
Santa Clara University Santa Clara University

Scholar Commons Scholar Commons

Computer Science and Engineering Master's
Theses Engineering Master's Theses

4-2023

Comparison of P4 Programmable Software Switches as WiFi Comparison of P4 Programmable Software Switches as WiFi

Access Points Access Points

Kaustubh Pimparkar

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_mstr

 Part of the Computer Engineering Commons

https://scholarcommons.scu.edu/
https://scholarcommons.scu.edu/cseng_mstr
https://scholarcommons.scu.edu/cseng_mstr
https://scholarcommons.scu.edu/eng_master_theses
https://scholarcommons.scu.edu/cseng_mstr?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages

Santa Clara University

Department of Computer Science and Engineering

Date: April 4, 2023

I HEREBY RECOMMEND THAT THE THESIS PREPARED

UNDER MY SUPERVISION BY

Kaustubh Pimparkar

ENTITLED

Comparison of P4 Programmable Software Switches

as WiFi Access Points

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

Thesis Advisor
Dr. Behnam Dezfouli

Associate Chairman of Department
Dr. Ahmed Amer

Thesis Reader
Dr. Sean Choi

����������������������������
�����������	�	����������
���

A. Amer (Apr 5, 2023 13:24 PDT)
A. Amer

https://secure.na4.adobesign.com/verifier?tx=CBJCHBCAABAA4ezEugOTisNiHKzWIwtqxIpMMiZ75GOO

Comparison of P4 Programmable Software Switches

as WiFi Access Points

By

Kaustubh Pimparkar

Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science and Engineering
in the School of Engineering at

Santa Clara University,

April 4, 2023

Santa Clara, California

Acknowledgments

I would first like to thank my advisor, Dr. Behnam Dezfouli, for his support,

advice, and consistent encouragement during my thesis work. His expertise and

guidance were invaluable in developing my study, and I will be forever thankful for

the opportunity to collaborate with him.

I’d also like to thank my colleagues at SIOTLAB, Ananya Gopal, Chakrapani

Chitnis, and Vikram Ramanna; their feedback and support have helped shape my

ideas, and I am grateful for the insightful discussions and brainstorming sessions

we have had. Big shout-out to Busayo and Priscilla, for being such awesome lab

partners.

I am also grateful to my friends and family for their encouragement through-

out my academic career. Their faith in my skills has been a continual source of

motivation and inspiration in my life.

iii

Comparison of P4 Programmable Software Switches

as WiFi Access Points

Kaustubh Pimparkar

Department of Computer Science and Engineering
Santa Clara University
Santa Clara, California

April 4, 2023

ABSTRACT

WiFi wireless access points must adapt to complex network operations as con-
nected devices and their bandwidth requirements continue to rise. The use of soft-
ware switches supporting Programming Protocol-independent Packet Processors
(P4) in wireless access points has drawn significant attention due to their versa-
tility, flexibility, and potential to overcome the limitations of conventional network
designs. T4P4S and BmV2 are the two most widely used P4 programmable software
switches, and comparing the performance of these switches allows network operators
to select the most suitable switch for specific use cases, such as minimizing latency
or maximizing throughput while reducing resource consumption of the underlying
hardware.

This thesis examines the performance and resource consumption of T4P4S and
BmV2. We first examine their design spaces and then evaluate their performance
in the presence of various tra�c types. Based on our experimental findings, the
e�cient packet processing pipeline of the T4P4S switch makes it a superior alter-
native to the BmV2 switch for executing P4 programs. The presented results and
analysis provide a better understanding of design decisions and identify potential
performance bottlenecks for P4 programmable software switches.

iv

Table of Contents

1 Introduction . 1

2 Related Work . 4

3 Background . 8

3.1 P4 Programming Language . 8

3.2 Behavioral Model Version 2 (BmV2) 10

3.3 T4P4S . 12

3.4 P4Pi . 14

3.5 Software Switch Design Space . 14

3.5.1 Architecture . 14

3.5.2 Programming Paradigm . 16

3.5.3 Processing Model . 16

3.5.4 Programming Language . 17

4 Test Methodology and Evaluation . 18

4.1 Measurement Platform . 18

4.2 Energy Measurement . 18

4.3 Testbed . 19

4.4 Throughput Evaluation . 20

4.5 CPU, Energy Consumption, and Memory Consumption 22

5 Conclusion and Future Work . 25

Bibliography . 27

v

List of Figures

3.1 P4 Program Flow . 9

3.2 Simple Switch Architecture . 11

3.3 BmV2 Packet Processing Pipeline 12

4.1 Testbed Setup . 19

4.2 Throughput Comparison . 21

4.3 Energy Consumption . 23

4.4 CPU Utilization . 23

4.5 Memory Utilization . 24

vi

List of Tables

3.1 Taxonomy of P4 Software Switch 17

vii

Chapter 1

Introduction

Software-Defined Networking (SDN) is a technique that separates the control plane

and data plane operations of conventional networking hardware. SDN distributes

the data plane over multiple network devices while centralizing the control plane in a

software-based controller [1–3]. To further enhance the flexibility of such networks,

Programming Protocol-Independent Packet Processors (P4) can describe the data

plane of network devices and specify packet processing behavior on di↵erent types

of network hardware, such as switches. Since P4 is protocol-independent, it can

be used to express the behavior of any networking protocol and can also be used

to develop customized protocols, which makes P4 versatile. P4 enables network

managers to specify how network devices process packets, which gives them greater

control over the behavior of the network [4,5]. P4 and SDN are often used together

to develop a network architecture that is more adaptable and programmable in

practice [6,7]. With P4, for example, network devices can prioritize particular kinds

of data tra�c, such as audio or video tra�c [4]. P4 can also describe the entire

network’s behavior, including how tra�c should be routed, and policies should be

enforced.

