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ABSTRACT

As the global population increases, new ways of sustainable and efficient food
production need to be explored in order to meet the growing demand from society. In
this paper we explore the methods and functionality of an off-grid, semi-autonomous
aquaponics system. This system will serve as a proof of concept for a large scale
aquaponics system which can be modelled in other parts of the world where arable
land is scarce. It was found that though the initial startup costs are high, it will be able
to reduce the cost of food in the long run. The system implements a solar array and
battery system, lighting, temperature controls and a plumbing system.

Keywords: aquaponics, hydroponics, aquaculture, solar panels, off-grid, smart,
sustainable, lead-acid battery, pumps, LED, greenhouse, food production, LECA,
bluegill, tilapia, crawfish, shrimp
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1.0 Introduction
1.1 Problem Statement

As the world population continues to increase, people will need to find a way to
produce larger quantities of food in a sustainable fashion. Aquaponic systems show
potential in creating large quantities of food using relatively little space compared to
conventional agriculture. However aquaponics can be potentially labor intensive for the
internal environment of an aquaponics system needs to be carefully maintained. Our
solution is to design and build a smart and sustainable aquaponics system which will

be able to grow a substantial amount of food in a limited space.
1.2 Project Background

What is Aquaponics? Is always the first question that comes up when discussing this
project. In short, aquaponics is a combination aquaculture and hydroponics.
Aquaculture is essentially just fish farming, generally but not always referring to farming
in controlled environments, in contrast to farming in the ocean, or fishing wild fish.
That leaves the obvious What is Hydroponics? Hydroponics is farming without soil.
Instead the plants roots are grown in a nutrient rich solution providing all their water
and mineral needs. These plants can be grown in environments with either no
substrate, just growing out of the water pipe, or an inert substrate such as gravel.
Aquaponics combines these by taking the nutrient rich solution created by the fish and
using that to water the plants, which in turn filter the water so it can be returned to the
fish.
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Fig 1. The basic flow of an aquaponics system (What is Aquaponics)

The figure above gives a good description of the basic symbioses that an aquaponics
system creates. As you can see, the plants are fertilized by the waste of the fish,
reducing the need for external sources of fertilizer for the plants. The plants act as a
filter allowing the water to be recycled through the system back to the fish without
need of external filtration. Thus the only inputs for the system are reduced to water,
and food for the fish. This is a big savings when looking at aquaponics needs vs either
hydroponics or straight aquaculture, each of which require more inputs to keep the

food growing effectively.

What makes our aquaponics system Smart and Sustainable is the use of automation
and an off-grid power system added to a traditional aquaponics system. In most
aquaponics systems today, there is a lot of manual labor to keep the system running
properly. Pumps must be manually turned on and off, temperature control is generally
manual as well, and it requires a lot of human input to keep running. Our system
doesn’t require any human input other than to refill the consumables of the system, like
fish food, and harvesting the fish / vegetables when they are ready. The other big
innovation is to make this system suitable for more environments than just the
industrial world. We added and off-grid power system so that our aquaponics system

could be implemented in areas without reliable grid power, many of which to day need



more farming capability.
1.3 Motivation

When looking at where aquaponics can be most useful in helping solve current and
future issues surrounding food security, two areas become immediately obvious. The
first of these are places that do not have enough arable land for traditional farming to
keep up with a large or growing population. The second less obvious place is urban
centers where fresh produce is not available, aptly named “Food Deserts”. In both of
these areas the ability to have a continuous supply of fresh fish and vegetables without
the need for large land areas or good soil would be a huge boon to their overall food

security.
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Fig 2. Percentage of Arable land by country (Roke)

There are numerous countries with small amounts of land available for farming, and
many of these countries are projected to see large amounts of population growth in the
future. As you can see from the map above, many of these countries are less
developed so any system that is implemented to help alleviate food security issues
needs to be functional in an off-grid environment. We designed the system with this

constraint in mind because it allows our solution to be potentially more widely



deployed and could provide huge benefits for the areas. Aquaponics is a great solution
for these countries because it doesn’t require the use of any of that valuable farm land;
the system can be built in otherwise wasted land currently not used by anything,

effectively increasing the total available farm land for these countries.

In urban centers, the availability of fresh vegetables and fish can be very low. The FDA
defines a “Food Desert” as an area where more than 33% of the people are more than
1 mile from a grocery store, and do not own cars (USDA Defines Food Deserts).
Aquaponics can be a perfect solution for this environment. It provides large amounts
of food for the space it takes us, and it can be installed in unused urban spaces such
as rooftops. This feature allows it to be widely deployed where people need it, helping

solve the Food Desert problem.



