
Santa Clara University
Scholar Commons

Mechanical Engineering Master's Theses Engineering Master's Theses

9-28-2010

Dynamic Control Migration Between a Base
Station and a Remote Robot
Adam Davis Westgate
Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/mech_mstr

This Thesis is brought to you for free and open access by the Engineering Master's Theses at Scholar Commons. It has been accepted for inclusion in
Mechanical Engineering Master's Theses by an authorized administrator of Scholar Commons. For more information, please contact
rscroggin@scu.edu.

Recommended Citation
Westgate, Adam Davis, "Dynamic Control Migration Between a Base Station and a Remote Robot" (2010). Mechanical Engineering
Master's Theses. 30.
https://scholarcommons.scu.edu/mech_mstr/30

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_master_theses?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr/30?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Santa Clara University
DEPARTMENT of MECHANICAL ENGINEERING

Date: September 28, 2010

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY

SUPERVISION BY

Adam Davis Westgate

ENTITLED

Dynamic Control Migration Between a Base Station and a Remote Robot

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTERS OF SCIENCE IN MECHANICAL ENGINEERING

CHRISTOPHER KITTS

THESIS ADVISOR

TIMOTHY HIGHT

DEPARTMENT CHAIR

Dynamic Control Migration Between a Base Station and a Remote Robot

by

Adam Davis Westgate

MASTERS OF SCIENCE THESIS

Submitted in partial fulfillment of the requirements

for the degree of

Masters of Science in Mechanical Engineering

School of Engineering

Santa Clara University

Santa Clara, California

September 28, 2010

iii

Dynamic Control Migration Between a Base Station and a Remote Robot

Adam Davis Westgate

Department of Mechanical Engineering

Santa Clara University 2010

Abstract

 The paper introduces a new approach to adapting network control systems to

changing network conditions. The meta-controller proposed here is capable of

monitoring network communication delays and seamlessly switching from control loops

executing on a base station computer to control loops on a remote robot. This allows the

control system to handle unexpected communication delays or failures without halting

operation or becoming unstable. It also allows for a high level of human in the loop

operation or monitoring at the base station without sacrificing the autonomous behavior

of the remote robot. The meta-controller can automatically transition control loops

between the base station and remote robot as operator confidence in system performance

increases. This research develops the meta-controller framework, proposes a switching

strategy, and demonstrates the concept through simulation and experimental testing.

Keywords: Meta-control

iv

Acknowledgements

 I would like to thank my advisor, Dr. Christopher Kitts, for this guidance and

support throughout this project and my graduate student career. His passion and

dedication for his work is always inspiring.

 Secondly, I would like to thank the members of the SCU Robotics System Lab for

all of their assistance. Without their help my simulation and tests would not have gone as

smoothly as they did.

 Finally, I would like to thank my wife and family for the love and support that

they have given me throughout my academic career. Without their help and

encouragement, I would not have achieved my goals.

v

Table of Contents

Abstract .. iii

Acknowledgements .. iv

Table of Contents .. v

List of Figures ... vii

List of Tables ... viii

1 Introduction ... 1

1.1 Networked Control Systems .. 1

1.2 Autonomous vs. Human in the Loop Control .. 2

1.3 What is Meta-Control? ... 2

1.4 Applications ... 3

1.4.1 Mars Rovers .. 3

1.4.2 Model Based Anomaly Management of Space Systems .. 4

1.5 Objectives ... 4

1.6 Reader’s Guide ... 5

2 The Meta-Controller ... 6

2.1 Network Control Systems .. 6

2.1.1 Network Bandwidth .. 6

2.1.2 Network Latency ... 7

2.1.3 Packet Loss ... 9

2.1.4 Placing Control Loops .. 10

2.2 The Meta-controller.. 10

2.2.1 Theory ... 11

2.2.2 Transitioning ... 12

3 Simulation ... 15

3.1 Simulation Setup .. 15

3.2 Meta-controller Design .. 19

3.3 Simulation Results.. 21

3.3.1 Robot Control.. 21

3.3.2 Base Station Control ... 23

3.3.3 Mixed Control ... 25

3.3.4 Transition Effects .. 27

3.3.5 Simulation Summary .. 27

vi

4 Experimental Test ... 29

4.1 Robot Platform ... 29

4.2 Actuation .. 30

4.2.1 Servos .. 30

4.2.2 ServoPal .. 30

4.3 Sensors ... 31

4.3.1 CMPS03 Digital Compass .. 31

4.3.2 Parallax GPS Receiver .. 32

4.4 Communication Link.. 33

4.4.1 XBee 802.15.4 .. 33

4.5 Microcontrollers ... 34

4.5.1 Parallax Basic Stamp 2 ... 34

4.6 Base Station .. 34

4.6.1 XBee 802.15.4 .. 35

4.6.2 Data Turbine ... 35

4.6.3 Simulink .. 35

4.7 Experimental Results.. 37

4.7.1 GPS Issues .. 37

4.7.2 Heading Control Loop Testing ... 38

4.7.3 Robot Control Baseline ... 38

4.7.4 Base Station Control Without Delay... 39

4.7.5 Base Station Control With Delay .. 40

4.7.6 Meta-Controller... 42

4.7.7 Summary of Results .. 43

5 Conclusion .. 44

5.1 Summary .. 44

5.2 Future Work ... 44

References ... 46

Appendix A – Meta-Controller Simulink Model .. 48

Appendix B – Base Station Simulink Model .. 52

Appendix C – Basic Stamp Code.. 55

vii

List of Figures

Figure 1 Network Time Delays... 8

Figure 2 Meta-controller System Overview ... 11

Figure 3 Simulation Configuration ... 15

Figure 4 Differential Drive Robot Dynamics ... 16

Figure 5 Meta-controller Simulation Model ... 17

Figure 6 Base Station Controller Model ... 18

Figure 7 Robot Control Simulation Results .. 22

Figure 8 Base Station Control Simulation Results ... 24

Figure 9 Meta-controller Simulation Results .. 26

Figure 10 - Switching Effects ... 27

Figure 11 BoeBot .. 29

Figure 12 Servo Pal ... 30

Figure 13 Digital Compass ... 31

Figure 14 GPS Receiver.. 32

Figure 15 XBee Module.. 33

Figure 16 Base Station Controller Model ... 36

Figure 17 Robot Control Results .. 39

Figure 18 Base Station Control Results .. 40

Figure 19 Base Station with Delay Results... 41

Figure 20 Meta-controller Results .. 42

viii

List of Tables

Table 1 Simulation Results ... 28

Table 2 Experimental Test Configuration... 29

Table 3 XBee Specifications .. 33

Table 4 Test Results .. 43

1

1 Introduction

Networked control systems are becoming more common in a wide variety of fields.

Applications range from the Mars rovers [1] to haptic manipulator control for

teleoperated surgery [2] to multi-robot coordination for exploration and mapping [3]. All

of these systems have some part of their control system operating over a network link and

must be designed within the constraints imposed by those networks. A significant

amount of research has been done focusing on how to design for these network delays

and handle unexpected delays and communication failures [2, 4, 5]. This paper will

present a new control system design which can improve performance on networks with

large latency variance, handle network latency outside of the design parameters, and

maintain control during communication failures. It also allows for a high level of human

in the loop control without sacrificing system performance. The meta-controller can be

used to automatically transition to autonomous control as the operator’s confidence in the

system grows.

1.1 Networked Control Systems

The design issues involved with operating a control loop over a wireless

communication link have been explored in depth, in several different papers [9-13].

These papers discuss how to deal with network latency, bandwidth limitations, and

interference which can help to make decisions about where control loops should be

executed, at what rate, and what performance can be achieved. The described practices

work well under average network conditions where a maximum latency and interference

can be measured or reasonably estimated and included in the control system design.

2

Existing research into handling network anomalies include strategies such as

dynamically reducing the performance of the control system [14] or safely stopping the

remote operation until network performance improves or communication is restored [2].

This paper proposes an alternative design which will maintain operation even during a

communication failure.

1.2 Autonomous vs. Human in the Loop Control

Another common design issue for remotely operated systems is the tradeoff

between autonomous operation and human in the loop control. Allowing more

autonomous operation frees the system from waiting for operator input and can

significantly improve the overall performance of the system. Maintaining human control

allows for closer management of system operation and may be preferable for difficult

tasks where current levels of automation are unreliable or experimental. The controller

proposed in this paper works for both fully autonomous systems and human in the loop

systems where autonomous operation is possible but not necessarily desired. More

specific details of applications are discussed below.

1.3 What is Meta-Control?

There are several different definitions and a wide variety of applications for meta-

control which have been presented in multiple papers. These definitions span a wide

range of topics from a web framework for dynamically enforcing context sensitive

policies [6] to a framework for scheduling high level activities based on the tradeoff

between quality and duration of the tasks [7]. All of these definitions follow the same

underlying principle of altering the operation of the controller or control system based on

the state of the system. This paper focuses the meta-controller definition on altering the

3

physical location of control loop execution, specifically, migrating control back and forth

between a base station and a remote robot based on the amount of network

communication delay.

1.4 Applications

1.4.1 Mars Rovers

NASA launched the Mars Pathfinder in December 1996. The Pathfinder landed

successfully on the surface of Mars and became the first rover to drive on the Martian

surface. The final transmission was received from Pathfinder in September of 1997.

NASA has successfully operated two other rovers, the MER-A Spirit and the MER-B

Opportunity for extended periods of time.

The several minute one-way communication delay between Earth and Mars makes

it impossible to drive the rovers via a joystick on Earth. Earth based drivers would not be

able to see and react to obstacles in time when the rover is traveling at any speed above a

slow crawl. To solve this problem, the designers were forced to use a combination of

Earth based and rover based control as well as autonomous and human in the loop control

[1, 15]. The autonomous control allows for continuous navigation and operation despite

the communication delay and the Earth based navigation planning allows operators to

move the rovers to specific locations required to meet mission objectives.