WiFi Access Points (APs) are networking devices that o↵er wireless connectivity

to users and IoT devices such as laptops, smartphones, and thermostats. By using

P4 on APs, the AP can handle network tra�c more flexibly and e↵ectively. P4

provides the capability to control the packet processing of these devices, allowing

1

for customization of the network’s functionality to meet specific requirements [4,8,9].

Although P4 software switches have several advantages over conventional hard-

ware switches, there is no comprehensive comparison of these switches in terms

of the resource utilization of the underlying hardware. Previous research has pri-

marily concentrated on evaluating P4 software switches based on throughput and

latency metrics, with little attention paid to their functionality in real-world scenar-

ios. Network performance metrics like latency and throughput of software switches

have been the primary focus of previous studies, and comparing resource utiliza-

tion of the underlying hardware has been neglected. This gap is especially crucial

when energy consumption matters or when the AP functionality is implemented on

resource-constraint devices such as the Raspberry Pi. Hence, it is beneficial to eval-

uate P4 software switches by subjecting them to network tra�c and measuring the

underlying hardware’s performance and resource consumption in handling network

load.

Our work aims to determine the performance of P4-enabled APs running on a

resource-constraint device—the Raspberry Pi board. This study enables researchers

and network operators to understand, enhance and deploy the performance of P4-

enabled APs based on application demands and required flexibility. In this thesis,

we compare and analyze the most widely used P4 programmable software switches,

BmV2 and T4P4S P4, throughput, energy consumption, CPU utilization, and mem-

ory usage while switching di↵erent types of tra�c. This is an important step in

determining if these switches are suitable for the type of network tra�c being con-

sidered. Furthermore, this thesis aims to identify the P4 switch that can provide

the highest throughput while consuming the least resources. Thanks to its more

e�cient packet processing pipeline, we will show that T4P4S performs better than

BmV2 in both throughput and resource consumption. Our work lays the founda-

2

tion that can be used to develop P4 switches with higher throughput and e�cient

resource utilization that are tailored specifically for AP networks.

The rest of this thesis is organized as follows. Chapter 2 overviews the existing

work. A review of the components used in our research work and the design space of

software switches are explored in Chapter 3. In Chapter 3, we also analyze the P4

software switches’ design aspects to determine their strengths and weaknesses, then

compare and contrast those characteristics. Chapter 4 describes the experimental

design, testing methodologies, and measurement tools used for this research. We

also present an analysis of the results and highlight the advantages that T4P4S has

over BmV2 in terms of throughput and resource consumption. Finally, in Chapter

5, we discuss our implications for designing and implementing P4 software switches

in APs and potential future research in P4-enabled software switches.

3

Chapter 2

Related Work

In recent years, software switches have become popular as a versatile and cost-

e↵ective way of performing network operations. Several research papers investigate

the performance of modern software switches. For instance, Ben et al. [10] com-

pare Open vSwitch (OVS) throughput versus Linux’s bridge and the Linux kernel’s

IP forwarding. According to their research findings, OVS cannot achieve 2 Gbps

when using 64B packets. The same authors conduct additional research into OVS

throughput and its latency. The preliminary benchmarks with Lagopus [11] and Ryu

Controllers [12] produce a throughput of fewer than 20 Mpps in [13] when using

64B packets. Rajagopal et al. [14] test OVS-DPDK throughput with 1 Gbps NICs

and port/flow mirroring. Their results showed that OVS-DPDK achieved signifi-

cantly higher throughput than the standard OVS implementation, with throughput

improvements ranging from 3x to 10x, depending on the tra�c pattern.

Liu et al. [15] conducted a comparative analysis of various software switches

in a virtualized environment. The switches considered in the study were Snabb

[16], OVS, OVS-DPDK, and Linux Bridge. The author’s primary objective was to

evaluate the switches’ performance in terms of throughput and latency, highlighting

their architectural di↵erences and support for virtual network functions (VNFs) and

Network Functions Virtualization (NFV). The study findings indicate that OVS-

DPDK demonstrated superior performance in both throughput and latency due

to the integration of the DPDK library [17], enabling bypassing the kernel and

4

direct interaction with the NIC hardware. On the other hand, Snabb demonstrated

lower latency than OVS and Linux Bridge, primarily due to its streamlined and

lightweight design, resulting in reduced processing time and minimal overhead.

Singh et al. [18] conducted a comparative study between Virtual Path (VP) and

OVS-DPDK. Their study aimed to evaluate the performance of these switches in

terms of throughput and packet loss under various scenarios of VNF loopbacks. The

study results showed that VP outperformed OVS-DPDK in terms of throughput,

especially in scenarios where the number of VNF loopbacks was high. However,

OVS-DPDK showed lower packet loss compared to VP in some scenarios. These

results indicate that VP leverages vectorization techniques to process multiple pack-

ets simultaneously, resulting in lower packet loss. On the other hand, OVS-DPDK

uses a polling mechanism to achieve high packet processing rates, which may result

in higher packet loss under certain conditions.

In another study, Niu et al. [19] compared the throughput and latency of two

virtualized switches, BESS [20] and ClickOS [21], in a service chaining loopback sce-

nario. The study aimed to evaluate the performance of these technologies in terms

of packet forwarding delay, throughput, and CPU utilization. The study results

showed that BESS outperformed ClickOS in terms of packet forwarding delay and

throughput, while both switches had similar CPU utilization. Furthermore, their

results show that BESS uses a user-space packet processing model that eliminates

the overhead of kernel processing, resulting in lower packet forwarding delay and

higher throughput. On the other hand, ClickOS uses a lightweight hypervisor that

provides VNFs with low overhead, resulting in similar CPU utilization compared

to BESS.

