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Abstract 

 

With the use of molecular dynamics simulations, the nanoscale contact between two aluminum 

substrates at room temperature is studied. The so-called jump-to-contact (JC) phenomenon 

between (111) surfaces is observed to occur for interfacial distances below 5.8 ± 0.05 Å. This 

critical distance is approximately equal to 2.5 times the interplanar spacing of (111) planes in a 

perfect aluminum crystal at 300 K. The critical distance for JC is shown to be higher at higher 

contact temperatures because of the higher amplitude of atomic vibrations. The effect of employed 

interatomic potential on the critical distance is also discussed. 

 The critical distance for JC is shown to be independent of crystallographic misorientation 

between substrates. However, the final distribution of crystallographic defects at the bonded 

interface is controlled by the misorientation angle. Three ranges of misorientation angles of (I) 

0° < 𝜃 < 21.79°, (II) 21.79° < 𝜃 < 38.21°, and (III) 38.21° < 𝜃 < 60° are found to be 

important with regard to the distribution of crystallographic defects. The initial gap size between 

substrates is shown to affect the density of crystallographic defects in ranges (I) and (III) of 

misorientation, where dislocations and point defects exist at the interface. On the contrary, the 

final density of defects in range (II) is independent of initial separation between surfaces since the 

whole interface is a typical planar defect. 
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1 Introduction 

Understanding contact behavior between metallic surfaces is essential to solve many problems 

present in technological applications that involve phenomena such as adhesion, friction, wear and 

indentation. Studying contact behavior at the nanoscale is particularly important since the first 

contact occurs at this length scale. Nanoscale contact science can also shed light on some 

fundamental issues at larger length scales, for instance, issues related to microelectromechanical 

systems (i.e., MEMS) since they are only a few micrometers in size. Molecular dynamics (MD) 

simulation is a powerful tool for studying the aforementioned phenomena at the nanoscale [1]. In 

the MD method, Newton’s equations of motion are solved to screen the motion of atoms. The MD 

method enables one to model the dynamic properties of materials [2]. 

 It has been shown that when two metallic surfaces are brought toward each other, at some 

critical distance, atoms on the surfaces jump together [3]. The occurrence of jump-to-contact (JC) 

has been observed in several computational studies [1, 5, 9–12] as well as experimental works 

using scanning tunneling microscopy [3,4,9], mechanically controllable break junctions [4,10,11], 

and atomic force microscopy [12]. JC phenomena have been extensively studied before, however, 

the effect of misorientation between surfaces on the critical distance below which JC occurs has 

not been investigated. Another important point which should be taken into consideration is that 

the size of the initial gap between surfaces may affect the defect generation following the JC. The 

effect of initial gap on the final distribution and density of crystallographic defects at the interface 

is important since defects affect the mechanical and electrical properties of materials. In addition, 

defects control diffusional mechanism and phase transformation [13–15] that may occur at a later 

time. 

 In the present study, utilizing MD simulations, the effect of misorientation between two 

aluminum (111) surfaces on the critical distance for JC is investigated. A brief discussion of the 

effect of contact temperature and interatomic potential on this critical distance is also presented. 

Moreover, the arrangement of atoms at the interface is analyzed to determine the effect of 

misorientation and initial interfacial distance on the distribution and density of crystallographic 

defects.  
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2 Background and Objectives 

2.1 Jump-to-contact phenomenon 

Originally, it was believed that metallic surfaces can be brought together in a continuous fashion 

until contact occurs between them. The reason for this common belief was based on the fact that 

atoms are more firmly attached to their neighbor atoms than attracted by the atoms on the opposite 

surface [16]. But, it was shown later that atoms on the opposing surfaces can jump together when 

the interfacial distance falls below a critical value. This critical value is determined by a 

competition between decrease in energy due to contact between free surfaces across the interface, 

and increase in energy due to free surfaces being elastically pulled away from their corresponding 

substrates [6]. The so-called jump-to-contact (JC) phenomenon, also known as avalanche-in-

adhesion [6], was first suggested by Gimzewski and Moller [3]. JC is an atomic-scale mechanical 

instability which occurs as a result of short-range attractive forces between atoms on the surface 

layers of the two substrates. The majority of significant developments pertaining to this area of 

study occurred between 1987 and 1993. This is probably due to the invention of scanning tunneling 

microscope in 1981 by Binnig and Rohrer, for which they received the Nobel Prize in Physics in 

1986. Sections 2.1.1 and 2.1.2 discuss the experimental and computational studies of the JC 

phenomenon, respectively. 

