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Abstract 

 The paper introduces a new approach to adapting network control systems to 

changing network conditions.  The meta-controller proposed here is capable of 

monitoring network communication delays and seamlessly switching from control loops 

executing on a base station computer to control loops on a remote robot.  This allows the 

control system to handle unexpected communication delays or failures without halting 

operation or becoming unstable.  It also allows for a high level of human in the loop 

operation or monitoring at the base station without sacrificing the autonomous behavior 

of the remote robot.  The meta-controller can automatically transition control loops 

between the base station and remote robot as operator confidence in system performance 

increases.  This research develops the meta-controller framework, proposes a switching 

strategy, and demonstrates the concept through simulation and experimental testing. 
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1 Introduction 

Networked control systems are becoming more common in a wide variety of fields.  

Applications range from the Mars rovers [1] to haptic manipulator control for 

teleoperated surgery [2] to multi-robot coordination for exploration and mapping [3].  All 

of these systems have some part of their control system operating over a network link and 

must be designed within the constraints imposed by those networks.  A significant 

amount of research has been done focusing on how to design for these network delays 

and handle unexpected delays and communication failures [2, 4, 5].  This paper will 

present a new control system design which can improve performance on networks with 

large latency variance, handle network latency outside of the design parameters, and 

maintain control during communication failures.  It also allows for a high level of human 

in the loop control without sacrificing system performance.  The meta-controller can be 

used to automatically transition to autonomous control as the operator’s confidence in the 

system grows. 

1.1 Networked Control Systems 

The design issues involved with operating a control loop over a wireless 

communication link have been explored in depth, in several different papers [9-13].  

These papers discuss how to deal with network latency, bandwidth limitations, and 

interference which can help to make decisions about where control loops should be 

executed, at what rate, and what performance can be achieved.  The described practices 

work well under average network conditions where a maximum latency and interference 

can be measured or reasonably estimated and included in the control system design.   
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Existing research into handling network anomalies include strategies such as 

dynamically reducing the performance of the control system [14] or safely stopping the 

remote operation until network performance improves or communication is restored [2].  

This paper proposes an alternative design which will maintain operation even during a 

communication failure.   

1.2 Autonomous vs. Human in the Loop Control 

Another common design issue for remotely operated systems is the tradeoff 

between autonomous operation and human in the loop control.  Allowing more 

autonomous operation frees the system from waiting for operator input and can 

significantly improve the overall performance of the system.  Maintaining human control 

allows for closer management of system operation and may be preferable for difficult 

tasks where current levels of automation are unreliable or experimental.  The controller 

proposed in this paper works for both fully autonomous systems and human in the loop 

systems where autonomous operation is possible but not necessarily desired.  More 

specific details of applications are discussed below. 

1.3 What is Meta-Control? 

There are several different definitions and a wide variety of applications for meta-

control which have been presented in multiple papers.  These definitions span a wide 

range of topics from a web framework for dynamically enforcing context sensitive 

policies [6] to a framework for scheduling high level activities based on the tradeoff 

between quality and duration of the tasks [7].  All of these definitions follow the same 

underlying principle of altering the operation of the controller or control system based on 

the state of the system.  This paper focuses the meta-controller definition on altering the 
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physical location of control loop execution, specifically, migrating control back and forth 

between a base station and a remote robot based on the amount of network 

communication delay. 

1.4 Applications 

1.4.1 Mars Rovers 

NASA launched the Mars Pathfinder in December 1996.  The Pathfinder landed 

successfully on the surface of Mars and became the first rover to drive on the Martian 

surface.  The final transmission was received from Pathfinder in September of 1997.  

NASA has successfully operated two other rovers, the MER-A Spirit and the MER-B 

Opportunity for extended periods of time.   

The several minute one-way communication delay between Earth and Mars makes 

it impossible to drive the rovers via a joystick on Earth.  Earth based drivers would not be 

able to see and react to obstacles in time when the rover is traveling at any speed above a 

slow crawl.  To solve this problem, the designers were forced to use a combination of 

Earth based and rover based control as well as autonomous and human in the loop control 

[1, 15].  The autonomous control allows for continuous navigation and operation despite 

the communication delay and the Earth based navigation planning allows operators to 

move the rovers to specific locations required to meet mission objectives. 

Relinquishing human control of a multi-million dollar rover which cannot be 

serviced or retrieved is not something that is taken lightly.  Operators prefer to start 

conservatively.  They maintain human control and monitor the performance while they 

build confidence in the system.  After a performance history has been built up, operators 
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disable human control and enable autonomous functions.  This transition is performed 

manually, piece by piece, with separate pieces of behavior being enabled at different 

times.  The meta-controller presents a way to handle this transition autonomously.   The 

meta-controller allows for base station control, but will automatically switch to remotely 

executing control loops when system performance suffers.  This allows for close operator 

monitoring and control without sacrificing system performance due to long 

communication delays. 

1.4.2 Model Based Anomaly Management of Space Systems 

This technique maintains a system model and attempts to diagnose and correct for 

anomalies on in-flight space system [8].  Anomalies are detected and mitigated by 

comparing the actual system state to the predicted output of the system model.  When the 

anomaly detection system is first brought online, human operators closely monitor every 

aspect of it.  Operators will enable autonomous base station and eventually autonomous 

remotely executed parts of the control system slowly as their confidence in the system 

builds.  The transition process is performed manually for each section of the control loop 

which needs to be transferred.  The meta-controller can be used to automate this 

transition process and allow for easy transition of small or large sections of the control 

loops.  Communication link dependent sections of the control can be run and monitored 

at the base station and automatically switch to the remote computer during 

communication link lag or failure. 

1.5 Objectives 

The objective of this paper is to explore the automated migration of control for a 

remote robot as a function of communication link delay between the robot and its remote 
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operator control console.  As an initial study of this capability, the basic navigation tasks 

of controlling heading and position have been selected for study.  Performing this study 

required the formulation of a control switching architecture and the establishment of 

switching criteria based on task performance.  To iteratively test and explore this 

approach, a simulation environment was developed and a number of simulated cases 

were evaluated.  The technique was also evaluated through hardware experimentation 

with a simple mobile robot.  Results show that the automated switching of the motion 

controller successfully allows performance to be maintained in the face of time-varying 

communication delay. 

1.6 Reader’s Guide 

Chapter 1 describes the motivations and objectives of this thesis and briefly 

describes the achieved results.  Chapter 2 reviews the classic design of networked control 

systems as well as the meta-controller theoretical design. Chapter 3 presents the 

simulation model that is used to test the meta-controller and the results shown by those 

tests.  Chapter 4 describes the experimentation test setup used to test the meta-controller 

model in an example application as well as experimental results.  Chapter 5 summarizes 

the accomplished work and discusses future research that can be done in this area. 
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2 The Meta-Controller 

This chapter reviews classical network control system design and the implementation 

of the meta-controller control system.  Section 1 overviews the classic approach for 

designing a networked control system and how to address issues such as latency, network 

bandwidth, and packet loss.  Section 2 describes the meta-controller theory and design. 

2.1 Network Control Systems 

Network control system design must take into consideration three aspects of the 

network communication system when designing the controllers.  These three aspects are 

network bandwidth, latency, and packet loss.  The affects of each of these are reviewed 

below. 

2.1.1 Network Bandwidth 

Network bandwidth will set a maximum for the sampling and execution rate of 

the controller across the networks.  Under optimal conditions the maximum sampling rate 

(������ can be computed using the following formula. 

 ����� � �	
��
���
�	�	 ��
��� � ����	�� ������	� 

(1)  

 

Where bandwidth is the maximum bits/second which can be transmitted over the 

link, data length is the length in bits of the control data, and message overhead is the 

extra data overhead required to transmit a message.  In simpler communication protocols, 

message overhead may include a message start flag, data length, checksum, and end flag.  
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In more complex protocols, overhead may also include extra data for more sophisticated 

error detection and correction algorithms, encryption, and so on. 

In simple point to point networks it is acceptable to use a much larger percentage 

of the total network bandwidth, whereas wireless networks with more nodes should 

reserve a larger portion of the total network bandwidth to help reduce collisions and 

transmission waiting delays.  

When following a classical design approach in the frequency domain, if the 

network bandwidth is the limiting factor on sample rate it also determines the Nyquist 

frequency of the controller.  Standard practices to account for the phase and gain 

consumed by the digital effects should be used.  For example, if a zero order hold is used 

to sample data at the maximum network sample frequency, the phase and gain consumed 

by the ZOH can be calculated using the following formulas. 

 

|�����| � �
 �

 !" �

��# 
" �

��
 

(2)  

 $����� �  %" �
��

 
(3)  

Where ����� is the desired transfer function, � is the gain crossover frequency of 

the desired transfer function, and ��  is the sample frequency.  These gain and phase 

numbers should be allocated during the design phase of the controller. 