Rodriguez et al. [22] compare the throughput of BESS, VP, and OVS-DPDK

using only physical interfaces of the host computer. In their benchmarking experi-

5

ment, the authors evaluated the performance of these software switches with packet

sizes spanning from 64 to 9000 bytes using a 10 Gbps network link. BESS outper-

formed both VP and OVS-DPDK in terms of throughput, as demonstrated by their

results. BESS achieved up to 24.52 Mpps with 64-byte packets, whereas VP and

OVS-DPDK only achieved up to 19.17 Mpps and 16.45 Mpps, respectively, with

the same packet size. Additionally, the authors observe that VP has lower latency

than BESS and is more suitable for latency-sensitive applications.

In addition to the research that has been done in the past, several studies have

been conducted to compare the processing costs of software switches on the underly-

ing hardware. Agesen et al. [23] analyze software-based and hardware-based virtual-

ization solutions for the x86 architecture and their influence on system performance

under di↵erent circumstances. Their results indicate that hardware-based solutions

outperform software-based techniques when the CPU is the bottleneck. This study

o↵ers useful insight into the trade-o↵s between software-based and hardware-based

virtualization strategies and demonstrates the performance advantages of hardware-

based alternatives. Smith et al. [24] analyze the CPU usage and throughput of SR-

IOV, Netmap Passthrough, OVS-DPDK, and Snabb in two di↵erent test scenarios:

inter-VM forwarding and 1-VNF loopback. Our work is unique because we consider

the resource utilization of P4 programmable software switches on the underlying

hardware.

In [25], Fernandes et al. suggests a novel approach to the design of soft-

ware switches for cloud networking. Their research utilizes a hybrid architecture

consisting of a software-implemented packet processing pipeline and a hardware-

implemented packet forwarding engine. This architecture aims to increase the

switches’ throughput while reducing CPU and memory use. Their work reveals that

this hybrid architecture can significantly improve the forwarding performance of a

6

switch, achieving a substantial improvement in packet processing rate and a reduc-

tion in CPU use and memory consumption compared to standard software switches.

This study is relevant to our thesis since the authors compare the processing cost of

the software switches in di↵erent scenarios; however, none of these studies consider

the energy consumption of software switches. In a comparative study by Redruello

et al. [26], several software switches’ CPU utilization, throughput, and latency, in-

cluding OVS, Linux Bridge, and Click, were analyzed. A test bed was developed to

evaluate the performance of the switches under di↵erent packet sizes and through-

puts. Their findings suggest that packet size and flow rate significantly impact the

performance of the switches. Furthermore, the study underscores the importance of

optimizing the configuration and parameters of software switches to achieve optimal

performance. Rang et al. [27] compared OVS and Linux containers to determine

their e↵ectiveness in handling NFV workloads. They evaluated the performance

of OVS and Linux containers based on CPU and memory usage, throughput, and

latency. Their results indicate that OVS outperformed Linux containers in terms of

packet forwarding rate and network speed, despite requiring more CPU and memory

resources.

7

Chapter 3

Background

3.1 P4 Programming Language

P4 is a programming language designed to enhance the data plane. P4 was de-

veloped in response to the issues posed by the need for flexible, adaptable, and

e�cient packet processing. P4 applications are developed in a high-level program-

ming language that describes how network packets are processed [4]. This includes

configuring the packet header format, processing the packet, performing actions

(such as modifying or deleting the packet), and updating packet metadata.

Conventional network devices such as switches and routers are often manu-

factured from the bottom up, with device vendors relying on prebuilt chips from

third-party manufacturers. These fixed-function chips determine the functionality

of such networking devices. Adding new capabilities to the device can be time-

consuming because the chip’s architecture is fixed and cannot be easily modified. In

contrast, P4-enabled devices allow users to have a ”top-down” methodology where

the programmer defines the network feature set in a P4 program, which is then

compiled and loaded into the network device. This requires a chip to have a set of

programmable and fixed-function blocks in the packet processing pipeline.

The P4 language specification defines a model describing a specific networking

device’s packet processing pipeline components. This model describes how di↵er-

ent function blocks of a device work together to handle packets [28]. The device

8

P4
Program

P4
Compiler

API

Target Dependent
representation

Control Plane

Data Plane

API

Tables

Load

Load

Forwarding Device

Fig. 3.1: P4 Program Flow

manufacturer provides all the information required about the function blocks in the

model that can and cannot be programmed. The first block in this pipeline is the

parser, which collects packet headers and sends them to the subsequent process-

ing control blocks. After that, the control blocks do further work on the packet,

like running match-action table chains, checking and recalculating checksums, and

deparsing the packet.

Figure 3.1 shows the general flow of P4 program compilation to a network

device. Once the user creates a P4 program to describe the forwarding behavior

of a network device, the program is passed to a compiler, which converts the P4

into a target-dependent representation of the code to be loaded into the device

(for example, JSON in the case of BmV2). Once the code has been loaded into

the device, control plane software such as P4Runtime can modify the match/action

table entries or the tables themselves [4]. Protocol independence is one of P4’s major

9

benefits. P4 enables network managers to create their packet processing functions,

enabling them to manage new protocols and network designs. This flexibility is

important as networks evolve and new applications and protocols are developed.