Relinquishing human control of a multi-million dollar rover which cannot be

serviced or retrieved is not something that is taken lightly. Operators prefer to start

conservatively. They maintain human control and monitor the performance while they

build confidence in the system. After a performance history has been built up, operators

4

disable human control and enable autonomous functions. This transition is performed

manually, piece by piece, with separate pieces of behavior being enabled at different

times. The meta-controller presents a way to handle this transition autonomously. The

meta-controller allows for base station control, but will automatically switch to remotely

executing control loops when system performance suffers. This allows for close operator

monitoring and control without sacrificing system performance due to long

communication delays.

1.4.2 Model Based Anomaly Management of Space Systems

This technique maintains a system model and attempts to diagnose and correct for

anomalies on in-flight space system [8]. Anomalies are detected and mitigated by

comparing the actual system state to the predicted output of the system model. When the

anomaly detection system is first brought online, human operators closely monitor every

aspect of it. Operators will enable autonomous base station and eventually autonomous

remotely executed parts of the control system slowly as their confidence in the system

builds. The transition process is performed manually for each section of the control loop

which needs to be transferred. The meta-controller can be used to automate this

transition process and allow for easy transition of small or large sections of the control

loops. Communication link dependent sections of the control can be run and monitored

at the base station and automatically switch to the remote computer during

communication link lag or failure.

1.5 Objectives

The objective of this paper is to explore the automated migration of control for a

remote robot as a function of communication link delay between the robot and its remote

5

operator control console. As an initial study of this capability, the basic navigation tasks

of controlling heading and position have been selected for study. Performing this study

required the formulation of a control switching architecture and the establishment of

switching criteria based on task performance. To iteratively test and explore this

approach, a simulation environment was developed and a number of simulated cases

were evaluated. The technique was also evaluated through hardware experimentation

with a simple mobile robot. Results show that the automated switching of the motion

controller successfully allows performance to be maintained in the face of time-varying

communication delay.

1.6 Reader’s Guide

Chapter 1 describes the motivations and objectives of this thesis and briefly

describes the achieved results. Chapter 2 reviews the classic design of networked control

systems as well as the meta-controller theoretical design. Chapter 3 presents the

simulation model that is used to test the meta-controller and the results shown by those

tests. Chapter 4 describes the experimentation test setup used to test the meta-controller

model in an example application as well as experimental results. Chapter 5 summarizes

the accomplished work and discusses future research that can be done in this area.

6

2 The Meta-Controller

This chapter reviews classical network control system design and the implementation

of the meta-controller control system. Section 1 overviews the classic approach for

designing a networked control system and how to address issues such as latency, network

bandwidth, and packet loss. Section 2 describes the meta-controller theory and design.

2.1 Network Control Systems

Network control system design must take into consideration three aspects of the

network communication system when designing the controllers. These three aspects are

network bandwidth, latency, and packet loss. The affects of each of these are reviewed

below.

2.1.1 Network Bandwidth

Network bandwidth will set a maximum for the sampling and execution rate of

the controller across the networks. Under optimal conditions the maximum sampling rate

(������ can be computed using the following formula.

 ����� � �	
�����
�	�	 ��
��� � ����	�� ������	�

(1)

Where bandwidth is the maximum bits/second which can be transmitted over the

link, data length is the length in bits of the control data, and message overhead is the

extra data overhead required to transmit a message. In simpler communication protocols,

message overhead may include a message start flag, data length, checksum, and end flag.

7

In more complex protocols, overhead may also include extra data for more sophisticated

error detection and correction algorithms, encryption, and so on.

In simple point to point networks it is acceptable to use a much larger percentage

of the total network bandwidth, whereas wireless networks with more nodes should

reserve a larger portion of the total network bandwidth to help reduce collisions and

transmission waiting delays.

When following a classical design approach in the frequency domain, if the

network bandwidth is the limiting factor on sample rate it also determines the Nyquist

frequency of the controller. Standard practices to account for the phase and gain

consumed by the digital effects should be used. For example, if a zero order hold is used

to sample data at the maximum network sample frequency, the phase and gain consumed

by the ZOH can be calculated using the following formulas.

|�����| � �
 �
 !" �

��#
" �

��

(2)

 $����� � %" �
��

(3)

Where ����� is the desired transfer function, � is the gain crossover frequency of

the desired transfer function, and �� is the sample frequency. These gain and phase

numbers should be allocated during the design phase of the controller.

2.1.2 Network Latency

Network latency is simply the total amount of time it takes the controllers to pack,

transmit, error check, and unpack the control data. Packing, error checking, and

unpacking should be very close to constant time as they only rely on either the sending or

8

receiving processor. In a point to point network, transmission time can also be close to a

constant value as there is no waiting for another controller to finish transmitting before

this controller’s transmission begins.

Analysis of network delay for multi-node networks can be significantly more

complex. [16] shows that designing for the average network latency can produce

acceptable results and that significantly better results can be attained by using a state

estimator and feeding measured network latency as input. Both of these methods will

eventually become unstable under long enough network transmission delays.

 Figure 1 illustrates the stack up of network latency times.

Figure 1 Network Time Delays

In a classical control system design network latency should be added to all other

computational time delays. This total delay time does not alter the shape of the input so it

9

only contributes phase shift, or lag, to the system. The formula below, from [2], can be

used to calculate the phase lag.

 & � �'� 180°
"

(4)

Where �' is the total delay time including network latency and computational

delays and � is the crossover frequency of the desired transfer function.

2.1.3 Packet Loss

Both wired and wireless networks can suffer from information loss due to

interference and network collisions. This packet loss can have one of two effects

depending on the type of network used.

If the network protocol allows for error detection and packet retransmission, the

lost packet will still reach its destination but will incur a longer time delay. The

retransmission time multiplied by the expected packet loss percentage should be included

in the total computation delay time calculated above. If the network protocol does not

allow for packet loss detection and retransmission then the lost packet is effectively

slowing the data sampling rate of the controller. Liu and Goldsmith analyze the effect of

packet loss and derive the following formula for the effective sampling rate in [2].

 �,-- � ��� (5)

Where �� is the previously calculated sample rate, � is the fractional percentage

of messages expected to be successfully transmitted, and �,-- is the new effective

sample rate. This new sample rate should be used when compensating for gain and phase

caused by digital sampling.

10

2.1.4 Placing Control Loops

To determine which control loops should be executed on the remote robot and

which should be operated across the network, the designer should complete two separate

performance analyses. The first should determine the system performance across the

network using the techniques discussed above and the second should evaluate system

performance when running on the remote robot using standard digital control design

techniques.

In systems only concerned with performance, the comparison between the two

analyses determines where to place the control loops. In complex systems, like those

described in the applications section, it is common that the limited processor capabilities

of the remote robot will perform worse than the networked control systems. The meta-

controller discussed in this paper will improve the overall performance of these complex

systems as well as systems where control loops are kept at the base station for non-

performance reasons.

2.2 The Meta-controller

In the previous section we discussed the design of a networked control under

normal operating conditions. The classical controller maintains system stability by

maintaining phase margin at the controller crossover frequency and gain margin to

account for inaccuracies in the model and various mechanical components. When the

system is operating within the design limits, the phase and gain margins are sufficient to

maintain stability and performance. However, when the operating conditions begin to

change the margins shrink, the performance degrades, and the system eventually becomes

unstable. The meta-controller addresses this problem for changes in network

11

performance of control systems by monitoring the communication link and dynamically

switching between controllers.

2.2.1 Theory

The meta-controller model monitors network latency and switches control loops

between local and base station execution to maintain stability in the system. To achieve

this, both controllers must be capable of running stable control loops for the system and

the remote robot must have some mechanism for measuring network latency. The

general form of the meta-controller is shown in figure 2.

Figure 2 Meta-controller System Overview

A switching matrix is used by the meta-controller to select which control loop is

active. The commands from each control source are multiplied by either a one or a zero

to select which set of command is passed to the actuator. This is the simplest method to

transition between two separate controllers, but can be expanded to allow more

sophisticated switching techniques. For example, instead of swapping the ones and

zeroes when a control transition occurs, a ramp function can be used over several sample

periods to smoothly transition the zero to a one and the one to a zero. This will

12

effectively blend the two commands over the ramp transition period providing a smoother

transition for the system.

The networked base station control loop is designed with a finite amount of gain

and phase margin. The exact margin can be calculated by sine sweeping the system

under normal operating conditions. Also, the nominal network latency should be

measured and the phase lag caused by network latency should be added back to the

measured phase margin. The meta-controller will allow most of this phase margin to be

consumed before switching to remote robot control. The designer may place the phase

margin switchover point wherever they desire, but simulation trial and error suggest

maintaining at least 10 degrees of margin.

Once the designer determines how much phase lag can be caused by network

latency the value can be back calculated into latency in seconds using a modified version

of formula 4.

 &
�

"
180° � �'

(6)

The time delay is measured by the meta-controller and used to set the switching

matrix to the desired control loop. A walkthrough of an example meta-controller design

is shown in detail in the simulation portion of this document.

2.2.2 Transitioning

Transitioning between control loops, even in a P or PD system, can cause a

discontinuity in the command output. If the system cannot handle a discontinuous step in

command a ramp function can be used during the transition period to smooth transition

between controllers.

13

2.2.2.1 P Transition

The maximum command step cause by a proportional gain during transition is a

function of the time delay transition set point, the maximum expected system rate of

change, and the P gains. The following formula is derived for calculating the maximum

command step caused by switching proportional controllers.