2.1.2 Network Latency 

Network latency is simply the total amount of time it takes the controllers to pack, 

transmit, error check, and unpack the control data.  Packing, error checking, and 

unpacking should be very close to constant time as they only rely on either the sending or 
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receiving processor.  In a point to point network, transmission time can also be close to a 

constant value as there is no waiting for another controller to finish transmitting before 

this controller’s transmission begins. 

Analysis of network delay for multi-node networks can be significantly more 

complex.  [16] shows that designing for the average network latency can produce 

acceptable results and that significantly better results can be attained by using a state 

estimator and feeding measured network latency as input.  Both of these methods will 

eventually become unstable under long enough network transmission delays. 

  Figure 1 illustrates the stack up of network latency times. 

 

Figure 1 Network Time Delays 

In a classical control system design network latency should be added to all other 

computational time delays.  This total delay time does not alter the shape of the input so it 
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only contributes phase shift, or lag, to the system.  The formula below, from [2], can be 

used to calculate the phase lag. 

 & � �'� 180°
"  

(4)  

Where �'  is the total delay time including network latency and computational 

delays and � is the crossover frequency of the desired transfer function. 

2.1.3 Packet Loss 

Both wired and wireless networks can suffer from information loss due to 

interference and network collisions.  This packet loss can have one of two effects 

depending on the type of network used.   

If the network protocol allows for error detection and packet retransmission, the 

lost packet will still reach its destination but will incur a longer time delay.  The 

retransmission time multiplied by the expected packet loss percentage should be included 

in the total computation delay time calculated above.  If the network protocol does not 

allow for packet loss detection and retransmission then the lost packet is effectively 

slowing the data sampling rate of the controller.  Liu and Goldsmith analyze the effect of 

packet loss and derive the following formula for the effective sampling rate in [2]. 

 �,-- �  ��� (5)  

Where �� is the previously calculated sample rate, � is the fractional percentage 

of messages expected to be successfully transmitted, and �,--  is the new effective 

sample rate.  This new sample rate should be used when compensating for gain and phase 

caused by digital sampling. 
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2.1.4 Placing Control Loops 

To determine which control loops should be executed on the remote robot and 

which should be operated across the network, the designer should complete two separate 

performance analyses.  The first should determine the system performance across the 

network using the techniques discussed above and the second should evaluate system 

performance when running on the remote robot using standard digital control design 

techniques.   

In systems only concerned with performance, the comparison between the two 

analyses determines where to place the control loops.  In complex systems, like those 

described in the applications section, it is common that the limited processor capabilities 

of the remote robot will perform worse than the networked control systems.  The meta-

controller discussed in this paper will improve the overall performance of these complex 

systems as well as systems where control loops are kept at the base station for non-

performance reasons. 

2.2 The Meta-controller 

In the previous section we discussed the design of a networked control under 

normal operating conditions.  The classical controller maintains system stability by 

maintaining phase margin at the controller crossover frequency and gain margin to 

account for inaccuracies in the model and various mechanical components.  When the 

system is operating within the design limits, the phase and gain margins are sufficient to 

maintain stability and performance.  However, when the operating conditions begin to 

change the margins shrink, the performance degrades, and the system eventually becomes 

unstable.  The meta-controller addresses this problem for changes in network 
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performance of control systems by monitoring the communication link and dynamically 

switching between controllers.  

2.2.1 Theory 

The meta-controller model monitors network latency and switches control loops 

between local and base station execution to maintain stability in the system.  To achieve 

this, both controllers must be capable of running stable control loops for the system and 

the remote robot must have some mechanism for measuring network latency.  The 

general form of the meta-controller is shown in figure 2. 

 

Figure 2 Meta-controller System Overview 

A switching matrix is used by the meta-controller to select which control loop is 

active.  The commands from each control source are multiplied by either a one or a zero 

to select which set of command is passed to the actuator.  This is the simplest method to 

transition between two separate controllers, but can be expanded to allow more 

sophisticated switching techniques.  For example, instead of swapping the ones and 

zeroes when a control transition occurs, a ramp function can be used over several sample 

periods to smoothly transition the zero to a one and the one to a zero.  This will 
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effectively blend the two commands over the ramp transition period providing a smoother 

transition for the system.   

The networked base station control loop is designed with a finite amount of gain 

and phase margin.  The exact margin can be calculated by sine sweeping the system 

under normal operating conditions.  Also, the nominal network latency should be 

measured and the phase lag caused by network latency should be added back to the 

measured phase margin.  The meta-controller will allow most of this phase margin to be 

consumed before switching to remote robot control.  The designer may place the phase 

margin switchover point wherever they desire, but simulation trial and error suggest 

maintaining at least 10 degrees of margin. 

Once the designer determines how much phase lag can be caused by network 

latency the value can be back calculated into latency in seconds using a modified version 

of formula 4.  

 &
�

"
180° � �' 

(6)  

The time delay is measured by the meta-controller and used to set the switching 

matrix to the desired control loop.  A walkthrough of an example meta-controller design 

is shown in detail in the simulation portion of this document. 

2.2.2 Transitioning 

Transitioning between control loops, even in a P or PD system, can cause a 

discontinuity in the command output.  If the system cannot handle a discontinuous step in 

command a ramp function can be used during the transition period to smooth transition 

between controllers.   
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2.2.2.1 P Transition 

The maximum command step cause by a proportional gain during transition is a 

function of the time delay transition set point, the maximum expected system rate of 

change, and the P gains.  The following formula is derived for calculating the maximum 

command step caused by switching proportional controllers. 

 ∆/0'���� 12����034�'56 (7)  

Where K89:;  is the larger of the two gains, v=>?  is the maximum expected 

system rate of change, and tABC  is the lag time transition set point of the meta controller.  

The effects of this command step are demonstrated and discussed in further detail in the 

simulation section of this paper. 

2.2.2.2 D Transition 

The maximum step command caused by the derivative gain can be calculated in a 

similar manner to the proportional gain, substituting the maximum expected acceleration 

for maximum expected rate of change.  The new formula follows. 

 ∆/0'���� 1D���	034�'56 (8)  

 

Where KE9:; is the large of the two gains, a=>? is the maximum expected system 

acceleration, and tABC  is the lag time transition set point of the meta controller. 

2.2.2.3 I Transition 

If an integrator is used in the controller, several methods can be used to prevent 

integrator wind up.  The simplest solution is to zero the integrator of the controller that is 
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not active.  This requires a signal be returned from the meta-controller on the robot to 

zero the integrator of the base station.  Transitioning can cause a maximum step 

command equal to the maximum integrator command output. 

 ∆/0'���� �1GH�034 (9)  

Where 1G is the integrator gain, H is the maximum integrator value, and �1GH�034 

is the larger value of the two controllers. 

Alternatively, the integrator value for the active controller can be passed to the 

inactive controller and used to set the inactive controllers integrator value.  If the control 

loops do not have identical integrator gains, the integrator value should be multiplied by 

the ratio of the gains before being used to set the integrator.  While this method will give 

a smoother transition between controllers, it will also consume more network bandwidth 

to transmit both the active controller command and integrator values. 

2.2.2.4 Total Transition Effects 

The total worst case step in control command is simply the sum of the three P, D, 

and I command steps.  If this step command is not acceptable in the system, more 

sophisticated transitioning methods should be explored.  
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3 Simulation 

3.1 Simulation Setup 

The meta-controller model is tested using a Simulink simulation which combines 

the base station, robot, and meta-controller as well as a simulated network delay.  This is 

connected via Data Turbine to a Mobile Sim model of a single differential drive mobile 

ground robot.  The simulation setup is shown below. 

 

Figure 3 Simulation Configuration 

Data Turbine is a communication application which makes data passing over a 

network between applications seamless.  Different applications can be swapped out 

without reconfiguring other applications on the network for a different source or sink.   

Mobile Sim runs real time models of different mobile robots.  It receives heading 

and velocity commands from the controller via Data Turbine and sends position, heading, 

and velocity information back from the model.  Data Turbine and Mobile Sim are used to 

allow an easy transition into controlling the demonstration robot.   
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The kinematics of the differential drive robot are described in the following figure 

and equations.  The important feature of the differential drive configuration is the ability 

to turn in place.  This decouples the heading control from the velocity control as long as 

the velocity control commands are not allowed to saturate the drive motor output.  More 

information on differential drive robots can be found in [11] or a number of other books 

on the topic of mobile robot kinematics. 

 IJ �  � KL �  M
2O 

(10) 

 IP �  � KL %  M
2O 

(11) 

 

Figure 4 Differential Drive Robot Dynamics 

 The high level view of the Simulink model of the controllers is shown in figure 5.  