3.2 Behavioral Model Version 2 (BmV2)

Behavioral Model Version 2 (BmV2) is a P4-enabled software switch implementa-

tion frequently used in network function virtualization (NFV). The BmV2 software

switch is based on the P4 behavioral model and provides network researchers and

developers with high flexibility. In addition, BmV2 facilitates network function ex-

perimentation and quick prototyping [29]. BmV2 is intended to be modular and

versatile, allowing researchers and developers to test new network protocols and

topologies [30]. In addition, it can be used to develop network functionalities such

as load balancing, tra�c engineering, and security rules since it supports a variety

of P4-based packet processing pipelines, including stateful and stateless processing.

Figure 3.2 illustrates the design of a BmV2 simple switch. The BmV2 switch

operates in userspace and retrieves packets from the NIC driver using the pcap

library [30].

Figure 3.3 shows multiple stages that comprise the packet processing pipeline in

the BmV2 switch, beginning with the ingress parser, which converts the packet from

its raw bit form into headers based on a programmer-specified parser specification.

This stage also determines which packet headers are recognized (such as Ethernet or

IP) and their processing order. Following packet parsing, an ingress match-action,

also known as an ingress control function, determines the action for further packet

processing. Programmers can define Longest Prefix Match (LPM) or exact header

matching, followed by the action to be taken on the packet, such as forwarding or

10

Packets

Network Card

Card Driver

Hardware

Packet Capture

Kernel

User
Space

S/W

Parser Ingress Table/Match
Action Egress Deparser

Programmable
Pipeline

Fig. 3.2: Simple Switch Architecture

dropping it. Once complete, the packet is placed in the egress deparser’s queue for

egress processing. An egress match-action or egress control function processes the

packet upon dequeuing. The egress deparser specification does the separation and

deparsing of packet headers into a bit representation on output. The packet is then

transmitted from the switch [31].

In the research and development community, BmV2 is frequently used for test-

ing and experimenting with novel network protocols and topologies. In addition, it

has been used in several research initiatives, such as congestion control, load bal-

ancing, and network security [30]. BmV2 is also utilized in academic contexts to

teach SDN principles [30] and flexibility of P4-enabled software switches.

11

P4 Program Control Plane

Compiler Runtime API

Parser

HeadersHeaders

Text

Key 1

Key 2 Action Extern DeparserDeparser

P4Runtime / Thrift
User Defined

Architecture Specific

JSON

Ingress Egress

Fig. 3.3: BmV2 Packet Processing Pipeline

3.3 T4P4S

T4P4S is a P416 programming language multi-target software switch. T4P4S was

developed to overcome the shortcomings of current P416 compilers, which were

either single-target or lacking essential features such as multi-target abstraction

support [32]. The term target represents the underlying hardware that runs the

P4 software switch. Due to the di↵erences between the various architectures that

can host P4 software switches, implementing the P4 programming language in a

portable manner is di�cult. The suggested solution is to create a separate compiler

for each target architecture; however, this approach is not viable for all targets.

T4P4S switch aims to achieve retargetability by compiling the high-level P4

program’s data plane pipeline without modifying it for specific targets. The de-

sign includes a hardware abstraction layer that separates the switch software into

12

two parts: the Networking Hardware Abstraction Library (NetHAL) and Core.

NetHAL implements all hardware-dependent features in a protocol-independent

manner, whereas Core is the pipeline implementation compiled from the declara-

tive P4 program. Separating these two components increases modularity, simplifies

maintenance, and enables the switch software to be retargeted with minimal e↵ort.

A general interface (abstraction layer) unifies diverse architecture goals, and prelim-

inary findings indicate that this approach can compete with o↵-the-shelf solutions

for traditional data plane tasks [33].

The T4P4S switch generates a switch program consisting of a core divided into

slow and fast path components that can interact with di↵erent hardware targets via

the NetHAL interface. The switch also provides a low-level control plane interface

for filling match-action tables, setting default actions, querying counters, and pass-

ing data plane information to the control plane. The Core component implements

forwarding logic at a hardware-independent abstraction level derived from the P4

description. The table applications and forwarding actions are translated into C

functions, and the Core implements table applications’ control and data flow. In

contrast, the NetHAL implements actual table lookups and hardware-level functions

of the matched actions.

T4P4S is built to be extremely adaptable and scalable, making it appropriate

for a wide range of applications. It is written in C++ and supports P414 and P416.

T4P4S supports packet processing at several pipeline levels, such as parsing, match-

ing, and action execution. T4P4S is intended to be simple to use and to interact

seamlessly with current network infrastructure. It supports di↵erent output formats

for multiple architectures and has a simple command-line interface for setting the

switch [32].

13

3.4 P4Pi

P4Pi is a platform for running P4 applications on Raspberry Pi devices [34]. It

is developed on top of Raspbian Lite OS, enabling users to run P4 programs on

RPi devices using P4Pi, a low-cost way to experiment with and develop networking

applications. In addition, P4Pi configures the Raspberry Pi as an AP upon installa-

tion, making it simple to connect to and configure [34]. Additionally, P4Pi includes

all the components required to install and execute P4 [35]. This eliminates the need

for users to install additional software or configure their systems, making it easier

to get started with P4 programming. P4Pi supports two P4-compliant software

switches, BmV2 and T4P4S. These switches enable the testing and execution of P4

applications on a Raspberry Pi device. P4Pi also allows users to compile and load

P4 applications on these switches, allowing them to test and experiment with their

programs in a real-world setting [34].

Overall, P4Pi is a strong platform that o↵ers a comprehensive solution for exe-

cuting P4 applications on Raspberry Pi devices. Its user-friendly AP, pre-installed

software components, support for P4-compatible switches, and program loading

capabilities make it an excellent choice for developers and students interested in

experimenting with P4 programming on low-cost hardware.