2.0 Design Considerations
2.1 Objectives

Our objective in the project was to build an aquaponics system that was self-sustaining as
much as possible as well as applicable to as many environments as possible. To this end we
built a system that incorporates automation for almost all the key features; the most important
of these are the temperature control, water flow, and fish feeding. In order to make this system
viable in a wide variety of environments we wanted to incorporate a power system that would
work in and off-grid or unreliable grid setting. This system would need to be capable of
powering the rest of the components for days at a time in the event of external power source
loss. The last key element was the aquaponics system needs to actually keep its inhabitants
alive. This means that it can’t get too hot or too cold, that the water must be clean enough for
the fish to survive and the plants get sufficient nutrients for the water, and light from the grow

lamps to thrive.

2.2 System Level Requirements

The requirements for a functional aquaponic system that is self-regulating and sustaining over
long periods are:
e Must maintain temperature within specified operational parameters in a bay area
location. This range is generally going to be 70°F +/- 7.5°F based on using Bluegill fish.
e Keep the dissolved oxygen content (DO2) of the water above level fish need to survive
or about 5 mg/L.
e Turn lights on and off at specified times to maintain an optimal 12 hour growth cycle for
the plants and day/night cycle for the fish.
e Maintain proper water level in the aquatic tier. The fish are sensitive to water level
changes so we will maintain the water level in the tanks within 15% of full.
e Dispense fish food several times daily.

e Harvest enough solar power to run the system.
e Store enough power to run the system without generation for several days.

2.3 Customer Needs

The most important need of the customers is a reliable source of fresh food. This
food needs to be in an amount large enough to make a substantial portion of the

daily calorie requirements for the group. The second most important need is that the
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system not require a large amount of manual work. It needs to be mostly self
maintaining with only occasional maintenance from the user. Lastly the system
needs to be easy to use. It should be simple to gather the harvest, or make minor

changes, or repairs without fear of breaking other parts of the system.

2.4 Solutions

e D02 will be maintained as long as the water continues to flow. The waterfall effect from
the drop between the grow bed and the shrimp tank is enough alone to maintain D02
levels, this D02 infusion is again increased by the fall of the water over the netting of the
top of the shrimp structure by breaking the water down and making it flow in smaller
drips through a larger area.

e The two water pumps and overflow pipe allow for water to continue flowing
through the system after any single pump failure.

e Staggered grow bed over the tanks to allow for access of fish and shrimp tanks.

11



3.0 Implementation

3.1 System Level Design
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Fig 3. Design of the Power System
3.2 Software

The design goals for the control system were to be modular, lightweight, and easily
configured or expanded to meet the changing needs of the underlying aquaponics
system components. To meet these goals we created a system that uses an
Raspberry Pi for the controller and an off-the-shelf relay board to do the actuation. The
software we ran on the Raspberry Pi was written in Python so we could iterate quickly

and allow new users to come up to speed easily.

When looking at what hardware to get for our control components, there were two
choices that became immediately apparent. The first choice was to go with an Arduino
board and use Arduino shields to get precisely whatever components you needed for

the project. The second option was to go with a Raspberry Pi and have a more
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general, and well rounded package to work with. We decided to go with the Raspberry
Pi for a couple reasons, the first was that it has a larger user base than the Arduino
projects, which means finding examples and libraries will be easier. The second reason
was that in general Raspberry Pi’s are programmed in Python while Arduino’s generally
are in C, and we had more experience with Python than C. The last reason was that
many of the bundled features, like WiFi, were useful to us and allowed us to move more

quickly making the Raspberry Pi a great choice.

The software design for the control system is to use a lightweight management module
that runs any other configured modules included in the system. This module allows all
the other modules to run once a minute, passing in and state that is needed for the
module to make decisions. These modules are then responsible for all their own
actions, such as turning on and off lights or pumps. After all the modules have run, the
main module handles any reporting actions necessary before sleeping until the next

iteration.

The software currently has 3 modules running that operate the rest of the aquaponics
systems. These are all configured easily from a basic configuration module that reads a
simple key value configuration file. The first module is the light module. It creates a 12
hour day night cycle by looking at the current time zone’s wall clock time and turning
the LED lights on from 7:30 to 19:30. The second module is the pump module, which is
responsible for running the water pumps 45 min out of every hour. The last and most
complicated module is the temperature module. It reads the temperature sensors in
the system and decides whether to heat or cool as outlined later. This module could
potentially be split into two modules if other components start needing access to the

temperature data.

A module is typically operated by activating a relay to run the underlying subsystem.
This starts with the software setting one of the gpio pins on the Raspberry Pi to either
high or low. These pins are attached to relays on the external relay board. The pin
going high activates the relay that is in series with the power supply to the underlying

component. This powers on the component on; or in the case of going low, off. At this
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point the underlying component should begin taking effect. With additional sensors is
would be possible to then be possible to measure that effect in the next loop of the
control software, and if the desired effect was not being achieved then to create an

alert.

The control system as it is currently build is robust, lightweight, and easy to
understand. It meets the needs of our current prototype aquaponics system well, as
well as providing a solid platform to expand upon if that is needed later in a larger

implementation.
3.3 Power

The basic constraints the power system was designed for was being able to continue
providing power to the whole system for two days without any energy from the solar
array, as well as meeting a very tight budget. Our estimated maximum power usage of
6.1 KW/h per day means that we should have around 12KW/h of battery storage in the
system to meet that two day requirement. We were also donated 1200W of solar
panels by SunPower, which lead to the rest of the design decisions for the power

system.

