
Santa Clara University
Scholar Commons

Mechanical Engineering Master's Theses Engineering Master's Theses

9-2018

The Effect of Ultrasonic Power in Aluminum Wire
Bonding Hardness Profiles
Matthew D. McKay

Follow this and additional works at: https://scholarcommons.scu.edu/mech_mstr

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Master's Theses at Scholar Commons. It has been accepted for inclusion in
Mechanical Engineering Master's Theses by an authorized administrator of Scholar Commons. For more information, please contact
rscroggin@scu.edu.

Recommended Citation
McKay, Matthew D., "The Effect of Ultrasonic Power in Aluminum Wire Bonding Hardness Profiles" (2018). Mechanical Engineering
Master's Theses. 35.
https://scholarcommons.scu.edu/mech_mstr/35

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_master_theses?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr/35?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu


SANTA CLARA UNIVERSITY

Department of Mechanical Engineering

I HEREBY RECOMMEND THAT THE THESIS PREPARED
UNDER MY SUPERVISION BY

Matthew D. McKay

ENTITLED

The Effect of Ultrasonic Power in Aluminum Wire Bonding
Hardness Profiles

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

04/Z4//6
Thesis jfdvisor date

/ '

Departfhent Chair date

"^ ^^—7^ _°?/-ri/'-t8
Thesis Reader ^ / date



The Effect of Ultrasonic Power in Aluminum Wire Bonding 

Hardness Profiles  

By 

Matthew D. McKay 

MASTER THESIS 

Submitted to in Partial Fulfillment of the Requirements 

For the degree of Master of Science  

In Mechanical Engineering 

In the School of Engineering at 

SANTA CLARA UNIVERSITY, September 2018 



iii 

 

 

 

 

 

 

 

 

 

Dedicated to family and friends who supported me throughout this journey.  



iv 

 

Acknowledgement 

I want to thank Dr. Sepehrband for all her support and guidance on this project providing 

me a great learning opportunity. I would also like to thank all the great work and insight from 

Maddie Peauroi, Jamie Ferris and Molly Jansky. I appreciate the help and support provided by 

Kuliche and Soffa for the wirebonder and expertise in its use. 

This work was supported by Santa Clara University, School of Engineering.   



v 

 

Table of Contents 
List of Tables ................................................................................................................................ vii 

List of Figures .............................................................................................................................. viii 

Abstract ........................................................................................................................................... x 

1 Introduction ............................................................................................................................. 1 

2 Literature Review .................................................................................................................... 3 

2.1 Types of Bonding ............................................................................................................. 5 

2.2 Bonding Parameters and Testing...................................................................................... 6 

2.3 Strain Hardening .............................................................................................................. 9 

2.4 Microweld Formation ..................................................................................................... 11 

2.5 Microstructure ................................................................................................................ 12 

2.6 Ultrasonic Softening ....................................................................................................... 13 

2.7 Nanoindentation ............................................................................................................. 16 

2.8 Relationship Between Hardness and Mechanical Properties ......................................... 17 

3 Methodology .......................................................................................................................... 20 

3.1 Wire Bonding ................................................................................................................. 20 

3.2 Sample Preparation ........................................................................................................ 23 

3.2.1 Mounting ................................................................................................................. 23 

3.2.2 Cross Sectioning ..................................................................................................... 23 

3.2.3 Polishing ................................................................................................................. 24 

3.3 Microindentation ............................................................................................................ 25 

3.4 Optical Microscopy ........................................................................................................ 27 

3.5 Image Analysis ............................................................................................................... 28 

3.6 Nanoindentation ............................................................................................................. 31 

4 Results and Discussion .......................................................................................................... 35 

4.1 Microindentation ............................................................................................................ 35 

4.2 Wire Deformation .......................................................................................................... 37 

4.2.1 Power Dependence.................................................................................................. 42 

4.2.2 Time Dependence ................................................................................................... 44 

4.3 Nano-indentation ............................................................................................................ 47 

5 Conclusion ............................................................................................................................. 50 

5.1 Summary and Conclusions ............................................................................................. 50 

5.2 Future Work ................................................................................................................... 50 



vi 

 

6 References ............................................................................................................................. 51 

Appendix A ................................................................................................................................... 57 

Appendix B ................................................................................................................................... 58 

Appendix C ................................................................................................................................... 59 

Appendix D ................................................................................................................................... 60 

Appendix E ................................................................................................................................... 63 

 

  



vii 

 

List of Tables 
Table 1-Timeline of key research into bonding mechanisms [14]. ................................................ 4 

Table 2-Key bonding parameters. ................................................................................................. 21 

Table 3-Relationship between bond tool setting and Ultrasonic Current. .................................... 22 

Table 4-Hardness orientation data ................................................................................................ 36 

Table 5- Bond area and calculated hardness. ................................................................................ 40 

Table 6- Hardness in HV measured at different locations in wire and at varied bond currents. .. 42 

  



viii 

 

List of Figures 
 

Figure 1- Ball bonding head [2]. Reproduced without permission. ................................................ 5 

Figure 2- Wedge bonding [17]. Reproduced without permission................................................... 6 

Figure 3- Pull strength vs ultrasonic power [20]. Reproduced without permission. ...................... 7 

Figure 4- Bond pull strength vs ultrasonic power [21]. Reproduced without permission. ............. 8 

Figure 5- Shear strength optimization for Al wire wedge bonding [23]. Reproduced without 

permission. ...................................................................................................................................... 9 

Figure 6- Hardness values obtained by nanoindentation [27]. Reproduced without permission. 11 

Figure 7- Grain Refinement in Al wire [35]. Reproduced without permission. ........................... 12 

Figure 8- Stress–strain compression tests with and without high-frequency vibration [28]. 

Reproduced without permission. .................................................................................................. 14 

Figure 9- Microhardness of Cu balls deformed with different US [37]. Reproduced without 

permission. .................................................................................................................................... 15 

Figure 10- Correlation between microhardness and additional deformation  [37]. Reproduced 

without permission. ....................................................................................................................... 15 

Figure 11- Comparison of calculated and experimental tensile strength for Al alloys [48]. 

Reproduced without permission. .................................................................................................. 18 

Figure 12- Othodyne 7600HD wirebonder. .................................................................................. 20 

Figure 13- Wires bonded to substrate. .......................................................................................... 21 

Figure 14- In Situ bonding current for different bond power settings. ......................................... 22 

Figure 15- Diamond cross-sectioning saw. ................................................................................... 23 

Figure 16- Polishing wheel. .......................................................................................................... 24 

Figure 17- Microhardness tester. .................................................................................................. 26 

Figure 18- Comparison of calibrated microscope measurements to actual measurements. ......... 28 

Figure 19- Image analysis diagram. .............................................................................................. 29 

Figure 20- Inside of nanoindenter with sample. ........................................................................... 31 

Figure 21- Quasi Static Trapezoid [57]. Reproduced without permission. .................................. 32 

Figure 22- Partial Unloading profile [57]. Reproduced without permission. ............................... 32 

Figure 23- Load force vs hardness for single and multiple unloading testing. ............................. 33 

Figure 24- Orientation of Wire Cross Section. ............................................................................. 35 

Figure 25- Schematic of bond tool and deformed wire [57]. Reproduced without permission. ... 37 

Figure 26- Cross-section of bonded wired at varied ultrasonic currents, (a) unbonded, (b) 440 

mA, (c) 880mA, (d) 1330 mA, and 1500 mA. .............................................................................. 38 

Figure 27- (a)Wire height vs bonding current and (b) deformed cross-sectional area vs bonding 

current. .......................................................................................................................................... 39 

Figure 28- Comparison of actual and theoretical hardness. .......................................................... 41 

Figure 29- Hardness profiles in bonded wires with different ultrasonic current. ......................... 43 

Figure 30- Schematic of Hardness profile. ................................................................................... 44 

Figure 31- 880mA Ultrasonic Current with different hold times. ................................................ 45 

Figure 32- Time dependent deformation. ..................................................................................... 46 

Figure 33- Hardness profiles from nanoindentation (a) 440 mA (b) 880 mA (c) 1330 mA (d) 

1500 mA........................................................................................................................................ 48 



ix 

 

Figure 34- Nanoindentation hardness profile. .............................................................................. 49 

Figure A- 1-Hardness profiles in bonded wires with different ultrasonic current with error bars.

....................................................................................................................................................... 57 

Figure B- 1-880mA Ultrasonic Current with different hold times with error bars. ...................... 58 

Figure C- 1- Nanoindentation hardness profile with error bars. ................................................... 59 

 

  



x 

 

 

Abstract 

Ultrasonic wire bonding is a critical process used widely across the microelectronics industry. 

Despite its ubiquity, there is a breadth of literature and ongoing active research into the basic 

principles of wire bonding. In particular, the effects of ultrasonic bonding on material properties 

are not fully understood. This thesis presents the effects of different ultrasonic bond powers on 

material properties. The changes in mechanical properties were measured by collecting Vickers 

microhardness data and nanoindentation data. The hardness in the bonded wire varied with two 

parameters: the distance from the bond interface, and the applied ultrasonic power. The hardness 

varied 5 HV across the profile of a bond and a 5 HV difference was also measured due to change 

in bond power. In addition, the measured hardness of the bonds was lower by up to 10 HV than 

calculated hardness values based on strain hardening only. These trends were found with the 

microhardness data and corroborated by nanoindentation results. This work provides a method to 

further study the effects of additional bonding parameters on mechanical properties.
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1 Introduction 

Wire bonding is a critical technique used extensively throughout the electronics industry. 

Despite its widespread usage, the underlying bonding mechanism of ultrasonic bonding is still 

under active research. One of the key questions is whether ultrasonic bonding results in a 

hardening or softening effect. Due to the current discrepancies in the literature, a costly and time-

consuming “shot gun” approach is used in industry in order to establish viable process 

parameters. Developing a mechanism and understanding of what processes occur during 

ultrasonic bonding would lead to better process control and would ameliorate research and 

development efforts at a lower cost. This would include exploring new wire and substrate 

materials that are cheaper and/or have better bonding strength and reliability.  

Since wire bonding research is closely tied with industrial application, most of the 

relevant literature focuses on data such as bond strength, fatigue life, and bond time instead of 

mechanical properties. However, studying mechanical properties further develops a fundamental 

understanding of the bonding process instead of further optimizing bonding parameters. This 

would contribute to a stronger foundational knowledge base, upon which both academic and 

industrial pursuits could be built.  