 ∆/0'���� 12����034�'56 (7)

Where K89:; is the larger of the two gains, v=>? is the maximum expected

system rate of change, and tABC is the lag time transition set point of the meta controller.

The effects of this command step are demonstrated and discussed in further detail in the

simulation section of this paper.

2.2.2.2 D Transition

The maximum step command caused by the derivative gain can be calculated in a

similar manner to the proportional gain, substituting the maximum expected acceleration

for maximum expected rate of change. The new formula follows.

 ∆/0'���� 1D���	034�'56 (8)

Where KE9:; is the large of the two gains, a=>? is the maximum expected system

acceleration, and tABC is the lag time transition set point of the meta controller.

2.2.2.3 I Transition

If an integrator is used in the controller, several methods can be used to prevent

integrator wind up. The simplest solution is to zero the integrator of the controller that is

14

not active. This requires a signal be returned from the meta-controller on the robot to

zero the integrator of the base station. Transitioning can cause a maximum step

command equal to the maximum integrator command output.

 ∆/0'���� �1GH�034 (9)

Where 1G is the integrator gain, H is the maximum integrator value, and �1GH�034

is the larger value of the two controllers.

Alternatively, the integrator value for the active controller can be passed to the

inactive controller and used to set the inactive controllers integrator value. If the control

loops do not have identical integrator gains, the integrator value should be multiplied by

the ratio of the gains before being used to set the integrator. While this method will give

a smoother transition between controllers, it will also consume more network bandwidth

to transmit both the active controller command and integrator values.

2.2.2.4 Total Transition Effects

The total worst case step in control command is simply the sum of the three P, D,

and I command steps. If this step command is not acceptable in the system, more

sophisticated transitioning methods should be explored.

15

3 Simulation

3.1 Simulation Setup

The meta-controller model is tested using a Simulink simulation which combines

the base station, robot, and meta-controller as well as a simulated network delay. This is

connected via Data Turbine to a Mobile Sim model of a single differential drive mobile

ground robot. The simulation setup is shown below.

Figure 3 Simulation Configuration

Data Turbine is a communication application which makes data passing over a

network between applications seamless. Different applications can be swapped out

without reconfiguring other applications on the network for a different source or sink.

Mobile Sim runs real time models of different mobile robots. It receives heading

and velocity commands from the controller via Data Turbine and sends position, heading,

and velocity information back from the model. Data Turbine and Mobile Sim are used to

allow an easy transition into controlling the demonstration robot.

16

The kinematics of the differential drive robot are described in the following figure

and equations. The important feature of the differential drive configuration is the ability

to turn in place. This decouples the heading control from the velocity control as long as

the velocity control commands are not allowed to saturate the drive motor output. More

information on differential drive robots can be found in [11] or a number of other books

on the topic of mobile robot kinematics.

 IJ � � KL � M
2O

(10)

 IP � � KL % M
2O

(11)

Figure 4 Differential Drive Robot Dynamics

 The high level view of the Simulink model of the controllers is shown in figure 5.

The main parts of the simulation are the base station controller, robot controller, meta-

controller, network latency simulation, and the robot model simulation interface.

17

Figure 5 Meta-controller Simulation Model

18

 Both the base station and robot controller models run identical copies of an inner

heading control loop and outer position control loop. The outer position control loop

calculates the heading and distance to goal and outputs a desired heading and a velocity

command. The desired heading command is passed to the heading control loop which

compares it to the actual heading and generates a differential speed command to turn the

robot to the desired heading. The controller and equations are shown below.

Figure 6 Base Station Controller Model

 �/0' � 1QRST,U � V,U (12)

 W/0' � tanYZ T,
V,

(13)

 W[/0' � 1Q\W, (14)

The gains of position and heading controllers used in the simulation are set solely

on trial and error until acceptable performance is achieved. The control gains are not

optimal and are not product of a classic design for a desired transfer function. An

optimized controller is not required to test the meta-controller as even a controller with

low gains can be made unstable with sufficient communication delay.

The robot controller also contains the switching matrix which is controlled by the

meta-controller and is used to switch between robot and base station control. A simple

19

discrete switching matrix is used and more advanced transitioning techniques are not

explored in this paper.

The Data Turbine connection block encapsulates the Data Turbine interface to the

Mobile Sim robot model. It contains both the uplink for forward and rotational velocity

command and the downlink for position and heading feedback.

Finally, the network between the base station and controller is simulated by adding

a variable uplink and downlink delay between the base station and robot. In the

simulation this delay is set as a sinusoidal input to cause multiple switches between

control loops on a single run. The amplitude of the delay is selected to cause instability

when the robot is controlled in base station only mode.

3.2 Meta-controller Design

 The meta-controller measures the network latency and uses simple thresholds to

switch between controllers. When the latency exceeds a set threshold the meta-controller

will switch to robot control. When the latency drops back below the threshold the meta-

controller switches back to base station control. If there were sufficient noise on the

measured latency, hysteresis could be added to the switching thresholds to prevent

frequent transitioning when delay is near the cross over point.

The meta-controller uses two different switching thresholds for the inner and

outer loop as the inner loop is operating at a higher bandwidth and is more sensitive to

the network latency. For simulation purposes the meta-controller can perfectly measure

the uplink and down link latency with zero time delay. In an actual implementation,

20

there may be both error and delay in this measurement. The designer can correct for

expected error and delay by increasing the phase margin switch over point.

After the control gains are selected a sine sweep of the inner control loop is

performed to measure the closed loop system response. For the specific physical system

used for this research, the system response begins to roll off at command frequencies

higher than 0.3 rad/sec. This is used as the gain crossover frequency when determining

the meta-controller switching thresholds. The sine sweep also shows that the controller

has about 25° of phase lag. This is used to determine the switching threshold for the

meta-controller.

Equation 6 is used to calculate the time delay switch over point which will be

used for the inner loop controller. Any system will become unstable if there is more than

180° of phase lag. This controller already has 25° of phase lag and we would like to keep

10° of margin. This leaves 145° of phase which can be consumed by the time delay.

Using equation 6 with the calculated phase and gain crossover frequency gives the

following.

 145°
0.3 �	�/�

"
180° � 8.4�

(15)

This number is used as the switching threshold for the inner control loop of the

meta-controller model. This number seems excessively high because the Simulink model

is running faster than real time and the Mobile Sim plant model is running in

approximately real time. This makes the plant seem extremely slow from Simulink’s

perspective which is why this threshold is so high. The different time frames do affect

the simulation results as all results are presented in the Simulink time frame.

21

A full analysis was not performed for the outer loop. The threshold was set

approximately 50% higher than the inner loop threshold. Setting the thresholds close to

each other allows for transitions of both control loops without extremely large differences

in time delays.

An alternative method for setting the switching thresholds is to gather simulation

data with increasing time delays. The point at which the system becomes unstable or the

performance is unacceptable can be used as the transition threshold for the system.

3.3 Simulation Results

For all tests the robot starts at position (0, 0) and is given a step command to (10,

10).

3.3.1 Robot Control

A baseline run is completed using only the robot controller. All meta-controller

simulation results will be compared to this baseline. The robot trajectory as well as X, Y,

and heading error are plotted below. As expected, the robot controller performs well and

the robot drives smoothly to the goal position.

0 10 20 30 40 50 60 70 80 90
0

5

10

15
X Error

X
 E
rr
o
r
(m
)

Time (s)

22

Figure 7 Robot Control Simulation Results

0 10 20 30 40 50 60 70 80 90
0

5

10
Y Error

Y
 E
rr
o
r
(m
)

Time (s)

0 10 20 30 40 50 60 70 80 90
-1

-0.5

0

0.5
Heading Error

H
e
a
d
in
g
 E
rr
o
r
(r
a
d
ia
n
s
)

Time (s)

-10 -5 0 5 10
-10

-5

0

5

10
Robot XY Trajectory

X Position (m)

Y
 P
o
s
it
io
n
 (
m
)

Trajectory

Start

End

23

3.3.2 Base Station Control

This simulation forces control to the base station. The time delay input is a sine

wave and is selected to cause the base station control to become unstable. The frequency

is high enough that when the meta-controller is enabled there will be multiple switching

events in a single run.

The following results show the instability of the base station controller under

these conditions. The controller is unable to continuously maintain the stability of the

inner heading control loop which causes the robot to drive away from the goal when the

delays are high and turn back towards the goal when the time delays are low. The

switching lines shown in the last graph are locked to base station control.

0 20 40 60 80 100 120 140
-10

0

10

20
Y Error

Y
 E
rr
o
r
(m

)

Time (s)

0 20 40 60 80 100 120 140
0

5

10
X Error

X
 E
rr
o
r
(m

)

Time (s)

24

Figure 8 Base Station Control Simulation Results

0 20 40 60 80 100 120 140
-5

0

5
Heading Error

H
e
a
d
in
g
 E
rr
o
r
(r
a
d
ia
n
s
)

Time (s)

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10
Robot XY Trajectory

X Position (m)

Y
 P
o
s
it
io
n
 (
m
)

Trajectory

Start

End

0 20 40 60 80 100 120 140
0

0.5

1
Network Delay and Controller Switching Lines

D
e
la
y
 (
s
)
&
 S
w
it
c
h
in
g
 L
in
e
s

Time (s)

Delay

V Cmd Switching

Theta Dot Cmd Swithcing

25

3.3.3 Mixed Control

The final simulation run enables the meta-controller to allow switching between

the base station and robot control. The time delay magnitude and period are kept the

same as the previous run which cause instability in the base station. The controller is

able to maintain performance and reach the goal position. The heading error oscillates

more than with robot only control, but the goal is still reached in a comparable amount of

time.