The solar panels we received were members of SunPower’s e18 series, indicating that
they are more than 18% efficient at converting solar energy falling on their surface to
usable power. Each of these panels are capable of producing around 5.5 Amps at
between 50 and 65 Volts. The voltage varies because in most respects a solar panel
can be considered a current source rather than a voltage source. We looked at using
them in both a 2 series, 2 parallel (2S2P) configuration and a 4 parallel (4P)
configuration, but ended up going with the 4P configuration because of the constraints

the series panels would put on our choice of battery charge controller.

There are two different types of charge controllers available on the market currently,
Pulse Width Modulated and Maximum Power Point Tracking. MPPT controllers are a
newer technology that is more efficient at using the available solar energy and generally

capable of handling higher solar voltages. These controllers contain DC to DC
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converters rather than pulse width modulation to ensure that the batteries are being
charged at the correct voltage (MPPT vs PWM). Unfortunately these newer controllers
are also significantly more expensive than PWM controllers, so they weren’t going to
be available with our limited budget. The charge controller we ended up choosing is
the Schneider C40, a PWM controller capable of outputting 40A to the batteries. This
controller has a maximum input voltage of 125V which is what caused us to go with a
4P configuration for the solar panels as the 2S configuration gets up near 140V. The
controller also has a selectable 12 / 24 /48 V output to the battery, in order to get the
most out of solar array’s 1200W we realized we were going to need to go with a 48V
battery bank, which theoretically should be able to use up to 1920W more than our
solar output, while if we went with a 24V battery we would only be able to use around

960W of our battery or a 21% loss at this point.

The batteries were a major expense for the project and as such we needed to find a
cheap solution that would meet our high storage requirement as well as be in a 48V
configuration. In a production environment there would be significant advantages to
going with and AGM battery. They tend to be more robust and able to stand the
potential hazards of a deployment. We went with a set of flooded lead acid batteries
because they provided us with the power we needed at the lowest possible price. The
batteries, 8 US Battery US-2200s, were put in an 8S configuration to reach our 48V
target. They are also 232Ah each at a 20Hr discharge rate giving us a total energy
storage of around 11.1 KWh. This is slightly under our absolute maximum 2 day
discharge of 12.2 KWh, but within reasonable distance of that goal. The 20h discharge
rate is sane because that would mean a continuous discharge at 11.6A and our

maximum daily usage of 6.1KWh would lead to a continuous discharge at 5.3A.

The last component of our power system is a series of buck converters that change our
battery power from 48V to 12V and 5V. These are necessary because most
aquaponics components expect a 12V input. Originally the power system was
designed for these but in order to be maximally efficient with our solar power and

budget though this had to change to a 48V battery system. These buck converters are
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typically 95% efficient and have a minimum efficiency of 92%. They provide up to 60A
at 12V allowing us to provide plenty of power to the system which at most can use
~40A. The 5V converter provides up to 3A to the Raspberry Pi, which has an internal

converter allowing us to run 3.3V components on this rail as well.

The power system as a whole is a compromise of budget and available components. It
allows us to run the aquaponics systems with plenty of overhead for expansion as well

as meeting the current goals within the cost constraints we were working with.
3.4 Thermal

Our temperature system is set up using three temperature sensors, a fan, and a water
tank heater. The three temperature sensors are distributed so that a waterproofed
sensor is in the fish tank and another is in the shrimp tank. The third sensor is the air
sensor that sits on the breadboard of the box. The two water sensors are averaged to
yield the water temperature that we use, and the sensor on the breadboard yields our
used air temperature. With setpoints of 67.5°F low and 82.5°F high we use the lookup

table below to set the state of our system.

Air Low Air Norm Air High
Water Low H on H on Hon F on
Water Norm H on All off F on
Water High All off F on F on
Table 3.4: Temperature Lookup Table H=Heat, F=Fan

The cooling system is a 120W, 12V, 10A, 16 inch fan that runs at the height of the fish
and shrimp tanks so that the air blows across the falling water from the grow bed to the
shrimp tank. This creates a swamp cooler effect that traps some of the heat in the

water. This increases the humidity of greenhouse which helps lower the felt
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temperature of the room.

The heating system uses the water as the thermal mass and is a 150W, 12V, 12.5A
water tank heater that is screwed into the side of the fish tank beneath the float valve.
This is so that it will always be fully submersed in water and not burn out. This is a
quick solution to heating which we used to meet deadlines of the project. To make it
more energy efficient and plausible for the winter where heat usage is high and solar
power generation is lower we should change the system over to a solar thermal heating
system. This will involve using water as the thermal mass where we heat water using
sunlight, then pump this water through copper pipes in the fish and shrimp tanks to
heat the water in the tanks. This reduces the energy cost of heat from 150W for the

water tank heater down to about 8W for the solar thermal water pump.