Ultrasonic bonding has numerous parameters such as bond time, and hold time, but the 

one that is varied throughout this research is ultrasonic power. For this project, analysis is limited 

to the effect of ultrasonic power to allow for correlations between it and mechanical property 

changes. Numerous mechanical properties can be measured such as elastic modulus; however, 

hardness was tested because it can be used to determine material property changes without the 

complexity that comes with testing other mechanical properties. Hardness is a mechanical 
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property that is easily measured and can be related to additional mechanical properties such as 

yield strength, elastic modulus, and strain hardening coefficient. 
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2 Literature Review 

Since the early 1980s, wire bonding has been the most used process for joining 

semiconductors, and is present in over 90% of all bonds in chips [1]. As a result, multiple types 

of wire bonding have been developed to meet the various demands of industry. The two most 

common types of wire bonding are ball bonding and wedge bonding which utilize 

thermocompression, ultrasonic, or thermosonic energy [2]. While a hybrid approach of ball and 

wedge bonding is commonly used in industry, the focus of this study is the effect of ultrasonic 

power on mechanical properties, and will thus be limited to ultrasonic wedge bonding [3].  

 Since the introduction of wire bonding in the electronics industry, researchers have 

sought to explain the phenomenon. Many attribute Anderson [4] with the first use of wire 

bonding as a means of connecting electronic leads [4]. Early observations showed that 

contaminates and oxides are cleaned away from the surface leading to bond formation [5]. 

According to the early work on ultrasonic bonding, two effects from ultrasonic vibration on 

mechanical properties are acoustic softening and hardening.  In softening, the amount of stress 

required to achieve plastic deformation is lowered. Langenecker [6] varied the amount of 

ultrasonic power resulting in an increased and more pronounced hardening effect which was 

attributed to plastic deformation, [6]. Another early theory for joining was bonding as a 

thermally activated process [7]. This is corroborated by Krye [8] using transmission electron 

microscope images, which supported ultrasonic spot welds [8]. Contradicting these findings, 

thermoelectric electromagnetic field measurements made during ultrasonic welding showed that 

the maximum temperature achieved did not exceed 40% of the melting temperature and no 

melting phenomena was seen in cross-section analysis [9]. In addition, Devine [5] demonstrated 

that the interface does not reach the melting temperatures of the metals and found that 



4 

 

significantly less energy was needed to achieve the deformation due to the presence of ultrasonic 

vibration—not as a result of the increase in temperature [10]. This data combined resulted in 

disproving the welding mechanism. After demonstrating that the thermal process of bonding was 

not consistent with the data, it was accepted that wire bonding is a solid-state process [11]. 

 Table 1 outlines the timeline of key areas of research interest. One useful modern 

analysis technique that followed the discovery of wire bonding as a steady-state process, is the 

micro-slip and stick-slip models. This varies from the diffusion theory-based approaches that 

were prevalent in the 1990s but are still in use today [3]. In micro-slip and stick-slip methods, the 

interface friction is the key to the joining process [12]. The effects resulting from each 

mechanism can be described with superposition of stress, increased temperature, dislocation 

energy absorption, and interface friction [13]. 

Table 1-Timeline of key research into bonding mechanisms [14]. 

Authors and Year Method of Research Reported Mechanism 
Langenecker 1966 Experiment Absorption at dislocations sites and local heating 

Izumi et al. 1966 Experiment and Theory Dynamic stress and heat generation 

Baker and Carpenter 1967 Experiment Mobility of dislocation by thermal activation 

Kirchner et al. 1984 Experiment and Theory Superposition stress 

Ohgaku and takeuchi 1987 Experiment Superposition stress and thermal effect 

Malygin 2000 Theory Oscillatory stress and dislocation motion 

Daud et al. 2007 FEM and Experiment Superposition stress and energy absorption by microstructure 

Liu et al. 2013 FEM and Experiment Superposition stress and dislocation movement and thermal effect 

 

Despite the varied theories and methods described above, many experts agree that at least 

four steps occur during ultrasonic wire bonding—these include 1) Pre-deformation and 

activation of ultrasonic vibration, 2) friction, 3) ultrasonic softening and interdiffusion 4) 

ultrasonic hardening [3], [15]. This thesis will focus primarily on ultrasonic softening and 

hardening, although all steps are important and under current investigation.  
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2.1 Types of Bonding 

The two main wire bonding techniques are ball and wedge bonding. Ball bonding is a 

thermosonic process because it uses heat and ultrasound to form a bond. It is considered a solid-

state process. The main difference between ball bonding from wedge bonding is the formation of 

the free air ball (FAB) in which the end of the wire in a ceramic capillary is melted to form a ball 

[16]. The ball is a result of the surface tension of the molten wire. This technique is commonly 

used with copper wire [2]. The addition of heat introduces metallurgical changes that effect 

mechanical properties. Figure 1 shows the schematic of a ball bonding capillary and the relevant 

dimensions. The wire is melted at the end of the capillary and the ball forms. This ball is what is 

bonded to the substrate.  

 

Figure 1- Ball bonding head [2]. Reproduced without permission. 

In wedge bonding no additional heat energy is added to the wire. The bonds are formed 

by a bond head that applies a clamping force normal to the wire as well as ultrasonic vibration 

longitudinal to the wire [17].  This causes plastic deformation in the wire, bonding it to the 

substrate. The wire can then be looped, and the process repeated as many times as necessary for 
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the integrated circuit package [3]. Figure 2 illustrates the direction of the normal force and the tip 

geometry of a wedge wire bonder. In wedge wire bonding, there are three types of bonds: first 

bond, stitch bond and end bond.  

 

Figure 2- Wedge bonding [17]. Reproduced without permission. 

2.2 Bonding Parameters and Testing 

There are numerous parameters in wire bonding. Each of these parameters needs to be 

optimized based on the method of wire bonding, wire material, pad material, wire diameter, and 

desired performance. This optimization process is tedious and requires a large design of 

experiment to find the appropriate settings [18]. In ball bonding, the contact velocity, initial 

force, bond force, ultrasonic current, and bond time are the parameters to be optimized. Pull 

strength, ball shear strength, and cratering performance are commonly used to refine process 

parameters [2]. In wedge bonding similar parameters to ball bonding are used including: hold 

time, ultrasonic power, begin-force, end-force, and touch-down steps. Ultrasonic power is one of 

the most important parameters and requires the most analysis to tune. To analyze the impact of 

the ultrasonic power on the bond, pull tests, x-ray tomography, and other reliability tests are 
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performed [19]. The bond strength is the characteristic most related to the mechanical properties 

of the wire bond. The two tests most commonly used to optimize wire bonding are the pull test 

and the shear test. 

Figure 3 shows pull test results illustrating the different failure modes of the wire bond 

and the pull strength dependence on ultrasonic power. This pull test was done on 25μm copper 

wire bonds and demonstrates the relationship between ultrasonic power and bond strength. 

Insufficient ultrasonic power prevents removal of the oxide layer, resulting in inadequate 

bonding. However, too much ultrasonic power damages the bonding area [21]. This relaitonship 

can be seen in the parabolic curve in Figure 3.  

 

Figure 3- Pull strength vs ultrasonic power [20]. Reproduced without permission. 

  Another test used to assess bond strength is the shear test. According to experiments in 

large diameter aluminum wedge bonds, the shear strength also has a parabolic relationship to 

bond power as shown in Figure 4 [22].  
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Figure 4- Bond pull strength vs ultrasonic power [21]. Reproduced without permission. 

 Figure 5 shows a common optimization process conducted for wire bonding using shear 

tests. In this test, the wires were bonded to a substrate under varying conditions. Following 

bonding, the wires were then shear tested and the “footprint,” or wire remaining on the substrate, 

was examined.  
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Figure 5- Shear strength optimization for Al wire wedge bonding [23]. Reproduced without permission. 

This study was done to compare the process window for copper and aluminum wires. The 

aluminum wires are shown in Figure 5. The study found that copper bonds had higher pull and 

shear strength than aluminum bonds. However, copper bonds had a higher sensitivity to 

operating parameters and higher operating forces, therefore aluminum is regularly used in 

industrial settings despite its lower strength [23]. The process window for the applied ultrasonic 

power holds true for other materials and wire diameters [20]. The effect of ultrasonic power on 

bond strength is closely tied to the changes in mechanical properties and aids in the 

understanding of the bonding mechanism. 

2.3 Strain Hardening 

Strain hardening, like wire bonding, has unresolved questions in the underlying theory 

and mechanism. Since the wire bonding process results in deformation of the wire, strain 

hardening occurs. The extent of the effects of strain hardening are currently being actively 
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researched. Strain hardening has been divided into 5 distinct stages. Stage I is a single active slip 

system in a single crystal, stage II is when more slip systems activate, and linear hardening 

begins. Stage II applies to single and polycrystalline materials. Stage III is the decrease in the 

work hardening and is sensitive to temperature and strain rate. Stages IV and V consider large 

strains not accounted for in stages I, II, and III. Stage IV is the gradual increase in hardness at 

large strains and Stage V is the saturation of the stress. [24]  

The important advancements in work hardening involve computational modeling, rather 

than a theoretical approach. The predominate model is the Kochs-Mecking analysis [25]. The 

Kochs-Mecking model uses one parameter for the average dislocation density. A constitutive 

method using Kochs-Mecking model and Levy-von Misses equation has been developed. The 

model and experimental data confirmed residual hardening and ultrasonic softening. 

Microhardness tests also confirmed residual hardening in aluminum increasing from 26 to 34 HV 

with 100g load and 10 second hold [14].  

Figure 6 is the hardness measured with a nanoindenter of an aluminum wire bonded onto 

a semiconductor chip with a metallization layer. The nanoindentation study of hardness revealed 

a dependence on distance from the interface. Localized softening can be measured 25 μm from 

the bonded interface.  
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Figure 6- Hardness values obtained by nanoindentation [27]. Reproduced without permission.  

However, at the interface and in the bulk of the wire the material has a higher hardness. 

The hardness variation also aligned with the microstructure changes in the wire, demonstrating 

the occurrence of recrystallization, recovery, and grain growth, see Figure 7. Figure 6 shows that 

the hardness measurements are dependent on the distance from the bonded interface [27]. It can 

also be shown that the time in which the material was subjected to ultrasonic vibration increased 

the hardness of the wire after bonding, partially due to an increase in the dislocation density 

increase with exposure time [28], [14].  