3.5 Software Switch Design Space

3.5.1 Architecture

The architecture of a software switch plays a critical role in determining how packet

processing is organized and implemented. According to [36], the two primary cate-

14

gories of software switch architectures are self-contained and modular.

A self-contained software switch is designed to operate as a single process, with

all processing functions occurring concurrently. This architecture requires minimal

e↵ort to set up and is hence self-contained. The data flow in this architecture is

predetermined, and all processing functions occur in a single process. As a result,

self-contained switches o↵er better performance and are more cost-e↵ective than

modular switches. In addition, they are easy to set up and configure, making them

popular for simple network configurations.

A modular software switch is designed with preset network functions that can

be combined into a ”forwarding graph”. Each node in the forwarding graph can

be an independent thread or process, o↵ering greater flexibility in adding special-

ized network operations. A modular design allows for dynamic configuration and

modification of the switch’s behavior, making it useful for complex networks that

require customized processing functions and are subject to frequent changes. How-

ever, modular switches are more complex to set up and manage than self-contained

switches. They require careful design and configuration of the forwarding graph,

which can be time-consuming and may increase the risk of errors. Additionally,

modular switches su↵er from additional overhead due to the communication between

nodes in the forwarding graph. The main advantage of using modular switches is

their flexibility. They o↵er greater flexibility in adding specialized network opera-

tions, as new nodes can be easily added to the forwarding graph. This allows for

customization of the packet processing pipeline to meet the network’s specific needs.

In contrast, self-contained switches have a predetermined data flow, making them

less flexible than modular switches.

The choice of software switch architecture depends on the specific requirements

of the network and the level of flexibility and customization needed for packet pro-

15

cessing. For example, self-contained switches are a popular choice for simple network

configurations. In contrast, modular switches are useful for complex networks that

require customized processing functions and are subject to frequent changes. The

decision between the two architectures depends on the trade-o↵ between perfor-

mance, scalability, flexibility, and complexity.

3.5.2 Programming Paradigm

The development of software switches is significantly impacted by their intended use

cases, particularly regarding the packet processing paradigm they employ. Struc-

tured programming involves the use of pre-defined rules and instructions for packet

processing, whereas match/action programming utilizes packet classification algo-

rithms to match header data and execute corresponding actions. Various software

switches often use structured programming for tra�c routing across virtual network

functions (VNFs). BmV2 and T4P4S switches utilize the match/action paradigm,

as noted in [37].

3.5.3 Processing Model

The packet processing model can be classified into Run-to-Completion (RTC) and

pipeline models. In the RTC model, a single thread or core handles the entire

packet processing logic before forwarding or dropping the packet. This model is

simple to implement, and it can achieve high performance on modern multi-core

processors. In contrast, the pipeline model divides packet processing into multiple

stages, each handled by a di↵erent thread or core. Each thread processes a specific

part of the packet processing logic, and the packet moves from one stage to another

until it is forwarded or dropped. This model is more complex and requires careful

16

coordination between threads to avoid race conditions and deadlocks.

Most packet processing switches, such as T4P4S, use the RTC architecture to

reduce context-switching costs and achieve high performance. This means that a

single thread handles the entire processing logic for a packet before moving on to the

next packet. On the other hand, BmV2 uses the pipeline paradigm, where multiple

threads process di↵erent stages of the pipeline for packets.

3.5.4 Programming Language

The choice of a programming language for a software switch is influenced by a

number of criteria, including performance requirements and programmability. Due

to their e�ciency, broad feature set, and portability across many platforms, the

majority of high-speed packet processing software frameworks are often developed

with C and/or C++. T4P4S is developed in C, whereas BmV2 has its code base in

C++; both of these switches have Python-based runtime implementations.

Table 3.1: Taxonomy of P4 Software Switch

Architecture Processing

Model

Programming

Paradigm

Programming

Language

BmV2 Modular Pipeline Match/Action C++/Python
T4P4S Self-

Contained
Run to Com-
pletion

Match/Action C/Python

17

Chapter 4

Test Methodology and Evaluation

4.1 Measurement Platform

For our experiments, we use P4Pi on a Raspberry Pi 4 Model B. This board uses a

Broadcom SoC: Broadcom BCM2711, quad-core (ARM v8), 4GB Memory, 5.0 GHz

IEEE 802.11ac wireless and Gigabit Ethernet. For the tra�c generation, we used

Ubuntu 22.04 installed on a bare metal server.

4.2 Energy Measurement

Energy Measurement Platform for IoT devices (EMPIOT) [38] is a system devel-

oped to accurately measure the energy consumption of IoT devices in real time.

EMPIOT provides precise energy consumption measurements and enables develop-

ers to evaluate the energy e�ciency of their applications. In addition, the platform

is designed to be a cost-e↵ective, user-friendly solution that can easily adapt to

di↵erent scenarios.

EMPIOT comprises an INA219 shield that is linked to the host Raspberry

Pi device, which collects energy consumption data. The IoT device under test

is then powered through this setup, and the collected data is transmitted to the

host computer for analysis. EMPIOT features versatile raw data collection and

energy measurement capabilities and o↵ers flexible support for various measurement

18

parameters, such as measurement interval, range, and duration, to accommodate

diverse measurement requirements.