3.5 Water
Grow Bed
Fish Plant
Pump O Qutflow
|___Querflow
Fish Tank Z Shrimp Tank
C
Shrimp
Pump

Fig 4. Design of the Plumbing System

The plumbing system is fairly simple. We use two tanks for two reasons, the first is that
shrimp act as a natural filter in an aquaponics system. This allows for us to remove
other forms of filters that need to be cleaned and maintained manually and replaced it
with a food source. The second reason is that the fish are a volume determined animal,

while the shrimp are a surface area determined animal, meaning that the shrimp do not
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mind if their water level decreases as long as they’re still underwater, but the fish do
not want to be crowded. The two tank model allows us to pump water from the shrimp
tank to the fish tank at roughly the same rate that we pump from the fish tank to the
grow bed. This lowers the water in the shrimp tank while maintaining the water level in

the fish tank.

Water is distributed through the grow bed by a PVC pipe array that encircles the grow
bed and then crosses it at regular intervals creating separate rows of grow area. The
“Fish Pump” is actually two pumps, one 180 GPH pump and one 75 GPH pump. These
with the overflow pipe allow for water to continue flowing through the system even
after a single pump failure. This ensures the dissolved oxygen content is high enough

to keep the fish alive until the failed pump has been fixed.

The pumps are tied to the clock on the raspberry pi and are on a fixed 45 min on/15

min off, flood/drain cycle.
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4.0 Testing and Analysis
4.1 Thermal Functionality

After assembling our system and debugging our code, we allowed the system to run
for one full day. This was to test that our temperature sensors was gathering data and
logging it into the Raspberry Pi. The table below show the temperature of the air and
water in degrees fahrenheit, (F) and the state of our heating and cooling system
throughout the day. The graphs in the following page shows the relation between air

and water temperature vs time.

Tirme (Hour) Temperature (F) Temperature Control
Water Air Heating  Cooling
20:00 B68.1116 58.2116 oM OFF
01:00 67.3241 56.3 ON OFF
02:00 B66.3683 54.275 oM OFF
03:00 b65.4683 53.15 OM OFF
04:00 64,4558 21.8 oM OFF
05:00 B63.6116 50.675 oM OFF
06:00 B62.7125 49.775 OM OFF
07:00 61.9241 51.125 oM OFF
08:00 61.4741 63.8366 oM OFF
09:00 61.7558 76.8B66 ON ON
10:00 62.0933 92.8616 oM oM
11:00 63.4433 100.85 OM oM
12:00 64,9625 B0.0366 oM oM
13:00 b66.4241 78.9116 oM oM
14:00 B67.7741 78.125 OM OM
15:00 68.0558 76.55 OFF oM
16:00 68 76.1 OFF oM
17:00 68 73.625 OFF ON
18:00 67.6616 72.38B66 oM oM
19:00 67.6058 71.26l6 OM OFF
20:00 67.6058 660866 oM OFF
21:00 B67.1558 61.025 oM OFF
22:00 bb.368B3 57.5366 OM OFF
23:00 65.75 57.9866 oM OFF
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4.2 Plumbing Functionality

The plumbing was tested by filling up the fish tank from the float valve and running the

fish pumps on a portable 12V battery to test the functionality of the PVC halo. Upon
first running we found that the pump head height was too high for the pump and the

PVC diameter was too large. We then added a pump to the fish tank and remade the
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PVC halo to a smaller diameter and reran the test. Once that functionality was
established we ran the full system while watching for an hour to see if any imbalances
occurred. It seemed that the shrimp pump was overpowering the two fish pumps, but
the overflow valve could handle the difference so the system was in equilibrium. We
then checked on the system every several hours, then twice a day, and finally daily. The
system runs in equilibrium unless it is worked on and air gets into the pump lines

causing them to lose their prime.
4.3 Component and Wiring Testing

Components were tested as they arrived across a portable 12V battery and voltmeter
to check how close to their specifications they were working. They were then installed
into the greenhouse and wires were run from the point of the raspberry pi to the
components. They were then tested again across the portable 12V battery from the
raspberry pi end to make sure the component had not been damaged during
transportation or installation and that the wiring was still working. Volts and currents

were again taken to check specifications.
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5.0 Future Works
5.1 Solar Thermal

Considering that we had the theme of sustainability in mind, one of the initial designs
for this project included the installation of a solar thermal system. The purpose of this
system would be to eliminate the need to rely on a conventional water heater and
instead be able to heat the system sustainably. However this aspect of the project was

not able to be implemented due to resource and time constraint.

