analysis

The following table illustrates the possible risks associated with the successful creation of the hard-
ware wallet. The table also analyzes the consequences of these risks as well as their likelihood,
severity, potential impact, and strategies to mitigate each one.

Probability describes how likely the risk might happen throughout the course of developing this
system on the scale of 0 to 1. Severity is a scale from 0 to 10 to describe how severe the consequence
of the risk happening. Finally, impact scales from 0 to 10 describing the actual impact the risks will
cause on the project. We may likely face extension in development time or incomplete functionality
at the end of development as the number on this impact scale increases.

44

Table A.1: Risk Table

Risk Consequences Prob. Severity Impact Mitigation

Bugs in
code

Creates
vulnerability in our
code that may be
used to exploit the
code and data used
in our code

.7 8 5.6

Create rigorous test to
ensure that the code can
not be broken. The code
is also made open source
for anyone to find and
report the bugs.

Change
of
Ethereum
protocol

The way our
mobile device
interact with
Blockchain must
be updated to
meet the Ethereum
standard protocol

.3 5 1.5
Make UI simple and
intuitive. Make
Navigation button.

Part
Unavail-
ability

Other similar and
compatible parts
must be
substituted

.2 5 1
Use common high
availability parts.

Manufac-
turing
Issues

Switch to another
manufacturer

.15 4 .6
Use well known and
trusted manufacturers

Data loss

Required to
re-implement or
re-create data that
was lost

.01 10 .1
Use git or back-up
services to recover from
in case if data is lost

Parity
develop-
ment
ceased

Other method
must be
implemented to
replace the Parity,
which is the
method currently
in use by our
device, to interact
with the
Blockchain

.01 7 .07
Use Mist as an
alternative to Parity to
connect to Blockchain.

A.2 Budget

45

Table A.2: Budget

Item Price

OSX Dev fee (x4) $400
ARM Dev kits (x4) $185
Bluetooth Sni↵er $50
J-Link EDU Programmer $60
PCB Manufacturing funds $150
Microprocessors $50
OLED screens $50
Batteries $30
Passives $20
Lightning Cables $30

TOTAL $1035

46

A.3 Development Timeline

Figure A.1: Year Development Timeline

47

Appendix B

Bill of Materials

See Table B.1 on the next page.

48

Table B.1: Bill of Materials
Reference Value Footprint

AEN1 NFC
BT1 2032-CoinCell
C1 12pF SMD 0402
C10 N.C. SMD 0402
C11 100pF SMD 0402
C12 100nF SMD 0402
C13 N.C. SMD 0402
C14 1.0uF SMD 0402
C15 1.0uF SMD 0402
C16 47nF SMD 0402
C17 12pF SMD 0402
C18 12pF SMD 0402
C19 1uF SMD 0402
C2 12pF SMD 0402
C20 1uF SMD 0402
C21 4.7uF SMD 0402
C22 2.2uF SMD 0402
C23 1uF SMD 0402
C24 1uF SMD 0402
C3 0.8pF SMD 0402
C4 0.5pF SMD 0402
C5 100nF SMD 0402
C6 4.7uF SMD 0402
C7 100nF SMD 0402
C8 100nF SMD 0402
C9 N.C. SMD 0402
Ctune1 TBD SMD 0402
Ctune2 TBD SMD 0402
L1 3.3nH SMD
L2 10uH SMD
L3 15nH SMD
R1 390k SMD 0603
SW1 SW Push SMD
SW2 SW Push SMD
SW3 SW Push SMD
SW4 SW Push SMD
U1 nRF52840-QIAA
U2 ER-OLED013-1
X1 32MHz SMD SMD 2016 4Pads
X2 32.768kHz SMD 3215 2Pads

49

Appendix C

Schematics

C.1 Top Level

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
at

e:

Ki
C

ad
 E

.D
.A

.
ki

ca
d

4.
0.

5
R

ev
:

Si
ze

: A
4

Id
: 1

/3

Ti
tle

:
Fi

le
: H

ar
dw

ar
eW

al
le

t.s
ch

Sh
ee

t:
/

P0
.0

P0
.1

P0
.6

P0
.7

P0
.8

P0
.2

6

P0
.1

3

P0
.1

6

P0
.1

9

P0
.2

1
P0

.2
2

P0
.2

3

P0
.2

4

P1
.6

P0
.[0

..3
1]

AI
N

0
AI

N
1

AI
N

2
AI

N
3

AI
N

4
AI

N
5

AI
N

6
AI

N
7

AI
N

[0
..7

]

P0
.1

7

P1
.0

P1
.1

P1
.2

P1
.3

P1
.4

P1
.5

P1
.7

P1
.8

P1
.9

P1
.1

0
P1

.1
1

P1
.1

2
P1

.1
3

P1
.1

4
P1

.1
5

P1
.[0

..1
5]

VDD GND

P0
.2

0

1
2

3
4

5
6

7
8

9
10

P1

C
O

N
N

_S
W

D

VT
re

f
G

N
D

G
N

D

G
N

D
D

et
ec

t

SW
D

IO
SW

D
C

LK
SW

O
N

C
nR

ES
ET

G
N

D

VD
D

N
R

F5
28

40

nr
f5

28
40

.s
ch

P0
.[0

..3
1]

AI
N

[0
..7

]
R

ES
ET

P1
.[0

..1
5]

SW
D

IO

SW
D

C
LK

KE
Y

D
eb

ug

SS
D

13
06

ss
d1

30
6.