2.4 Microweld Formation 

During the initial stages of bonding, microwelds are formed where the wire and substrate 

create metallic bonds and were first seen in 1984 when the contact resistance of a wire bond was 

measured[29]. The real time formation of microwelds can be measured using contact resistance 

measurement techniques. Another method, although potentially less accurate, is with scanning 

electron microscope (SEM) first used by Seppanen [30]. Laser dopler vibrometry can also be 

used to see microweld formation occur in wire bonding [31].  
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2.5 Microstructure 

 Analyzing the microstructure of the wire bonded sample can reveal information about 

the morphology and material characteristics of a specimen. The microstructure is composed of 

grains which are the individual crystals that make up a material. The study of grains in metals 

can be used to track the effect of a process on material properties. The undeformed wire typically 

has large grains and the bonded wire has substantial amounts of induced defects from the plastic 

deformation. The result is a fine-grained region with higher hardness [32]. An ultrafine grain 

structure has been observed after wire bonding in thick aluminum wedge wire bonds on AlSi 

metalization. In addition, fine nanoscaled grain strucutre dislocation loops were also obserrved. 

The grain structure is stable, however, it has a temperature and time depedence [33].  

Small grains of 1 um or less can be seen after wire bonding. The grains align parallel to 

the wire drawing direction. The microstructural changes are dominated by dynamic 

recrystallization and recovery.  Certain grain orientations are more favorable for grain growth 

and energy reduction, which may cause texturing [27].  

Figure 7 shows a cross section of an ultrasonic bonded aluminum wire. An inverted 

microscope with a polarizer was used to show the grain structures. 

 

Figure 7- Grain Refinement in Al wire [35]. Reproduced without permission. 
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 At the wire to substrate interface there is a local area of small refined grains. Increasing 

the bond power expands the grain refinement region [35].  

2.6 Ultrasonic Softening 

Ultrasonic vibration has a hardening and softening effect. The hardening effects are the 

result of strain hardening and covered in Section 2.1.3. The softening from the applied ultrasonic 

vibration allows for the large deformation in the wire to occur—creating the wire bond. The 

ultrasonic softening effect is a transient effect that occurs during the bonding process. This 

requires measurements to be taken during the bonding. In situ measurement techniques can be 

used to understand what is happening when ultrasonic vibration is applied. It allows for direct 

observation of the phenomena. Vickers indentations taken during ultrasonic vibration show 

ultrasonic softening by measuring an increase in the diagonal length of indents [36].  

 Figure 8 shows the stress-strain curve from an ultrasonic vibration compression test. A 

cylindrical compression specimen is subject to ultrasonic vibration as a compression load is 

applied the stress and strain is measured. The in-situ compression tests showed significant 

softening of materials from high-frequency vibration. [28].  
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Figure 8- Stress–strain compression tests with and without high-frequency vibration [28]. Reproduced without permission. 

While the transient softening effects are apparent from the in-situ measurements, Figure 8, the 

residual hardening effects are less conclusive. The literature in Section 2.1.3 shows evidence of 

an increase in residual hardness with higher bond powers. However, some literature shows that 

the microhardness decreases with increasing bond power, Figure 9. A linear relationship between 

microhardness and deformation was also found, Figure 10. This data supports the conclusion that 

ultrasonic softening is reducing the amount of strain hardening because a larger deformation 

should result in higher hardness, contradicting other data in literature [37]. 
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Figure 9- Microhardness of Cu balls deformed with different US [37]. Reproduced without permission. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10- Correlation between microhardness and additional deformation  [37]. Reproduced without permission.
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2.7 Nanoindentation  

Nanoindentation is a technique that was developed by Oliver and Pharr [38] in 1991 that 

commonly uses a Berkovich indenter to determine hardness and elastic modulus of materials. 

Unlike microhardness tests, nanoindentation measures the interaction between load and 

displacement. A loading profile is used to control the applied load over the time of test. The 

result of the loading over time is a load displacement curve. The height of the indenter is 

measured and used to determine displacement. The load displacement curve is used to calculate 

the hardness and reduced modulus of the sample. The strain hardening exponent and yield 

strength can also be calculated using indentation data [39], [40].  

                                                                   
1

𝐸𝑟
=  

(1 − 𝜈2)

𝐸
+

(1 − 𝜈𝑖
2)

𝐸𝑖
                                             (1.1) 

where, E is the elastic modulus of the sample, ν is Poisson’s ratio of the sample, Ei is the 

elastic modulus of the indenter, νi is the Poisson’s ratio of the indenter, and Er is the reduced 

modulus measured by the nanoindenter. The stiffness is the slope of the unloading curve and is 

used to find the Er. In order to find the slope of the unloading curve, a power law fit is applied 

[38]. 

The nanoindentation process is highly sensitive and important considerations must be 

taken when performing a test to ensure the quality of the data. The test method is sensitive to 

sample surface finish, tip geometry, and sample material. The process requires a more polished 

surface than typical hardness testing such as a Vickers microhardness test. Nanoindentation also 

utilizes and relies on experimental values to determine attributes such as indenter shape and 

indenter deformation. The Berkovich indenter is a triangular pyramid indenter and the process is 

highly sensitive to indenter shape and must be calibrated [41]. When performing nanoindentation 
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it is important to consider the deformation around the indent, which is the nonuniform sink-in or 

pileup around the contact area. This can be a source of error in the measurements. The sensitivity 

of nanoindentation was evaluated using finite element analysis, as a result of the study pileup 

was found to be a significant factor when 
ℎ𝑓

ℎ𝑚𝑎𝑥
⁄ > 0.7 (where, hf  is the final displacement, 

and hmax is the maximum depth of the indenter)  and the material does not significantly strain 

harden  [42]. The strain hardening rate and ratio of yield stress to elastic modulus are the 

dominant properties that effect contact depth and projected area [43].  

2.8  Relationship Between Hardness and Mechanical Properties 

The ability to correlate hardness with other mechanical properties is a valuable tool in 

studying wire bonding. There is a significant experimental effort to relate hardness to different 

mechanical properties such as tensile and yield strength.  Linear relationships between hardness 

and yield strength can be determined via experimentation [44], [45], [46]. The ultimate strength 

can be related to the hardness of a material.  

                                                  𝜎𝑢 =
𝐻

2.9
[1 − (𝑚 − 2)] [

12.5(𝑚 − 2)

1 − (𝑚 − 2)
]

(𝑚−2)

                              (1.2) 

𝑛 = 𝑚 − 2 

where, m is the Meyers coefficient, n is the strain hardening coefficient, H is the diamond 

pyramid hardness of the material, and 𝜎𝑢 is the ultimate strength of the material [47]. The more 

commonly used form is the approximation of the Equation 1.2 found in Equation 1.3. 

                                                                                   𝜎 = 𝐾𝜖𝑛                                                                (1.3) 
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Where n is the strain hardening coefficient, 𝜎 is the stress, 𝜖 is the true strain and K is a constant 

Hardness testing, especially nanoindentation, can be employed to determine n and K. Using these 

values, the strength can be estimated. In addition, experimental data has shown a linear 

relationship between the hardness value and strength. As a result, measuring changes in hardness 

implies a direct change in strength [48]. 

Figure 11 shows comparison between experimental tensile strengths and predicted tensile 

strengths based on their hardness. This experimentally supported relationship was able to predict 

the tensile strength in aluminum.  

 

Figure 11- Comparison of calculated and experimental tensile strength for Al alloys [48]. Reproduced without permission. 

However, the results can vary between microindentation results and nanoindentation tests 

as well as between tensile and compression tests. This is because the size of the grains compared 

to the indent can impact the validity of the test. Another method to study mechanical properties 
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is a microcompression test performed on the bonded wire instead of hardness testing. It has been 

shown that microcompression tests align with known tensile strengths better than ones derived 

from microindentation tests but are more difficult to perform [49]. 
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3 Methodology 

3.1 Wire Bonding 

An Othodyne 7600HD wirebonder was used to prepare all the samples tested. The 

wirebonder used to make the samples is presented in Figure 12 showing the bond head, sample 

holder, reel of wire, and computer to control the machine. Aluminum wire with a diameter of 

0.02” (508μm) 99.99% pure aluminum was used. The substrate that the wires were bonded to 

was 5052-H32 aluminum.  

 

Figure 12- Othodyne 7600HD wirebonder. 

An example of a sample with the wires bonded onto the substrate is shown in Figure 13. 

The substrates were placed into an alignment jig during bonding so that bonded wires would be 

in consistent locations for sample preparation. The initial wire bonding process parameters were 

provided by an industry partner Kuliche and Soffa.  
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Figure 13- Wires bonded to substrate. 

The parameters were further optimized for the wire and substrate materials. The parameters were 

optimized for bond strength and longevity. The parameters are listed in Table 2. The process 

parameters were varied in sets of single variable experiments. The resulting bonding current 

based on bond power setting are plotted in Figure 14 and enumerated in Table 3. 

Table 2-Key bonding parameters. 

Touch 

Force (N) 

Start 

Force (N) 

Bond 

Force (N) 

Start 

Power 

Bond 

Power 

Start Ramp 

Time (μsec) 

Bond Ramp 

Time (μsec) 

Bond Hold 

Time (μsec) 

1000 1200 1440 105 130 20 25 155 
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Figure 14- In Situ bonding current for different bond power settings. 

Table 3-Relationship between bond tool setting and Ultrasonic Current. 

Bond Tool 

Setting 

75 150 225 255 

Ultrasonic 

Current (mA) 

440 880 1330 1500 

 

The bonding tool does not set bonding power or current explicitly. A parameter from 0-255 

was used. Four bonding power settings were tested and the steady state current was recorded, 

Figure 14. The data in Table 2 allows the bond power to be reported in an ultrasonic current, not 

in the arbitrary units used in the machine computer interface. 

It is important to note that in Figure 14, the ultrasonic current for the lower bond power 

settings, 75(440mA) and 150(880mA), exceeds the steady state value. This is in part because the 

start power was set higher than the hold bonding power, Table 2. The curves above in Figure 14 

are an example of the ultrasonic current during the bonding of four individual bonds. The 
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software adjusts the current to maintain deformation calculated by measuring the height 

displacement. 