If one were to implement a solar thermal system, the first step would be to calculate
the total U-value or thermal transmittance of the structure that will be fitted with the
solar thermal system. After that, in order to size the furnace for the solar thermal

system we need to calculate the heat transfer, q using the formula below.

q =[(UA) x (Tset — Tdesign) x (pickup factor)] +n

After calculating the g value, we can then look for furnaces and select the smallest and

most efficient ones that will have at least that g value.
5.2 Insulation

Proper insulation of the aquaponics shrimp structure could be done in order to
minimize heat loss within the system. This in turn will enable preservation of energy by
not requiring additional heating elements to maintain the internal temperature of the
aquaponics system. One way this could be done is by caulking the structure. By
sealing any air leaks in the structure, it will minimize the amount of heat loss during the
winter months and prevent hot air from entering during the summer months. Another
possible way to insulate the aquaponics structure is by rebuilding the shed with walls

that have fiberglass insulation inside the wall cavity.
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5.3 Painting

Painting the aquaponics shed would improve the longevity of the wooden structure.

This is done because the wood will be able to last longer without rotting.
5.4 Solar Tracking

Solar tracking could be added to the system. This would increase the amount of
electricity produced since the system will be able to maximise the amount of sunlight
the solar panels receive. However it should be taken into consideration as to whether
or not the additional electricity would make the system more efficient. Depending on
the geographical region the system is located in, the addition of solar trackers may be
redundant. Solar trackers are designed for warmer climates where it can maximize the
amount of sunlight it receives. In harsher environments such as snowy regions, a fixed
solar array may be more preferable due to the increased rigidity of a fixed solar array

compared to a solar tracking system.
5.5 Alarm

A good addition to this system would be an alarm. It could either be an onboard alarm
on the raspberry pi, or a better but more complicated solution would be a smartphone
application that can push update the alarm. This alarm should be used for when the air
temperature reaches extreme highs or lows and if the water temperature reaches more
moderate highs or lows since the plants can handle a higher temperature range than

the fish.
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6.0 Ethical Analysis
6.1 Sustainability

Our project requires a number of different resources in order to perform as intended.
We will explore the different resources required by examining the different components
that are crucial to our project. The first item of concern are the solar panels. Solar
panels are typically made from varying silicon compounds. The process of
manufacturing solar panels can be potentially hazardous for the workers involved. This
is because during the manufacturing process, one of the steps required is sawing
silicon discs. This process will result in the build up of silicon dust also known as kerf. If
inhaled by workers, the kerf may result in respiratory problems. Another concern is the
use of silica gas during the manufacturing process. It is known to be highly
combustible and may spontaneously combust, potentially harming workers. However
solar panels typically have a shelf-life of about 25 to 30 years and is relatively easy to
recycle if done correctly. If not disposed of appropriately the panels can potentially be

detrimental to the local environment due to the exposure to the silicon compound.

Another crucial component in our project are the AGM batteries. Though it was the
safest option among the type of batteries we considered, it can still be detrimental to
the environment if not disposed properly. If the chemicals within the battery were to
leak out somehow, this would pose a threat to the local environment. This may lead to
the toxification of the environment making it uninhabitable for the local plant and
animal life. For example if the chemicals were to be leaked into a local water source,
the aquatic life may perish due to the increased toxicity. Even if no wildlife is in any
immediate danger, the chemicals within the battery can still potentially harm a human
operator.

Our system also would house aquatic life and plants as produce. The organisms
housed inside our system may be considered foreign to the local surrounding
environment. If these organisms were to somehow escape containment, they could
interfere with the local species. The long lasting impacts could be harmful to the

environment by causing an unbalance in the local ecosystem. For example if a foreign
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fish were to be introduced into the local water system, it may interfere with the local
food chain by either consuming the local fishes to extinction or competing with them

for food sources.

6.2 Food Security

Aquaponics allows people who have traditionally not had access to large amounts of
fresh vegetables and fish to get these resources with a minimum of disruption to the
environment and landscape around them. The best example of the benefits aquaponics
can provide in the first world is to look at the modern problem of food deserts. These
are areas of inner cities where there is very little access to fresh produce, people living
there must walk over a mile to get to a traditional supermarket, and do not have access
to a car. In these areas, aquaponics can be deployed as small, even rooftop sized
systems that will provide nearby residents with a valuable source of nutrition that does
not already exist in the community. The other benefit of our system in particular is that
the aquaponics system includes substantial green-energy infrastructure. This can help
subsidize the cost of running not only the aquaponics system, but also of other energy
needs, as it is generally sized for the worst case which will not happen very often. In
the third world the target audience and problem are a little more abstract. Africa is
expected to experience most of the population growth over the next several decades,
but is already using most of its arable land (Cassman et al.). Even with significant
efficiency improvements, it will require a massive undertaking to produce enough food
to feed the expected population from local sources. This is where aquaponics can help
with the problem.

Although over time the system will pay for itself, it still has a fairly significant upfront
cost that could drive away potential users. One possible way to help alleviate this
problem, would be to sell these systems through a Non-Profit, that could potentially
front the high upfront cost in the form of a low interest loan, and then be paid back

using the profits the system generates.
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This system is designed to be extremely profitable for the end user. Almost all of
the cost comes in the form of the design, after that upkeep should be fairly simple and
low cost. The highest cost will be the cost of the food for the fish, but this price will be
offset by the drop in the user’s grocery bill since the price of the fish food is cheaper
than the price of fish or of vegetables that the fish food produces.