sc
h

R
ES

C
/S

D
/C

SC
K

M
O

SI

P0
.1

5
P0

.1
4

O
LE

D
_R

ES
ET

O
LE

D
_D

C

SC
K

M
O

SI

G
N

D

M
O

SI
SC

K
O

LE
D

_D
C

O
LE

D
_R

ES
ET

D
is

pl
ay

SW
1

SW
_P

us
h

SW
2

SW
_P

us
h

SW
3

SW
_P

us
h

SW
4

SW
_P

us
h

G
N

D

BT
N

_U
P

BT
N

_D
O

W
N

BT
N

_L
EF

T

BT
N

_R
IG

H
T

In
te

rf
ac

e

BT
1 20
32

-C
oi

nC
el

l

PW
R

_F
LA

G

PW
R

_F
LA

G

Po
w

er
Su

pp
ly

12
8x

64
O

LE
D

P0
.1

2
BT

N
_U

P
BT

N
_D

O
W

N
BT

N
_L

EF
T

BT
N

_R
IG

H
T

P0
.1

1

P0
.2

7
P0

.2
5

50

C.2 Controller

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
at

e:
 2

9.
06

.2
01

7
Ki

C
ad

 E
.D

.A
.

ki
ca

d
4.

0.
5

R
ev

: 0
.6

Si
ze

: A
4

Id
: 2

/3

Ti
tle

: n
R

F5
28

40
-Q

IA
A

 L
ay

ou
t (

D
C

D
C

, V
D

D
 s

up
pl

y,
 N

FC
, N

o
U

SB
)

Fi
le

: n
rf5

28
40

.s
ch

Sh
ee

t:
/N

R
F5

28
40

/

XC
1

XC
2

G
N

D
G

N
D

VD
D

P0
.7

P0
.1

1
P0

.1
2

P1.0

RESET

P0.19
P0.20
P0.21
P0.22
P0.23

P1.10

D
EC

1

SW
D

C
LK

SW
D

IO

G
N

D

P1
.9

R
F

G
N

D

P0
.0

P0
.1

AIN0
AIN1

G
N

D

VD
D

D
EC

3

AI
N

2
AI

N
3

G
N

D

G
N

D

O
pt

io
na

l

P1.11

P1.12
P1.13
P1.14

VD
D

G
N

D

VD
D

G
N

D

G
N

D

P1
.1

P1
.2

P1
.3

P1
.4

P1
.5

P1
.6

P1
.7

P1.15

P0
.8

P1
.8

P0
.6

P0
.2

6
P0

.2
7

P0.24
P0.25

P0.13
P0.14
P0.15
P0.16
P0.17

G
N

D

VD
D

G
N

D

G
N

D

AIN4
AIN5
AIN6
AIN7

G
N

D

G
N

D

D
EC

4_
6

DEC4_6

1

1

2

2

C
18 12
pF

1

1

2

2

C
17 12
pF

inp

1

out

2

X2 32
.7

68
kH

z

1

1

2

2

C
7 10
0n

F
1

1

2

2

C
8 10
0n

F

1

1

2

2

C
9 N
.C

.

1

1

2

2

C
12 10
0n

F

1

1

2

2

C
13

N
.C

.

1

1

2

2

C
4 0.
5p

F

1

1

2

2

C
14 1.
0u

F

1

1

2

2

C
1 12
pF

1

1

2

2

C
6 4.
7u

F

VDDB1

D
EC

1
C

1

P0
.2

6
G

1

P0
.0

4/
AI

N
2

J1

P0
.0

6
L1

P0
.0

8
N

1

P1
.0

9
R

1

P0
.1

2
U

1
VD

D
W

1

P0
.0

0/
XL

1
D

2
P0

.0
1/

XL
2

F2

P0
.2

7
H

2

P0
.0

5/
AI

N
3

K2

P0
.0

7
M

2

P1
.0

8
P2

P0
.1

1
T2

VD
D

H
Y2

DCCB3

GND 74

DEC4B5
VSSB7

P0.31/AIN7A8
P0.30/AIN6B9
P0.29/AIN5A10

P1.10A20

P0.28/AIN4B11
P0.02/AIN0A12

VDDA22

D
C

C
H

AB
2

VBUS AD2

P0.03/AIN1B13

XC
2

A2
3

D
EC

3
D

23

VS
S_

PA
F2

3
AN

T
H

23

P1
.0

7
P2

3

P1
.0

5
T2

3

P1
.0

3
V2

3

P1
.0

1
Y2

3
P1.15A14

XC
1

B2
4

D
EC

6
E2

4

P0
.1

0/
N

FC
2

J2
4

P0
.0

9/
N

FC
1

L2
4

D
EC

5
N

24

P1
.0

6
R

24

P1
.0

4
U

24

P1
.0

2
W

24

D- AD4

P1.14B15

D
EC

U
SB

AC
5

P1.13A16

D+ AD6

P1.12B17
DEC2A18

P0.13 AD8

P1.11B19

P0.14 AC9
P0.15 AD10

P0.24 AD20

P0.16 AC11

P0.25 AC21

P0.17 AD12

P1.00 AD22

P0.18/RESET AC13

VD
D

AD
23

VDD AD14

SW
D

C
LK

AA
24

SW
D

IO
AC

24
P0.19 AC15
P0.20 AD16
P0.21 AC17
P0.22 AD18
P0.23 AC19

nR
F5

28
40

U
1 nR

F5
28

40
-Q

IA
A

1

1

2

2

C
2 12
pF

1

1

2

2

C
11 10
0p

F

1

1

2

2

C
5 10
0n

F

1

1

2

2

C
15 1.
0u

F

1

1

2

2

C
3 0.
8p

F

1

1

2

2L1 3.
3n

H1

1

2

2

C
10

N
.C

.