3.2 Sample Preparation 

The samples were mounted in acrylic epoxy, cross-sectioned, and then polished. The 

uniformity in sample preparation was important to get consistent results across the tests. The 

polishing preparation can affect hardness testing data because surface roughness can skew the 

testing, especially nanoindentation, microhardness testing is less sensitive.  

3.2.1 Mounting 

Samples were mounted in acrylic to prevent damage to the delicate wirebonds during cross-

sectioning and polishing. Samplkwick from Buehler was used as a mounting epoxy. The samples 

were cured for 15 minutes in 1.25 inch sample molds. 

3.2.2 Cross Sectioning 

A diamond saw was used to cross-section the samples to remove enough material to allow 

for grinding and polishing to reveal the bonded surface. Figure 15 shows the saw and sample 

placement. 

 

Figure 15- Diamond cross-sectioning saw. 
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The saw was run at 175 rpm. It was only for coarse material removal. Orienting the sample 

properly in the saw ensured that the sample was not cut at an angle, causing the exposed bonded 

area from polishing to be skewed. 

3.2.3 Polishing 

The sample preparation was completed by polishing the surface to allow for consistent 

hardness testing. The samples were ground with progressively finer sand paper from 240 grit to 

600 grit. Then the samples were polished on a polishing wheel. The polishing pad was replaced 

for each size of polishing solution to prevent contamination, Figure 16.  

 

 

 

 

 

Figure 16- Polishing wheel. 

Polishing solution was added to a reusable polishing pad (magnetically attached to the 

wheel) in order to polish each sample. The polishing solution was made by mixing alumina 

powder with distilled water. Alumina powder with particle sizes of 5 μm, 1 μm, 0.3 μm and 0.05 

μm were used. The final polish was done with 0.05 diamond suspension. For the samples that 

were tested with nanoindentation, a cleaning step was also performed after polishing. The 

samples were cleaned in an ultrasonic bath with isopropyl alcohol (IPA). Following, a magnetic 

disk was glued to the bottom and sanded flat to allow the sample to be mounted onto the 

nanoindenter’s magnetic base.  
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3.3 Microindentation 

There are numerous experimental techniques that have been developed to measure the 

hardness of a material. The hardness of a material is its resistance to abrasion and penetration. 

Hardness testing techniques can be classified by the geometry of the indenter: ball, cone, sharp 

diamond, or pyramid. All these techniques rely on applying a known load to form a measurable 

indent in the material. The three most common indentation techniques are Knoop, Vickers, and 

Brinell [44].  

The Vickers hardness measurement was selected for this study because it uses the same 

indenter for all materials and can accurately produce small indents. Vickers hardness was 

developed in 1921 at Vickers Limited. Smith and Sandland [44] wanted to find a replacement for 

the Brinell testing method [44]. The first tests used diamonds of non-standard shape, but now the 

shape of the indenter is standardized by ASTM E384 [50]. The indenter for the Vickers test is a 

square-based pyramid with 136° face angle. The indenter is composed of diamond. The Vickers 

hardness tester is illustrated in Figure 17. The stage, sample holder, and optical port are pictured. 
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Figure 17- Microhardness tester. 

The hardness is calculated by applying a known force and calculating the surface area of the 

indent. The mean of the two diagonal lengths of the indent are used to calculate the surface area. 

                                          𝐻𝑉 =
𝑇𝑒𝑠𝑡 𝐹𝑜𝑟𝑐𝑒

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎
= 1.8544

𝐹(𝑘𝑔𝑓)

𝑑(𝑚𝑚)
2                                            (2.1) 

The variable, F, is the load the indenter applies to the sample, the diagonal average of the two 

diagonal lengths, d, is used to calculate the surface area of the indent formed by the specified 

loading force [51]. The surface area of the indent scales inversely proportionally with the applied 

load.  

The loading force for the Vickers hardness measurements was established. Samples were 

cut, polished, and mounted in the Leco microhardness tester. A series of indents were made 

using different loading forces, 5gf to 2kgf. The smallest loading force that was able to make 

reliable indents was selected—10gf. Once the loading force was selected, the size of the indent 



27 

 

was measured. The maximum diagonal length was measured to be 19 μm. A spacing of 75 μm 

was used between all the indents. This placed all indents four times the diagonal distance away 

from any other indent. This was done to prevent strain hardening from previous indents 

influencing new samples, due to close proximity. The samples were aligned in the indenter, so 

the hardness measurements were taken orthogonal to the wire substrate interface, which was 

important to collect consistent data points. 

3.4 Optical Microscopy  

An optical microscope was used to inspect the samples and take a picture of the indents for 

later analysis. The microhardness tester has its own microscope, but has a smaller field of view 

and lacks a camera. A Leco microscope with 5x, 10x, 20x and 50x objective lens was used for 

image analysis. Once the loading force from Section 3.3 was selected, the indents were observed 

at different magnifications. For post-processing later, it was critical to get contrast between the 

indent and undeformed wire. At 20x magnification, the contrast was determined to be the best 

for image analysis because the entire wire could be seen in a single image and did not require 

multiple pictures that needed to be stitched together.  

Once the proper magnification was chosen, the microscope had to be calibrated to ensure 

accurate results. The microscope was calibrated using a calibration slide and calibration software 

built into the Leco software tool. Once the calibration was performed, the calibration and image 

analysis techniques detailed in Section 3.4 were validated by measuring known various features 

on the calibration slide. The slide had a cross hair with 0.01mm divisions, a cross hair with 

0.1mm divisions, 0.07mm diameter dot, and 0.015 diameter dot. Figure 18 shows the image 

analysis determined length of specific features on the calibration slide. A linear fit was used to 

compare the actual distance values with the measured values. 
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Figure 18- Comparison of calibrated microscope measurements to actual measurements. 

The linear fit has a y-intercept of 0.0013. A small y intercept means that there is no fixed bias 

between the two sets of values. The slope of the line is 1.017. This indicates that the measured 

distance is 1.7% smaller than the actual distance. This was consistent for all the measured 

distances, short and long. With the microscope calibrated and image analysis validated, the data 

could be collected with high certainty.  

3.5 Image Analysis 

To process data faster and more reliably, an image analysis script was written in MATLAB 

included in Appendix D. The script uses a picture of the indents from the microscope and finds 

the position of the indents to calculates the hardness. A scale bar was included in the pictures 

taken on the microscope to be used as a conversion between pixel size and actual length in μm.  

To perform the microhardness measurements, image analysis is common to eliminate the 

human error from manually measuring each indent. For the measurement to be made, an optical 
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microscope image was converted to a black and white binary image. This is known as 

binarization [52]. Objects in the binary were analyzed using canny edge finding and compared  

against a criteria based on object attributes to find indents [53], [54], [55], [56]. The process for 

the image analysis script is listed below and illustrated in Figure 19. The process was 

implemented in MATLAB. 

 

Figure 19- Image analysis diagram. 

Figure 19 illustrates the different stages in order to calculate the Vickers hardness from a 

microscope image. To process the image, key attributes of the scale bar and indents were 

determined. These attributes made it possible to filter the image and ensure only the indents were 

read. It also guaranteed the correct scale bar length was used.  The scale bar was a long, thin, 
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uninterrupted rectangle. It was consistently the same width. The scale bar was found by 

searching for a 3 to 6 pixel wide bounding box of over a length of 200 pixels after running the 

canny edge finding algorithm. The edge finding algorithm locates edges and was readily able to 

find the scale bar.  

To filter the images, the objects within the image were compared against two criteria: ratio of 

diagonals and object size. The indents should have nearly square bounding boxes because the 

diagonal lengths should be similar in length. Small image artifacts were filtered out because the 

indents have an area larger than 400 pixels. The squareness of the potential indent was 

determined by the ratio of the bounding box dimensions. The bounding box dimensions are the 

lengths of the diagonals. When the ratio of indent diagonals was larger than 0.875 and smaller 

than 1.125 the image artifact was considered an indent. The criteria was determined by 

measuring the diagonal length of a series of indents and determining the ratio for those indents. 

The ratio of the indents was found to be 0.975 to 1.025. A factor of 0.1 was added to ensure that 

the program errored on the side of including an indent which could be manually removed after 

inspecting the results. This filtering criteria also made sure that non-square indents were ignored 

as they are not valid hardness measurements. The process for the image analysis script is listed 

below and illustrated in Figure 19. 

  In order to validate the image analysis software, a series of indents were made into an 

unbonded wire. The indents were measured manually on the indenter and then compared with 

the results from the image analysis software. The manual method measured an average of 25.57 

HV with a standard deviation of 0.97, while the image analysis software measured an average of 

32.52 HV with a standard deviation of 2.01. The higher reading from the image analysis is 

consistent with the known error in the image analysis tool. The smaller deviation in the manually 
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obtained measurement could also be a bias introduced during the process. The image analysis 

method was selected because it can be used to measure relative changes across the samples 

without introducing bias and can process samples more quickly.  

3.6 Nanoindentation 

A Hysitron nanoindenter was used to perform more precise indents to obtain a better 

resolution of the hardness profile within the wire. The interior of the nanoindenter is shown in 

Figure 20. The indenter, transducer, stage, sample mount, and microscope are pictured. 

 

Figure 20- Inside of nanoindenter with sample. 

Once the sample is placed within the tester, a sample region can be created and the location for 

each indent set. Unlike the microhardness tester, which was operated manually, the nanoindenter 

is fully automated. A loading profile must be selected for the specified indent location. There are 

single and multiple loading profiles. The single loading profile can have a dynamic or constant 

load (such as the trapezoid profile pictured below). Figure 21 illustrates a trapezoidal loading 

profile. 
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Figure 21- Quasi Static Trapezoid [57]. Reproduced without permission. 

The peak load can be set in mN. Hold time and ramp time were set in seconds to create the 

loading profile. An application within the software tool to run the nanoindenter from Hysitron 

allowed for the creation of custom loading profiles, including multiple loading. The multiple 

unloading profile allows for the collection of multiple data points at a single indent, Figure 22. It 

also collects data at multiple loading forces. The multiple unloading profile was the preferred 

method because it could collect data more quickly [57]. 