The main parts of the simulation are the base station controller, robot controller, meta-

controller, network latency simulation, and the robot model simulation interface. 
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Figure 5 Meta-controller Simulation Model 
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 Both the base station and robot controller models run identical copies of an inner 

heading control loop and outer position control loop.  The outer position control loop 

calculates the heading and distance to goal and outputs a desired heading and a velocity 

command.  The desired heading command is passed to the heading control loop which 

compares it to the actual heading and generates a differential speed command to turn the 

robot to the desired heading.  The controller and equations are shown below. 

 

Figure 6 Base Station Controller Model 

 �/0' �  1QRST,U �  V,U (12) 

 W/0' �  tanYZ T,
V,

 
(13) 

 W[/0' �  1Q\W, (14) 

The gains of position and heading controllers used in the simulation are set solely 

on trial and error until acceptable performance is achieved.  The control gains are not 

optimal and are not product of a classic design for a desired transfer function.  An 

optimized controller is not required to test the meta-controller as even a controller with 

low gains can be made unstable with sufficient communication delay. 

The robot controller also contains the switching matrix which is controlled by the 

meta-controller and is used to switch between robot and base station control.  A simple 
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discrete switching matrix is used and more advanced transitioning techniques are not 

explored in this paper.  

The Data Turbine connection block encapsulates the Data Turbine interface to the 

Mobile Sim robot model.  It contains both the uplink for forward and rotational velocity 

command and the downlink for position and heading feedback.  

Finally, the network between the base station and controller is simulated by adding 

a variable uplink and downlink delay between the base station and robot.  In the 

simulation this delay is set as a sinusoidal input to cause multiple switches between 

control loops on a single run.  The amplitude of the delay is selected to cause instability 

when the robot is controlled in base station only mode.   

3.2 Meta-controller Design 

 The meta-controller measures the network latency and uses simple thresholds to 

switch between controllers.  When the latency exceeds a set threshold the meta-controller 

will switch to robot control.  When the latency drops back below the threshold the meta-

controller switches back to base station control.  If there were sufficient noise on the 

measured latency, hysteresis could be added to the switching thresholds to prevent 

frequent transitioning when delay is near the cross over point. 

The meta-controller uses two different switching thresholds for the inner and 

outer loop as the inner loop is operating at a higher bandwidth and is more sensitive to 

the network latency.  For simulation purposes the meta-controller can perfectly measure 

the uplink and down link latency with zero time delay.  In an actual implementation, 
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there may be both error and delay in this measurement.  The designer can correct for 

expected error and delay by increasing the phase margin switch over point.  

After the control gains are selected a sine sweep of the inner control loop is 

performed to measure the closed loop system response.  For the specific physical system 

used for this research, the system response begins to roll off at command frequencies 

higher than 0.3 rad/sec.  This is used as the gain crossover frequency when determining 

the meta-controller switching thresholds.  The sine sweep also shows that the controller 

has about 25° of phase lag.  This is used to determine the switching threshold for the 

meta-controller. 

Equation 6 is used to calculate the time delay switch over point which will be 

used for the inner loop controller.  Any system will become unstable if there is more than 

180° of phase lag.  This controller already has 25° of phase lag and we would like to keep 

10° of margin.  This leaves 145° of phase which can be consumed by the time delay.  

Using equation 6 with the calculated phase and gain crossover frequency gives the 

following. 

 145°
0.3 �	�/�

"
180° � 8.4� 

(15) 

This number is used as the switching threshold for the inner control loop of the 

meta-controller model.  This number seems excessively high because the Simulink model 

is running faster than real time and the Mobile Sim plant model is running in 

approximately real time.  This makes the plant seem extremely slow from Simulink’s 

perspective which is why this threshold is so high.  The different time frames do affect 

the simulation results as all results are presented in the Simulink time frame. 
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A full analysis was not performed for the outer loop.  The threshold was set 

approximately 50% higher than the inner loop threshold.  Setting the thresholds close to 

each other allows for transitions of both control loops without extremely large differences 

in time delays. 

An alternative method for setting the switching thresholds is to gather simulation 

data with increasing time delays.  The point at which the system becomes unstable or the 

performance is unacceptable can be used as the transition threshold for the system. 

3.3 Simulation Results 

For all tests the robot starts at position (0, 0) and is given a step command to (10, 

10). 

3.3.1 Robot Control 

A baseline run is completed using only the robot controller.  All meta-controller 

simulation results will be compared to this baseline.  The robot trajectory as well as X, Y, 

and heading error are plotted below.  As expected, the robot controller performs well and 

the robot drives smoothly to the goal position.  
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Figure 7 Robot Control Simulation Results 
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3.3.2 Base Station Control 

This simulation forces control to the base station.  The time delay input is a sine 

wave and is selected to cause the base station control to become unstable.  The frequency 

is high enough that when the meta-controller is enabled there will be multiple switching 

events in a single run. 

The following results show the instability of the base station controller under 

these conditions.  The controller is unable to continuously maintain the stability of the 

inner heading control loop which causes the robot to drive away from the goal when the 

delays are high and turn back towards the goal when the time delays are low.  The 

switching lines shown in the last graph are locked to base station control.  
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Figure 8 Base Station Control Simulation Results 
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3.3.3 Mixed Control 

The final simulation run enables the meta-controller to allow switching between 

the base station and robot control.  The time delay magnitude and period are kept the 

same as the previous run which cause instability in the base station.  The controller is 

able to maintain performance and reach the goal position.  The heading error oscillates 

more than with robot only control, but the goal is still reached in a comparable amount of 

time. 
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Figure 9 Meta-controller Simulation Results 
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3.3.4 Transition Effects 

The following figure shows the heading rate command after the switching matrix 

as well as the switching line which selects the heading rate command.  It is easy to see 

that transitioning between the base station and mobile robot can cause a large 

discontinuity in the command sent to the plant model.  The robot dynamics work to 

dampen this response so the large command jumps appear only as a small wavering in the 

robot trajectory. 

 

Figure 10 - Switching Effects 

3.3.5 Simulation Summary 

The simulation results of the meta-controller model show that a simple switching 

technique can be used to maintain system stability when a network experiences lag or 

packet loss that was not accounted for in the original design.  In the simulation 

configuration the controller spent 50% of the time using the base station position control 
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Test Heading Error 

Mean 

(radians) 

Heading Error 

Std. Dev. 

(radians) 

Position Error 

Mean (m) 

Position 

Error Std. 

Dev. (m) 

Robot 0.05 0.13 5.53 4.83 

Base Station 1.38 1.58 11.36 1.53 

Meta-Controller 0.97 1.02 4.73 4.54 

Table 1 Simulation Results 
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4 Experimental Test 

To test the meta-controller in a real world environment an experimental test bed was 

developed.  A differential drive robot with GPS, compass, microprocessor, and wireless 

communication link was used as the remote robot.  An overview of the test configuration 

is shown below and the details of each piece are discussed in the following section 

 

Table 2 Experimental Test Configuration 

4.1 Robot Platform 

A commercially available kit, the Parallax BoeBot, was used for easy construction 

and integration with the selected microcontroller development board.   

 

Figure 11 BoeBot 
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The robot base includes mounting provisions for a Basic Stamp development 

board.  The board includes a small breadboard area which is used to mount and connect 

sensors and wireless communication. 

4.2 Actuation 

4.2.1 Servos 

The BoeBot uses two continuous rotation hobby servo motors driven by a 

standard 1.3 to 1.7ms pulse every 20ms.  The servos can be driven in both forward and 

reverse so the BoeBot is capable of any radius turn from zero (turn in place) to infinity 

(straight line). 

4.2.2 ServoPal 

The selected microcontroller is only capable of single loop execution and cannot 

guarantee the servo commands will be sent every 20ms.  A Parallax ServoPal is used to 

receive commands from the microcontroller and maintain the appropriate pulse 

commands at the correct rate to the servos.  

 

Figure 12 Servo Pal 
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The ServoPal connects directly between the standard BasicStamp servo connection 

and the servo wires and is capable of controlling two servos.  The ServoPal will repeat 

any pulse width generated by the microcontroller between 0.5 and 2.5ms which is more 

than adequate for the BoeBot application.  

4.3 Sensors 

4.3.1 CMPS03 Digital Compass 

 

Figure 13 Digital Compass 

The CMPS03 compass is a two axis digital compass capable of resolving heading 

down to 1.4°.  The compass module outputs either over an I
2
C bus or a variable pulse 

width on a single pin.    The I
2
C bus is used for noise immunity in this application.  

Heading output is given in binary radians (BRADs) which count from 0 to 255 startin 

from North and increasing in the clockwise direction.  This one byte range allows for 

easy interpretation by the Basic Stamp as well as simple use of the Basic Stamp 

trigonometric functions which take BRADs as input units.  The compass module can also 

be calibrated to adjust for differences between magnetic and true north based on location.  