G
N

D

inp

1

out

2

X1 32
M

H
z

1

1

2

2

C
tu

ne
1

TB
D

1

1

2

2

C
tu

ne
2

TB
D

G
N

D

G
N

D

NFC

N
FC

1
N

FC
2

1

1

2

2

C
16 47
nF

L3
15

nH L2
10

uH

P0
.0

P0
.6

P0
.7

P0
.8

P0
.1

1
P0

.1
2

P0
.1

3
P0

.1
4

P0
.1

5
P0

.1
6

P0
.1

9

P0
.2

1
P0

.2
2

P0
.2

3
P0

.2
4

P0
.2

5
P0

.2
6

P0
.2

7

P0
.[0

..3
1]

P0
.[0

..3
1]

AI
N

0
AI

N
1

AI
N

2
AI

N
3

AI
N

4
AI

N
5

AI
N

6
AI

N
7

AI
N

[0
..7

]

AI
N

[0
..7

]

P0
.1

7

R
ES

ET
R

ES
ET

P1
.0

P1
.1

P1
.2

P1
.3

P1
.4

P1
.5

P1
.6

P1
.7

P1
.8

P1
.9

P1
.1

0
P1

.1
1

P1
.1

2
P1

.1
3

P1
.1

4
P1

.1
5

P1
.[0

..1
5]

P1
.[0

..1
5]

P0
.1

SW
D

IO
SW

D
C

LK
SW

D
IO

SW
D

C
LK

P0
.2

0

51

C.3 Screen Interface

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
at

e:

Ki
C

ad
 E

.D
.A

.
ki

ca
d

4.
0.

5
R

ev
:

Si
ze

: A
4

Id
: 3

/3

Ti
tle

:
Fi

le
: s

sd
13

06
.s

ch
Sh

ee
t:

/S
SD

13
06

/

C
21

4.
7u

F

G
N

D

R
1

39
0k

C
22

2.
2u

F

R
ES

C
/S

D
/C

G
N

D

C
23

1u
F

C
24

1u
F

G
N

D

SC
K

M
O

SI

G
N

DG
N

D
G

N
D

1

C
2P

2
C

2N
3

C
1P

4
C

1N
5

VD
D

B
6

N
.C

.
7

VS
S

8

VD
D

9

BS
0

10

D
2

20

G
N

D
30

BS
1

11

D
3

21

BS
2

12

D
4

22

C
S

13

D
5

23

R
ES

14

D
6

24

D
/C

15

D
7

25

R
/W

16

IR
EF

26

E/
R

17

VC
O

M
27

D
0

18

VC
C

28

D
1

19

VL
SS

29

U
2 ER

-O
LE

D
01

3-
1

C
19 1u
F

C
20

1u
F

VD
D

G
N

D

G
N

D

52

Appendix D

PCB Layout

D.1 Top Layer

53

D.2 Bottom Layer

54

Appendix E

Storage Allocation

Flash size: 1 MiB
Page size: 4 KiB
Write unit: 4 bytes

E.1 Page Allocation

Table E.1: Flash Pages

Name Pages Start End

Soft Device 34 0x00000 0x21FFF
Software 40+ 0x22000 VAR
- - VAR 0xEFFFF
Ethereum Wallets 1 0xF0000 0xF0FFF
- - 0xF1000 0xFFFFF

E.2 Ethereum Wallets

Table E.2: Ethereum Wallet Flash Storage

Name O↵set

ETHADDR COUNT 0x0000
ETHADDR LIST 0x0004

55

Appendix F

Bluetooth Services

Base UUID: 0x3DE9AE84488146D89B9263075B10FE8F

Table F.1: Services
Name UUID

Device Service 0x1000
Ethereum Service 0x2000

F.1 Device Service

Table F.2: Device Service Characteristics
Name UUID Properties Request Response

unlock methods 0x1001 Read auth type t[]
unlock 0x1002 Write, Notify uint8 t[] bool

F.2 Ethereum Service

Table F.3: Ethereum Service Characteristics
Name UUID Properties Request Response

listAccounts 0x2001 Read, Notify eth address t[]
newAccount 0x2002 Write eth address t[]
sendTransaction 0x2003 Write, Notify eth transaction t eth hash t

56

Appendix G

Data Types

G.1 auth type t

Type Code

AUTH PIN 0
AUTH PASS 1

G.2 eth address t

uint8 t[20];

G.3 eth hash t

uint8 t[32];

G.4 eth transaction t

struct {
eth address t from;
eth address t to;
uint64 t nonce;
int gas;
int gasPrice;
int value;
uint8 t *data;

};

57

58

Appendix H

User Manual

H.1 Phone App

H.1.1 Receiving Funds

Figure H.1: Account QR Code

59

Figure H.2: Share Account Address

This screen is accessed by clicking the receive button on the main page. The displayed QR code can
be scanned by other users to enter your address into their app. The QR code may also be shared
by email, SMS, or other apps by tapping the icon in the top right corner.

60

H.1.2 Drawer

Figure H.3: App Drawer

The app drawer can be accessed by swiping from the left side of the phone screen or by tapped the
3 lined icon in the top left corner. It provides access to many of the apps less used features.

61

H.1.3 Viewing Transactions

Figure H.4: Transactions List

This screen is accessed by click the transactions button in the app drawer. It is powered by
etherscan.io

62

etherscan.io

H.1.4 Switching Accounts

Figure H.5: Accounts Screen

This screen is accessed by clicking the accounts item in the navigation drawer. Upon clicking an
account will be chosen. The balance on the main page, and account on the sending and receiving
screens will be updated accordingly.

63

H.1.5 Creating a New Account

Figure H.6: New Account Screen

This screen is accessed by clicking the add account button on the account switcher. Here the user
can fill in a human readable name for the account number in addition to an icon and color. These
features help make the random addresses more recognizable and memorable.