 

Figure 22- Partial Unloading profile [57]. Reproduced without permission. 
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Before use, the multiple unloading method was tested by comparing the hardness 

measured at 3500 mN to 10000 mN loading force with 500 mN intervals from single unloading 

tests. A multiple unloading test was performed using 3500 mN to 10000 mN loading force with 

500 mN intervals. The multiple unloading testing is different because at each indent the entire 

range of loading force was tested instead of a single indent being needed for each loading force. 

The hardness was compared between the two tests and the minimum loading force for consistent 

hardness results was found and shown in Figure 23. 

 

Figure 23- Load force vs hardness for single and multiple unloading testing. 

Indents were performed in the substrate, Figure 23, using the single and multiple unloading 

technique described above. The data shows strong agreement between single and multiple 

unloading tests. This justifies the use of the multiple unloading method for data collection. There 
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is a dependence between the loading force and hardness. The data is consistent at loading forces 

above 4.5 mN. As a result, 4.5 mN was used as the minimum loading force.  
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4 Results and Discussion 

4.1 Microindentation 

Before collecting data on the effect of ultrasonic power on mechanical properties, two 

samples were tested with different cross-section orientations. The results are reported in Table 4. 

There are two directions the wire could be sectioned, longitudinal and transverse, as shown in 

Figure 24. The values from the transverse and longitudinal data were subtracted from each other 

to calculate the variation between the two cutting directions. This initial test was run to find the 

optimal method to orient the wire for sample preparations, as well as eliminate any sources of 

errors introduced by the orientation of the wire. 

 

 

 

 

 

 

Figure 24- Orientation of Wire Cross Section. 
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Table 4-Hardness orientation data

Distance From 

Interface (μm) 440 mA 880 mA 1330 mA 1500 mA 440 mA 880 mA 1330 mA 1500 mA 440 mA 880 mA 1330 mA 1500 mA

375 31.12 35.56 37.70 34.37 35.98 35.35 36.27 41.56 -4.85 0.21 1.43 -7.19

300 37.26 37.70 35.56 33.98 36.82 38.37 38.32 34.58 0.43 -0.67 -2.76 -0.60

225 33.98 36.40 35.56 34.76 34.76 36.49 38.31 36.12 -0.78 -0.10 -2.75 -1.36

150 35.56 33.61 33.23 31.46 31.81 37.58 37.49 37.67 3.76 -3.98 -4.26 -6.20

75 34.76 32.87 32.15 36.82 32.87 32.07 34.05 33.16 1.89 0.80 -1.90 3.66

Longitudinal Hardness (HV) Transverse Hardness (HV) Longitudinal-Transverse (HV)
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It was determined from the data in Table 4 that there was not a significant difference 

between the transverse and longitudinal cut samples. Indents on the longitudinal cut sample had 

a higher hardness, but within the expected error of the measurement. While it was determined to 

not be a significantly impactful variable, for consistency, all the data collected and presented in 

this report was done with transverse cut samples. This was selected because the transverse 

orientation provided a larger window to cut samples.  

4.2 Wire Deformation 

During the bonding process, the wire undergoes plastic deformation, as schematically 

shown in Figure 25.  

 

 

 

Figure 25- Schematic of bond tool and deformed wire [57]. Reproduced without permission. 

The deformation is a result of the normal force being applied, shown in Figure 25, and the 

softening from the applied ultrasonic vibration. The normal force was held constant during this 

testing. It is expected that higher ultrasonic power (which is controlled through the ultrasonic 

current applied to ultrasonic transducer in the bonder) would result in more deformation. The 

higher bond currents did in fact lead to higher amounts of plastic deformation. Figure 26 shows 

the increase in wire deformation as the ultrasonic power is increased, while holding the normal 

force constant. 
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Figure 26- Cross-section of bonded wired at varied ultrasonic currents, (a) unbonded, (b) 440 mA, (c) 880mA, (d) 1330 mA, and 

1500 mA. 

The unbonded wire was round, but the wire progressively takes the shape of the bonding 

tool as the ultrasonic current is increased. The height of the wire is decreased until it completely 

takes the shape of the bond tool and no more deformation is possible. The wire deformation was 

measured in two different ways, height, and change in cross sectional area, shown in Figure 27. 

(a) unbonded (c) 880 mA (b) 440 mA 

(d)1330 mA (e) 1500 mA 
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   (a)        (b) 

Figure 27- (a)Wire height vs bonding current and (b) deformed cross-sectional area vs bonding current. 

The change in cross-sectional area was linear with bonding current, Figure 27(b), but the 

irregular shape, Figure 26, of the deformed wire makes it inconclusive. The height data, Figure 

27(a), was considered more reliable since it is used by the wire bonder to control the bonding 

process. However, no statistical analysis was done on the wire height or deformed area data since 

only one set of data was collected. 

 The deformed height was used to calculate an expected hardness of the wire from strain 

hardening only. The theoretical hardness calculated is listed in Table 5 along with some of the 

intermediate values used to calculate the final theoretical hardness. 
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Table 5- Bond area and calculated hardness. 

Bond 

Power (mA) 

Bond 

Area (pixels2) 

Bond 

Area (μm2) 

Hardness 

(HV) 

0 2912609 194544 33.67 

440 2600000 174000 42.02 

880 2220000 149000 44.06 

1330 1960000 131000 44.46 

1500 1830000 122000 44.5 

  

The image analysis software was used to calculate the area of the bonded wire in terms of 

pixels, Table 5. The scale bar in the image was measured and used to convert the area in terms of 

pixels2 into area (μm2). The area was normalized and used in Equation 1.3 to calculate the 

hardness.  

  𝜎 = 𝐾𝜖𝑛                                                                  (1.3)   

A strain hardening exponent, n, of 0.25 was used and a K of 2.9 was used to determine the 

theoretical hardness. The theoretical hardness calculated in Table 5 was compared to 

experimental data in Figure 28. The actual hardness was taken at 150 μm from the interface, 

Figure 29. The expected hardness was higher than the measured hardness. This implies there is a 

combination and interplay between strain hardening and ultrasonic softening. 
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Figure 28- Comparison of actual and theoretical hardness. 

A baseline was established by mounting unbonded wires and following the process in 

Section 2 to measure the hardness using Vickers microhardness testing. The unbonded wire was 

found to have a hardness of 31.1 HV and is included in the microhardness data as a reference. It 

is the hardness of the wire before it has been ultrasonically bonded to the substrate. The location 

of peak hardness was found to be at 150 μm from the interface, Figure 29.  It is the value at 150 

μm from the interface that was reported in Figure 28. A higher hardness in the middle of the wire 

was unexpected. It was anticipated that the ends of the wire (which see the highest amount of 

deformation) would have the highest hardness. However, the spacing of indents for 

microindentation was placed away from the initial strain hardened region.  
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4.2.1 Power Dependence 

As mentioned above, the wire deformation variation was because of the ultrasonic current 

applied. There was also a resulting hardness profile in the wire, the hardness varied with distance 

from the interface. The hardness profile in the wire was also dependent on the ultrasonic current 

applied. Samples were prepared using the values in Table 2 while varying ultrasonic current. 

Their hardness was measured and reported in Table 6. 

Table 6- Hardness in HV measured at different locations in wire and at varied bond currents. 

 
                             Bond Current 

Distance from 

Interface (μm) 
440mA 880mA 1330mA 1500mA 

375 35.98 37.7 37.97 37.26 

300 36.82 39.55 39.79 34.58 

225 34.76 38.61 38.4 36.12 

150 31.81 36.4 41.03 37.67 

75 32.87 35.16 35.77 33.16 

 

The image analysis software was used to collect the data. A sample at each bond current 

was prepared and analyzed following the procedure in Section 3.2. The hardness was measured 

at 75 μm spacing from the wire substrate interface. This created a linear profile of the hardness 

with respect to distance from the interface for different ultrasonic currents. The bond current of 

440 mA was selected because it was the lowest setting that would achieve bonding of the wire to 

the substrate. 1500 mA was the highest setting for the machine. 880mA was the optimized value 

provided by Kulich and Soffa for the specific wire bonder, substrate material, and wire material. 

The data in Table 6, the hardness at different distances from the interface for wires bonded at 
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varying ultrasonic currents, is depicted in Figure 29. A more detailed figure with error bars is 

located in Appendix A, Figure A-1. 

 

Figure 29- Hardness profiles in bonded wires with different ultrasonic current. 

The hardness profiles increase with higher ultrasonic currents until 1500 mA. From 1330 

mA to 1500 mA the profiles have an inflection point and the hardness profile decreases. The 

hardness at 375 μm from the interface is consistent for all bonding currents. The hardness 

profiles are a result of the interplay between strain hardening and ultrasonic softening. There is a 

region of high hardness from the plastic deformation at the interfaces, which is adjacent to a 

region of lower hardness. The area of lower hardness occurs up to 100 μm from the interface. 

The region of low hardness appears next to the wire-substrate and wire-bond-tool interfaces.  

Figure 30 illustrates the schematic of the hardness profile in the wire. 
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Figure 30- Schematic of Hardness profile. 

The reason the softened region appears after the highly deformed interface could be its 

proximity to the ultrasonic vibration at the interfaces. The vibration would be mostly experienced 

at these sites. The ultrasonic softening is most extreme at the interfaces, but also results in the 

largest wire deformation. The dip in hardness, such as in Figure 6, was corroborated by the 

microhardness data collected in this work [27]. As a result, the plastic deformation is dominant at 

the interface and becomes less impactful further from the interface. The center of the wire does 

not see as much of the ultrasonic softening, but it is affected by the global deformation resulting 

in strain hardening in the wire. 

4.2.2 Time Dependence 

Table 2 outlined the key bonding parameters. After the effect of bond power was studied, 

the effect of hold time at specific ultrasonic currents was analyzed. This allowed for more 
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investigation into the effect of ultrasonic current on the hardness. Changing the duration of time 

held at a specific ultrasonic current can be used to determine if the effects of ultrasonic vibrations 

is time dependent. Holding the ultrasonic current constant, the effect of hold time was studied, as 

shown in Figure 31. The sample was prepared at 880 mA. Appendix B Figure B-1 has error bars 

added to Figure 31 to show the deviation of the data. 

 

Figure 31- 880mA Ultrasonic Current with different hold times. 

The hold time is the amount of time the bonder holds at the steady-state ultrasonic vibration 

conditions, Figure 14 and Table 2. The hold times studied were 75 μsec, 150 μsec and 255 μsec. 