The rarer and bigger parts of the upkeep come from the solar array. The batteries have
an operational lifetime of around 5 years that can often be stretched out to 10 years,
the solar panels have a similar lifetime. This is a costly enterprise but, again, the
reduced price of the grocery bill should more than offset the cost. What we have found
is that aquaponics may not be the most economically efficient means of growing food
but it is the most space efficient, making it critical for places that are suffering a food

crisis by optimizing their growing potential.
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8.0 Appendices
8.1 Aquaponics Sizing

Aquaculture sizing- In order to get palatable fish you need a fish tank of at least 55 gallons. At
55 gallons you can only put one tilapia/two gallons of water. Once you reach 250 gallons you
can put in a tilapia/ gallon of water. The amount of fish is the main determinate in the size of the
grow beds so | have selected to go with a 55 gallon system for a better ratio of produce space
and production to aquaculture space and production. A tank of 270 gallons was then selected
because of its easy to find size based of its relatively standard dimensions of 4ft x 6ft x 18in.
Grow bed sizing- The system requires roughly the same volume of grow bed as you have of
aquaculture tank volume once you have hit the one fish per gallon mark. 6 gallons of water
roughly equals 1 cubic foot giving us 45 cubic feet of grow bed. At 1.5 ft deep this gives us 6
square feet of grow space. 3ft x 2ft x 1.5ft.

Pump sizing- The system needs to cycle the volume of the aquaculture tank every hour
through the grow beds. This is done in a 45 minute period though as 15 minutes of every hour
are allotted to letting the grow bed drain and dry a bit. With a 55-gallon tank this gives us a
roughly 75 gallon per hour pump requirement. The system is running on 12VDC power so a
12VDC pump is needed. Pumps require head specifications and | have a 5 foot head. This
requires about 2 psi of pressure in order to raise the water to that height. From this we find that
we need a pump that is 75 gph with 2 psi.

Lighting- If we are using high efficiency LED lighting then we need 25 Watts per square foot of
grow space. With the 25 square feet of grow space this gives us 150 W of LED lighting required.
Power Requirement- Powering the system has two different requirements. A peak hours
requirement that must be supplied from the solar panels with extra that can be used to charge
the batteries for the evenings. The first requirement is

Lights + Water Pump + Fan + Sensors and Other Components = 1400W

And the second is

Water Pump + Fan + Sensors and Other Components = 400W

In total it comes to about 22 kWh/day.

8.2 Budget
We initially requested $5790 worth of expenses in order to make this product operational in its

original form. We received $1500 from the school. We were able to get solar panels donated by
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Sun Power. We then changed the battery from AGM to flooded lead acid as it was a cheaper

option. It was also cheaper to get batteries that ran at 48V rather than 12V and then convert the

power back down. We will also remove the use of the DO2 sensor and change our lights out for

a cheaper option.

From here we took donations from teammates and our advisor to close the gap in the budget

and complete the project.

Line Item Budget:
Power
- Solar Panels (Donated by Sun Power)
- Solar Panel Mounts
- Battery
- Charge Controller
- Wire
Total
Control Systems
- Solar Thermal Heater
- Fan
- Aerator
- Temperature Sensors
- Dissolved Oxygen Sensor (Removed)
- Raspberry Pi
- Fish feeder
- Alarm
- Float valve
Total
Lights
- Lights
- Shipping
Total
Structure and Aquaponic Table
- Glass for Greenhouse
- PVC Pipe

(1400)
(300)
(1200)
(100)
(100)
(3100)

(In Possession)

(80)

(100)
(50)
(700)

(In Possession)

(50)
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- Plastic fish tubs (100)
- Caulking (10)
- Sediment for fish tub (40)
- Lightweight Expanded Clay Aggregate (300)
- Plants (50)
- Fish (150)
- Plant Tub (100)
- Wood (300)
- Pumps (50)
-Strong Ties (50)
-Door (100)
- Nuts and Bolts (35)
Total (785)
Grand Total (5240)

8.3 Code Listing

aquaponics-scu/bin/main.py

#!/usr/bin/python

import sys

from time import sleep

from pid.decorator import pidfile

import logging

from logging.handlers import RotatingFileHandler
import os

sys.path.append (os.path.abspath('.."))