64

H.1.6 Changing Nodes

Figure H.7: Changing Ethereum Node

This screen is accessed by clicking the remote node option in the app settings. The remote node is
your connection to the outside world and is responsible for transmitting transactions on your behalf
and retrieving your balance from the network. Although a working node is entered by default, you
are welcome to host your own node for increased privacy.

65

H.2 Hardware Wallet

H.2.1 Settings

Figure H.8: Settings Screen

This screen will be displayed after setup or after unlocking the device on subsequent power-ons. The
screen will display actions that can be executed without the use of a phone. Pressing up and down
will move the > symbol, indicating the selected item. Pressing right will choose the selection and
navigate to a new screen.

Figure H.9: Brightness Setting

This screen will be displayed after selecting the brightness option. Pressing left will decrease the
brightness, and pressing right increase. Pressing up or down will return to the previous screen.

66

H.2.2 Backup

Figure H.10: Start Backup

For security reasons a backup key is created. This key allows the user to restore any accounts that
were created onto another device, preventing the loss of funds from theft or destruction. Pressing
any button will begin the process. This screen starts the process of sharing up the secret key that
will be used to recover the user’s account.

Figure H.11: Backup Words Screen

The screen will display a list of words. Pressing right will show the next set of four, and pressing
left will return to the previous set. After all 12 words have been written down this process is finished.

Figure H.12: Verify Backup

To ensure the user actually saved the secret words, the device will ask for the user to enter the
words previously displayed.

67

Figure H.13: Restore Screen

To enter a word, pressing up and down will navigate through the alphabet. Pressing left and
right will change positions. If the word input is correct, the setup will proceed. If it is not, the user
will be prompted to do the backup process again.

H.2.3 Restore

Figure H.14: Start Restore

This screen marks the start of restoring a wallet. Pressing any button begins the process.

Figure H.15: Restore Screen

Users will select characters by pressing the up and down buttons and move between di↵erent
letters with the left and right arrows. Once su�cient letters have been entered for a word a screen

68

with suggestions will appear (see Figure H.16). Pressing left while on the left most character will
returning to the previous word in case it was entered incorrectly.

Figure H.16: Suggestions Screen

Pressing up and down will let the user choose from the suggested words. Once a work has been
selected by pressing right, the user will return to Figure H.15 to begin entering the next word.

Figure H.17: Restore Complete

Once all words have been entered the restore process is complete.

69

Appendix I

Privacy Policy

CryptKi built the CryptKi app as a open source app. This SERVICE is provided by CryptKi at no
cost and is intended for use as is.

This page is used to inform website visitors regarding our policies with the collection, use, and
disclosure of Personal Information if anyone decided to use our Service.

If you choose to use our Service, then you agree to the collection and use of information in relation
with this policy. The Personal Information that we collect are used for providing and improving the
Service. We will not use or share your information with anyone except as described in this Privacy
Policy.

The terms used in this Privacy Policy have the same meanings as in our Terms and Conditions,
which is accessible at CryptKi, unless otherwise defined in this Privacy Policy.

Information Collection and Use

For a better experience while using our Service, we may require you to provide us with certain
potentially personally identifiable information, including but not limited to bluetooth scanning and
camera access. The information that we request is not retained on your device and is not collected
by us in any way. The information is soley used in the process of initiating transactions.

The app does use third party services including Google Play Services that may collect information
used to identify you.

Links to privacy policies of third party service providers used by the app

• Google Play Services
• Crashlytics

Log Data

We want to inform you that whenever you use our Service, in case of an error in the app we
collect data and information (through third party products) on your phone called Log Data. This
Log Data may include information such as your devices’s Internet Protocol (“IP”) address, device
name, operating system version, configuration of the app when utilising our Service, the time and
date of your use of the Service, and other statistics.

Cookies

70

https://www.google.com/policies/privacy/
http://try.crashlyrics.com/terms/privacy-policy.pdf

Cookies are files with small amount of data that is commonly used an anonymous unique identi-
fier. These are sent to your browser from the website that you visit and are stored on your devices’s
internal memory.

This Services does not uses these “cookies” explicitly. However, the app may use third party
code and libraries that use “cookies” to collection information and to improve their services. You
have the option to either accept or refuse these cookies, and know when a cookie is being sent to
your device.

Service Providers

We may employ third-party companies and individuals due to the following reasons:

• To facilitate our Service;
• To provide the Service on our behalf;
• To perform Service-related services; or
• To assist us in analyzing how our Service is used.

We want to inform users of this Service that these third parties have access to your Personal
Information. The reason is to perform the tasks assigned to them on our behalf. However, they are
obligated not to disclose or use the information for any other purpose.

Security

We value your trust in providing us your Personal Information, thus we are striving to use
commercially acceptable means of protecting it. But remember that no method of transmission over
the internet, or method of electronic storage is 100% secure and reliable, and we cannot guarantee
its absolute security.

Links to Other Sites

This Service may contain links to other sites. If you click on a third-party link, you will be
directed to that site. Note that these external sites are not operated by [me|us]. Therefore, I
strongly advise you to review the Privacy Policy of these websites. I have no control over, and
assume no responsibility for the content, privacy policies, or practices of any third-party sites or
services.

Children’s Privacy

This Services do not address anyone under the age of 13. We do not knowingly collect personal
identifiable information from children under 13. In the case we discover that a child under 13 has
provided us with personal information, we immediately delete this from our servers. If you are a
parent or guardian and you are aware that your child has provided us with personal information,
please contact us so that we will be able to do necessary actions.

Changes to This Privacy Policy

We may update our Privacy Policy from time to time. Thus, you are advised to review this page
periodically for any changes. We will notify you of any changes by posting the new Privacy Policy
on this page. These changes are e↵ective immediately, after they are posted on this page.

Contact Us

If you have any questions or suggestions about our Privacy Policy, do not hesitate to contact us.