 

2.1.1 Experimental studies 

JC has been observed experimentally by scanning tunneling microscopy (STM) [3,4,9], 

mechanically controllable break junctions (MCBJ) [4,10,11], and atomic force microscopy (AFM) 

[12]. In most of these studies, the evidence for JC occurrence is witnessing a jump in the 

conductance-displacement or force-displacement curve while the two electrodes or substrates are 

brought closer to each other. The rest of this section includes discussion of some of these studies. 

 Let’s consider a situation where two metallic surfaces are being brought toward each other. 

At sufficiently large distances, one observes a tunneling current between them which decreases 

exponentially with the distance. Yet, Gimzewski and Moller [3] showed that when the two surfaces 

are brought closer together, at some point, a JC occurs and after formation of contact, a staircase-
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like conductance curve is observed due to the atomic structure. The transition from the tunneling 

regime (smooth exponential distance dependent) to the contact regime (staircase-like) on the 

conductance-distance curve is where JC occurs [16]. Gimzewski and Moller [3] were the first 

researchers that used STM (mounted in an ultrahigh vacuum chamber) to study the point contact 

of a clean Ir tip with a polycrystalline Ag substrate. They showed that at gap spacings less than 

3 Å, a significant decrease in the apparent tunnel barrier height is observed, just before the touching 

[3]. Later, Agrait et al [9] also observed JC occurrence employing STM at low temperatures. They 

even went further and proved that by pressing the tip into the sample after JC occurrence, a series 

of jumps in the conductance at integer multiples of 2𝑒2/ℎ can be observed, where 𝑒 is the charge 

on an electron, and ℎ is the Planck's constant. They related these jumps to atomic rearrangements 

[9]. 

 JC has also been observed in low temperature MCBJ experiments [6, 7]. A schematic of 

the MCBJ technique is shown in figure 2.1. This technique is performed in vacuum, where an 

elastic substrate is mounted in a three-point bending configuration between two fixed counter 

supports and a stacked piezo-element. When the substrate is bent, by moving the piezo-element 

forward using a mechanical gear arrangement, the wire (i.e., metal of interest) breaks at the notch, 

which was made in advance. Then, the fractured surfaces are brought toward each other by relaxing 

the force on the substrate, where the piezo-element is used for fine control, and conductance (or 

resistance) is recorded as a function of voltage of piezo-element during this time. The MCBJ 

technique has two main advantages compared to STM. Firstly, the surfaces remain clean for the 

contact since they were recently fractured and were kept in vacuum. The second advantage is the 

stability of the two electrodes relative to each other and the fact that the strain is concentrated near 

the contact area (the unglued section shown by 𝑢 in figure 2.1) [16]. Krans et al [10] used this 

technique to study the transition between tunneling and contact regimes. As shown in figure 2.2, 

they observed occurrence of JC when two MCBJ samples are brought together, for both Pt and Al 

samples. They also observed a faster-than-exponential behavior in the tunneling regime prior to 

JC. Furthermore, they showed that the conductance value for a one-atom contact is very close to 

2𝑒2/ℎ. This conductance value of 2𝑒2/ℎ corresponds to a resistance of 12.9 kΩ [10]. Voets et al 

[11] also observed similar results utilizing the MCBJ technique. They reported that JC occurrence 

is inevitable, even in very rigid (with high stability) MCBJ configurations. Additionally, they 
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reported that the critical separation for JC depends on the wire material and is estimated to vary 

from 1.5 Å for Pt to 1.9 Å for Al and Au [11]. 

 

Figure 2.1: Schematic top and side view of the mounting of a MCBJ, with the notched wire (1), two fixed 

counter supports (2), bending beam (3), drops of epoxy adhesive (4) and the stacked piezo element (5) 

(Reproduced from [16], with the permission of Elsevier: https://doi.org/10.1016/S0370-1573(02)00633-6). 