import RPi.GPIO as GPIO

import SimpleConfig

import LightController
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import PumpController

import TemperatureController

Gpidfile ()
def main():

config =
SimpleConfig.SimpleConfig(['/home/pi/aquaponics-scu/config/aquaponics.
cfg'])

logger = setup logger (config)

logger.info ("Starting Aquaponics System")
# Set GPIO mode
GPIO.setmode (GPIO.BOARD)

logger.debug ("Setting GPIO to BOARD MODE")

pumps = PumpController.PumpController (config, logger)

lights = LightController.LightController (config, logger)

temp TemperatureController.TemperatureController (config, logger)
logger.info("Initialized Modules: Lights, Pumps, Temperature")

logger.debug ("Initializing Loop")

count = 0
while 1:
try:
pumps.runModule ()
sleep (1)
lights.runModule ()
sleep (1)
temp.runModule ()
logger.info ("Completed loop: {} Sleeping 60 seconds before

next loop".format (count))
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count += 1
sleep (60)

except Exception as err:

logger.error ("encountered error while running: %s", err)

def setup logger (config):
logger = logging.getLogger ("basiclogger")
logger.setLevel (logging.INFO)

path = config.get ("logdir",

' /home/pi/aquaponics-scu/logs/aquaponics.log')

rotating handler = RotatingFileHandler (path, maxBytes=20000000,

backupCount=10)

basic formatter = logging.Formatter ('%(asctime)s

% (message)s')
rotating handler.setFormatter (basic formatter)

logger.addHandler (rotating handler)

return logger

if name == ' main '

main ()

aquaponics-scu/config/aquaponics.cfg

# Pump Configs
pump.on interval.seconds=2700
pump.off interval.seconds=900

pump.output board pin=7

# Light configs
lights.ontime=0730
lights.offtime=1930

% (levelname) s
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lights.output board pin=11

# Temp Configs (in Fahrenheit)
temp.setpoint=70
temp.error.margin=2
temp.heat.output board pin=13
temp.cool.output board pin=15

temp.runpid=False

aquaponics-scu/lib/LightController.py

import RPi.GPIO as GPIO

import datetime

class LightController (object) :
def init (self, config, logger):

self. initialize(config, logger)

def initialize(self, config, logger):

self.logger logger

self.onTime = config.getInt('lights.ontime', 0730)

self.offTime = config.getInt('lights.offtime', 1930)

self.outPin = config.getInt ('lights.output board pin')

if GPIO.getmode () is None:

raise Exception ("GPIO mode not initialized")

try:
GPIO.cleanup(self.outPin)
except:
pass # need to do for reinit, so don't bother with

exceptions



GPIO.setup(self.outPin, GPIO.OUT)
GPIO.output (self.outPin, GPIO.LOW)

self.lastState = 'off'

def runModule (self) :

currTime datetime.datetime.now ()

currTime.hour * 100 + currTime.minute

testTime

self.logger.debug("last state of lights: $s on-time: %s
off-time: %s current-time: %s", self.lastState, self.onTime,

self.offTime, testTime)

# FIXME: there is a shitty inherent assumption that lights
should be on during the day
if self.lastState == 'off' and testTime > self.onTime and
testTime < self.offTime:
GPIO.output (self.outPin, GPIO.HIGH)
self.logger.debug ("Turning Lights ON")
self.lastState = 'on'
elif self.lastState == 'on' and (testTime > self.offTime or
testTime < self.onTime) :
GPIO.output (self.outPin, GPIO.LOW)
self.logger.debug ("Turning Lights OFF")

self.lastState = 'off'

aquaponics-scu/lib/PumpController.py

import RPi.GPIO as GPIO

import time

class PumpController (object) :
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def init (self, config, logger):

self. initialize(config, logger)

def initialize(self, config, logger):
self.logger = logger

self.onCycle = config.getlInt ('pump.on interval.seconds',

2700)

self.offCycle = config.getInt('pump.off interval.seconds',

900)
self.outPin = config.getInt ('pump.output board pin')
self.totalCycle = self.onCycle + self.offCycle;
if GPIO.getmode () is None:
raise Exception ("GPIO mode not initialized")
try:
GPIO.cleanup(self.outPin)
except:
pass # need to do for reinit, so don't bother with
exceptions

GPIO.setup(self.outPin, GPIO.OUT)

GPIO.output (self.outPin, GPIO.LOW)

self.lastChange = 0

self.lastState = 'off'

def runModule (self) :

currTime = time.time ()

self.logger.debug ("Last Pump state: %s last change time:

current time: %$s on-cycle: %s, off-cycle: %s", self.lastState,

self.lastChange, currTime, self.onCycle, self.offCycle)

[
5SS
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if self.lastState == 'on' and currTime - self.lastChange >
self.onCycle:
GPIO.output (self.outPin, GPIO.LOW)

self.logger.debug ("Turning Pumps OFF")

self.lastState = 'off'
self.lastChange = currTime
elif self.lastState == 'off' and currTime - self.lastChange >

self.offCycle:
GPIO.output (self.outPin, GPIO.HIGH)
self.logger.debug ("Turning Pumps ON")
self.lastState = 'on'

self.lastChange = currTime

aquaponics-scu/lib/TemperatureController.py

import os
import glob
import time

import RPi.GPIO as GPIO

class TemperatureController (object) :
def init (self, config, logger):
# TODO: there has to be another way this is horrible
os.system('modprobe wl-gpio')

os.system('modprobe wl-therm')

self. initialize(config, logger)

def initialize(self, config, logger):

self.logger = logger

self.setPoint = config.getlInt ('temp.setpoint', 70)



self.errorMargin = config.getInt('temp.error.margin', 2)