This privacy policy page was created at privacypolicytemplate.net and modified/generated
by App Privacy Policy Generator

71

privacypolicytemplate.net
https://app-privacy-policy-generator.firebaseapp.com/

Appendix J

Source Code

The current source code of the wallet is over 3000 lines, and the android app an additional 3000
lines. Because of this the full source code will not be placed in this document. After publication it
will be released to git with a link available on CryptKi.com. Instead the most important routines
and defines will be listed here.

J.1 Transaction Signing

#de f i n e CHAIN ETH MAINNET 0x01
#de f i n e CHAIN PARITY DEV 0x11

i n t e th s i gnTransac t i on (e th ha sh t ⇤ dest , e t h t r a n s a c t i o n t t r an s a c t i on) {
char pk s t r [6 5] ;
a2hexst r (pk st r , pr ivkey , ETH PRIVKEY SIZE) ;
NRF LOG INFO(”PK: %s” , pk s t r) ;

// Convers ions
t r an s a c t i on . va lue ⇤= 1000000000000000000; // convert eth�>wei
t r an s a c t i on . ga sPr i c e ⇤= 1000000000; // convert gwei�>wei

u i n t 8 t nonce bytes [3 2] , g a sPr i c e by t e s [3 2] , ga s byte s [3 2] , va lue byt e s [3 2] ;
s i z e t nonce l en = bytes (nonce bytes , t r an s a c t i on . nonce) ;
s i z e t g a sP r i c e l e n = bytes (ga sPr i c e byte s , t r an s a c t i on . gasPr i c e) ;
s i z e t g a s l e n = bytes (gas bytes , t r an sa c t i on . gas) ;
s i z e t v a l u e l e n = bytes (va lue bytes , t r an s a c t i on . va lue) ;

// Ca l cu la t e RLP length
u in t 32 t r l p l e n g t h = 1 ; // o f f by one?
r l p l e n g t h += r l p c a l c u l a t e l e n g t h (nonce len , nonce bytes [0]) ;
r l p l e n g t h += r l p c a l c u l a t e l e n g t h (ga sPr i c e l en , ga sPr i c e by t e s [0]) ;
r l p l e n g t h += r l p c a l c u l a t e l e n g t h (gas l en , ga s by te s [0]) ;
r l p l e n g t h += r l p c a l c u l a t e l e n g t h (ETH ADDRESS SIZE, t r an s a c t i on . to [0]) ;
r l p l e n g t h += r l p c a l c u l a t e l e n g t h (va lue l en , va lue byt e s [0]) ;
i f (cha i n i d) {

r l p l e n g t h += r l p c a l c u l a t e l e n g t h (1 , cha i n i d) ;
r l p l e n g t h += r l p c a l c u l a t e l e n g t h (0 , 0) ;
r l p l e n g t h += r l p c a l c u l a t e l e n g t h (0 , 0) ;

}

// Compute RLP
s i z e t d a t a s i z e = 0 ;
s h a3 256 In i t (&keccak ctx) ;
h a s h r l p l i s t l e n g t h (r l p l e n g t h) ;
h a s h r l p f i e l d (nonce bytes , nonce l en) ;
h a s h r l p f i e l d (ga sPr i c e byte s , g a sP r i c e l e n) ;

72

CryptKi.com

h a s h r l p f i e l d (gas bytes , g a s l e n) ;
h a s h r l p f i e l d (t r an sa c t i on . to , ETH ADDRESS SIZE) ;
h a s h r l p f i e l d (va lue bytes , v a l u e l e n) ;
h a sh r l p l e ng th (da ta s i z e , t r an s a c t i on . data [0]) ;
hash data (t r an s a c t i on . data , d a t a s i z e) ;
i f (cha i n i d) {

hash rlp number (cha i n i d) ;
h a sh r l p l e ng th (0 , 0) ;
h a sh r l p l e ng th (0 , 0) ;

}

// Compute S i gn i t u r e
u i n t 8 t hash [3 2] , s i g [6 4] ;
u i n t 8 t v ;
keccak F ina l (&keccak ctx , hash) ;

i n t rc = e c d s a s i g n d i g e s t (&secp256k1 , privkey , hash , s i g , &v ,
e the r eum i s canon i c) ;
i f (r c != 0) {

NRF LOG INFO(” Inva l i d s i gna tu r e ”) ;
}

i f (cha i n i d) {
v = v + 2 ⇤ cha in i d + 35 ;

} e l s e {
v = v + 27 ;

}

u i n t 8 t r [3 2] , s [3 2] ;
memcpy(r , s i g +0, 32) ;
memcpy(s , s i g +32, 32) ;

// Form t ran sa c t i on message
r l p l e n g t h += r l p c a l c u l a t e l e n g t h (1 , v) ;
r l p l e n g t h += r l p c a l c u l a t e l e n g t h (32 , r [0]) ;
r l p l e n g t h += r l p c a l c u l a t e l e n g t h (32 , s [0]) ;
r l p l e n g t h �= 3 ; //Fix s i z e . something with no cha in id here

s ha3 256 In i t (&keccak ctx) ;
h a s h r l p l i s t l e n g t h (r l p l e n g t h) ;
h a s h r l p f i e l d (nonce bytes , nonce l en) ;
h a s h r l p f i e l d (ga sPr i c e byte s , g a sP r i c e l e n) ;
h a s h r l p f i e l d (gas bytes , g a s l e n) ;
h a s h r l p f i e l d (t r an sa c t i on . to , ETH ADDRESS SIZE) ;
h a s h r l p f i e l d (va lue bytes , v a l u e l e n) ;
h a sh r l p l e ng th (da ta s i z e , t r an s a c t i on . data [0]) ;
hash data (t r an s a c t i on . data , d a t a s i z e) ;
h a s h r l p f i e l d (&v , 1) ;
h a s h r l p f i e l d (r , 32) ;
h a s h r l p f i e l d (s , 32) ;

i n t t x l e n = r l p l e n g t h +2;
s t a t i c u i n t 8 t tx [ETH HASH SIZE] ;
memcpy(tx , keccak ctx . message , t x l e n) ;

char t x s t r [2 2 3] ;
t x s t r [0] = ’ 0 ’ ;
t x s t r [1] = ’ x ’ ;
a2hexst r (& t x s t r [2] , tx , t x l e n+2) ;
NRF LOG INFO(”Transact ion : %s ” , t x s t r) ;

memcpy(dest , tx , t x l e n) ;
r e turn t x l e n ;