A hold time of 150 μsec was standard in this work unless otherwise specified. Reducing the hold 

time did not alter the resulting hardness profile. This is most likely because the sample was 

prepared at 880 mA and at this low bond current and lower hold time the transient start power 

setting was dominate in determining the deformation, Figure 14 and Table 2. The start power 
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was equivalent to 1000 mA, which is higher than the steady state current. As a result, 

deformation is mostly a result of the initial 1000 mA starting current instead of a result of 

holding at the lower steady state bond current. More deformation and a higher hardness profile 

was achieved by bonding the wire for a longer time. The effect of the larger starting ultrasonic 

current becomes less as the hold time is increased and the bond spends a longer time under lower 

steady state bonding current. 

The same study of hold time was done at the highest bond current to avoid the starting 

power effects. Instead of looking at the hardness directly, the deformation was analyzed instead, 

Figure 32. Only one set of data was collected as a result no statistical analysis was done on the 

data in Figure 32.  

 

Figure 32- Time dependent deformation. 
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The highest bond current was selected, 1500 mA, to achieve the highest amount of 

deformation, and compared to the sample from Figure 31, bonded at 880 mA. At the same 

bonding time, more deformation is achieved with a higher ultrasonic current. However, when 

one compares the samples bonded with different conditions but result in the same deformation, 

the sample with a higher ultrasonic current has a lower hardness. This can be attributed to more 

ultrasonic vibration reducing the effect of strain hardening. For example, at 75 μsec with 1500 

mA bond current results in a hardness of 33.9 HV; when this result was compared to the 

hardness at 150 μsec with 880 mA bond current the hardness was 38.2 HV. Their deformed areas 

are very similar, but the sample with the higher ultrasonic current has a lower hardness. This 

result suggests that samples with the same amount of deformation, and thus same amount of 

strain hardening but higher ultrasonic current, result in a lower hardness. 

4.3 Nano-indentation 

Microindentation is limited in the resolution of the hardness profile that it can measure. In 

this study, the spacing was limited to 75 μm. Using nanoindentation, the spacing was reduced to 

15 μm. In addition, the smaller indents and the automated testing allowed for more data points to 

be collected from a single sample. Since the multiple unloading technique was proven to be 

effective and accurate in Section 3.6, this allowed for multiple data points to be collected at each 

position. Since more data points were collected, the entire bond was not tested due to time 

limitations. The testing was focused near the substrate wire interface. 

The 3D plots in Figure 33 show the hardness in pascals with varying bond currents. Instead 

of a linear profile in Figure 29, Figure 33 can show any variation across the wire. 
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Figure 33- Hardness profiles from nanoindentation (a) 440 mA (b) 880 mA (c) 1330 mA (d) 1500 mA. 

The samples tested were the same samples used in the microindentation testing, but a 

different bond analyzed. Each sample was prepared with multiple bonds for testing. This limited 

the variability from substrate and wire differences.  

The nanoindentation data in Figure 34 confirmed the results from microindentation tests, 

Figure 29. Appendix C, Figure C-1, contains Figure 34 with the addition of error bars to show 

the deviation of the data collected. The data used to generate the 3D plots was averaged at each 

distance from the interface. This generated a linear plot created from the microhardness data 

(Figure 29). 

(a) (b) 

(c) (d) 
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Figure 34- Nanoindentation hardness profile. 

The hardness had the same profile as depicted in Figure 29. The hardness profile was 

maximal at 1330 mA and this result held true for nanoindentation. The 1500 mA had a lower 

hardness profile than the 1330 mA sample. The data shows consistent results from both the 

microindentation, as well as, the nanoindentation test method. There was not a measurable 

increase in the hardness for the 440 mA samples to the 1330 mA samples as in the 

microindentation data, despite this inconsistency the hardness profile depicted in Figure 30 was 

validated.  
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5 Conclusion 

5.1 Summary and Conclusions 

The effect of ultrasonic wire bonding on mechanical properties was studied by performing 

microhardness and nanoindentation tests. A program was created that processed microscope 

pictures of Vickers hardness measurements and calculated the microhardness. It was determined 

that applying ultrasonic vibration reduces the strain hardening caused by the plastic deformation 

induced during the bonding process. A profile was measured within the bonds as a function of 

distance from the substrate interface. An area of low hardness was measured 50-75 μm from the 

substrate and bold tool interfaces. The effect of increased bond power was determined to have an 

increased hardness up to 1330 mA bond current. Currents higher than 1330 mA resulted in lower 

hardness. Bonding hold time was also investigated and found to increase the amount of 

deformation as well as result in a higher hardness. Nanoindentation corroborated the 

microhardness tests and proved to be a viable test method.  

5.2 Future Work 

 Future studies would focus on understanding the effect of other bonding parameters on 

mechanical proprieties. This research created and analyzed tools that could be used for future 

studies. Future studies could examine the effect of hold time or normal force as well as 

investigate the change in mechanical properties to the substrate. The research presented was 

limited to investigating the properties in the wire. In addition, wires with the same amount of 

plastic deformation could be made with different ultrasonic powers by varying hold time, normal 

force, or other bonding parameters to study the interplay of ultrasonic softening and strain 

hardening.  
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Appendix A 

 

Figure A- 1-Hardness profiles in bonded wires with different ultrasonic current with error bars. 
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Appendix B 

 

 

Figure B- 1-880mA Ultrasonic Current with different hold times with error bars. 
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Appendix C 

 

Figure C- 1- Nanoindentation hardness profile with error bars.  
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Appendix D 
 

Image Analysis MATlab script described in Section 3.5. 

 

%Matt McKay 

%5/21/2017 

%Program to measure vickers hardness from an image 

  

  

%set variables 

scalebarleng=.1;  %mm 

load=  .010;   %kgf 

k=0;    %initialize var 

f=1; 

w=1; 

%end set varsi 

  

%read in image/convert to binary 

I1=imread('255time\75_255_3_2_25.tif');           %reads in image 

I=rgb2gray(I1);                     %creates grayscale image 

grey=graythresh(I);                 %calculates threshold for use in next line 

BW=im2bw(I,grey);                   %creates bw picture 

  

%end image read in/preprocessing 

  

%calculate length of scale bar 

A=edge(I,'canny',grey-0.1);            %finds all the boundaries between black and white bodies 

cc = bwconncomp(A);                     %finds connected bodies 

measurements = regionprops(A);          %find properties of connected bodies, ie area etc. 

  

  

for k = 1 : length(measurements)        %loops through bodies seraching for long thin feature which is 

defining characteristic of scale bar 

  thisBB = measurements(k).BoundingBox; 

  if thisBB(3) >= 200 && thisBB(4)>=3 &&thisBB(4)<=6    %scale bar criteria 

   scalebarindex=k;             %saves index of what body was the scale bar 

   scalebarpixels=thisBB(3);    %saves length of scale bar in pixels 

  end 

end 

%end scalebarlegnth calc 

;scalebarpixels=381; 

%filter picture 

  

BW1=bwareaopen(not(BW),600,8);      %removes small black bodies 

BW1=bwareaopen(BW1,1000,4);          %removes small white bodies 

  

%end filtering 

  

%Calculate hardness 

stats=regionprops(BW1);         % get properties of BW bodies 
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arindex=zeros( length(stats),1); %intialize var 

indentar=zeros(length(stats),1);  %intialize var 

  

%for loop that checks to see if body is an indent based on "squareness" and 

%size 

for h = 1 : length(stats) 

  thisBw = stats(h).BoundingBox; 

  q=thisBw(3)/thisBw(4); 

  if (thisBw(3)/thisBw(4))>=.875 && (thisBw(3)/thisBw(4))<=1.125 

&&stats(h).BoundingBox(3)*stats(h).BoundingBox(4)>400 

   arindex(f,1)=h; 

   indentar(f,1)=stats(h).BoundingBox(3)*stats(h).BoundingBox(4); 

   f=f+1; 

  end 

  

end 

hardness=zeros(f-1,3);  %intialize var 

conver=scalebarleng/scalebarpixels; %conversion ration from pixels to mm 

  

%hardness(1,1)=0;    %sets top left indent at (0,0) fot plot 

%hardness(1,2)=0; 

  

%calculates hardness for each indent and sets location for plot 

for w=1 : f-1 

    davg=((stats(arindex(w)).BoundingBox(3))*conver+(stats(arindex(w)).BoundingBox(4))*conver)/2;   

%average diagonals from bounding box sides, converted from pixel to mm 

    hardness(w,3)=(1.8544*load)/davg^2;         %compute vickers hardness 

    hardness(w,1)= conver*stats(arindex(w)).Centroid(1);  %set x pos 

    hardness(w,2)= conver*stats(arindex(w)).Centroid(2) ; %set y pos 

end 

%hardness(1,1)=0; 

%hardness(1,2)=0; 

% end calculate harndess 

  

%outputs 

  

%display indents  

imshow(BW1); 

for y=1: f-1 

     

rectangle('Position', stats(arindex(y)).BoundingBox, 'EdgeColor', 'red', 'LineWidth',2.5); 

hold 

end 

%end diplay 

  

% graph hardness results  

xlin = linspace(min(hardness(:,1)),max(hardness(:,1)),h); %creates uniform lin in x 

ylin = linspace(min(hardness(:,2)),max(hardness(:,2)),h); %creates uniform line in y 

[X,Y] = meshgrid(xlin,ylin);    %creats uniform grid from not uniform data 

f = scatteredInterpolant(hardness(:,1),hardness(:,2),hardness(:,3));    %interpolate non unitorm data to 

uniform grida 
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Z = f(X,Y);  

figure(); %new figure 

contourf(X,Y,Z, 0:2:50);    %plot hardness results 

caxis([0, 50]) 

colorbar  %creates uniform color bar for all graphs so a comparison can be made 

% end graphing 

  

  

%end outputs 
  
  
 

  



63 

 

Appendix E 
 

The code below was used to process the process the nanoindentation data. The code is written in Python 

and was run using Python 3.6. 