0 10 20 30 40 50 60 70 80 90
-5

0

5

10
X Error

X
 E
rr
o
r
(m

)

Time (s)

0 10 20 30 40 50 60 70 80 90
-5

0

5

10
Y Error

Y
 E
rr
o
r
(m

)

Time (s)

0 10 20 30 40 50 60 70 80 90
-5

0

5
Heading Error

H
e
a
d
in
g
 E
rr
o
r
(r
a
d
ia
n
s
)

Time (s)

26

Figure 9 Meta-controller Simulation Results

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Robot XY Trajectory

X Position (m)

Y
 P
o
s
it
io
n
 (
m
)

Trajectory

Start

End

0 10 20 30 40 50 60 70 80 90
0

0.5

1
Network Delay and Controller Switching Lines

D
e
la
y
 (
s
)
&
 S
w
it
c
h
in
g
 L
in
e
s

Time (s)

Delay

V Cmd Switching

Theta Dot Cmd Swithcing

27

3.3.4 Transition Effects

The following figure shows the heading rate command after the switching matrix

as well as the switching line which selects the heading rate command. It is easy to see

that transitioning between the base station and mobile robot can cause a large

discontinuity in the command sent to the plant model. The robot dynamics work to

dampen this response so the large command jumps appear only as a small wavering in the

robot trajectory.

Figure 10 - Switching Effects

3.3.5 Simulation Summary

The simulation results of the meta-controller model show that a simple switching

technique can be used to maintain system stability when a network experiences lag or

packet loss that was not accounted for in the original design. In the simulation

configuration the controller spent 50% of the time using the base station position control

loop output and 35% of the time using the base station heading control loop output. The

performance of each controller is shown in the following table.

0 10 20 30 40 50 60 70 80 90
-30

-20

-10

0

10

20

30
Theta Dot Command and Switching Line

Time (s)

T
h
e
ta
 D
o
t
C
m
d
 (
ra
d
ia
n
s
/s
)
&
 S
w
it
h
c
in
g
 L
in
e

Theta Dot Cmd

Swithcing Line

28

Test Heading Error

Mean

(radians)

Heading Error

Std. Dev.

(radians)

Position Error

Mean (m)

Position

Error Std.

Dev. (m)

Robot 0.05 0.13 5.53 4.83

Base Station 1.38 1.58 11.36 1.53

Meta-Controller 0.97 1.02 4.73 4.54

Table 1 Simulation Results

29

4 Experimental Test

To test the meta-controller in a real world environment an experimental test bed was

developed. A differential drive robot with GPS, compass, microprocessor, and wireless

communication link was used as the remote robot. An overview of the test configuration

is shown below and the details of each piece are discussed in the following section

Table 2 Experimental Test Configuration

4.1 Robot Platform

A commercially available kit, the Parallax BoeBot, was used for easy construction

and integration with the selected microcontroller development board.

Figure 11 BoeBot

30

The robot base includes mounting provisions for a Basic Stamp development

board. The board includes a small breadboard area which is used to mount and connect

sensors and wireless communication.

4.2 Actuation

4.2.1 Servos

The BoeBot uses two continuous rotation hobby servo motors driven by a

standard 1.3 to 1.7ms pulse every 20ms. The servos can be driven in both forward and

reverse so the BoeBot is capable of any radius turn from zero (turn in place) to infinity

(straight line).

4.2.2 ServoPal

The selected microcontroller is only capable of single loop execution and cannot

guarantee the servo commands will be sent every 20ms. A Parallax ServoPal is used to

receive commands from the microcontroller and maintain the appropriate pulse

commands at the correct rate to the servos.

Figure 12 Servo Pal

31

The ServoPal connects directly between the standard BasicStamp servo connection

and the servo wires and is capable of controlling two servos. The ServoPal will repeat

any pulse width generated by the microcontroller between 0.5 and 2.5ms which is more

than adequate for the BoeBot application.

4.3 Sensors

4.3.1 CMPS03 Digital Compass

Figure 13 Digital Compass

The CMPS03 compass is a two axis digital compass capable of resolving heading

down to 1.4°. The compass module outputs either over an I
2
C bus or a variable pulse

width on a single pin. The I
2
C bus is used for noise immunity in this application.

Heading output is given in binary radians (BRADs) which count from 0 to 255 startin

from North and increasing in the clockwise direction. This one byte range allows for

easy interpretation by the Basic Stamp as well as simple use of the Basic Stamp

trigonometric functions which take BRADs as input units. The compass module can also

be calibrated to adjust for differences between magnetic and true north based on location.

The module is shipped with a calibration value for a location close to our test location so

a recalibration is not required. This means that the heading output of the compass is a

value from true north and can be used directly for navigation purposes.

32

4.3.2 Parallax GPS Receiver

Figure 14 GPS Receiver

The Parallax GPS Receiver is a standard GPS module capable of tracking up to 12

satellites simultaneously. It automatically locks onto GPS signals and calculates GPS

and time coordinates as soon as 4 satellites are discovered. It is designed for easy

integration with the BasicStamp and communicates over a single wire 4800 baud serial

port. The module is capable of outputting raw NMEA0183 strings or internally parsing

the data and transmitting only requested pieces of information. For our application we

will be requesting only the latitude and longitude values. The module advertises an

average position error of +/-5m but in practice provided much lower accuracy.

Unfortunately the 4800 baud serial connection takes about 150ms to read a single

set of latitude and longitude coordinates. This becomes the limiting factor in control loop

speed for the BasicStamp. To mitigate this time lag, a second basic stamp is added to the

robot and used only to read serial data from the GPS and forward it over a faster serial

link to the primary stamp. The primary stamp is free to run its control loops at a faster

rate and update the GPS coordinates when new information becomes available. This

33

means that the primary stamp may execute several cycles of the control loops on the

same GPS data but with new heading data, making the inner heading control loop higher

bandwidth than the outer loop.

4.4 Communication Link

4.4.1 XBee 802.15.4

Figure 15 XBee Module

Table 3 XBee Specifications

A pair of XBee 802.15.4 radios is used to establish a wireless serial communication

link between the base station and remote robot. The wireless serial link is a 38.4Kbaud

bidirectional point to point serial link. The XBee modules have approximately a 300 ft

outdoor range, but do suffer from interference problems and noise. A simple XOR

34

checksum is used to determine data packet integrity. This method works well for low

levels of interference but begins to fail if obstacles are present between the robot and base

station. Wireless through obstacles is not required for this test so the XOR checksum is

sufficient to remove any corrupted data.

4.5 Microcontrollers

4.5.1 Parallax Basic Stamp 2

The Basic Stamp 2 module is a 20MHz processor that runs a PBasic interpreter at

~4,000 instructions per second. The Basic Stamp 2 and PBasic langue provide an easy to

use development environment with many useful built in commands for communication

interfaces and servo control. The Basis Stamp 2 is limited to running a single threaded

application so all communication, control calculations, and actuator control must be done

in a linear fashion.

A second Basic Stamp 2 module is used as a serial communication accelerator

between the GPS module and primary control Basic Stamp. This Stamp performs no

other control or communication functions.

4.6 Base Station

The base station application is run in Simulink on a standard Windows XP laptop.

The laptop provides a mobile, easy to use, and powerful platform for the base station

application.

35

4.6.1 XBee 802.15.4

The second XBee wireless communication module is used in conjunction with a

USB to Serial converter breakout board and connected to the base station laptop

computer. The computer sees this wireless link as a standard COM port.

4.6.2 Data Turbine

Data Turbine is a communication application used to connect the Simulink

simulation to the serial COMM port. It is used to facilitate easy switching between the

simulation setup discussed in section 3 and the real world experimental setup.

4.6.3 Simulink

The base station controller runs as a Simulink model and is nearly identical to the

base station half of the simulation discussed in Section 3. The robot control portion is

removed and other small modifications are made to properly format the commands for

the BoeBot as opposed to the MobileSim model robot. The control gains as well as the

meta-controller transition threshold are set via trial and error. A high level view of the

controller is shown on the next page.

36

Figure 16 Base Station Controller Model

37

4.7 Experimental Results

4.7.1 GPS Issues

The Parallax GPS module did not perform to the +/-5m accuracy which was

advertised. Stationary GPS data gathered over a 5 minute period had a standard deviation

of 19m. The GPS module also exhibited around a 1 minute lag between the time the

module was moved and when the coordinates would center on the new location.

Multiple filtering techniques were attempted. The most successful was a low pass

filter which brought the stationary standard deviation down under 8m. This filter also

added approximately one more minute of lag to the GPS centering time when the module

was moved.

In test runs performed with the low pass filter the robot was able to head almost

directly for the goal position but would begin veering away approximately half way to the

goal. It was never able to reach the goal position. The closest run brought it to within

approximately 6m of the goal. Furthermore, the trajectory produced from logged GPS

data did not match well with the actual path taken by the robot. The GPS trajectory

showed significantly exaggerated movements as the GPS location would jump around the

actual robot location. Finally, the GPS data showed that the robot had reached and

passed its goal several times even though this did not actually happen.

It was concluded that the GPS error was too large compared to the size and speed

of the mobile robot. The GPS error also affected the analysis of the heading control loop

because jumps in GPS location would cause command step inputs to the heading control

loop.

38

4.7.2 Heading Control Loop Testing

The entire position control loop was removed from the base station and mobile

robot controllers to allow for accurate testing of the meta-controller for the heading

control loop. The heading control loop was given periodic 90° step command inputs with

sufficient time between step inputs for the control loops to settle. The runs mimic the

simulation runs with the first being robot only control, the second base station control,

and the third using the meta-controller. The results from each run are presented in the

following sections.