4.3 Testbed

Figure 4.1 show the testbed setup used for conducting experiments on the software

switch under test. We first set up the Raspberry Pi with an image of P4Pi and use

it as an AP. P4Pi provides T4P4S and BmV2 switches as separate Linux services

out of the box. While conducting experiments on each switch, we made sure that

the other switch’s service had been stopped and disabled so that there was no

conflict. To ensure a fair comparison between the switches, a very basic packet

forwarding P4 program was loaded into the switch under test. This was to ensure

that the complexity of the P4 program in no way hampered the performance of

these switches. Next, we used IPerf3 to generate TCP tra�c from the client to a

server, connected to P4Pi as shown in Figure 4.1. We monitored the tra�c with

Wireshark on each of the hosts’ interfaces to capture pcap files. The collected pcap

files were then examined to identify network performance factors.

EMPIOT P4Pi
P4 Software Switch

Host
[Server]

Host
[Client]

Power Supply Power Ethernet

5.0 GHz

Fig. 4.1: Testbed Setup

19

EMPIOT was installed on a second Raspberry Pi to measure power consump-

tion, which was then used to power the AP. Three di↵erent energy measurements

were recorded: baseline measurement when no tra�c was flowing, BmV2 mea-

surement when tra�c was passing through the BmV2 switch and similarly T4P4S

measurement. During these measurements, 600,000 timed samples were collected

with EMPIOT, and Python was used to analyze the collected data. These data

points were plotted over box plots and regression lines to understand the trend

and distribution of the data. CPU and memory consumption data were collected

directly from the AP using the psutil library [39] and analyzed. The Raspberry Pi

AP was rebooted between each experiment to ensure all caches and bu↵ers were

cleared. This was important to ensure that each experiment was conducted under

identical conditions and avoid potential biases that could a↵ect the results.

4.4 Throughput Evaluation

Figure 4.2 shows the comparison between the throughput capabilities of T4P4S

and BmV2, considering di↵erent packet sizes. The T4P4S processing model has

undergone substantial rounds of improvement, which is the primary reason why it

performs noticeably better than BmV2 in terms of throughput. The RTC paradigm

of T4P4S ensures that each thread operates on a single packet at a time, which

reduces resource contention between the threads and increases throughput. On the

other hand, BmV2 uses the pipeline paradigm, which separates packet processing

into stages, and each thread handles one stage of the pipeline. This approach

leads to threads waiting longer to acquire resources for packet processing, thereby

reducing throughput.

Another reason that leads to lower throughput of BmV2 is that it uses atomic

20

Fig. 4.2: Throughput Comparison

instructions to lock resources between multiple match/action table pipelines. In

contrast, T4P4S avoids atomic instructions by using lock-free double bu↵ering to

avoid resource locking when threads are accessing the match/action tables to process

packets. This approach involves maintaining two copies of the same table, with each

copy consisting of active and passive entries for the table. In case a thread has to

modify these tables, modifications are first made to the passive replica, and after

the modifications have been made, the active and passive duplicates are exchanged

after a specific wait time. This ensures consistency for additional threads reading

from the replica in parallel. The changes are subsequently propagated to the replica,

which is now inactive. This approach makes sure that the active duplicate is never

modified and reading entries from the table for the threads remains unlocked, which

enhances performance.

21

4.5 CPU, Energy Consumption, and Memory Consump-

tion

Figures 4.3 and 4.4 compare the CPU and energy usage of T4P4S and BmV2 soft-

ware switches at varied flow rates and packet sizes. T4P4S utilizes the resources

of the underlying hardware better than BmV2, even under heavy network loads, as

demonstrated by the results.

T4P4S adopts a thread-per-packet architecture, increasing the chances that

a thread will operate on the same core with the match table action execution

cached for the packets. This decreases contention for shared resources, such as

match/action tables, among the threads. This also ensures that threads are e�-

ciently scheduled and executed without unnecessary overhead, reducing CPU and

energy usage. In contrast, the pipeline architecture of BmV2 results in increased

competition for shared resources, such as cache, between the threads, resulting in

greater CPU and energy usage.

Figure 4.5 shows the memory consumption of two software switches, T4P4S

and BmV2, for di↵erent packet sizes and under four di↵erent flow rates. T4P4S has

slightly better performance in terms of memory usage than BmV2. This is because

the packets in the queue are processed more rapidly in T4P4S than in BmV2. The

graph indicates that with an increase in flow rate and packet size, memory usage in-

creases because increased flow rate or packet size leads to a greater volume of packets

that require storage and processing in the software switch’s memory. Also, T4P4S

utilizes a memory pool allocator, a more e�cient memory management technique

than general-purpose memory allocation strategies [32]. The memory pool alloca-

tor allocates a block of memory in advance and uses it as a source of memory for

small, fixed-size allocations. This technique enables faster memory allocation and

22

(a) Flow Rate: 10Mbps

(b) Flow Rate: 50Mbps

(c) Flow Rate: 80Mbps

(d) Flow Rate: 100Mbps

Fig. 4.3: Energy Consumption

(a) Flow Rate: 10Mbps

(b) Flow Rate: 50Mbps

(c) Flow Rate: 80Mbps

(d) Flow Rate: 100Mbps

Fig. 4.4: CPU Utilization

23

(a) Flow Rate: 10Mbps (b) Flow Rate: 50Mbps

(c) Flow Rate: 80Mbps (d) Flow Rate: 100Mbps

Fig. 4.5: Memory Utilization

deallocation compared to general-purpose memory allocators, as it eliminates the

need to request and release memory from the operating system for each alloca-

tion and deallocation process. This method also decreases the danger of memory

fragmentation, which can happen when memory is repeatedly allocated and deal-

located for packet processing, resulting in wasted memory space. BmV2 uses a

general-purpose memory allocator, which is less e�cient for tiny, fixed-size mem-

ory allocations. This results in increased memory consumption and fragmentation,

which harms the memory usage of the BmV2 switch.