# -*- coding: utf-8 -*- 

""" 

Created on Tue Jul 18 17:50:43 2017 

@author: Jamie 

""" 

 

#import math as math 

#import plotly as pl 

import numpy as np                            #Imports the necessary libraries 

np.set_printoptions(threshold=np.nan) 

import matplotlib.pyplot as plt 

import sympy as sp 

import sys 

from astropy.table import Table, Column 

#import pandas as pd 

import xlsxwriter 

import peakutils 

 

fileDirectory = r"C:\Users\mattm\Downloads\S055_1 Wire1-20180308T212031Z-001\S055_1 Wire1"                                        

#Asks for input of the base file directory where the indentation data is located (ex. E:\Lab\S023_8 Closer 

MultiUnloading\) 

txtfile = "\\S055_Wire1_Analysis.txt"              #Asks for input of the indentation summary data file (ex. 

S023_CloserMultiUnloading_Analysis.txt) 

multiloadtxtfile = "\S055_Wire1_"  #Asks for input of the base for the summary data for each indentation 

(ex. S023_CloserMultiUnloading_). Will add correct number endings. 

PHDataFile = "\S055_Wire1_"                          #Asks for input of the base for the indentation P-H data 

file (ex. S023_CloserMultiUnloading_). Will add correct number endings. 

skipNumber = 0 

skipRows = np.zeros((1,int(skipNumber)))                                                      #Asks for the indent numbers 

that could not be processed correctly and must be skipped/accounted for 
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for v in range(0,int(skipNumber)): 

    x = 0 

    skipRows[0,v] = int(x) 

filebase = "results"                            #Asks for input of the base filename to save results to (ex. 

S023_CloserMultiUnloading_Python). Will add _Results, _nPlot, etc. and save 

numPeaks = 14                                         #Asks for the number of peaks (unloading intervals) in order to 

correctly identify them 

 

overviewFile= np.loadtxt(fileDirectory+txtfile, skiprows=1+2, usecols=range(1,15), delimiter="\t")   

#loads the indentation summary data 

rows = overviewFile.shape[0] + int(skipNumber)                      #Finds the number of indentations by 

taking the number of rows in the summary data 

xCoord = overviewFile[:,11]-overviewFile[0,11]     #Finds the x and y coordinates of each indentation 

relative to the first indentation 

yCoord = overviewFile[:,12]-overviewFile[0,12] 

 

s = np.zeros((numPeaks,1))         #Creates the proper size matrices to store properties in later + other basic 

setup 

n = np.zeros((rows,numPeaks)) 

E = np.zeros((rows,numPeaks)) 

YS = np.zeros((rows,numPeaks)) 

work = np.zeros((rows,numPeaks)) 

numZero = '0' 

ending = '.txt' 

Htotal = []; 

 

v = 0.07                                  #Poisson's ratio for the indenter tip 

Ei = 1140*10**9                           #Modulus of Elasticity of the indenter tip 

vx = .33                                  #Poisson's ratio for 5052-O Aluminum 

sys.setrecursionlimit(500)                #Sets the recursion limit for the np.nsolve numerical solving function 

np.set_printoptions(threshold=np.nan)     #Disables summary printing 

 

z = sp.Symbol('z')          #Sets symbols for use in numerically solving Ogasawara's eqns 

y = sp.Symbol('y') 



65 

 

w = sp.Symbol('w') 

q = sp.Symbol('q') 

 

for v in range(0,int(skipNumber)):          #Fills in missing coordinates for skipped rows 

    xCoord = np.insert(xCoord,int(skipRows[0,v]),np.array((2*xCoord[int(skipRows[0,v])-1]-

xCoord[int(skipRows[0,v])-1])),0) 

    yCoord = np.insert(yCoord,int(skipRows[0,v]),np.array((yCoord[int(skipRows[0,v])-1])),0) 

 

for num in range(0,rows):       #Repeats for every indentation 

    if num in skipRows:         #Adds in zeros if it's a skipped indentation 

        work[num] = 0 

         

        zeroMatrix = np.zeros((1,int(numPeaks)))        #Defined a zero matrix to sub in for skipped rows 

        if num==0:                                      #Adds H to Htotal for future use 

            Htotal = zeroMatrix 

        else: 

            Htotal = np.vstack((Htotal,zeroMatrix)) 

             

    else:                       #If it's not a skipped indentation 

        number = str(num) 

         

        if num<10:                 #Sets 5 digit number for the ending of the indentation (00000, 00001, etc) 

            number = numZero + numZero + numZero + numZero + number 

        elif num<100: 

            number = numZero + numZero + numZero + number 

        elif num<1000: 

            number = numZero + numZero + number 

        elif num<10000: 

            number = numZero + number 

        else: 

            number = number 
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        multiloadData = np.loadtxt(fileDirectory+multiloadtxtfile+number+' LC.txt', skiprows=1+2, 

usecols=range(1,15), delimiter="\t")       #Loads the summary data for that indent 

         

        Er = multiloadData[:,6]*10**9           #Pulls data from the summary data and converts to base SI 

units 

        hc = multiloadData[:,0]*10**-9          #Er is the reduced modulus, hc is the max contact depth, C is 

the power fit coefficient, 

        C = multiloadData[:,8]                  #S is the stiffness, m is the power fit exponenet, hf is the power fit 

offset, heffis the max depth (not 

        S = multiloadData[:,2]*10**3            #accounting for pitting), and H is the hardness 

        m = multiloadData[:,10] 

        hf = multiloadData[:,9]*10**-9 

        heff = multiloadData[:,5]*10**-9 

        H = multiloadData[:,7]*10**9 

         

        if num==0:                             #Adds H to Htotal for future use 

            Htotal = H 

        else: 

            Htotal = np.vstack((Htotal,H)) 

         

        depth = np.loadtxt(fileDirectory+PHDataFile+number+ending, skiprows=0+1+2+3, usecols=[0], 

delimiter="\t")*10**-9      #Loads depth and load data from the P-H data for that indent 

        load = np.loadtxt(fileDirectory+PHDataFile+number+ending, skiprows=0+1+2+3, usecols=[1], 

delimiter="\t")*10**-6 

         

        distanceApart = 200                                                                 #Sets starting distance between local 

maxima (to be used in isolating each unloading cycle) 

        locs = peakutils.peak.indexes(load, thres = .1, min_dist = distanceApart)           #Finds local maximas 

at least 200 apart 

        while locs.shape[0] != numPeaks:                                                    #Checks whether that yielded the 

right number of peaks and if not adjusts the distance apart until the correct number are found 

            if locs.shape[0] > numPeaks: 

                distanceApart = distanceApart + 1 

            elif locs.shape[0] < numPeaks: 

                distanceApart = distanceApart - 1 
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            locs = peakutils.peak.indexes(load, thres = .1, min_dist = distanceApart) 

     

        for i in range(0,numPeaks):                                 #For each peak, calculates the work done during 

loading by taking the area under the P-H curve up to that peak 

            shortenedDepth = depth[1:locs[i]] 

            shortenedLoad = load[1:locs[i]] 

            work[num, i] = np.trapz(shortenedLoad,shortenedDepth) 

             

        for x in range(0,numPeaks):                                 #For each peak, calculates properties 

            hcx = hc[x]                                             #Assigns variables for easy use 

            Erx = Er[x] 

            Cx = C[x] 

            mx = m[x] 

            Sx = S[x] 

            hfx = hf[x] 

            heffx = heff[x] 

             

            try:    #Calculates s (try, except makes it so that if s cannot be calculates, a 0 is substituted istead 

of an error being thrown). Saves to temp 1D array 

                s[x] = sp.nsolve((-.20821*(sp.log(Erx/z))**3.0 + 2.6502*(sp.log(Erx/z))**2.0 - 

3.7040*(sp.log(Erx/z)) + 2.7725) - (work[num,x]/(hcx**3.0*z)), z, 10**8) 

            except: 

                s[x] = 0#float('NaN') 

                 

            try:    #Calculates n and saves it to a matrix where each row is an indent and each column is a 

partial unloading 

                n[num,x] = np.array(sp.nsolve(((-.04783*y**2+.04667*y-

.01906)*(sp.log(Erx/float(s[x])))**3.0 + (.6455*y**2-.6325*y+.2239)*(sp.log(Erx/float(s[x])))**2.0 + (-

2.298*y**2+2.025*y-.4512)*(sp.log(Erx/float(s[x]))) + (2.050*y**2-1.502*y+2.109)) - 

Sx/(2.0*hcx*Erx), y, .2), dtype = float) 

            except: 

                n[num,x] = 0#float('NaN') 

                 

            try:    #Same for E 
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                E[num,x] = sp.nsolve((((1-v**2)/Ei + (1-vx**2)/w)**-1) - Er[x], w, 10**11) 

            except: 

                E[num,x] = 0#float('NaN') 

                 

            try:    #Same for YS 

                YS[num,x] = sp.nsolve(q*(1+float(E[num,x])*0.0115/q)**float(n[num,x]) - float(s[x]), q, 

10**6) 

            except: 

                YS[num,x] = 0#float('NaN') 

 

nNoSkipRows = n              #Removes the skipped row data from each matrix (used in taking averages, 

etc) 

ENoSkipRows = E 

YSNoSkipRows = YS 

if skipNumber != 0: 

    print('nonzero') 

    for num in range(0,int(skipNumber)): 

        print(num) 

        nNoSkipRows = np.delete(nNoSkipRows, skipRows[0,num], axis = 0) 

        ENoSkipRows = np.delete(ENoSkipRows, skipRows[0,num], axis = 0) 

        YSNoSkipRows = np.delete(YSNoSkipRows, skipRows[0,num], axis = 0) 

     

ave_n = np.mean(nNoSkipRows, axis=0)                                                        #Takes average n at each 

partial unloading (not including the skipped rows) 

ave_E = np.mean(ENoSkipRows, axis=0)                                                        #Same for E and YS 

ave_YS = np.mean(YSNoSkipRows, axis=0) 

Load = np.array(range(numPeaks))+1                                                          #Creates an array of numbers 1, 

2, ... , number of partial unloadings 

results = Table([Load, ave_E, ave_n, ave_YS], names=('Load', 'ave_E', 'ave_n', 'ave_YS'))   #Makes a 

table of the average data  

results.add_row((999, np.mean(E), np.mean(n), np.mean(YS)))                                 #Adds a row to 

absolute averages over all indentations and all partial unloads 

 

name = fileDirectory + filebase + '_Results.xlsx'           #Creates the excel file name  
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workbook = xlsxwriter.Workbook(name)                        #Makes the excel file 

worksheet1 = workbook.add_worksheet('Sheet1')               #Adds the first excel sheet 

worksheet1.write(0, 0, 'Load')                              #Labels the columns 

worksheet1.write(0, 1, 'ave_E') 

worksheet1.write(0, 2, 'ave_n') 

worksheet1.write(0, 3, 'ave_YS') 