4.7.3 Robot Control Baseline

The self controlled robot performs very well. The heading control loop is able to

quickly respond to the step input most of the time with little overshoot. The compass

heading wraps from zero to two pi radians at due North so the heading actual vs. heading

command looks significantly worse than it really is. The heading error gives a much

more accurate perspective on the controller performance. Averaging the response

characteristics of all the individual step commands gives a mean overshoot of 10%, mean

settling time of 2.6s, and mean time to peak of 2.3 seconds. The maximum overshoot is

approximately 63% but this is an outlier as all other step responses have less than 20%

overshoot. Results are shown below.

39

Figure 17 Robot Control Results

4.7.4 Base Station Control Without Delay

In this test the robot is forced to listen to the base station command with no

artificial time delay between the base station and robot. This test will establish a baseline

performance for base station control under normal network conditions. When the robot is

listening to base station commands it skips the control loop section of code so the overall

execution rate for the control loops is faster than when under robot control. However, the

network latency has a stronger detrimental affect than the increased execution rate so the

control performance is worse than on-board robot control. The mean overshoot is 17.7%,

mean time to peak is 3.2s, and mean settling time is 5.3s. The results are shown below.

0 50 100 150 200 250 300 350
0

2

4

6

8
Heading Command and Heading Actual

H
e
a
d
in
g
 (
R
a
d
ia
n
s
)

Heading Command

Heading Actual

0 50 100 150 200 250 300 350
-1

0

1

2
Heading Error

H
e
a
d
in
g
 (
R
a
d
ia
n
s
)

40

Figure 18 Base Station Control Results

4.7.5 Base Station Control With Delay

This test continues to force the robot to listen to base station commands and adds

a sinusoidal network delay on top of the baseline network latency. The time delay is

enough to cause system instability when large heading errors are present, but the robot is

able to recover during periods of short delay time. About 30% of the step responses do

not stabilize. The results are adjusted to exclude the unstable responses. The mean

overshoot of the stable responses is 76%, mean time to peak is 3.4s, and mean settling

time is 10.5s. The results are below.

0 50 100 150 200 250 300 350 400
0

2

4

6

8
Heading Command and Heading Actual

H
e
a
d
in
g
 (
R
a
d
ia
n
s
)

Heading Command

Heading Actual

0 50 100 150 200 250 300 350 400
-1

0

1

2
Heading Error

H
e
a
d
in
g
 (
R
a
d
ia
n
s
)

41

Figure 19 Base Station with Delay Results

50 100 150 200 250 300 350
0

2

4

6

8
Heading Command and Heading Actual

H
e
a
d
in
g
 (
R
a
d
ia
n
s
)

Heading Command

Heading Actual

50 100 150 200 250 300 350
-4

-2

0

2

4
Heading Error

H
e
a
d
in
g
 (
R
a
d
ia
n
s
)

50 100 150 200 250 300 350
0

0.5

1

1.5
Time Delay and Switching Line

T
im
e
 D
e
la
y
 a
n
d
 S
w
it
c
h
in
g
 L
in
e

Time Delay

Switching Line

42

4.7.6 Meta-Controller

The same added network delay signal as the base station control with delay test is

used, but now the meta-controller is enabled on the robot to allow switching between

command sources.

Figure 20 Meta-controller Results

400 450 500 550 600 650
0

2

4

6

8
Heading Command and Heading Actual

H
e
a
d
in
g
 (
R
a
d
ia
n
s
)

Heading Command

Heading Actual

400 450 500 550 600 650
-2

-1

0

1

2

3
Heading Error

H
e
a
d
in
g
 (
R
a
d
ia
n
s
)

400 450 500 550 600 650
0

0.5

1

1.5
Time Delay and Switching Line

T
im
e
 D
e
la
y
 a
n
d
 S
w
it
c
h
in
g
 L
in
e

Time Delay

Switching Line

43

With the meta-controller enabled, the system is stable and remains under base

station control for a majority of the time. The controller spends 62% of the simulation

time listening to the base station controller and the remaining 38% listening to the robot

controller. The mean overshoot is 56.9%, mean time to peak is 3.9s, and mean settling

time is 5.9s. The meta-controller had several responses with 100% overshoot but half

were less than 63%.

4.7.7 Summary of Results

 Test Time to

Peak (s)

Settling

Time (s)

 Overshoot

(%)

Robot 2.3 2.6 10.1

Base Station 3.2 5.3 17.7

Base Station w/ Delay
(Includes only stable responses)

3.4 10.5 76.0

Meta-Controller w/ Delay 3.9 5.9 56.9

Table 4 Test Results

The meta-controller with delay performs significantly better than the base station

alone with the delay. It does not meet the performance of either the base station in

normal network conditions or the robot controller, but this is expected because the

network must first start to lag before control is switched over to the robot.

The meta-controller achieves the desired result of maintaining base station control as

much as possible without sacrificing system stability. The transition between base station

and robot control is very smooth for this system.

44

5 Conclusion

5.1 Summary

The meta-controller proposed in this paper has shown that it is a valid solution for

networked control systems where communication lag and failure cannot cause loss of

control. The controller is capable of smoothly transitioning back and forth between base

station and remote operation as network performance moves in and out of the parameters

of the classical control system design. The overall performance of the system is

comparable to the networked or remote only systems. This system can be used for

automatically transitioning between base station and remotely executed control loops as

operator system confidence grows.

 The mobile robot test bed used for this application was not an ideal system to test

against. The cart’s size and speed compared to GPS inaccuracies meant that the robot

was never able to reach the goal position. This forced the testing to be constrained to the

inner heading control loop. The meta-controller was able to stabilize the heading control

loop while still spending 62% of the time under base station control with performance

comparable to the networked control system operating under normal network conditions.

5.2 Future Work

There are several areas of the meta-controller which can be explored in more depth.

First, a different system with both inner and outer loops could be developed to test the

real world response of the meta-controller with nested loop controllers.

45

Secondly, more research can be done into applying the meta-controller model to

control systems with derivative and integral control terms. These were only discussed in

the theory section of the paper and were not tested in simulation or practical application.

These alternate control methods may also require more research into smoothing the

transition between the two controllers.

Finally, alternate switching methods could be developed and applied to the same

meta-controller structure. Some ideas include a switching threshold with hysteresis or a

controller which monitors system performance instead of network delay.

46

References

[1] H. W. Stone, “Mars Pathfinder Microrover. A Small, Low-cost, Low-power Spacecraft,” Jet

Propulsion Laboratory, Pasadena, CA, 1996

[2] G. M. H. Leung, B. A. Francis, J. Apkarian, “Bilateral Controller for Teleoperators with Time Delay

via µ-Synthesis,” Dept. of Electrical and Computer Engineering, University of Toronto, Ontario,

Canada, 1997

[3] S. Thrun, W. Burgard, D. Fox, “A Read-Time Algorithm for Mobile Robot Mapping with

Applications to Multi-Robot and 3D Mapping,” Computer Science Department, Carnegie Mellon

University, Pittsburgh, PA. Computer Science Department, University of Freiburg, Freiburg,

Germany, 2000

[4] M. S. Branicky, S. M. Phillips, W. Zhang, “Stability of Networked Control Systems: Explicit

Analysis of Delay”, EECS Department, Case Western Reserve University, Cleveland, OH, 2000

[5] W. Zhang, M. S. Branicky, S. M. Phillips, “Stability of Networked Control Systems,” IEEE Control

Systems Magazine, Feb. 2001

[6] J. Rao and N. Sadeh, “Semantic Web Framework and Meta-Control Model to Enforce Context-

Sensitive Policies,” School of Computer Science, Carnegie Mellon Univerisy, Pittsburgh, PA

[7] G. Alexander, A. Raja, E. H. Durfee, and D. J. Musliner, “Design Paradigms for Meta-Control in

Multiagent Systems,” Department of Software and Information Systems, The University of North

Carolina, Charlotte, NC. EECS Department, University of Michigan, Ann Arbor, MI. Honeywell

Laboratories, Minneapolis, MN.

[8] R. M. Rasay, "A Graphical Model-Based Reasoning Analysis Environment for Space System

Anomaly Management," C. Kitts, Adv., M.S. Thesis, Department of Mechanical Engineering, Santa

Clara University, Santa Clara, CA, June 2007.

[9] X. Liu and A. Goldsmith, “Wireless Network Design for Distributed Control”, Department of Elec.

