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GENERALI ZI NG BI NARY OPERATI ONS

by Dennis C Smolarski
St Lowis Univernsity

Most day to day calculations take place within the field of real
numbers with the two binary operations of addition and multiplication.
In this field, these two operations are definitionally independent of
one another. However, if we approach binary operations from a d’ifferent
point of view, e.g. that of recursive formulae, we can develop multipli-
cation from addition by use of the concept of repeated addition. Along
similar lines, we can develop exponentiation from multiplication by re-
peated multiplication. The next logical step would be to try to develop
another binary operation based on repeated exponentiation.

Professor D. F. Borrow of the University of Georgia in the American
Mathematical Monthly, 43 (1936), p. 150, developed some theorems and a
notation for repeated exponentiation. As I is used for summation and T
is used for products, he used E for repeated exponentiation. The develop-
ment of a "fourth operation” would depend on all the indexed Terms of &
being equal, similar to what is necessary in developing multiplication
and exponentiation itself.

In order to clarify relations and notations, let us look at addition,
multiplication, exponentiation, and a projected new fourth operation in
terms of functions and recursive formulae. Let

Fiam) = n+m

f'z(n,m) = nem
and
fa(n,m) ="
V¢ know the following:
m
nem=n+ [n(m-1)] = Zl:ni (where all n; = n)

and
m

m (Uz—l’ =
A= e[ ", (where al | no= n)
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Using our functional notation, we can write the above equations as re-

cursive formulae:
fz(n,m) = fl[n, fz("’ m - 1)]
fs(n,m) = fz[n, f3(n, m-1)] .

By comparing these two formulae, we can easily proceed to the definition

of a fourth operation in terms of previous operations. Thus, |let
fk(n,m) = f'a[n, fu("’ m-1)],

and, in general, for a kth operation, let
fk(n,m) = fk_l[n, fk(n, m-1)] .

The question now arises, how does one define the first term in this
recursive formula? In other words, what is f,(n,1)? To answer this
question, let us first look at fz(n,l), and fs(n,l), which are based on
a similar process of recursive formulae and repeated operations. W
know that f,(n,1) = Zi‘n = n and we also know that f,(n,1) = -[T:l"n = n.
We can thus similarly define f‘q(n,l) = Ein to be equal to »n by the same
line of reasoning, that is, "one n" combined together by the process of
[addition/multiplication/exponentiation] is still only "one n."

What about f,(n,2) = Ein? This would be equal to

faln, £,0n, 2 = 11 = foln, £,(1,1)] = Filan) = " .

Thus we see that our formulation of the recursive formula is consistent
with what our initial intuitive feel was for what this new fourth func-
tion should be. Similarly, we obtain fu(n,s) = n("n). At this point
we might notice that, unlike our definitions of exponentiation and mul-
tiplication in terms of multiplication and addition respectively, our
definition of f, does not allow associativity. |In other words, f'u(n,s)

"
= n(” ) # (nn)n, and, in general,

(e,

(n

(n nn(m—l)

fotnym) = n ) & (LGN PP =

At this point, two questions may arise: Wha can one do with f and
what about other operations? In particular, does there exist an fo?

In answer to the first question, it is obvious that tables of fq.
are not readily available, and are not particularly useful, either. The
numbers balloon quite rapidly. For example, fu(2,1+) = 65,536, and
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S22 , While f4(3,3) exceeds ten digits.

fq(z,s) = f3(2, 65,536) = 2
The only easily computable numbers are of the form fu(n,Q) = 7. Even
then, the numbers get fairly large, rather rapidly. For example,

fu(8,2) = 16,777,216. -~ -

There are other paths which can be taken with fu from here. As with
an initial development of multiplication or exponentiation, we can develop
definitions for 'f‘4(x,y) when y is zero, rational, real, or complex, and
then develop definitions when X is zero, rational, real, or complex. For
example, in developing exponentiation, one method of developing rational
exponents is as follows:

Define x = y(l/n) to be equivalent to
_n
y = X

If one raisesx to the power of m, then one has

8 =X

B}

mo_ y(m/n)

and thus one has defined exponentiation for
rational exponents.
Let us do something similar for fu‘

Define X = fu(y, 1/n) to be equivalent to

y = fu(a:,n) .
I f we then operate on xby m, then we have

z = fu(x,m) = f”_(y, m/n)

Ve can likewise work with negatives. In multiplication, y = x*{(-n)
= f2(:x:,—n). But this is equivalent to sayingy * zn = 0 =1 ] (the
identity for fl), or, using our functional notation, fl[y, fQ(;r,n)J = 1q

. . L - a1 LT 3
= 0. Likewise for exponentiation, y = x " - = whichis equivalent to

X
saying f2[y, fa(x,n)] = IQ = 1. Similarly, for our fu.’ we can define

y = fu(x,-n) as being equivalent to f3[y, f'u(:c,n)] =I,=1
Now, let us look at our other question--the possibility of fo, that
basic" than addition. If it did exist, it

is, a binary operation more
would have to complywithour recursive formulae developed above ..nd also
to the general intuitive scheme of the functional notation. Nou for any
k, we saw that fk(n,m) = fk_l[n, fk(n, m - 1)]. Let us take a closer
look at what happens if k = 1. Ve would then have

fl(n,m) = fo[n, fl(n, m- 1)] .
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But fl is addition. Thus, we have
n+m=f0[n,n+m-l] s
If we now let m = 1, then we have
n+ 1= fo[n,n]

“rom the functional approach we know that f3(n,2) = n? = nen = fz(n,n).
Similacly, fz(n,2) =n2=ntn-= fl(n,n). If we are to be consistent,
fl and fo should be similarly related (assuming fO exists). Thus,
fl(n,z,' =n+2=non-= fo(n,n) [where fo(n,n) =n o n]. But above
we showed that fo(n,n) was n * 1. Fom this contradiction resulting from
the initial assumption that fO exists, we have shown that addition is

the "most basic" operation we can have.
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