 

row = 1                                         #Sets data start point (0,1) 

col = 0 

nSave = n                                       #Saves copies of each property matrix b/c writing to excel tends to 

overwrite them with a single value 

ESave = E 

YSSave = YS 

LoadSave = Load 

for Load, ave_E, ave_n, ave_YS in results:      #Writes each piece of data 

    worksheet1.write(row, col,     Load) 

    worksheet1.write(row, col + 1, ave_E) 

    worksheet1.write(row, col + 2, ave_n) 

    worksheet1.write(row, col + 3, ave_YS) 

    row += 1 

worksheet1.write((row-1), 0, 'AVG')             #Changes the label for the averages to avg instead of 999 

 

E = ESave                                       #Reset properties 

Load = LoadSave 

 

worksheet2 = workbook.add_worksheet('Sheet2')   #Adds the second excel sheet 

for row, data in enumerate(Load):               #Writes the load numbers as the column headings 

    worksheet2.write_row(0, 0, Load) 

for t in range(0,E.shape[0]): 

    for row, data in enumerate(E[t,:]):         #Writes the E data 

        worksheet2.write_row(t+1, 0, E[t]) 
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worksheet2 = workbook.add_worksheet('Sheet3')   #Same process for n in sheet 3 

for row, data in enumerate(Load): 

    worksheet2.write_row(0, 0, Load) 

for t in range(0,n.shape[0]): 

    for row, data in enumerate(n[t,:]): 

        worksheet2.write_row(t+1, 0, n[t]) 

         

worksheet2 = workbook.add_worksheet('Sheet4')   #Same process again for yield strength in sheet 4 

for row, data in enumerate(Load): 

    worksheet2.write_row(0, 0, Load) 

for t in range(0,YS.shape[0]): 

    for row, data in enumerate(YS[t,:]): 

        worksheet2.write_row(t+1, 0, YS[t]) 

 

workbook.close()                              #Closes and saves the excel sheet 

 

xCoordList = list(xCoord)                           #Makes the coordinate data into lists and then counts the 

dimensions and reshapes the x and y data to get an (x,y) grid 

yCoordList = list(yCoord) 

xDim = xCoordList.count(xCoord[1]) 

yDim = yCoordList.count(yCoord[1]) 

xCoord2D = xCoord.reshape((xDim, yDim)) 

xCoord2D = np.append(xCoord2D, np.full((xDim,1),(xCoord[yDim-1]+xCoord[1])), 1)         #Adds 

buffer rows onto the coordinate matrices so all the data shows on the plot 

xCoord2D = np.append(xCoord2D, np.reshape(xCoord2D[(xDim-1),:], (1,(yDim+1))), 0) 

yCoord2D = yCoord.reshape((xDim, yDim)) 

yCoord2D = np.append(yCoord2D, np.full((xDim,1),yCoord[yDim-1]), 1) 

if xDim > 1: 

    yCoord2D = np.append(yCoord2D, np.full((1,(yDim+1)),(yCoord.max()+yCoord2D[1,0])), 0) 

else: 

    yCoord2D = np.append(yCoord2D, np.full((1,(yDim+1)),1), 0)     
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plt.clf()                                       #Clears the plot 

HIndentAverage = np.mean(Htotal, axis=1)        #Takes the average H at each indent cite 

H2D = HIndentAverage.reshape(( xDim, yDim))     #Reshapes the H data to fit the (x,y) grid 

for num1 in range(H2D.shape[0]):                #Sets any 'outlying' data points to the mean. This makes the 

remaining data easier to look at because more color variation shows 

    for num2 in range(H2D.shape[1]): 

        if H2D[num1,num2] < np.mean(H2D)/1.5 or H2D[num1,num2] > np.mean(H2D)*1.5: 

            H2D[num1,num2] = np.mean(H2D) 

 

 

plt.pcolor(H2D, cmap = 'inferno')               #Creates a color plot of the H data 

plt.title(filebase + ' Hardness Plot')          #Adds a title and axes 

plt.xlabel('X Location (mm)') 

plt.ylabel('Y Location (mm)') 

my_xticks = []                                  #Sets the x axes to mark every 20 mm in the x and every 5 mm in the 

y 

for num in range(0,H2D.shape[1]): 

    if num in [0,20,40,60,80,100]: 

        my_xticks = np.append(my_xticks,round(float(num*(xCoord.max()-

xCoord.min())/H2D.shape[1]),2)) 

    else: 

        my_xticks = np.append(my_xticks,'') 

plt.xticks(range(0, H2D.shape[1]), my_xticks) 

my_yticks = [] 

for num in range(0,H2D.shape[0]): 

    if num in [0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100]: 

        my_yticks = np.append(my_yticks,round(float(num*(yCoord.max()-

yCoord.min())/H2D.shape[0]),2)) 

    else: 

        my_yticks = np.append(my_yticks,'') 

plt.yticks(range(0, H2D.shape[0]), my_yticks) 

 

plt.colorbar()                                                      #Adds the colorbar for reference 
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plt.clim(0, 1200000000) 

plt.savefig(fileDirectory + filebase + '_HPlot2.jpg')                #Saves the plot 

 

plt.clf()                                       #Does the same thing for n, then YS, then H 

nIndentAverage = np.mean(nSave, axis=1) 

n2D = nIndentAverage.reshape((xDim, yDim)) 

for num1 in range(n2D.shape[0]): 

    for num2 in range(n2D.shape[1]): 

        if n2D[num1,num2] < np.mean(n2D)/2 or n2D[num1,num2] > np.mean(n2D)*2: 

            n2D[num1,num2] = np.mean(n2D) 

plt.pcolor(n2D, cmap = 'inferno') 

plt.title(filebase + ' n Plot') 

for num in range(0,H2D.shape[1]): 

    if num in [0,20,40,60,80,100]: 

        my_xticks = np.append(my_xticks,round(float(num*(xCoord.max()-

xCoord.min())/H2D.shape[1]),2)) 

    else: 

        my_xticks = np.append(my_xticks,'') 

plt.xticks(range(0, H2D.shape[1]), my_xticks) 

my_yticks = [] 

for num in range(0,H2D.shape[0]): 

    if num in [0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100]: 

        my_yticks = np.append(my_yticks,round(float(num*(yCoord.max()-

yCoord.min())/H2D.shape[0]),2)) 

    else: 

        my_yticks = np.append(my_yticks,'') 

plt.yticks(range(0, H2D.shape[0]), my_yticks) 

plt.colorbar() 

plt.savefig(fileDirectory + filebase + '_nPlot.jpg') 

 

plt.clf() 

YSIndentAverage = np.mean(YSSave, axis=1) 



73 

 

YS2D = YSIndentAverage.reshape((xDim, yDim)) 

for num1 in range(YS2D.shape[0]): 

    for num2 in range(YS2D.shape[1]): 

        if YS2D[num1,num2] < np.mean(YS2D)/2 or YS2D[num1,num2] > np.mean(YS2D)*2: 

            YS2D[num1,num2] = np.mean(YS2D) 

plt.pcolor(YS2D, cmap = 'inferno') 

plt.title(filebase + ' YS Plot') 

for num in range(0,H2D.shape[1]): 

    if num in [0,20,40,60,80,100]: 

        my_xticks = np.append(my_xticks,round(float(num*(xCoord.max()-

xCoord.min())/H2D.shape[1]),2)) 

    else: 

        my_xticks = np.append(my_xticks,'') 

plt.xticks(range(0, H2D.shape[1]), my_xticks) 

my_yticks = [] 

for num in range(0,H2D.shape[0]): 

    if num in [0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100]: 

        my_yticks = np.append(my_yticks,round(float(num*(yCoord.max()-

yCoord.min())/H2D.shape[0]),2)) 

    else: 

        my_yticks = np.append(my_yticks,'') 

plt.yticks(range(0, H2D.shape[0]), my_yticks) 

plt.colorbar() 

plt.savefig(fileDirectory + filebase + '_YSPlot.jpg') 

 

plt.clf() 

EIndentAverage = np.mean(ESave, axis=1) 

E2D = EIndentAverage.reshape((xDim, yDim)) 

for num1 in range(E2D.shape[0]): 

    for num2 in range(E2D.shape[1]): 

        if E2D[num1,num2] < np.mean(E2D)/2 or E2D[num1,num2] > np.mean(E2D)*2: 

            E2D[num1,num2] = np.mean(E2D) 
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plt.pcolor(E2D, cmap = 'inferno') 

plt.title(filebase + ' E Plot') 

for num in range(0,H2D.shape[1]): 

    if num in [0,20,40,60,80,100]: 

        my_xticks = np.append(my_xticks,round(float(num*(xCoord.max()-

xCoord.min())/H2D.shape[1]),2)) 

    else: 

        my_xticks = np.append(my_xticks,'') 

plt.xticks(range(0, H2D.shape[1]), my_xticks) 

my_yticks = [] 

for num in range(0,H2D.shape[0]): 

    if num in [0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100]: 

        my_yticks = np.append(my_yticks,round(float(num*(yCoord.max()-

yCoord.min())/H2D.shape[0]),2)) 

    else: 

        my_yticks = np.append(my_yticks,'') 

plt.yticks(range(0, H2D.shape[0]), my_yticks) 

plt.colorbar() 

plt.savefig(fileDirectory + filebase + '_EPlot.jpg') 

 

 

#WORKING MAKING 3D PLOTS 

# 

# 

#from mpl_toolkits.mplot3d import Axes3D 

#import matplotlib.pyplot as plt 

#from matplotlib import cm 

#from matplotlib.ticker import LinearLocator, FormatStrFormatter 

#import numpy as np 

# 

# 

#fig = plt.figure() 
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#ax = fig.gca(projection='3d') 

# 

#plt.clf() 

#X = np.linspace(xCoord.min(),xCoord.max(),xCoord2D.shape[1]-1) 

#Y = np.linspace(yCoord.min(),yCoord.max(),yCoord2D.shape[0]-1) 

#X, Y = np.meshgrid(X, Y) 

#Z = H2D 

#surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,linewidth=0, antialiased=False) 

#fig.colorbar(surf, shrink=0.5, aspect=5) 

#plt.show() 
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