 

Figure 2.2: Semi-logarithmic plot of an ac-resistance measurement of a Pt MCBJ sample at 1.3 k, as a 

function of piezo voltage, Vp. Between ~500 kΩ and ~40 kΩ, a downward deviation from exponential 

behavior is observed, followed by a jump to a stable value. The inset shows two successive cycles of an Al 

MCBJ sample at 4.2 K, illustrating the hysteresis of the jumps. The numbers indicate the sequential order 

of the jumps, first up (1), then down (2) and up and down again (3 and 4) (Reproduced from [16], with the 

permission of Elsevier: https://doi.org/10.1016/S0370-1573(02)00633-6; Permission is also taken from the 

American Physical Society: https://doi.org/10.1103/PhysRevB.48.14721 which is the original source [10] 

of the material). 

https://doi.org/10.1016/S0370-1573(02)00633-6
https://doi.org/10.1016/S0370-1573(02)00633-6
https://doi.org/10.1103/PhysRevB.48.14721
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 Landman et al [12], used AFM and MD to investigate the mechanisms of adhesion, 

nanoindentation, separation, and fracture that take place when a Ni tip interacts with an Au 

substrate. They showed that at small distances between the Ni tip and the Au substrate, JC occurs. 

They observed that this atomic-scale instability occurs through a quick process where Au atoms 

in the region of the surface under the Ni tip move approximately 2 Å toward the tip in a short time 

span of ~1 ps [12]. 

 It is also worth mentioning that JC is shown not to occur for some metals. In case JC does 

not occur, the conductance-displacement curve follows a smooth transition from tunneling regime 

to the contact regime. Untiedt et al [4], showed that JC does not occur for W, while it always 

occurs for Au, Pt and Ag. They also reported that Ir and Ni present both behaviors. Their STM, 

MCBJ, and MD results were all in agreement. This means that JC not only depends on the nature 

of the bonding in material, but also depends on the elastic properties of material. In other words, 

softer metals such as Ag and Au always present a JC but this is not the case for more brittle ones 

like W [4]. 

 

2.1.2 Computational studies 

In 1988, Pethica and Sutton [5], using continuum and atomistic calculations, showed that at 

sufficiently small separations ~1 − 2 Å, surfaces jump together, irrespective of the rigidity with 

which they are mounted. In their atomistic calculations, they used Lennard-Jones potential which 

has its own limitations when it comes to studying phenomena in metals. However, their model (see 

figure 2.3) had two features which are still being used in most of the computational studies in this 

field. Firstly, they used periodic boundary conditions along the two directions that are parallel to 

the interface (i.e., 𝑥 and 𝑦 directions in figure 2.3); and secondly, they kept the outer shoulders 

rigid [5]. 
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Figure 2.3: Atomistic simulation model for studying JC. Shaded areas are the non-relaxed (fixed) atomic 

layers (Reproduced from [5], with the permission of the American Vacuum Society: 

https://doi.org/10.1116/1.575577). 

 

 Later, Smith et al [6] performed a many-atom investigation of the avalanche effect between 

two flat Ni (100) surfaces. They showed that the time that it takes for the avalanche to take place 

is equal to the time it takes for a sound wave to travel an interplanar spacing, i.e., ~100 fs. Besides, 

they proved that by increasing the number of relaxed (i.e., Newtonian) layers, the critical distance 

for avalanche increases. They also showed that the lack of registry between surfaces and high 

stiffness of surfaces will inhibit the avalanche effect [6]. 

 One can find many computational studies in the literature which investigate the contact 

between metallic surfaces with nanoscale asperities. For instance, in studies [1, 11, 12], a flat 

substrate is brought toward another substrate which has an asperity on top of it, contact is formed, 

compression is made, and then the flat substrate is displaced in the opposite direction until the two 

substrates are completely detached from one another. The main purpose of these studies was 

investigating the material transfer and evolution of crystallographic defects during the plastic 

deformation that occurs as a result of loading and unloading. Nonetheless, they all observed the 

occurrence of JC as a jump on the force-displacement curve just prior to the contact between an 

asperity and a flat surface. 

https://doi.org/10.1116/1.575577
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 In 2010, Lu et al [17] demonstrated experimentally that it is possible to form a contact 

between two ultrathin single-crystalline gold nanowires at low temperature under ultrahigh-

vacuum. They showed that this contact can occur easily and promptly in presence of matching 

crystallographic orientations [17]. Therefore, the crystallographic misorientation is expected to 

affect the JC behavior, and when JC occurs and substrates with different crystallographic 

misorientations reach together, something like a grain boundary is formed. The next section 

discusses the grain boundaries. 