}

s t a t i c s i z e t bytes (u i n t 8 t ⇤dest , u i n t 64 t va l) {
s i z e t count = 0 ;
whi l e (va l > 0) {

73

dest [count] = va l & 0xFF ;
va l >>= 8 ;
count++;

}

f o r (u i n t 8 t i =0; i<count /2 ; i++) {
u i n t 8 t temp = dest [i] ;
des t [i] = dest [(count�1)� i] ;
des t [(count�1)� i] = temp ;

}

r e turn count ;
}

J.2 Public Address Generation

u in t 32 t e t h l i s tAdd r e s s e s (e t h add r e s s t ⇤ addre s s e s) {
u in t 32 t count ;
e th addr e s s e s coun t (&count) ;
NRF LOG INFO(”num accounts : %d” , count) ;

e t h add r e s s t from ;
eth getAddress (from , pr ivkey) ;
memcpy(&addre s s e s [0] , from , ETH ADDRESS SIZE) ;

r e turn count ;
}

J.3 RLP Encoding

s t a t i c i n t e the r eum i s canon i c (u i n t 8 t v , u i n t 8 t s i gna tu r e [6 4])
{

(void) s i gna tu r e ;
r e turn (v & 2) == 0 ;

}

s t a t i c i n l i n e void hash data (const u i n t 8 t ⇤buf , s i z e t s i z e)
{

sha3 Update(&keccak ctx , buf , s i z e) ;
}

s t a t i c void ha sh r l p l e ng th (u in t 32 t length , u i n t 8 t f i r s t b y t e)
{

u i n t 8 t buf [4] ;
i f (l ength == 1 && f i r s t b y t e <= 0x7f) {

/⇤ empty length header ⇤/
} e l s e i f (l ength <= 55) {

buf [0] = 0x80 + length ;
hash data (buf , 1) ;

} e l s e i f (l ength <= 0 x f f) {
buf [0] = 0xb7 + 1 ;
buf [1] = length ;
hash data (buf , 2) ;

} e l s e i f (l ength <= 0 x f f f f) {
buf [0] = 0xb7 + 2 ;
buf [1] = length >> 8 ;
buf [2] = length & 0 x f f ;
hash data (buf , 3) ;

} e l s e {
buf [0] = 0xb7 + 3 ;
buf [1] = length >> 16 ;
buf [2] = length >> 8 ;
buf [3] = length & 0 x f f ;
hash data (buf , 4) ;

}

74

}

s t a t i c void h a s h r l p l i s t l e n g t h (u in t 32 t l ength)
{

u i n t 8 t buf [4] ;
i f (l ength <= 55) {

buf [0] = 0xc0 + length ;
hash data (buf , 1) ;

} e l s e i f (l ength <= 0 x f f) {
buf [0] = 0 xf7 + 1 ;
buf [1] = length ;
hash data (buf , 2) ;

} e l s e i f (l ength <= 0 x f f f f) {
buf [0] = 0 xf7 + 2 ;
buf [1] = length >> 8 ;
buf [2] = length & 0 x f f ;
hash data (buf , 3) ;

} e l s e {
buf [0] = 0 xf7 + 3 ;
buf [1] = length >> 16 ;
buf [2] = length >> 8 ;
buf [3] = length & 0 x f f ;
hash data (buf , 4) ;

}
}

/⇤
⇤ Push an RLP encoded length f i e l d and data to the hash bu f f e r .
⇤/

s t a t i c void h a s h r l p f i e l d (const void ⇤ buf , s i z e t s i z e)
{

const u i n t 8 t ⇤buf = (const u i n t 8 t ⇤) bu f ;
h a sh r l p l e ng th (s i z e , buf [0]) ;
hash data (buf , s i z e) ;

}

s t a t i c void hash rlp number (u i n t 32 t number)
{

i f (! number) {
r e turn ;

}
u i n t 8 t data [4] ;
data [0] = (number >> 24) & 0 x f f ;
data [1] = (number >> 16) & 0 x f f ;
data [2] = (number >> 8) & 0 x f f ;
data [3] = (number) & 0 x f f ;
i n t o f f s e t = 0 ;
whi l e (! data [o f f s e t]) {

o f f s e t++;
}
h a s h r l p f i e l d (data + o f f s e t , 4 � o f f s e t) ;

}

s t a t i c i n t r l p c a l c u l a t e l e n g t h (i n t length , u i n t 8 t f i r s t b y t e)
{

i f (l ength == 1 && f i r s t b y t e <= 0x7f) {
r e turn 1 ;

} e l s e i f (l ength <= 55) {
r e turn 1 + length ;

} e l s e i f (l ength <= 0 x f f) {
r e turn 2 + length ;

} e l s e i f (l ength <= 0 x f f f f) {
r e turn 3 + length ;

} e l s e {
r e turn 4 + length ;