The module is shipped with a calibration value for a location close to our test location so 

a recalibration is not required.  This means that the heading output of the compass is a 

value from true north and can be used directly for navigation purposes.  
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4.3.2 Parallax GPS Receiver 

 

Figure 14 GPS Receiver 

The Parallax GPS Receiver is a standard GPS module capable of tracking up to 12 

satellites simultaneously.  It automatically locks onto GPS signals and calculates GPS 

and time coordinates as soon as 4 satellites are discovered.  It is designed for easy 

integration with the BasicStamp and communicates over a single wire 4800 baud serial 

port.  The module is capable of outputting raw NMEA0183 strings or internally parsing 

the data and transmitting only requested pieces of information.  For our application we 

will be requesting only the latitude and longitude values.  The module advertises an 

average position error of +/-5m but in practice provided much lower accuracy. 

Unfortunately the 4800 baud serial connection takes about 150ms to read a single 

set of latitude and longitude coordinates.  This becomes the limiting factor in control loop 

speed for the BasicStamp.  To mitigate this time lag, a second basic stamp is added to the 

robot and used only to read serial data from the GPS and forward it over a faster serial 

link to the primary stamp.  The primary stamp is free to run its control loops at a faster 

rate and update the GPS coordinates when new information becomes available.  This 
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means that the primary stamp may execute several cycles of the control loops on the 

same GPS data but with new heading data, making the inner heading control loop higher 

bandwidth than the outer loop.  

4.4 Communication Link 

4.4.1 XBee 802.15.4 

 

Figure 15 XBee Module 

 

Table 3  XBee Specifications 

A pair of XBee 802.15.4 radios is used to establish a wireless serial communication 

link between the base station and remote robot.  The wireless serial link is a 38.4Kbaud 

bidirectional point to point serial link.  The XBee modules have approximately a 300 ft 

outdoor range, but do suffer from interference problems and noise.  A simple XOR 
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checksum is used to determine data packet integrity.  This method works well for low 

levels of interference but begins to fail if obstacles are present between the robot and base 

station.  Wireless through obstacles is not required for this test so the XOR checksum is 

sufficient to remove any corrupted data. 

4.5 Microcontrollers 

4.5.1 Parallax Basic Stamp 2 

The Basic Stamp 2 module is a 20MHz processor that runs a PBasic interpreter at 

~4,000 instructions per second.  The Basic Stamp 2 and PBasic langue provide an easy to 

use development environment with many useful built in commands for communication 

interfaces and servo control.  The Basis Stamp 2 is limited to running a single threaded 

application so all communication, control calculations, and actuator control must be done 

in a linear fashion. 

A second Basic Stamp 2 module is used as a serial communication accelerator 

between the GPS module and primary control Basic Stamp.  This Stamp performs no 

other control or communication functions. 

4.6 Base Station 

The base station application is run in Simulink on a standard Windows XP laptop.  

The laptop provides a mobile, easy to use, and powerful platform for the base station 

application. 
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4.6.1 XBee 802.15.4 

The second XBee wireless communication module is used in conjunction with a 

USB to Serial converter breakout board and connected to the base station laptop 

computer.  The computer sees this wireless link as a standard COM port. 

4.6.2 Data Turbine 

Data Turbine is a communication application used to connect the Simulink 

simulation to the serial COMM port.  It is used to facilitate easy switching between the 

simulation setup discussed in section 3 and the real world experimental setup. 

4.6.3 Simulink 

The base station controller runs as a Simulink model and is nearly identical to the 

base station half of the simulation discussed in Section 3.  The robot control portion is 

removed and other small modifications are made to properly format the commands for 

the BoeBot as opposed to the MobileSim model robot.  The control gains as well as the 

meta-controller transition threshold are set via trial and error.  A high level view of the 

controller is shown on the next page. 
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Figure 16 Base Station Controller Model 



 

37 

 

4.7 Experimental Results 

4.7.1 GPS Issues 

The Parallax GPS module did not perform to the +/-5m accuracy which was 

advertised.  Stationary GPS data gathered over a 5 minute period had a standard deviation 

of 19m.  The GPS module also exhibited around a 1 minute lag between the time the 

module was moved and when the coordinates would center on the new location. 

Multiple filtering techniques were attempted.  The most successful was a low pass 

filter which brought the stationary standard deviation down under 8m.  This filter also 

added approximately one more minute of lag to the GPS centering time when the module 

was moved. 

In test runs performed with the low pass filter the robot was able to head almost 

directly for the goal position but would begin veering away approximately half way to the 

goal.  It was never able to reach the goal position.  The closest run brought it to within 

approximately 6m of the goal.  Furthermore, the trajectory produced from logged GPS 

data did not match well with the actual path taken by the robot.  The GPS trajectory 

showed significantly exaggerated movements as the GPS location would jump around the 

actual robot location.  Finally, the GPS data showed that the robot had reached and 

passed its goal several times even though this did not actually happen. 

It was concluded that the GPS error was too large compared to the size and speed 

of the mobile robot.  The GPS error also affected the analysis of the heading control loop 

because jumps in GPS location would cause command step inputs to the heading control 

loop. 
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4.7.2 Heading Control Loop Testing 

The entire position control loop was removed from the base station and mobile 

robot controllers to allow for accurate testing of the meta-controller for the heading 

control loop.  The heading control loop was given periodic 90° step command inputs with 

sufficient time between step inputs for the control loops to settle.  The runs mimic the 

simulation runs with the first being robot only control, the second base station control, 

and the third using the meta-controller.  The results from each run are presented in the 

following sections. 

4.7.3 Robot Control Baseline 

The self controlled robot performs very well.  The heading control loop is able to 

quickly respond to the step input most of the time with little overshoot.  The compass 

heading wraps from zero to two pi radians at due North so the heading actual vs. heading 

command looks significantly worse than it really is.  The heading error gives a much 

more accurate perspective on the controller performance.  Averaging the response 

characteristics of all the individual step commands gives a mean overshoot of 10%, mean 

settling time of 2.6s, and mean time to peak of 2.3 seconds.  The maximum overshoot is 

approximately 63% but this is an outlier as all other step responses have less than 20% 

overshoot.  Results are shown below. 
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Figure 17 Robot Control Results 

4.7.4 Base Station Control Without Delay 

In this test the robot is forced to listen to the base station command with no 

artificial time delay between the base station and robot.  This test will establish a baseline 

performance for base station control under normal network conditions.  When the robot is 

listening to base station commands it skips the control loop section of code so the overall 

execution rate for the control loops is faster than when under robot control.  However, the 

network latency has a stronger detrimental affect than the increased execution rate so the 

control performance is worse than on-board robot control.  The mean overshoot is 17.7%, 

mean time to peak is 3.2s, and mean settling time is 5.3s.  The results are shown below.  
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Figure 18 Base Station Control Results 

4.7.5 Base Station Control With Delay 

This test continues to force the robot to listen to base station commands and adds 

a sinusoidal network delay on top of the baseline network latency.  The time delay is 

enough to cause system instability when large heading errors are present, but the robot is 

able to recover during periods of short delay time.  About 30% of the step responses do 

not stabilize.  The results are adjusted to exclude the unstable responses. The mean 

overshoot of the stable responses is 76%, mean time to peak is 3.4s, and mean settling 

time is 10.5s.  The results are below.  
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Figure 19 Base Station with Delay Results 
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4.7.6 Meta-Controller 

The same added network delay signal as the base station control with delay test is 

used, but now the meta-controller is enabled on the robot to allow switching between 

command sources. 

   

 

 

Figure 20 Meta-controller Results 
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With the meta-controller enabled, the system is stable and remains under base 

station control for a majority of the time.  The controller spends 62% of the simulation 

time listening to the base station controller and the remaining 38% listening to the robot 

controller.  The mean overshoot is 56.9%, mean time to peak is 3.9s, and mean settling 

time is 5.9s.  The meta-controller had several responses with 100% overshoot but half 

were less than 63%. 

4.7.7 Summary of Results 

  Test Time to 

Peak (s) 

Settling 

Time (s) 

 Overshoot 

(%) 

 

Robot 2.3 2.6  10.1  

Base Station 3.2 5.3  17.7  

Base Station w/ Delay 
(Includes only stable responses) 

3.4 10.5  76.0  

Meta-Controller w/ Delay 3.9 5.9  56.9  

Table 4 Test Results 

The meta-controller with delay performs significantly better than the base station 

alone with the delay.  It does not meet the performance of either the base station in 

normal network conditions or the robot controller, but this is expected because the 

network must first start to lag before control is switched over to the robot. 