 

2.2 Grain boundaries 

A polycrystalline material is comprised of many single crystals (i.e., grains) which are bonded 

together at grain boundaries. In other words, a grain boundary is the interface between two grains 

with different crystallographic orientations. Grain boundaries are 2D crystallographic defects, and 

their structure and energy can significantly affect the bulk properties of the polycrystalline 

materials [18,19]. 

 

2.2.1 Tilt and twist boundaries 

A shared lattice vector exists between the two crystal lattices that meet at the grain boundary plane. 

In tilt boundaries, this shared lattice vector is parallel to the grain boundary plane, whereas in twist 

boundaries, the shared lattice vector is perpendicular to the grain boundary plane. Tilt boundaries 

can be divided into symmetric and asymmetric, where in symmetric tilt boundaries, the 

crystallographic directions of the two crystal lattices are mirrored with respect to the grain 

boundary plane. Grain boundaries, in general, exhibit both tilt and twist characters [19]. 

 

2.2.2 Coincidence site lattice model 

The coincidence site lattice (CSL) model is a geometrical concept which proposes that at particular 

misorientation angles between the two crystal lattices meeting at the grain boundary plane, some 

lattice sites coincide with each other. The grain boundaries associated with those particular 

misorientation angles are called CSL boundaries. In this context, a Σ value is assigned to each of 
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the CSL boundaries, which is equal to the inverse density of coincident sites for that misorientation 

angle. For instance, a Σ3 CSL boundary has 1/3 of the lattice sites in coincident sites. CSL 

framework is very important and useful mainly because of the following reasons [19–22]:  

- Many so-called “special” (i.e., low energy) grain boundaries are the low-Σ CSL boundaries, 

as will be further discussed in the next section 

- The CSL framework simplifies the use of periodic boundary conditions in computer 

simulations 

 

2.2.3 Structure and energy of grain boundaries 

In general, the grain boundary energy increases as the misorientation between the two crystal 

lattices increases, until it becomes approximately constant, at a threshold value. Using this value, 

grain boundaries are classified into low-angle and high-angle grain boundaries. The grain 

boundary energy (per unit area)  of low-angle tilt boundaries (i.e., composed of an array of parallel 

edge dislocations) can be described by the well-known Read-Shockley model as [23]: 

𝛾 = 𝐸0𝜃(𝐴 − log 𝜃) , (2.1) 

where 𝜃 is the misorientation angle and 𝐴 and 𝐸0 are two constants. The grain boundary energy 

(per unit area) of low-angle twist boundaries (i.e., composed of a hexagonal network of perfect 

dislocations) in an FCC crystal can be derived as [24]: 

𝛾 = 𝐸0𝜃(𝐴 + 𝐵𝜃 − log 𝜃) , (2.2) 

where 𝐴 and 𝐸0 are the same constants as in equation 2.1 and 𝐵 is another constant. The basic 

assumption in deriving equations 2.1 and 2.2 is that the dislocations are widely separated. 

Therefore, they fail to predict the energy of high-angle grain boundaries since the distance between 

dislocations decreases as misorientation increases and their linear elastic fields start to interact 

with each other [20]. 

 The CSL framework and its associated Σ notation can be used as an alternative approach 

for studying high-angle grain boundaries. In this context, low-Σ boundaries (i.e., high density of 

coincident sites) are important because some of them may be “special” grain boundaries [20]. 

Special grain boundaries have properties which are very different from general high-angle grain 
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boundaries (e.g., uniform structure, low energy, etc.). Figure 2.4 shows the plot of energy of <100> 

and <110> symmetric tilt boundaries in Al, as a function of misorientation angle, where some low-

Σ boundaries are indicated on the plot [19]. As it is shown in the figure, only those low-Σ 

boundaries that present a cusp on the energy curve are considered “special” boundaries. 