}
}

75

J.4 Oled Interface

#de f i n e SCREENWIDTH 128
#de f i n e SCREEN HEIGHT 64
#de f i n e LINE HEIGHT 16

r e t c o d e t s s d 1 3 0 6 i n i t (void) ;
void s sd1306 un in i t (void) ;
void s sd1306 p ixe l d raw (u in t 16 t x , u i n t 16 t y , u i n t 32 t c o l o r) ;
void s sd1306 rec t draw (u in t 16 t x , u i n t 16 t y , u i n t 16 t width , u i n t 16 t height ,

u i n t 32 t c o l o r) ;
void s s d1306 d i s p l a y s c r e en (void) ;
void s s d 1 3 0 6 d i s p l a y i n v e r t (bool i nv e r t) ;
void s s d 1 3 0 6 c l e a r d i s p l a y (void) ;

void o l e d i n i t () ;
void o l e d c l e a r () ;
void o led redraw () ;
void o l e d i n v e r t (bool i nv e r t) ;
void o l e d w r i t e (u i n t 8 t x , u i n t 8 t l i n e , const char ⇤ t ex t) ;
i n t a2hexst r (char ⇤dest , const u i n t 8 t ⇤ src , i n t l en) ;

typede f s t r u c t s c r e e n t {
void (⇤ on load) (void ⇤data) ;
void (⇤ on unload) (void) ;
bool (⇤ on evt) (b sp event t event) ;
s t r u c t s c r e e n t ⇤ pr ev s c r e en ;
void ⇤data ;

} s c r e e n t ;

void s c r e en l o ad (s c r e e n t ⇤ screen , void ⇤data) ;
void s c r e e n s e t p r e v (s c r e e n t ⇤ s c r e en) ;
void s c r e en p r ev () ;
void s c r e en ev t (b sp event t evt) ;

J.5 BLE Defines

#de f i n e APP FEATURE NOT SUPPORTED BLE GATT STATUS ATTERR APP BEGIN + 2 /⇤⇤<
Reply when unsupported f e a t u r e s are reques ted . ⇤/

#de f i n e APP ADV INTERVAL 300 /⇤⇤<
The adv e r t i s i n g i n t e r v a l (in un i t s o f 0 .625 ms . This va lue cor re sponds to 187 .5
ms) . ⇤/

#de f i n e APP ADV TIMEOUT IN SECONDS 180 /⇤⇤<
The adv e r t i s i n g timeout in un i t s o f seconds . ⇤/

#de f i n e SECURITY REQUEST DELAY APP TIMER TICKS(400) /⇤⇤<
Delay a f t e r connect ion un t i l S e cu r i t y Request i s sent , i f nece s sa ry (t i c k s) . ⇤/

#de f i n e APP BLE OBSERVER PRIO 1 /⇤⇤<
Appl i ca t ion ’ s BLE obse rve r p r i o r i t y . You shouldn ’ t need to modify t h i s va lue . ⇤/

#de f i n e APP BLE CONN CFG TAG 1 /⇤⇤<
A tag i d e n t i f y i n g the So f tDev ice BLE con f i g u r a t i on . ⇤/

#de f i n e MIN CONN INTERVAL MSEC TO UNITS(100 , UNIT 1 25 MS) /⇤⇤<
Minimum acceptab l e connect ion i n t e r v a l (0 . 1 seconds) . ⇤/

#de f i n e MAXCONN INTERVAL MSEC TO UNITS(200 , UNIT 1 25 MS) /⇤⇤<
Maximum acceptab l e connect ion i n t e r v a l (0 . 2 second) . ⇤/

#de f i n e SLAVE LATENCY 0 /⇤⇤<
Slave l a t ency . ⇤/

#de f i n e CONN SUP TIMEOUT MSEC TO UNITS(4000 , UNIT 10 MS) /⇤⇤<
Connection supe rv i s o ry timeout (4 seconds) . ⇤/

#de f i n e FIRST CONN PARAMS UPDATE DELAY APP TIMER TICKS(5000) /⇤⇤<

76

Time from i n i t i a t i n g event (connect or s t a r t o f n o t i f i c a t i o n) to f i r s t time
sd ble gap conn param update i s c a l l e d (5 seconds) . ⇤/

#de f i n e NEXTCONNPARAMSUPDATEDELAY APP TIMER TICKS(30000) /⇤⇤<
Time between each c a l l to sd ble gap conn param update a f t e r the f i r s t c a l l (30
seconds) . ⇤/

#de f i n e MAXCONNPARAMSUPDATECOUNT 3 /⇤⇤<
Number o f attempts be f o r e g i v ing up the connect ion parameter n ego t i a t i on . ⇤/

J.6 SDK Defines

// De fau l t s in <SDK>/con f i g / sdk con f i g . h

#de f i n e APP TIMER ENABLED 1
#de f i n e BLE ADVERTISING ENABLED 1
#de f i n e BUTTONENABLED 1
#de f i n e FDS ENABLED 1
#de f i n e GPIOTE ENABLED 1
#de f i n e NRF BALLOC ENABLED 1
#de f i n e NRF BLE CONN PARAMS ENABLED 1
#de f i n e NRF BLE GATT ENABLED 1
#de f i n e NRF CLI ECHO STATUS 1
#de f i n e NRF CLI ENABLED 1
#de f i n e NRF CLI LOG BACKEND 1
#de f i n e NRF CLI RTT ENABLED 1
#de f i n e NRF FPRINTF ENABLED 1
#de f i n e NRF FSTORAGE ENABLED 1
#de f i n e NRF LOG ENABLED 1
#de f i n e NRF LOG ERROR COLOR 2
#de f i n e NRF LOG USES COLORS 1
#de f i n e NRF LOGWARNINGCOLOR 4
#de f i n e NRF QUEUE ENABLED 1
#de f i n e NRF SDH BLE ENABLED 1
//#de f i n e NRF SDH BLE GATTS ATTR TAB SIZE 1408
#de f i n e NRF SDH BLE PERIPHERAL LINK COUNT 1
#de f i n e NRF SDH BLE VS UUID COUNT 1
#de f i n e NRF SDH ENABLED 1
#de f i n e NRF SDH SOC ENABLED 1
#de f i n e NRF SECTION ITER ENABLED 1
#de f i n e NRF STRERROR ENABLED 1
#de f i n e PEERMANAGERENABLED 1
#de f i n e NRF SDH BLE GATT MAX MTU SIZE 250
#de f i n e SEGGER RTT CONFIG DEFAULTMODE 1 //TRIM