The meta-controller achieves the desired result of maintaining base station control as 

much as possible without sacrificing system stability.  The transition between base station 

and robot control is very smooth for this system. 
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5 Conclusion 

5.1 Summary 

The meta-controller proposed in this paper has shown that it is a valid solution for 

networked control systems where communication lag and failure cannot cause loss of 

control.  The controller is capable of smoothly transitioning back and forth between base 

station and remote operation as network performance moves in and out of the parameters 

of the classical control system design.  The overall performance of the system is 

comparable to the networked or remote only systems.  This system can be used for 

automatically transitioning between base station and remotely executed control loops as 

operator system confidence grows. 

 The mobile robot test bed used for this application was not an ideal system to test 

against.  The cart’s size and speed compared to GPS inaccuracies meant that the robot 

was never able to reach the goal position.  This forced the testing to be constrained to the 

inner heading control loop.  The meta-controller was able to stabilize the heading control 

loop while still spending 62% of the time under base station control with performance 

comparable to the networked control system operating under normal network conditions. 

5.2 Future Work 

There are several areas of the meta-controller which can be explored in more depth.  

First, a different system with both inner and outer loops could be developed to test the 

real world response of the meta-controller with nested loop controllers.   
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Secondly, more research can be done into applying the meta-controller model to 

control systems with derivative and integral control terms.  These were only discussed in 

the theory section of the paper and were not tested in simulation or practical application.  

These alternate control methods may also require more research into smoothing the 

transition between the two controllers. 

Finally, alternate switching methods could be developed and applied to the same 

meta-controller structure.  Some ideas include a switching threshold with hysteresis or a 

controller which monitors system performance instead of network delay. 
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Appendix A – Meta-Controller Simulink Model  
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Appendix B – Base Station Simulink Model 
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Appendix C – Basic Stamp Code 

Robot Controller – Heading Control Only 

' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
SDA CON 10 
SCL CON 11 
 
RightServo CON 12 
LeftServo CON 13 
 
'-------------------------------------- 
' Temporary Variables 
'-------------------------------------- 
'Used for I2C read/write buffer 
TmpByte1        VAR Byte 
 
'Used for receiving speed command 
'Used for latDegrees 
'Used for minutesError 
'Used for errorLon 
TmpByte2        VAR Byte 
 
'Used for receiving packet count 
'Used for errorLat 
'Used for lonDegrees 
TmpByte3        VAR Byte 
 
'Used for receiving checksum 
'Used for minutesDError 
'Used for distanceError 
TmpWord1        VAR Word 
 
'Used to track sign bit 
'Used for I2C Ack/Nak 
sign            VAR Bit 
 
'-------------------------------------- 
' Servo Pal 
'-------------------------------------- 
ServoPalInp     PIN 12 
ServoPalAlarm   PIN 13 
 
ServoPalResetTime   CON 100 
ZeroSpeedPulseWidth CON 750 
 
'-------------------------------------- 
' Compass 
'-------------------------------------- 
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SDAin VAR IN10 
SDAout VAR OUT10 
SDAdir VAR DIR10 
 
I2cData VAR Word                         ' Data to read/write 
I2cAddr CON $c0                          ' Address of I2C device 
I2cReg CON 1                             ' Register number within I2C 
device 
 
'---------------------------------- 
' General Serial 
'---------------------------------- 
#SELECT $STAMP 
  #CASE BS2, BS2E, BS2PE 
    T1200       CON     813 
    T2400       CON     396 
    T9600       CON     84 
    T19K2       CON     32 
    T38K4       CON     6 
  #CASE BS2SX, BS2P 
    T1200       CON     2063 
    T2400       CON     1021 
    T9600       CON     240 
    T19K2       CON     110 
    T38K4       CON     45 
  #CASE BS2PX 
    T1200       CON     3313 
    T2400       CON     1646 
    T9600       CON     396 
    T19K2       CON     188 
    T38K4       CON     84 
#ENDSELECT 
 
'--------------------------------------------- 
' XBee Serial Variables and Consts 
'--------------------------------------------- 
XBeeDataOut PIN 2 
XBeeDataIn  PIN 3 
 
XBeeBaud    CON T38K4 
 
headingError VAR Byte 
headingCmd     VAR Byte 
bsHeadingCmd        VAR Byte 
tmpBsHeadingCmd     VAR Byte 
 
packetNumber VAR Byte 
controlLoopSelector VAR Bit 
packetNumberDifferenceThreshold CON 7 
 
headingKp     CON 1 
 
'---------------------------------------------- 
' Control loop input 
'---------------------------------------------- 
desiredHeading   VAR Byte 
headingIncrement CON 64 
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headingIncrementPeriod CON 128 
headingIncrementCounter VAR Word 
 
 
Main: 
PAUSE 1000 
DEBUG "Program Start", CR 
SEROUT XBeeDataIn, XBeeBaud, ["Program Start", CR] 
 
PAUSE 1000 
 
'Reset ServoPal 
LOW ServoPalInp 
PAUSE ServoPalResetTime 
HIGH ServoPalInp 
 
INPUT SDA 
INPUT SCL 
INPUT RightServo 
INPUT LeftServo 
 
packetNumber = 0 
controlLoopSelector = 1 
headingCmd = 0 
 
desiredHeading = 0 
headingIncrementCounter = 0 
 
StartingWait: 
PAUSE 1000 
DEBUG "." 
 
 
Loop_Start: 
DO 
 
  IF headingIncrementCounter >= headingIncrementPeriod THEN 
    headingIncrementCounter = 0 
    desiredHeading = desiredHeading + headingIncrement 
  ENDIF 
  headingIncrementCounter = headingIncrementCounter + 1 
 
  'Read Heading 
  'Stored in TmpByte1 
  GOSUB i2cByteRead 
 
  SEROUT XBeeDataIn, XBeeBaud, 
[187,TmpByte1,desiredHeading,packetNumber,ControlLoopSelector, 
                                
TmpByte1^desiredHeading^packetNumber^ControlLoopSelector, CR] 
 
  packetNumber = packetNumber + 1 
 
  'Read commands from basestation 
  SERIN XBeeDataOut, XBeeBaud, [tmpBsHeadingCmd] 
  DO WHILE tmpBsHeadingCmd <> 187 
    'Keep reading until we see a start code 
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    SERIN XBeeDataOut, XBeeBaud, [tmpBsHeadingCmd] 
  LOOP 
 
  'READ heading command, COUNT, AND checksum 
  SERIN XBeeDataOut, XBeeBaud, [tmpBsHeadingCmd, TmpByte3, 
TmpWord1.HIGHBYTE] 
  IF (tmpBsHeadingCmd^TmpByte3) <> TmpWord1.HIGHBYTE THEN 
    'DEBUG "Checksum error", CR 
  ELSE 
    'DEBUG "Heading Cmd: ", DEC tmpBsHeadingCmd, " Count: ", DEC 
TmpByte3, " Checksum: ", DEC TmpWord1.HIGHBYTE, CR 
 
    bsHeadingCmd = tmpBsHeadingCmd 
 
    'Decide to use local or remote commands 
    IF packetNumber - TmpByte3 > packetNumberDifferenceThreshold THEN 
     'Check to wrap condition 
      IF 256 - TmpByte3 + packetNumber < 
packetNumberDifferenceThreshold THEN 
        'Use basestation control 
        controlLoopSelector = 1 
      ELSE 
        'Use robot control 
        controlLoopSelector = 0 
      ENDIF 
    ELSE 
      'Use basestation control 
      controlLoopSelector = 1 
    ENDIF 
  ENDIF 
 
  IF controlLoopSelector THEN 
    'Use on Base station control loops 
    IF bsHeadingCmd > 128 THEN 
      'removed direction bit from heading to goal 
      bsHeadingCmd = 255 - bsHeadingCmd 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth - bsHeadingCmd 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth - bsHeadingCmd 
 
      'Restore headingCmd in case no command is received next loop 
      bsHeadingCmd = 255 - bsHeadingCmd 
    ELSE 
      'DEBUG "Heading cmd: ", DEC headingCmd, " dist cmd: ", DEC 
velCmd, CR 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth + bsHeadingCmd 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth + bsHeadingCmd 
 
    ENDIF 
 
  ELSE 
    'Use on robot control loops 
 
    'Calculate heading error 
    headingError = desiredHeading - I2cData 
 
    IF headingError > 128 THEN 
      headingError = 255 - headingError 
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      headingError = (headingError*headingKp) MAX 128 
 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth - headingError 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth - headingError 
    ELSE 
      headingError = (headingError*headingKp) MAX 128 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth + headingError 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth + headingError 
    ENDIF 
  ENDIF 
 
LOOP 
 
END 
 
 
'----------------------------------------------------------------------
---------------------- 
' I2C subroutines follow 
'----------------------------------------------------------------------
---------------------- 
 