24

Chapter 5

Conclusion and Future Work

In this study, we began with a discussion of prior work undertaken in the compar-

ison of software switches. We found that although comparative studies of software

switches exist, there is no research conducted on the resource utilization of P4-

enabled software switches.

Chapter 3 provided an analysis of the architectures of the two switches under

consideration, T4P4S and BmV2, and a brief overview of the components used

in our experiments. Additionally, the chapter explored the software switch design

space and highlighted the notable di↵erences and similarities that exist between the

P4-enabled software switches, which must be taken into account when designing

such switches. The experiment results presented in Chapter 4 show that T4P4S

uses lesser resources and has a greater throughput than the BmV2. This research is

based on the fact that T4P4S is architecturally distinct from BmV2 in terms of how

packets are processed in these switches. In particular, we identified that the RTC

paradigm used by T4P4S leads to reduced context switching costs, which, in turn,

results in lower CPU and energy consumption. Furthermore, the RTC paradigm

minimizes resource contention between threads and enhances the overall throughput

of T4P4S when compared to the pipeline architecture of BmV2. In the pipeline

model, packet processing is split into stages, resulting in more frequent context

switches during packet processing, which increases the processing cost. Additionally,

the pipeline architecture causes longer wait times for threads to acquire resources,

25

leading to reduced throughput.

While our study compares P4-enabled software switches, evaluating the perfor-

mance and e�ciency of various P4 compilers and target platforms is a potential

future addition. The choice of compiler and target platform can significantly in-

fluence the overall performance of a P4-enabled switch, even though P4 o↵ers a

high level of flexibility and programmability [40]. Parameters such as energy con-

sumption and scalability are among the most important ones when performing such

study. In addition, future research may investigate the e↵ect of di↵erent network

layouts and topologies on the performance of P4-based networks and compare the

performance of P4-based networks to that of conventional, fixed-function network

hardware.

26

Bibliography

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-

molky, and S. Uhlig, “Software-defined networking: A comprehensive survey,”

Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[2] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Wang, and N. Gude,“Towards

an open, extensible, and scalable network control plane,” in ACM SIGCOMM

Computer Communication Review, vol. 39, no. 4. ACM, 2009, pp. 68–73.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner, “Openflow: enabling innovation in campus

networks,”ACM SIGCOMM Computer Communication Review, vol. 38, no. 2,

pp. 69–74, 2008.

[4] P. Bosshart, D. Daly, R. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, K. Talayco, A. Vahdat, G. Varghese et al., “P4: Programming

protocol-independent packet processors,”ACM SIGCOMM Computer Commu-

nication Review, vol. 44, no. 3, pp. 87–95, 2014.

[5] P. Bosshart, D. Daly, D. Estrin, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, K. Talayco, A. Vahdat, and G. Varghese, “P4runtime: How

a protocol-independent logical switch api enables sdn,” in Proceedings of the

2018 Conference of the ACM Special Interest Group on Data Communication.

ACM, 2018, pp. 498–511.

27

[6] E. Haleplidis, N. Finn, B. Varga, S. Jalali, S. Amante, D. Lübben, and

S. Bryant, “P4 language: Control plane meets data plane,” in 2015 IEEE Con-

ference on Network Function Virtualization and Software Defined Networks

(NFV-SDN). IEEE, 2015, pp. 1–2.

[7] Q. Hu, Y. Li, Y. Liang, G. Han, and J. Zhou, “A survey on software-defined

network and openflow: from concept to implementation,” in 2017 3rd IEEE

International Conference on Computer and Communications (ICCC). IEEE,

2017, pp. 1959–1964.

[8] M. U. Farooq, K. Saleem, and M. Waseem, “A survey on internet of things

architectures,” Journal of Network and Computer Applications, vol. 84, pp.

23–44, 2017.

[9] S. M. M. V. G. Gustavo Caiza, Santiago Chiliquinga,“Software-defined network

(sdn) based internet of things within the context of low-cost automation,” IEEE

International Conference, 2018.

[10] B. Pfa↵, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,

K. Amidon, M. Wang, and A. Vahdat, “Design and implementation of the open

vswitch,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 2,

pp. 1–4, 2015.

[11] M. Kobayashi, M. Katsube, K. Kozu, K. Sajima, and Y. Ohara, “Lagopus: an

openflow switch conforming to the specification and beyond,” in Proceedings of

the 2013 ACM SIGCOMM conference on SIGCOMM, 2013, pp. 475–476.

[12] R. Hasegawa, M. Kobayashi, K. Matsuzawa, K. Izumi, and K. Sajima, “Ryu:

A next generation openflow controller for openstack,” in 2014 IEEE 22nd In-

ternational Conference on Network Protocols (ICNP), 2014, pp. 1–2.

28

[13] D. Merich, F. Raumer, F. Wohlfart, and G. Carle, “Performance characteristics

of virtual switching,” in 2014 IEEE 3rd International Conference on Cloud

Networking (CloudNet), Oct 2014, pp. 120–125.

[14] R. Rajagopalan, M. Imbriaco, G. Nogueria, and C. Schlesinger, “Network func-

tions virtualization on cots: Performance opportunities and challenges,” IEEE

Communications Magazine, vol. 54, no. 1, pp. 148–154, 2016.

[15] F. Liu, H. Qian, R. Han, M. Li, and X. Zhang, “Virtual switch performance:

netmap vs sr-iov,” IEEE Communications Magazine, vol. 54, no. 1, pp. 110–

117, 2016.

[16] Snabb, “Snabb: Simple and fast packet networking,” https://snabb.io/, 2023,

accessed on: April 4, 2023.

[17] DPDK, “DPDK,” https://www.dpdk.org/, accessed on: April 4, 2023.