Eng., Stanford University, Stanford, CA, Jan. 2004

47

[10] M. S. Branicky, S. M. Phillips, and W. Zhang, “Scheduling and Feedback Co-Design for

Networked Control Systems”, Proc. IEE CDC, Las Vegas, 2002

[11] M. Jenkin, “Computational Principles of Mobile Robotics”, Cambridge University Press, 2000

[12] X. Liu, A. Goldsmith, “Wireless Medium Access Control in Networked Control Systems”,

Department of Elec. Eng., Stanford University, Stanford, CA, Jan. 2004

[13] Y. Tipsuwan, M.Y. Chow, “Control Methodologies in Networked Control Systems”, Department

of Elec. And Computer Eng., North Carolina State University, Raleigh, NC, Feb. 2003

[14] L. Zhongkui, D. Zhisheng, H. Lin, “H ∞ control of networked multi-agent systems,” Department

of Mechanical and Aerospace Engineering, Peking University, Beijing, China, 2009

[15] J. J. Biesiadecki, C. Leger, M. W. Maimone, “Tradeoffs Between Directed and Autonomous

Driving on the Mars Exploration Rovers,” Jet Propulsion Laboratory, Pasadena, CA, 2005

[16] J. Nilsson, “Read-Time Control Systems with Delays,” Department of Automatic Control, Lund

Institute of Technology, Lund, Sweden, 1998

48

Appendix A – Meta-Controller Simulink Model

49

50

51

52

Appendix B – Base Station Simulink Model

53

54

55

Appendix C – Basic Stamp Code

Robot Controller – Heading Control Only

' {$STAMP BS2}
' {$PBASIC 2.5}

SDA CON 10
SCL CON 11

RightServo CON 12
LeftServo CON 13

'--------------------------------------
' Temporary Variables
'--------------------------------------
'Used for I2C read/write buffer
TmpByte1 VAR Byte

'Used for receiving speed command
'Used for latDegrees
'Used for minutesError
'Used for errorLon
TmpByte2 VAR Byte

'Used for receiving packet count
'Used for errorLat
'Used for lonDegrees
TmpByte3 VAR Byte

'Used for receiving checksum
'Used for minutesDError
'Used for distanceError
TmpWord1 VAR Word

'Used to track sign bit
'Used for I2C Ack/Nak
sign VAR Bit

'--------------------------------------
' Servo Pal
'--------------------------------------
ServoPalInp PIN 12
ServoPalAlarm PIN 13

ServoPalResetTime CON 100
ZeroSpeedPulseWidth CON 750

'--------------------------------------
' Compass
'--------------------------------------

56

SDAin VAR IN10
SDAout VAR OUT10
SDAdir VAR DIR10

I2cData VAR Word ' Data to read/write
I2cAddr CON $c0 ' Address of I2C device
I2cReg CON 1 ' Register number within I2C
device

'----------------------------------
' General Serial
'----------------------------------
#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T9600 CON 396
 T19K2 CON 188
 T38K4 CON 84
#ENDSELECT

'---
' XBee Serial Variables and Consts
'---
XBeeDataOut PIN 2
XBeeDataIn PIN 3

XBeeBaud CON T38K4

headingError VAR Byte
headingCmd VAR Byte
bsHeadingCmd VAR Byte
tmpBsHeadingCmd VAR Byte

packetNumber VAR Byte
controlLoopSelector VAR Bit
packetNumberDifferenceThreshold CON 7

headingKp CON 1

'--
' Control loop input
'--
desiredHeading VAR Byte
headingIncrement CON 64

57

headingIncrementPeriod CON 128
headingIncrementCounter VAR Word

Main:
PAUSE 1000
DEBUG "Program Start", CR
SEROUT XBeeDataIn, XBeeBaud, ["Program Start", CR]

PAUSE 1000

'Reset ServoPal
LOW ServoPalInp
PAUSE ServoPalResetTime
HIGH ServoPalInp

INPUT SDA
INPUT SCL
INPUT RightServo
INPUT LeftServo

packetNumber = 0
controlLoopSelector = 1
headingCmd = 0

desiredHeading = 0
headingIncrementCounter = 0

StartingWait:
PAUSE 1000
DEBUG "."

Loop_Start:
DO

 IF headingIncrementCounter >= headingIncrementPeriod THEN
 headingIncrementCounter = 0
 desiredHeading = desiredHeading + headingIncrement
 ENDIF
 headingIncrementCounter = headingIncrementCounter + 1

 'Read Heading
 'Stored in TmpByte1
 GOSUB i2cByteRead

 SEROUT XBeeDataIn, XBeeBaud,
[187,TmpByte1,desiredHeading,packetNumber,ControlLoopSelector,

TmpByte1^desiredHeading^packetNumber^ControlLoopSelector, CR]

 packetNumber = packetNumber + 1

 'Read commands from basestation
 SERIN XBeeDataOut, XBeeBaud, [tmpBsHeadingCmd]
 DO WHILE tmpBsHeadingCmd <> 187
 'Keep reading until we see a start code

58

 SERIN XBeeDataOut, XBeeBaud, [tmpBsHeadingCmd]
 LOOP

 'READ heading command, COUNT, AND checksum
 SERIN XBeeDataOut, XBeeBaud, [tmpBsHeadingCmd, TmpByte3,
TmpWord1.HIGHBYTE]
 IF (tmpBsHeadingCmd^TmpByte3) <> TmpWord1.HIGHBYTE THEN
 'DEBUG "Checksum error", CR
 ELSE
 'DEBUG "Heading Cmd: ", DEC tmpBsHeadingCmd, " Count: ", DEC
TmpByte3, " Checksum: ", DEC TmpWord1.HIGHBYTE, CR

 bsHeadingCmd = tmpBsHeadingCmd

 'Decide to use local or remote commands
 IF packetNumber - TmpByte3 > packetNumberDifferenceThreshold THEN
 'Check to wrap condition
 IF 256 - TmpByte3 + packetNumber <
packetNumberDifferenceThreshold THEN
 'Use basestation control
 controlLoopSelector = 1
 ELSE
 'Use robot control
 controlLoopSelector = 0
 ENDIF
 ELSE
 'Use basestation control
 controlLoopSelector = 1
 ENDIF
 ENDIF

 IF controlLoopSelector THEN
 'Use on Base station control loops
 IF bsHeadingCmd > 128 THEN
 'removed direction bit from heading to goal
 bsHeadingCmd = 255 - bsHeadingCmd
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth - bsHeadingCmd
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth - bsHeadingCmd

 'Restore headingCmd in case no command is received next loop
 bsHeadingCmd = 255 - bsHeadingCmd
 ELSE
 'DEBUG "Heading cmd: ", DEC headingCmd, " dist cmd: ", DEC
velCmd, CR
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth + bsHeadingCmd
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth + bsHeadingCmd

 ENDIF

 ELSE
 'Use on robot control loops

 'Calculate heading error
 headingError = desiredHeading - I2cData

 IF headingError > 128 THEN
 headingError = 255 - headingError

59

 headingError = (headingError*headingKp) MAX 128

 PULSOUT ServoPalInp, ZeroSpeedPulseWidth - headingError
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth - headingError
 ELSE
 headingError = (headingError*headingKp) MAX 128
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth + headingError
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth + headingError
 ENDIF
 ENDIF

LOOP

END

'--

' I2C subroutines follow
'--

I2cByteWrite: ' writes I2cData.lowbyte to
I2cReg at I2cAddr
GOSUB I2cStart
TmpByte1 = I2cAddr
GOSUB I2cOutByte ' send device address
TmpByte1 = I2cReg
GOSUB I2cOutByte ' send register number
TmpByte1 = I2cData.LOWBYTE
GOSUB I2cOutByte ' send the data
GOSUB I2cStop
RETURN

I2cWordWrite: ' writes I2cData to I2cReg at
I2cAddr
GOSUB I2cStart
TmpByte1 = I2cAddr
GOSUB I2cOutByte ' send device address
TmpByte1 = I2cReg
GOSUB I2cOutByte ' send register number
TmpByte1 = I2cData.HIGHBYTE
GOSUB I2cOutByte ' send the data - high byte
TmpByte1 = I2cData.LOWBYTE
GOSUB I2cOutByte ' send the data - low byte
GOSUB I2cStop
RETURN

I2CByteRead:
GOSUB I2cStart
TmpByte1 = I2cAddr
GOSUB I2cOutByte ' send device address
TmpByte1 = I2cReg
GOSUB I2cOutByte ' send register number
GOSUB I2cStart ' repeated start
TmpByte1 = I2cAddr | 1

60

GOSUB I2cOutByte ' send device address (with
read set)
sign = 0 ' send Nak
GOSUB I2cInByte
I2cData.LOWBYTE = TmpByte1 ' read the data
I2cData.HIGHBYTE = 0
GOSUB I2cStop
RETURN

I2CWordRead:
GOSUB I2cStart
TmpByte1 = I2cAddr
GOSUB I2cOutByte ' send device address
TmpByte1 = I2cReg
GOSUB I2cOutByte ' send register number
GOSUB I2cStart ' repeated start
TmpByte1 = I2cAddr | 1
sign = 1 ' send Ack
GOSUB I2cOutByte ' send device address (with
read set)
GOSUB I2cInByte
I2cData.HIGHBYTE = TmpByte1 ' read the data
sign = 0 ' send Nak
GOSUB I2cInByte
I2cData.LOWBYTE = TmpByte1
GOSUB I2cStop
RETURN

I2cOutByte:
SHIFTOUT SDA, SCL, MSBFIRST, [TmpByte1]
INPUT SDA
HIGH SCL ' clock in the ack' bit
LOW SCL
RETURN

I2cInByte:
SHIFTIN SDA, SCL, MSBPRE, [TmpByte1]
SDAout = 0
SDAdir = sign
HIGH SCL ' clock out the ack' bit
LOW SCL
INPUT SDA
RETURN

I2cStart: ' I2C start bit sequence
HIGH SDA
HIGH SCL
LOW SDA
LOW SCL
RETURN

I2cStop: ' I2C stop bit sequence
LOW SDA
HIGH SCL
HIGH SDA
RETURN

61

Robot Controller – Navigation Controller

' {$STAMP BS2}
' {$PBASIC 2.5}

SDA CON 10
SCL CON 11

RightServo CON 12
LeftServo CON 13

'--------------------------------------
' Temporary Variables
'--------------------------------------
'Used for I2C read/write buffer
TmpByte1 VAR Byte

'Used for receiving speed command
'Used for latDegrees
'Used for minutesError
'Used for errorLon
TmpByte2 VAR Byte

'Used for receiving packet count
'Used for errorLat
'Used for lonDegrees
TmpByte3 VAR Byte

'Used for receiving checksum
'Used for minutesDError
'Used for distanceError
TmpWord1 VAR Word

'Used to track sign bit
'Used for I2C Ack/Nak
sign VAR Bit

'--------------------------------------
' Servo Pal
'--------------------------------------
ServoPalInp PIN 12
ServoPalAlarm PIN 13