self.heatOutPin = config.getInt ('temp.heat.output board pin')

self.coolOutPin = config.getInt ('temp.cool.output board pin')

self.basedir = config.get ('temp.sensor.basedir’',
'/sys/bus/wl/devices/")

self.runPID = config.getBool ('temp.runpid', False)

self.errorSum = 0
self.maxErrorBound =

config.getInt ('temp.max.integrator.value', 20)
self.minErrorBound =

config.getInt ('temp.min.integrator.value', -20)

if GPIO.getmode () is None:

raise Exception ("GPIO mode not initialized")

try:
GPIO.cleanup (self.heatOutPin)
except:
pass # need to do for reinit, so don't bother with
exceptions
try:
GPIO.cleanup (self.coolOutPin)
except:
pass # need to do for reinit, so don't bother with
exceptions

GPIO.setup (self.heatOutPin, GPIO.OUT)
GPIO.output (self.heatOutPin, GPIO.LOW)
GPIO.setup(self.coolOutPin, GPIO.OUT)

GPIO.output (self.coolOutPin, GPIO.LOW)
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def runModule (self):
waterTemp, airTemp = self.getTemp ()
self.logger.info ("water temp: {} air temp:

{}".format (waterTemp, airTemp))

water error = self.setPoint - waterTemp

air error = self.setPoint - airTemp

# Maybe Someday...
# if self.runPID:

# error = self.getPIDValue (error)

self.logger.debug ("water-error: %s air-error: %s error-margin:

%s", water error, air error, self.errorMargin)

if (abs(water error) > self.errorMargin and water error > 0)
or (abs(water error) < self.errorMargin and abs(air error) >
self.errorMargin and air error > 0):

self.logger.debug ("turning heat ON")

GPIO.output (self.heatOutPin, GPIO.HIGH)
else:

self.logger.debug ("turning heat OFF")

GPIO.output (self.heatOutPin, GPIO.LOW)

if (abs(air error) > self.errorMargin and air error < 0) or
(abs (air error) < self.errorMargin and abs(water error) >
self.errorMargin and water error < 0):
self.logger.debug ("turning cooling ON")
GPIO.output (self.coolOutPin, GPIO.HIGH)
else:
self.logger.debug ("turning cooling OFE")

GPIO.output (self.coolOutPin, GPIO.LOW)
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def getTemp (self, device list=None):
total temp water = 0
total temp air = 0
count water = 0

count air = 0

temp devices = device list or glob.glob(self.basedir + '28*")
for device in temp devices:

self.logger.debug ("getting temp from device %s", device)

lines = self.getRawLines (device + "/wl slave")
while lines[0].find('YES') == -1:
self.logger.debug ('FAILED getting good data from %s
trying again in .2 seconds', device)
time.sleep(0.2)

lines = self.getRawlLines (device)

equals pos = lines[1l].find('t=")

if equals pos != -1:
temp string = lines[l][equals pos + 2:]
temp ¢ = float(temp string) / 1000.0

temp f = temp ¢ * 9.0 / 5.0 + 32.0
# FIXME horrible horrible hack
if "28-000008a3d594" in device:
self.logger.debug ("temp %s from device %$s was
added to air total", temp f, device)
total temp air += temp £
count air += 1
else:
self.logger.debug ("temp %s from device %$s was
added to water total", temp f, device)

total temp water += temp f
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count water += 1
else:
self.logger.debug ("Couldn't get good temp from device

$s", device)

if count water < 1:
count water = 1
if count air < 1:

count air =1

return total temp water / count water, total temp air /

count air

def getRawlLines(self, filename):
f = open(filename, 'r')
lines = f.readlines /()
f.close()

return lines

def getPIDValue(self, error):
kp =1
ki = .2
# Just PI for now

# kd = .1

self.errorSum = self.errorSum + error

if self.errorSum > self.maxErrorBound:
self.errorSum = self.maxErrorBound

elif self.errorSum < self.minErrorBound:

self.errorSum = self.minErrorBound

return kp * error + ki * self.errorSum
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aquaponics-scu/lib/SimpleConfig.py

class SimpleConfig(object) :

def init (self, file list):

self. generate(file list)

def generate(self, file list):
self.data = {}

for fname in file list:
try:
f = open(fname, 'r'")
for line in f:
line = line.strip/()
if not '=' in line:

continue

pieces = line.split('=",
key = pieces[0].strip()
value = pieces[l].strip()
if len(key) < 1:

continue
self.datalkey] = value or
except Exception:

pass

def get (self, key, default=None):

return self.data.get (key, default)

def getInt(self, key, default=None) :

2)
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def

def

value = self.data.get(key, default)
try:

return int (value)
except ValueError:

return default

getFloat (self, key, default=None):
value = self.data.get (key, default)
try:

return float (value)
except ValueError:

return default

getBool (self, key, default=None):
value = self.data.get (key, default)
if not value:

return default
elif value == 'True':

return True
elif value == 'False':

return False
else:

return default
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