[18] V. Singh, R. Namdeo, and A. Verma, “Performance comparison of virtual

switches in software defined networks,” International Journal of Computer Net-

works and Applications, vol. 6, no. 2, pp. 23–29, 2019.

[19] Z. Niu, H. Xu, L. Liu, Y. Tian, P. Wang, and Z. Li, “Unveiling performance of

nfv software dataplanes,” pp. 13–18, 2017.

[20] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,

“Softnic: A software nic to augment hardware,” EECS Department,

University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155, May

2015. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/

2015/EECS-2015-155.html

[21] F. Martins, I. Ahmed, A. Akella, K. Gopalan, J. Haridas, L. Iftode, and J. Rex-

ford, “Clickos and the art of network function virtualization,” in 11th USENIX

29

Symposium on Networked Systems Design and Implementation (NSDI 14).

USENIX Association, 2014, pp. 459–473.

[22] J. Rodriguez, A. Wundsam, K. Xu, N. Egi, and S. Seo, “Benchmarking p4

switches: a survey,” IEEE Communications Magazine, vol. 57, no. 3, pp. 48–

54, 2019.

[23] K. Adams and O. Agesen, “A comparison of software and hardware techniques

for x86 virtualization,”ACM Transactions on Computer Systems, vol. 40, no. 2,

pp. 1–23, 2021.

[24] J. Smith and S. Brown, “Performance analysis of sdn switches with hardware

and software flow tables,” Journal of Network and Computer Applications,

vol. 96, p. 102863, 2021.

[25] E. L. Fernandes, E. Rojas, J. Alvarez-Horcajo, Z. L. Kis, D. Sanvito, N. Bonelli,

C. Cascone, and C. E. Rothenberg, “The road to bofuss: The basic openflow

userspace software switch,” Journal of Network and Computer Applications,

vol. 165, p. 102685, September 2020.

[26] M. Redruello, R. González, D. Melendi, J. L. Garćıa-Dorado, R. Rubión, and

A. Azcorra, “Comparative analysis of software switches for cloud networking,”

Computer Networks, vol. 102, pp. 172–187, 2016.

[27] T. Rang, “[pdf] nfv performance benchmarking with ovs and linux

containers | semantic scholar,” https://www.semanticscholar.org/

paper/NFV-performance-benchmarking-with-OVS-and-Linux-Rang/

9ceb68be095f0557c5aaa97b83bfe743e9cbc265, 2019, [Accessed: March 19,

2023].

30

[28] P. Bosshart, D. Daly, B. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, E. Talayco, A. Vahdat, G. Varghese, D. Walker, and H. Xu, “P4

language specification,” https://p4.org/p4-spec/docs/P4-16-v1.2.2.html, 2021,

[Online; accessed 15-March-2023].

[29] M. Jafarian, H. Kim, S. Son, M. Caesar, and N. Feamster, “Beyond OpenFlow:

A Deep Dive into the Programmable Dataplane,” in Proceedings of the 13th

International Conference on emerging Networking EXperiments and Technolo-

gies (CoNEXT), ser. CoNEXT ’17. ACM, 2017, pp. 17–30, [Online; accessed

March 13, 2023].

[30] “Bmv2,” https://github.com/p4lang/behavioral-model, accessed: 2023-03-13.

[31] A. Shukla, S. Fathalli, and T. Zinner, “P4CONSIST: Toward consistent P4

SDNs,” in 2019 IEEE Conference on Network Function Virtualization and Soft-

ware Defined Networks (NFV-SDN). Dallas, TX: IEEE, Nov. 2019, pp. 1–7.

[32] G. Bianchi, A. Pescapè, and G. Ventre, “T4p4s: a multitarget p4 compiler,”

in IEEE Conference on Network Function Virtualization and Software Defined

Networks (NFV-SDN), 2018, pp. 1–7.

[33] M. Simon, H. Stubbe, D. Scholz, S. Gallenmüller, and G. Carle, “High-

performance match-action table updates from within programmable software

data planes,” in Proceedings of the 16th ACM International Conference

on emerging Networking EXperiments and Technologies, ser. CoNEXT

’21. New York, NY, USA: ACM, 2021, pp. 121–136. [Online]. Available:

https://doi.org/10.1145/3493425.3502759

[34] S. Laki, R. Stoyanov, D. Kis, R. Soule, P. Vörös, and N. Zilberman, “P4pi,”

vol. 51, no. 3. ACM, 2021, pp. 17–21.

31

[35] “P4 language specification,” https://p4.org/p4-spec/docs/, accessed: March

13, 2023.

[36] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, and

S. Azodolmolky, “Software-defined networking: A comprehensive survey,” in

2014 IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), 2014, pp. 1–9.

[37] M. Izquierdo, P. L. Rodriguez, and P. J. Marron, “Evaluation of software switch

architectures for NFV,”Computer Networks, vol. 135, pp. 73–86, 2018.

[38] B. Dezfouli, I. Amirtharaj, and C.-C. C. Li, “Empiot: An energy measurement

platform for wireless iot devices,” Journal of Network and Computer Applica-

tions, vol. 121, pp. 135–148, November 2018.

[39] G. Rossi and G. Rodola’, “psutil - cross-platform system and process

utilities module for python,” Jan. 2022. [Online]. Available: https:

//doi.org/10.5281/zenodo.4741562

[40] Z. Li and J. Yuan, “A review on p4-programmable data planes: Architecture,

research e↵orts, and future directions,” Computer Communications, vol. 173,

pp. 221–238, 2021.

32

	Comparison of P4 Programmable Software Switches as WiFi Access Points
	tmp.1686676604.pdf.sr0dk