I2cByteWrite:                            ' writes I2cData.lowbyte to 
I2cReg at I2cAddr 
GOSUB I2cStart 
TmpByte1 = I2cAddr 
GOSUB I2cOutByte                         ' send device address 
TmpByte1 = I2cReg 
GOSUB I2cOutByte                         ' send register number 
TmpByte1 = I2cData.LOWBYTE 
GOSUB I2cOutByte                         ' send the data 
GOSUB I2cStop 
RETURN 
 
I2cWordWrite:                            ' writes I2cData to I2cReg at 
I2cAddr 
GOSUB I2cStart 
TmpByte1 = I2cAddr 
GOSUB I2cOutByte                         ' send device address 
TmpByte1 = I2cReg 
GOSUB I2cOutByte                         ' send register number 
TmpByte1 = I2cData.HIGHBYTE 
GOSUB I2cOutByte                         ' send the data - high byte 
TmpByte1 = I2cData.LOWBYTE 
GOSUB I2cOutByte                         ' send the data - low byte 
GOSUB I2cStop 
RETURN 
 
I2CByteRead: 
GOSUB I2cStart 
TmpByte1 = I2cAddr 
GOSUB I2cOutByte                         ' send device address 
TmpByte1 = I2cReg 
GOSUB I2cOutByte                         ' send register number 
GOSUB I2cStart                           ' repeated start 
TmpByte1 = I2cAddr | 1 
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GOSUB I2cOutByte                         ' send device address (with 
read set) 
sign = 0                               ' send Nak 
GOSUB I2cInByte 
I2cData.LOWBYTE = TmpByte1                 ' read the data 
I2cData.HIGHBYTE = 0 
GOSUB I2cStop 
RETURN 
 
I2CWordRead: 
GOSUB I2cStart 
TmpByte1 = I2cAddr 
GOSUB I2cOutByte                         ' send device address 
TmpByte1 = I2cReg 
GOSUB I2cOutByte                         ' send register number 
GOSUB I2cStart                           ' repeated start 
TmpByte1 = I2cAddr | 1 
sign = 1                               ' send Ack 
GOSUB I2cOutByte                         ' send device address (with 
read set) 
GOSUB I2cInByte 
I2cData.HIGHBYTE = TmpByte1                ' read the data 
sign = 0                               ' send Nak 
GOSUB I2cInByte 
I2cData.LOWBYTE = TmpByte1 
GOSUB I2cStop 
RETURN 
 
I2cOutByte: 
SHIFTOUT SDA, SCL, MSBFIRST, [TmpByte1] 
INPUT SDA 
HIGH SCL                                 ' clock in the ack' bit 
LOW SCL 
RETURN 
 
I2cInByte: 
SHIFTIN SDA, SCL, MSBPRE, [TmpByte1] 
SDAout = 0 
SDAdir = sign 
HIGH SCL                                 ' clock out the ack' bit 
LOW SCL 
INPUT SDA 
RETURN 
 
I2cStart:                                 ' I2C start bit sequence 
HIGH SDA 
HIGH SCL 
LOW SDA 
LOW SCL 
RETURN 
 
I2cStop:                                 ' I2C stop bit sequence 
LOW SDA 
HIGH SCL 
HIGH SDA 
RETURN 
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Robot Controller – Navigation Controller 

' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
SDA CON 10 
SCL CON 11 
 
RightServo CON 12 
LeftServo CON 13 
 
'-------------------------------------- 
' Temporary Variables 
'-------------------------------------- 
'Used for I2C read/write buffer 
TmpByte1        VAR Byte 
 
'Used for receiving speed command 
'Used for latDegrees 
'Used for minutesError 
'Used for errorLon 
TmpByte2        VAR Byte 
 
'Used for receiving packet count 
'Used for errorLat 
'Used for lonDegrees 
TmpByte3        VAR Byte 
 
'Used for receiving checksum 
'Used for minutesDError 
'Used for distanceError 
TmpWord1        VAR Word 
 
'Used to track sign bit 
'Used for I2C Ack/Nak 
sign            VAR Bit 
 
'-------------------------------------- 
' Servo Pal 
'-------------------------------------- 
ServoPalInp     PIN 12 
ServoPalAlarm   PIN 13 
 
ServoPalResetTime   CON 100 
ZeroSpeedPulseWidth CON 750 
 
'-------------------------------------- 
' Compass 
'-------------------------------------- 
 
SDAin VAR IN10 
SDAout VAR OUT10 
SDAdir VAR DIR10 
 
I2cData VAR Word                         ' Data to read/write 
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I2cAddr CON $c0                          ' Address of I2C device 
I2cReg CON 1                             ' Register number within I2C 
device 
 
'---------------------------------- 
' General Serial 
'---------------------------------- 
#SELECT $STAMP 
  #CASE BS2, BS2E, BS2PE 
    T1200       CON     813 
    T2400       CON     396 
    T9600       CON     84 
    T19K2       CON     32 
    T38K4       CON     6 
  #CASE BS2SX, BS2P 
    T1200       CON     2063 
    T2400       CON     1021 
    T9600       CON     240 
    T19K2       CON     110 
    T38K4       CON     45 
  #CASE BS2PX 
    T1200       CON     3313 
    T2400       CON     1646 
    T9600       CON     396 
    T19K2       CON     188 
    T38K4       CON     84 
#ENDSELECT 
 
'--------------------------------- 
' Stamp-Stamp Serial 
'--------------------------------- 
Bs2SerialData     PIN 6 
Bs2SerialFlow     PIN 5 
 
Inverted          CON $4000 
Open              CON $8000 
Baud              CON T38K4 + Inverted 
 
'--------------------------------------------- 
' XBee Serial Variables and Consts 
'--------------------------------------------- 
XBeeDataOut PIN 2 
XBeeDataIn  PIN 3 
 
XBeeBaud    CON T38K4 
 
'--------------------------------------------- 
' GPS Variables 
'--------------------------------------------- 
latMinutes          VAR Byte 
latMinutesD         VAR Word 
latDir              VAR Byte 
 
lonMinutes          VAR Byte 
lonMinutesD         VAR Word 
lonDir              VAR Byte 
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'---------------------------------- 
' Control Vars 
'---------------------------------- 
'only works at 37 degrees north latitude 
desiredDegreesLat CON 37 
desiredDirectionLat CON 0 
'desired minutes and decimal minutes are variable 
desiredMinutesLat VAR Byte 
desiredMinutesDLat VAR Word 
 
'only works at 121 degrees west longitude 
desiredDegreesLon CON 121 
desiredDirectionLon CON 1 
'desired minutes and decimal minutes are variable 
desiredMinutesLon VAR Byte 
desiredMinutesDLon VAR Word 
 
headingToGoal VAR Byte 
headingCmd    VAR Byte 
velCmd        VAR Byte 
 
packetNumber VAR Byte 
controlLoopSelector VAR Bit 
packetNumberDifferenceThreshold CON 6 
 
headingKp     CON 1 
 
setDesiredPin     PIN 1 
 
Main: 
PAUSE 1000 
DEBUG "Program Start", CR 
SEROUT XBeeDataIn, XBeeBaud, ["Program Start", CR] 
 
PAUSE 1000 
 
'Reset ServoPal 
LOW ServoPalInp 
PAUSE ServoPalResetTime 
HIGH ServoPalInp 
 
INPUT SDA 
INPUT SCL 
INPUT RightServo 
INPUT LeftServo 
 
packetNumber = 0 
controlLoopSelector = 1 
velCmd = 0 
headingCmd = 0 
 
StartingWait: 
PAUSE 1000 
DEBUG "." 
 
'Wait for GPS and set as desired 
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SERIN Bs2SerialData\Bs2SerialFlow, Baud, 2, StartingWait, [TmpByte2, 
latMinutes, latMinutesD.HIGHBYTE, latMinutesD.LOWBYTE, latDir, 
TmpByte3, lonMinutes, lonMinutesD.HIGHBYTE, lonMinutesD.LOWBYTE, 
lonDir] 
desiredMinutesLat = latMinutes 
desiredMinutesDLat = latMinutesD 
desiredMinutesLon = lonMinutes 
desiredMinutesDLon = lonMinutesD 
 
Loop_Start: 
DO 
  'Read GPS from other Stamp 
  'LatDeg, LatMin, LatMinD, LatDir, LonDeg, LonMin, LonMidD, LonDir 
  SERIN Bs2SerialData\Bs2SerialFlow, Baud, 2, No_Data_Ready, [TmpByte2, 
latMinutes, latMinutesD.HIGHBYTE, latMinutesD.LOWBYTE, latDir, 
TmpByte3, lonMinutes, lonMinutesD.HIGHBYTE, lonMinutesD.LOWBYTE, 
lonDir] 
  Continue_Loop: 
 