ServoPalResetTime CON 100
ZeroSpeedPulseWidth CON 750

'--------------------------------------
' Compass
'--------------------------------------

SDAin VAR IN10
SDAout VAR OUT10
SDAdir VAR DIR10

I2cData VAR Word ' Data to read/write

62

I2cAddr CON $c0 ' Address of I2C device
I2cReg CON 1 ' Register number within I2C
device

'----------------------------------
' General Serial
'----------------------------------
#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T9600 CON 396
 T19K2 CON 188
 T38K4 CON 84
#ENDSELECT

'---------------------------------
' Stamp-Stamp Serial
'---------------------------------
Bs2SerialData PIN 6
Bs2SerialFlow PIN 5

Inverted CON $4000
Open CON $8000
Baud CON T38K4 + Inverted

'---
' XBee Serial Variables and Consts
'---
XBeeDataOut PIN 2
XBeeDataIn PIN 3

XBeeBaud CON T38K4

'---
' GPS Variables
'---
latMinutes VAR Byte
latMinutesD VAR Word
latDir VAR Byte

lonMinutes VAR Byte
lonMinutesD VAR Word
lonDir VAR Byte

63

'----------------------------------
' Control Vars
'----------------------------------
'only works at 37 degrees north latitude
desiredDegreesLat CON 37
desiredDirectionLat CON 0
'desired minutes and decimal minutes are variable
desiredMinutesLat VAR Byte
desiredMinutesDLat VAR Word

'only works at 121 degrees west longitude
desiredDegreesLon CON 121
desiredDirectionLon CON 1
'desired minutes and decimal minutes are variable
desiredMinutesLon VAR Byte
desiredMinutesDLon VAR Word

headingToGoal VAR Byte
headingCmd VAR Byte
velCmd VAR Byte

packetNumber VAR Byte
controlLoopSelector VAR Bit
packetNumberDifferenceThreshold CON 6

headingKp CON 1

setDesiredPin PIN 1

Main:
PAUSE 1000
DEBUG "Program Start", CR
SEROUT XBeeDataIn, XBeeBaud, ["Program Start", CR]

PAUSE 1000

'Reset ServoPal
LOW ServoPalInp
PAUSE ServoPalResetTime
HIGH ServoPalInp

INPUT SDA
INPUT SCL
INPUT RightServo
INPUT LeftServo

packetNumber = 0
controlLoopSelector = 1
velCmd = 0
headingCmd = 0

StartingWait:
PAUSE 1000
DEBUG "."

'Wait for GPS and set as desired

64

SERIN Bs2SerialData\Bs2SerialFlow, Baud, 2, StartingWait, [TmpByte2,
latMinutes, latMinutesD.HIGHBYTE, latMinutesD.LOWBYTE, latDir,
TmpByte3, lonMinutes, lonMinutesD.HIGHBYTE, lonMinutesD.LOWBYTE,
lonDir]
desiredMinutesLat = latMinutes
desiredMinutesDLat = latMinutesD
desiredMinutesLon = lonMinutes
desiredMinutesDLon = lonMinutesD

Loop_Start:
DO
 'Read GPS from other Stamp
 'LatDeg, LatMin, LatMinD, LatDir, LonDeg, LonMin, LonMidD, LonDir
 SERIN Bs2SerialData\Bs2SerialFlow, Baud, 2, No_Data_Ready, [TmpByte2,
latMinutes, latMinutesD.HIGHBYTE, latMinutesD.LOWBYTE, latDir,
TmpByte3, lonMinutes, lonMinutesD.HIGHBYTE, lonMinutesD.LOWBYTE,
lonDir]
 Continue_Loop:

 'Read Heading
 'Stored in TmpByte1
 GOSUB i2cByteRead

 'Check if lat/lon should be set as desired
 sign = ~setDesiredPin
 IF sign THEN
 'DEBUG "Setting desired lat/lon", CR
 desiredMinutesLat = latMinutes
 desiredMinutesDLat = latMinutesD
 desiredMinutesLon = lonMinutes
 desiredMinutesDLon = lonMinutesD
 ENDIF

 'Send telemetry to basestation
 'LatDeg, LatMin, LatMinD, LatDir, LonDeg, LonMin, LonMidD, LonDir,
heading, setDesired
 'DEBUG "!",DEC TmpByte2," ",DEC latMinutes,".",DEC latMinutesD,"
",DEC latDir," ",DEC TmpByte3," ",DEC lonMinutes,".",DEC lonMinutesD,"
",DEC lonDir," ",DEC TmpByte1," ",DEC sign, CR
 'DEBUG "?",DEC TmpByte2," ",DEC desiredMinutesLat,".",DEC
desiredMinutesDLat," ",DEC latDir," ",DEC TmpByte3," ",DEC
desiredMinutesLon,".",DEC desiredMinutesDLon," ",DEC lonDir,CR
 SEROUT XBeeDataIn, XBeeBaud,
[187,desiredDegreesLat,latMinutes,latMinutesD.HIGHBYTE,latMinutesD.LOWB
YTE,latDir,desiredDegreesLon,lonMinutes,lonMinutesD.HIGHBYTE,lonMinutes
D.LOWBYTE,lonDir,TmpByte1,desiredMinutesDLat.HIGHBYTE,desiredMinutesDLa
t.LOWBYTE,desiredMinutesDLon.HIGHBYTE,desiredMinutesDlon.LOWBYTE,headin
gToGoal,packetNumber,ControlLoopSelector,

desiredDegreesLat^latMinutes^latMinutesD.HIGHBYTE^latminutesD.LOWBYTE^l
atDir^desiredDegreesLon^lonMinutes^lonMinutesD.HIGHBYTE^lonMinutesd.LOW
BYTE^lonDir^TmpByte1^desiredMinutesDLat.HIGHBYTE^desiredMinutesDLat.LOW
BYTE^desiredMinutesDLon.HIGHBYTE^desiredMinutesDLon.LOWBYTE^headingToGo
al^packetNumber^ControlLoopSelector, CR]

 packetNumber = packetNumber + 1

65

 'Read commands from basestation
 SERIN XBeeDataOut, XBeeBaud, [headingToGoal]
 DO WHILE headingToGoal <> 187
 'Keep reading until we see a start code
 SERIN XBeeDataOut, XBeeBaud, [headingToGoal]
 LOOP

 'Read heading command, speed command, count, and checksum
 SERIN XBeeDataOut, XBeeBaud, [headingToGoal, TmpByte2, TmpByte3,
TmpWord1.HIGHBYTE]
 'DEBUG "Received: ", DEC headingToGoal, " ", DEC TmpByte2, " ", DEC
TmpByte3, " ", DEC TmpWord1.HIGHBYTE, CR
 IF (headingToGoal^TmpByte2^TmpByte3) <> TmpWord1.HIGHBYTE THEN
 'DEBUG "Checksum error", CR
 ELSE
 'Good packet
 headingCmd = headingToGoal
 velCmd = TmpByte2
 'DEBUG "heading cmd: ", DEC headingToGoal, " vel cmd: ", DEC
TmpByte2," Packet number: ", DEC packetNumber, CR

 'Decide to use local or remote commands
 IF packetNumber - TmpByte3 > packetNumberDifferenceThreshold THEN
 'Check to wrap condition
 IF 256 - TmpByte3 + packetNumber <
packetNumberDifferenceThreshold THEN
 'Use basestation control
 controlLoopSelector = 1
 ELSE
 'Use robot control
 controlLoopSelector = 0
 ENDIF
 ELSE
 'Use basestation control
 controlLoopSelector = 1
 ENDIF
 ENDIF

 IF controlLoopSelector THEN
 'Use on Base station control loops
 IF headingCmd > 128 THEN
 'removed direction bit from heading to goal
 'velocity cmd is already capped
 headingCmd = 255 - headingCmd
 'DEBUG "Heading cmd: ", DEC headingCmd, " dist cmd: ", DEC
velCmd, CR
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth - headingCmd - velCmd
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth - headingCmd + velCmd
 'Restore headingToGoal to send to basestation
 headingToGoal = headingCmd
 'Restore headingCmd in case no command is received next loop
 headingCmd = 255 - headingCmd
 ELSE
 'DEBUG "Heading cmd: ", DEC headingCmd, " dist cmd: ", DEC
velCmd, CR
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth + headingToGoal - velCmd
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth + headingToGoal + velCmd

66

 'Restore headingToGoal to send to basestation
 headingToGoal = headingCmd
 ENDIF

 ELSE
 'Use on robot control loops

 'Calculate Latitude error
 IF latDir <> desiredDirectionLat THEN
 DEBUG "Only works in NW hemisphere. Sorry.", CR
 END
 ENDIF

 'Calculate Longitude
 IF lonDir <> desiredDirectionLon THEN
 DEBUG "Only works in NW hemisphere. Sorry.", CR
 END
 ENDIF

 'MinutesError = desiredMinutesLat - latMinutes
 TmpByte2 = desiredMinutesLat - latMinutes
 'MinutesDError = desiredMinutesDLat - latMinutesD
 TmpWord1 = desiredMinutesDLat - latMinutesD

 'MinutesDError cap to fit in byte errorLat
 sign = TmpWord1.BIT15
 TmpByte3 = (ABS TmpWord1) MAX 127
 IF sign THEN
 'Twos compliment to fix sign of errorLat
 TmpByte3 = (~TmpByte3)+1
 ENDIF

 'MinutesError = desiredMinutesLon - lonMinutes
 TmpByte2 = desiredMinutesLon - lonMinutes
 'MinutesDError = desiredMinutesDLon - lonMinutesD
 TmpWord1 = desiredMinutesDLon - lonMinutesD