#de f i n e CLOCKENABLED 1
#de f i n e NFC AC REC ENABLED 1
#de f i n e NFC BLE OOB ADVDATA ENABLED 1
#de f i n e NFC BLE PAIR LIB ENABLED 1
#de f i n e NFC BLE PAIR MSG ENABLED 1
#de f i n e NFCCHCOMMONENABLED 1
#de f i n e NFC EP OOB REC ENABLED 1
#de f i n e NFC HS REC ENABLED 1
#de f i n e NFC LE OOB REC ENABLED 1
#de f i n e NFC NDEF MSG ENABLED 1
#de f i n e NFC NDEF RECORD ENABLED 1
#de f i n e NFC PAIRING MODE 4 // NFC PAIRING MODE GENERIC OOB
#de f i n e NFC T2T HAL ENABLED 1
#de f i n e RNGENABLED 1

#de f i n e NRF GFX ENABLED 1
#de f i n e NRF SPI DRV MISO PULLUP CFG 1
#de f i n e NRF SPI MNGR ENABLED 1
#de f i n e SPI0 ENABLED 1
#de f i n e SPI0 USE EASY DMA 0
#de f i n e SPI ENABLED 1

#i f d e f DEBUGNRF
#de f i n e NRF LOGDEFERRRED 0

77

#de f i n e NRF LOG DEFAULT LEVEL 4 //Debug
#de f i n e NRF BLE PAIR LIB LOG ENABLED 1
#de f i n e HAL NFC CONFIG LOG ENABLED 1
#end i f

78

Appendix K

Glossary

ARM Advanced RISC Machines.

BLE Bluetooth Low Energy.

Blockchain A data type similar to a linked list but previous nodes (blocks) are immutable.

CCCD Client Characteristic Configuration Descriptor.

CLI Command Line Interface.

Ethereum A type of cryptocurrency.

GAP Generic Access Protocol.

GATT Generic Attribute Profile.

HCI Host Control Interface.

HTTP Hypertext Transfer Protocol.

iOS A mobile operating system developed by Apple.

JSON JavaScript Object Notation.

JTAG Join Test Action Group.

MCU Microcontroller Unit.

NFC Near Field Communication.

OOB Out of Band.

PCB Printed Circuit Board.

RAM Random Access Memory.

RISC Reduced Instruction Set Computer.

ROM Read Only Memory.

RPC Remote Procedure Call.

SOC System On a Chip.

SWI Software Interrupt Instruction.

79

	Santa Clara University
	Scholar Commons
	6-15-2018

	CryptKi: Mobile Hardware Wallet
	Derrick Chan
	Rowan Decker
	William Nguyen
	Yuya Oguchi
	Recommended Citation

	Introduction
	Motivation and Objective
	What are cryptocurrencies?
	Why do you need a hardware wallet?
	Related Products
	Solution
	Considerations
	Why Blockchain Technology Needs Security
	Virtues of a Good Engineer
	Risks and Safety

	Project and Design
	Project Requirements
	Specifications and constraints
	Android App
	Physical Hardware Wallet
	Bluetooth Services

	Use Cases
	Case Diagram
	Task Description

	Activity Diagrams
	Setup
	Settings
	Backup
	Restore
	Send

	Usage
	Setup
	Sending a Transaction

	Architectural Diagram
	Phone App
	Block Diagrams
	Level 0
	Level 1

	Cryptography Block Diagram
	Design Rationale
	Support for Multiple Cyrptocurrencies
	Localization
	Connecting to the Ethereum Blockchain
	Mobile Application Connection with Hardware Wallet
	Power
	Interacting with the Hardware Wallet
	BLE Services
	Security

	Technologies Used
	Server Backend
	Mobile Application
	Hardware Wallet

	Development Process
	Hardware Wallet
	Android App

	Attack Vectors and Mitigations
	Pin Access
	Man in the Middle Attacks
	Power Attacks
	Cold Boot Attacks

	Test Plans
	Mobile application
	Hardware wallet software
	System Testing

	Discussion
	Social Concerns
	Economics Considerations
	Usability
	Manufacturing
	Lifelong Learning

	Conclusion
	Lessons Learned
	Future Development
	Summary

	Appendix
	Risk Analysis and Timeline
	Risk Analysis
	Budget
	Development Timeline

	Bill of Materials
	Schematics
	Top Level
	Controller
	Screen Interface

	PCB Layout
	Top Layer
	Bottom Layer

	Storage Allocation
	Page Allocation
	Ethereum Wallets

	Bluetooth Services
	Device Service
	Ethereum Service

	Data Types
	auth_type_t
	eth_address_t
	eth_hash_t
	eth_transaction_t

	User Manual
	Phone App
	Receiving Funds
	Drawer
	Viewing Transactions
	Switching Accounts
	Creating a New Account
	Changing Nodes

	Hardware Wallet
	Settings
	Backup
	Restore

	Privacy Policy
	Source Code
	Transaction Signing
	Public Address Generation
	RLP Encoding
	Oled Interface
	BLE Defines
	SDK Defines

	Glossary