  'Read Heading 
  'Stored in TmpByte1 
  GOSUB i2cByteRead 
 
  'Check if lat/lon should be set as desired 
  sign = ~setDesiredPin 
  IF sign THEN 
    'DEBUG "Setting desired lat/lon", CR 
    desiredMinutesLat = latMinutes 
    desiredMinutesDLat = latMinutesD 
    desiredMinutesLon = lonMinutes 
    desiredMinutesDLon = lonMinutesD 
  ENDIF 
 
  'Send telemetry to basestation 
  'LatDeg, LatMin, LatMinD, LatDir, LonDeg, LonMin, LonMidD, LonDir, 
heading, setDesired 
  'DEBUG "!",DEC TmpByte2," ",DEC latMinutes,".",DEC latMinutesD," 
",DEC latDir," ",DEC TmpByte3," ",DEC lonMinutes,".",DEC lonMinutesD," 
",DEC lonDir," ",DEC TmpByte1," ",DEC sign, CR 
  'DEBUG "?",DEC TmpByte2," ",DEC desiredMinutesLat,".",DEC 
desiredMinutesDLat," ",DEC latDir," ",DEC TmpByte3," ",DEC 
desiredMinutesLon,".",DEC desiredMinutesDLon," ",DEC lonDir,CR 
  SEROUT XBeeDataIn, XBeeBaud, 
[187,desiredDegreesLat,latMinutes,latMinutesD.HIGHBYTE,latMinutesD.LOWB
YTE,latDir,desiredDegreesLon,lonMinutes,lonMinutesD.HIGHBYTE,lonMinutes
D.LOWBYTE,lonDir,TmpByte1,desiredMinutesDLat.HIGHBYTE,desiredMinutesDLa
t.LOWBYTE,desiredMinutesDLon.HIGHBYTE,desiredMinutesDlon.LOWBYTE,headin
gToGoal,packetNumber,ControlLoopSelector, 
                                
desiredDegreesLat^latMinutes^latMinutesD.HIGHBYTE^latminutesD.LOWBYTE^l
atDir^desiredDegreesLon^lonMinutes^lonMinutesD.HIGHBYTE^lonMinutesd.LOW
BYTE^lonDir^TmpByte1^desiredMinutesDLat.HIGHBYTE^desiredMinutesDLat.LOW
BYTE^desiredMinutesDLon.HIGHBYTE^desiredMinutesDLon.LOWBYTE^headingToGo
al^packetNumber^ControlLoopSelector, CR] 
 
  packetNumber = packetNumber + 1 
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  'Read commands from basestation 
  SERIN XBeeDataOut, XBeeBaud, [headingToGoal] 
  DO WHILE headingToGoal <> 187 
    'Keep reading until we see a start code 
    SERIN XBeeDataOut, XBeeBaud, [headingToGoal] 
  LOOP 
 
  'Read heading command, speed command, count, and checksum 
  SERIN XBeeDataOut, XBeeBaud, [headingToGoal, TmpByte2, TmpByte3, 
TmpWord1.HIGHBYTE] 
  'DEBUG "Received: ", DEC headingToGoal, " ", DEC TmpByte2, " ", DEC 
TmpByte3, " ", DEC TmpWord1.HIGHBYTE, CR 
  IF (headingToGoal^TmpByte2^TmpByte3) <> TmpWord1.HIGHBYTE THEN 
    'DEBUG "Checksum error", CR 
  ELSE 
    'Good packet 
    headingCmd = headingToGoal 
    velCmd = TmpByte2 
    'DEBUG "heading cmd: ", DEC headingToGoal, " vel cmd: ", DEC 
TmpByte2," Packet number: ", DEC packetNumber, CR 
 
    'Decide to use local or remote commands 
    IF packetNumber - TmpByte3 > packetNumberDifferenceThreshold THEN 
      'Check to wrap condition 
      IF 256 - TmpByte3 + packetNumber < 
packetNumberDifferenceThreshold THEN 
        'Use basestation control 
        controlLoopSelector = 1 
      ELSE 
        'Use robot control 
        controlLoopSelector = 0 
      ENDIF 
    ELSE 
      'Use basestation control 
      controlLoopSelector = 1 
    ENDIF 
  ENDIF 
 
  IF controlLoopSelector THEN 
    'Use on Base station control loops 
    IF headingCmd > 128 THEN 
      'removed direction bit from heading to goal 
      'velocity cmd is already capped 
      headingCmd = 255 - headingCmd 
      'DEBUG "Heading cmd: ", DEC headingCmd, " dist cmd: ", DEC 
velCmd, CR 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth - headingCmd - velCmd 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth - headingCmd + velCmd 
      'Restore headingToGoal to send to basestation 
      headingToGoal = headingCmd 
      'Restore headingCmd in case no command is received next loop 
      headingCmd = 255 - headingCmd 
    ELSE 
      'DEBUG "Heading cmd: ", DEC headingCmd, " dist cmd: ", DEC 
velCmd, CR 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth + headingToGoal - velCmd 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth + headingToGoal + velCmd 
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      'Restore headingToGoal to send to basestation 
      headingToGoal = headingCmd 
    ENDIF 
 
  ELSE 
    'Use on robot control loops 
 
    'Calculate Latitude error 
    IF latDir <> desiredDirectionLat THEN 
      DEBUG "Only works in NW hemisphere.  Sorry.", CR 
      END 
    ENDIF 
 
    'Calculate Longitude 
    IF lonDir <> desiredDirectionLon THEN 
      DEBUG "Only works in NW hemisphere.  Sorry.", CR 
      END 
    ENDIF 
 
    'MinutesError = desiredMinutesLat - latMinutes 
    TmpByte2 = desiredMinutesLat - latMinutes 
    'MinutesDError = desiredMinutesDLat - latMinutesD 
    TmpWord1 = desiredMinutesDLat - latMinutesD 
 
    'MinutesDError cap to fit in byte errorLat 
    sign = TmpWord1.BIT15 
    TmpByte3 = (ABS TmpWord1) MAX 127 
    IF sign THEN 
      'Twos compliment to fix sign of errorLat 
      TmpByte3 = (~TmpByte3)+1 
    ENDIF 
 
    'MinutesError = desiredMinutesLon - lonMinutes 
    TmpByte2 = desiredMinutesLon - lonMinutes 
    'MinutesDError = desiredMinutesDLon - lonMinutesD 
    TmpWord1 = desiredMinutesDLon - lonMinutesD 
 
    'MinutesDError cap to fit in byte errorLon 
    sign = TmpWord1.BIT15 
    TmpByte2 = (ABS TmpWord1) MAX 127 
    'Invert sign on longitude because we are in the western hemisphere 
and 
    'the positive direction is West 
    IF sign = 0 THEN 
      'Twos compliment to fix sign of errorLon 
      TmpByte2 = (~TmpByte2)+1 
    ENDIF 
 
 
    'Calculate desired heading 
    'Swap X and Y to convert to compass heading 
    headingToGoal = TmpByte3 ATN TmpByte2 
 
    'DEBUG "X: ", SDEC TmpByte3, " Y: ", SDEC TmpByte2, CR 
    'DEBUG "Heading to goal: ", DEC headingToGoal, CR 
 
    'Calculate heading error 
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    headingToGoal = headingToGoal - I2cData 
 
    'DEBUG "Heading error: ", DEC headingToGoal, " Heading: ", DEC 
I2cData, CR 
 
    'Calculate distance to goal 
    IF TmpByte3 > 127 THEN 
      TmpByte3 = 256 - TmpByte3 
    ENDIF 
    IF TmpByte2 > 127 THEN 
      TmpByte2 = 256 - TmpByte2 
    ENDIF 
 
    'DEBUG "Lat Err: ", SDEC TmpByte3, " Lon Err: ", SDEC TmpByte2, CR 
 
    TmpWord1 = SQR ((TmpByte3*TmpByte3)+(TmpByte2*TmpByte2)) 
 
    'DEBUG "Distance error: ", DEC TmpWord1, CR 
 
    IF headingToGoal > 128 THEN 
      headingToGoal = 255 - headingToGoal 
      headingToGoal = (headingToGoal*headingKp) MAX 128 
      TmpWord1 = TmpWord1 MAX (128 - headingToGoal) 
      'DEBUG "Distance error capped: ", DEC TmpWord1, CR 
      'DEBUG "Heading cmd: ", DEC headingToGoal, " dist cmd: ", DEC 
TmpWord1, CR 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth - headingToGoal - 
TmpWord1 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth - headingToGoal + 
TmpWord1 
    ELSE 
      headingToGoal = (headingToGoal*headingKp) MAX 128 
      TmpWord1 = TmpWord1 MAX (128 - headingToGoal) 
      'DEBUG "Distance error capped: ", DEC TmpWord1, CR 
      'DEBUG "Heading cmd: ", DEC headingToGoal, " dist cmd: ", DEC 
TmpWord1, CR 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth + headingToGoal - 
TmpWord1 
      PULSOUT ServoPalInp, ZeroSpeedPulseWidth + headingToGoal + 
TmpWord1 
    ENDIF 
  ENDIF 
 