 'MinutesDError cap to fit in byte errorLon
 sign = TmpWord1.BIT15
 TmpByte2 = (ABS TmpWord1) MAX 127
 'Invert sign on longitude because we are in the western hemisphere
and
 'the positive direction is West
 IF sign = 0 THEN
 'Twos compliment to fix sign of errorLon
 TmpByte2 = (~TmpByte2)+1
 ENDIF

 'Calculate desired heading
 'Swap X and Y to convert to compass heading
 headingToGoal = TmpByte3 ATN TmpByte2

 'DEBUG "X: ", SDEC TmpByte3, " Y: ", SDEC TmpByte2, CR
 'DEBUG "Heading to goal: ", DEC headingToGoal, CR

 'Calculate heading error

67

 headingToGoal = headingToGoal - I2cData

 'DEBUG "Heading error: ", DEC headingToGoal, " Heading: ", DEC
I2cData, CR

 'Calculate distance to goal
 IF TmpByte3 > 127 THEN
 TmpByte3 = 256 - TmpByte3
 ENDIF
 IF TmpByte2 > 127 THEN
 TmpByte2 = 256 - TmpByte2
 ENDIF

 'DEBUG "Lat Err: ", SDEC TmpByte3, " Lon Err: ", SDEC TmpByte2, CR

 TmpWord1 = SQR ((TmpByte3*TmpByte3)+(TmpByte2*TmpByte2))

 'DEBUG "Distance error: ", DEC TmpWord1, CR

 IF headingToGoal > 128 THEN
 headingToGoal = 255 - headingToGoal
 headingToGoal = (headingToGoal*headingKp) MAX 128
 TmpWord1 = TmpWord1 MAX (128 - headingToGoal)
 'DEBUG "Distance error capped: ", DEC TmpWord1, CR
 'DEBUG "Heading cmd: ", DEC headingToGoal, " dist cmd: ", DEC
TmpWord1, CR
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth - headingToGoal -
TmpWord1
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth - headingToGoal +
TmpWord1
 ELSE
 headingToGoal = (headingToGoal*headingKp) MAX 128
 TmpWord1 = TmpWord1 MAX (128 - headingToGoal)
 'DEBUG "Distance error capped: ", DEC TmpWord1, CR
 'DEBUG "Heading cmd: ", DEC headingToGoal, " dist cmd: ", DEC
TmpWord1, CR
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth + headingToGoal -
TmpWord1
 PULSOUT ServoPalInp, ZeroSpeedPulseWidth + headingToGoal +
TmpWord1
 ENDIF
 ENDIF

LOOP

END

'---------------------------------
' Stamp-Stamp Serial Functions
'---------------------------------
No_Data_Ready:
 'DEBUG "."
 GOTO Continue_Loop

'--

' I2C subroutines follow

68

'--

I2cByteWrite: ' writes I2cData.lowbyte to
I2cReg at I2cAddr
GOSUB I2cStart
TmpByte1 = I2cAddr
GOSUB I2cOutByte ' send device address
TmpByte1 = I2cReg
GOSUB I2cOutByte ' send register number
TmpByte1 = I2cData.LOWBYTE
GOSUB I2cOutByte ' send the data
GOSUB I2cStop
RETURN

I2cWordWrite: ' writes I2cData to I2cReg at
I2cAddr
GOSUB I2cStart
TmpByte1 = I2cAddr
GOSUB I2cOutByte ' send device address
TmpByte1 = I2cReg
GOSUB I2cOutByte ' send register number
TmpByte1 = I2cData.HIGHBYTE
GOSUB I2cOutByte ' send the data - high byte
TmpByte1 = I2cData.LOWBYTE
GOSUB I2cOutByte ' send the data - low byte
GOSUB I2cStop
RETURN

I2CByteRead:
GOSUB I2cStart
TmpByte1 = I2cAddr
GOSUB I2cOutByte ' send device address
TmpByte1 = I2cReg
GOSUB I2cOutByte ' send register number
GOSUB I2cStart ' repeated start
TmpByte1 = I2cAddr | 1
GOSUB I2cOutByte ' send device address (with
read set)
sign = 0 ' send Nak
GOSUB I2cInByte
I2cData.LOWBYTE = TmpByte1 ' read the data
I2cData.HIGHBYTE = 0
GOSUB I2cStop
RETURN

I2CWordRead:
GOSUB I2cStart
TmpByte1 = I2cAddr
GOSUB I2cOutByte ' send device address
TmpByte1 = I2cReg
GOSUB I2cOutByte ' send register number
GOSUB I2cStart ' repeated start
TmpByte1 = I2cAddr | 1
sign = 1 ' send Ack
GOSUB I2cOutByte ' send device address (with
read set)

69

GOSUB I2cInByte
I2cData.HIGHBYTE = TmpByte1 ' read the data
sign = 0 ' send Nak
GOSUB I2cInByte
I2cData.LOWBYTE = TmpByte1
GOSUB I2cStop
RETURN

I2cOutByte:
SHIFTOUT SDA, SCL, MSBFIRST, [TmpByte1]
INPUT SDA
HIGH SCL ' clock in the ack' bit
LOW SCL
RETURN

I2cInByte:
SHIFTIN SDA, SCL, MSBPRE, [TmpByte1]
SDAout = 0
SDAdir = sign
HIGH SCL ' clock out the ack' bit
LOW SCL
INPUT SDA
RETURN

I2cStart: ' I2C start bit sequence
HIGH SDA
HIGH SCL
LOW SDA
LOW SCL
RETURN

I2cStop: ' I2C stop bit sequence
LOW SDA
HIGH SCL
HIGH SDA
RETURN

GPS Serial Forwarding

' {$STAMP BS2px}
' {$PBASIC 2.5}
'--
' GPS constants and variables
'--
Sio PIN 15 ' connects to GPS Module SIO pin

T4800 CON 823

GpsBaud CON Open | T4800 ' Open mode to allow daisy
chaining

MoveTo CON 2 ' DEBUG positioning command
ClrRt CON 11 ' clear line right of cursor
FieldLen CON 22 ' length of debug text

70

DegSym CON 176 ' degrees symbol for report
MinSym CON 39 ' minutes symbol
SecSym CON 34 ' seconds symbol

' GPS Module Commands
GetInfo CON $00
GetValid CON $01
GetSats CON $02
GetTime CON $03
GetDate CON $04
GetLat CON $05
GetLong CON $06
GetAlt CON $07
GetSpeed CON $08
GetHead CON $09

degrees VAR Byte ' latitude/longitude degrees
minutes VAR Byte ' latitude/longitude minutes
minutesD VAR Word ' latitude/longitude decimal minutes
dir VAR Byte ' direction (latitude: 0 = N, 1 = S,
longitude: 0 = E, 1 = W)

latDegrees VAR Byte
latMinutes VAR Byte
latMinutesD VAR Word
latDir VAR Byte

'--
' Serial Constants and Variables
'--

Bs2SerialData PIN 6
Bs2SerialFlow PIN 5

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T9600 CON 396
 T19K2 CON 188
 T38K4 CON 84
#ENDSELECT

Inverted CON $4000

71

Open CON $8000
Baud CON T38K4 + Inverted

Main:
DEBUG "Start", CR

Begin_Loop:
DO
 'Wait for GPS to lock
 DO
 GOSUB Get_Valid
 IF dir = 0 THEN
 GOSUB Get_Sats
 DEBUG DEC dir, "?"
 dir = 0
 PAUSE 1000
 ENDIF
 LOOP WHILE dir = 0
 GOSUB Get_Lat
 latDegrees = degrees
 latMinutes = minutes
 latMinutesD = minutesD
 latDir = dir
 GOSUB Get_Long

 DEBUG "Send", CR
 DEBUG "Lat: ", DEC latDegrees, " ", DEC latMinutes, ".", DEC
latMinutesD, " ", DEC latDir, CR
 DEBUG "Lon: ", DEC degrees, " ", DEC minutes, ".", DEC minutesD, " ",
DEC dir, CR, CR
 SEROUT Bs2SerialData\Bs2SerialFlow, Baud, [latDegrees, latMinutes,
latMinutesD.HIGHBYTE, latMinutesD.LOWBYTE, latDir, degrees, minutes,
minutesD.HIGHBYTE, minutesD.LOWBYTE, dir]
 PAUSE 1000
LOOP

END

'--

' GPS Module Functions
'--

Get_Valid:
 SEROUT Sio, GpsBaud, ["!GPS", GetValid]
 SERIN Sio, GpsBaud, 3000, No_Response, [dir]

 RETURN

' --

No_Response:
 DEBUG "No Response from GPS", CR
 GOTO Begin_Loop

72

' --

Get_Lat:
 SEROUT Sio, GpsBaud, ["!GPS", GetLat]
 SERIN Sio, GpsBaud, 3000, No_Response, [degrees, minutes,
minutesD.HIGHBYTE, minutesD.LOWBYTE, dir]

 RETURN

' --

Get_Long:
 SEROUT Sio, GpsBaud, ["!GPS", GetLong]
 SERIN Sio, GpsBaud, 3000, No_Response, [degrees, minutes,
minutesD.HIGHBYTE, minutesD.LOWBYTE, dir]

 RETURN

' --

Get_Sats:
 SEROUT Sio, GpsBaud, ["!GPS", GetSats]
 SERIN Sio, GpsBaud, 3000, No_Response, [dir]

 RETURN

' --

	Santa Clara University
	Scholar Commons
	9-28-2010

	Dynamic Control Migration Between a Base Station and a Remote Robot
	Adam Davis Westgate
	Recommended Citation

	Microsoft Word - Dynamic Control Migration Between a Base Station and a Remote Robot 20100928.docx