LOOP 
 
END 
 
'--------------------------------- 
' Stamp-Stamp Serial Functions 
'--------------------------------- 
No_Data_Ready: 
  'DEBUG "." 
  GOTO Continue_Loop 
 
'----------------------------------------------------------------------
---------------------- 
' I2C subroutines follow 
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'----------------------------------------------------------------------
---------------------- 
 
I2cByteWrite:                            ' writes I2cData.lowbyte to 
I2cReg at I2cAddr 
GOSUB I2cStart 
TmpByte1 = I2cAddr 
GOSUB I2cOutByte                         ' send device address 
TmpByte1 = I2cReg 
GOSUB I2cOutByte                         ' send register number 
TmpByte1 = I2cData.LOWBYTE 
GOSUB I2cOutByte                         ' send the data 
GOSUB I2cStop 
RETURN 
 
I2cWordWrite:                            ' writes I2cData to I2cReg at 
I2cAddr 
GOSUB I2cStart 
TmpByte1 = I2cAddr 
GOSUB I2cOutByte                         ' send device address 
TmpByte1 = I2cReg 
GOSUB I2cOutByte                         ' send register number 
TmpByte1 = I2cData.HIGHBYTE 
GOSUB I2cOutByte                         ' send the data - high byte 
TmpByte1 = I2cData.LOWBYTE 
GOSUB I2cOutByte                         ' send the data - low byte 
GOSUB I2cStop 
RETURN 
 
I2CByteRead: 
GOSUB I2cStart 
TmpByte1 = I2cAddr 
GOSUB I2cOutByte                         ' send device address 
TmpByte1 = I2cReg 
GOSUB I2cOutByte                         ' send register number 
GOSUB I2cStart                           ' repeated start 
TmpByte1 = I2cAddr | 1 
GOSUB I2cOutByte                         ' send device address (with 
read set) 
sign = 0                               ' send Nak 
GOSUB I2cInByte 
I2cData.LOWBYTE = TmpByte1                 ' read the data 
I2cData.HIGHBYTE = 0 
GOSUB I2cStop 
RETURN 
 
I2CWordRead: 
GOSUB I2cStart 
TmpByte1 = I2cAddr 
GOSUB I2cOutByte                         ' send device address 
TmpByte1 = I2cReg 
GOSUB I2cOutByte                         ' send register number 
GOSUB I2cStart                           ' repeated start 
TmpByte1 = I2cAddr | 1 
sign = 1                               ' send Ack 
GOSUB I2cOutByte                         ' send device address (with 
read set) 
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GOSUB I2cInByte 
I2cData.HIGHBYTE = TmpByte1                ' read the data 
sign = 0                               ' send Nak 
GOSUB I2cInByte 
I2cData.LOWBYTE = TmpByte1 
GOSUB I2cStop 
RETURN 
 
I2cOutByte: 
SHIFTOUT SDA, SCL, MSBFIRST, [TmpByte1] 
INPUT SDA 
HIGH SCL                                 ' clock in the ack' bit 
LOW SCL 
RETURN 
 
I2cInByte: 
SHIFTIN SDA, SCL, MSBPRE, [TmpByte1] 
SDAout = 0 
SDAdir = sign 
HIGH SCL                                 ' clock out the ack' bit 
LOW SCL 
INPUT SDA 
RETURN 
 
I2cStart:                                 ' I2C start bit sequence 
HIGH SDA 
HIGH SCL 
LOW SDA 
LOW SCL 
RETURN 
 
I2cStop:                                 ' I2C stop bit sequence 
LOW SDA 
HIGH SCL 
HIGH SDA 
RETURN 

GPS Serial Forwarding 

' {$STAMP BS2px} 
' {$PBASIC 2.5} 
'---------------------------------------------------------- 
' GPS constants and variables 
'---------------------------------------------------------- 
Sio             PIN     15     ' connects to GPS Module SIO pin 
 
T4800           CON     823 
 
GpsBaud         CON     Open | T4800    ' Open mode to allow daisy 
chaining 
 
MoveTo          CON     2     ' DEBUG positioning command 
ClrRt           CON     11    ' clear line right of cursor 
FieldLen        CON     22    ' length of debug text 
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DegSym          CON     176   ' degrees symbol for report 
MinSym          CON     39    ' minutes symbol 
SecSym          CON     34    ' seconds symbol 
 
' GPS Module Commands 
GetInfo         CON     $00 
GetValid        CON     $01 
GetSats         CON     $02 
GetTime         CON     $03 
GetDate         CON     $04 
GetLat          CON     $05 
GetLong         CON     $06 
GetAlt          CON     $07 
GetSpeed        CON     $08 
GetHead         CON     $09 
 
degrees   VAR      Byte     ' latitude/longitude degrees 
minutes   VAR      Byte     ' latitude/longitude minutes 
minutesD   VAR      Word     ' latitude/longitude decimal minutes 
dir       VAR      Byte     ' direction (latitude: 0 = N, 1 = S, 
longitude: 0 = E, 1 = W) 
 
latDegrees VAR  Byte 
latMinutes VAR  Byte 
latMinutesD VAR Word 
latDir      VAR Byte 
 
'-------------------------------------------- 
' Serial Constants and Variables 
'-------------------------------------------- 
 
Bs2SerialData     PIN 6 
Bs2SerialFlow     PIN 5 
 
#SELECT $STAMP 
  #CASE BS2, BS2E, BS2PE 
    T1200       CON     813 
    T2400       CON     396 
    T9600       CON     84 
    T19K2       CON     32 
    T38K4       CON     6 
  #CASE BS2SX, BS2P 
    T1200       CON     2063 
    T2400       CON     1021 
    T9600       CON     240 
    T19K2       CON     110 
    T38K4       CON     45 
  #CASE BS2PX 
    T1200       CON     3313 
    T2400       CON     1646 
    T9600       CON     396 
    T19K2       CON     188 
    T38K4       CON     84 
#ENDSELECT 
 
 
Inverted          CON $4000 
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Open              CON $8000 
Baud              CON T38K4 + Inverted 
 
Main: 
DEBUG "Start", CR 
 
Begin_Loop: 
DO 
  'Wait for GPS to lock 
  DO 
    GOSUB Get_Valid 
    IF dir = 0 THEN 
      GOSUB Get_Sats 
      DEBUG DEC dir, "?" 
      dir = 0 
      PAUSE 1000 
    ENDIF 
  LOOP WHILE dir = 0 
  GOSUB Get_Lat 
  latDegrees = degrees 
  latMinutes = minutes 
  latMinutesD = minutesD 
  latDir = dir 
  GOSUB Get_Long 
 
  DEBUG "Send", CR 
  DEBUG "Lat: ", DEC latDegrees, " ", DEC latMinutes, ".", DEC 
latMinutesD, " ", DEC latDir, CR 
  DEBUG "Lon: ", DEC degrees, " ", DEC minutes, ".", DEC minutesD, " ", 
DEC dir, CR, CR 
  SEROUT Bs2SerialData\Bs2SerialFlow, Baud, [latDegrees, latMinutes, 
latMinutesD.HIGHBYTE, latMinutesD.LOWBYTE, latDir, degrees, minutes, 
minutesD.HIGHBYTE, minutesD.LOWBYTE, dir] 
  PAUSE 1000 
LOOP 
 
END 
 
'----------------------------------------------------------------------
------- 
' GPS Module Functions 
'----------------------------------------------------------------------
------- 
 
Get_Valid: 
  SEROUT Sio, GpsBaud, ["!GPS", GetValid] 
  SERIN  Sio, GpsBaud, 3000, No_Response, [dir] 
 
  RETURN 
 
' ---------------------------------------------------- 
 
No_Response: 
  DEBUG "No Response from GPS", CR 
  GOTO Begin_Loop 
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' ---------------------------------------------------- 
 
Get_Lat: 
  SEROUT Sio, GpsBaud, ["!GPS", GetLat] 
  SERIN  Sio, GpsBaud, 3000, No_Response, [degrees, minutes, 
minutesD.HIGHBYTE, minutesD.LOWBYTE, dir] 
 
  RETURN 
 
' ---------------------------------------------------- 
 
Get_Long: 
  SEROUT Sio, GpsBaud, ["!GPS", GetLong] 
  SERIN  Sio, GpsBaud, 3000, No_Response, [degrees, minutes, 
minutesD.HIGHBYTE, minutesD.LOWBYTE, dir] 
 
  RETURN 
 
' ---------------------------------------------------- 
 
Get_Sats: 
  SEROUT Sio, GpsBaud, ["!GPS", GetSats] 
  SERIN  Sio, GpsBaud, 3000, No_Response, [dir] 
 
  RETURN 
 
' ---------------------------------------------------- 
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