 

 

Figure 2.4: Calculated grain boundary energies as a function of misorientation angle for <100> and <110> 

symmetric grain boundaries in Al. The reference plane for misorientation angles is a {100} plane for both 

tilt systems (Reproduced from [19]: https://doi.org/10.1186/s40192-015-0040-1, by M. Tschopp et al, 

licensed under https://creativecommons.org/licenses/by/4.0/). 

 

2.2.4 Computational studies of (111) twist boundaries in FCC crystal 

It has been shown experimentally that the most commonly observed grain boundary plane 

orientation in commercially pure Al is (111), due to its low surface energy and large interplanar 

spacing [25]. Therefore, studying (111) grain boundaries is important. Due to the three-fold 

rotation symmetry of FCC crystal about the [111] direction, and the two-fold rotation symmetry 

about the [110] direction, only boundaries with misorientation angles in the range of 0° and 60° 

https://doi.org/10.1186/s40192-015-0040-1
https://creativecommons.org/licenses/by/4.0/
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are distinct. When the misorientation angle is 0°, no grain boundary exists and when the 

misorientation angle is 60°, the grain boundary is the so-called coherent twin, i.e., Σ3 60° (111). 

The structure of low-angle (near 0°) and near-twin (near 60°) (111) twist boundaries is composed 

of a triangular network of three crossing sets of Shockley partial dislocations with Burgers vectors 

of 
𝑎

6
[1̅21̅], 

𝑎

6
[2̅11], and 

𝑎

6
[112̅], where 𝑎 is the lattice parameter. As misorientation angle increases 

from 0° to 12° or decreases from 60° to 48°, the distance between the partial dislocations decreases. 

The intermediate misorientation angles in the range of 12° and 48° correspond to the high-angle 

twist boundaries in which the network of partial dislocations is not visible [20]. 

 Dai et al [20] calculated the energy of Al (111) twist boundaries as shown in figure 2.5. 

The energy of the boundary with 0° twist angle is found to be zero and the energy of the boundary 

with 60° twist angle (i.e., coherent twin) is non-zero but very small [20]. Although in many studies 

including [20] and [22] no energy cusps (except for the coherent twin) is mentioned for (111) 

twist boundaries, Wolf in [26] mentions that small cusps can be observed for Σ7 38.21° (111) and 

Σ21 21.79° (111) twist boundaries. Wolf [26] also explains that the degree of smoothness of 

energy curves depend on the interatomic potentials and the fact that these two cusps were observed 

only for some interatomic potentials. However, for sure, these energy cusps for (111) twist 

boundaries are not as significant as the energy cusps for tilt boundaries (as shown in figure 2.4). 

 

Figure 2.5: Calculated energy of (111) twist boundaries as a function of twist angle for Al, Cu, and Ni 

(Reproduced from [20], with the permission of Elsevier: https://doi.org/10.1016/j.actamat.2014.01.022). 

https://doi.org/10.1016/j.actamat.2014.01.022
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2.3 Principles of Molecular Dynamics simulations 

Molecular Dynamics (MD) is a simulation method for studying dynamic evolution of systems 

containing particles. In such systems, the particles are allowed to interact with each other during a 

period of time. Throughout the simulation, the new positions and velocities of the particles are 

determined by integrating Newton’s equations of motion and using the positions and velocities of 

the particles in the previous step(s). 

 In order to perform an MD simulation, it is necessary to calculate the force that is being 

applied on every atom at each timestep. The calculation of forces is very time-consuming since all 

pairs or triples of atoms have to be considered. This computational expense can be significantly 

decreased by considering only short-range forces between particles within a cutoff radius [27]. 

The standard steps in an MD simulation, regardless of the system under study, are [2]: 

(a) Initializing the positions {𝑟} and momenta {𝑝}. 

(b) Calculating the initial kinetic energy 𝐾, potential energy 𝑈, total energy: 𝐸 = 𝐾 + 𝑈, and other 

quantities of interest as well as the forces on each atom 𝐹𝑖. 

(c) For 𝑛𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 timesteps: 

(1) Solving the equations of motion for {𝑟𝑖(𝑡 + Δt)} and momenta {𝑝𝑖(𝑡 + Δt)} from values 

and forces at time 𝑡, where Δt is the timestep. 

(2) Calculating the kinetic energy 𝐾, potential energy 𝑈, 𝐸 = 𝐾 + 𝑈, and other quantities 

of interest as well as forces 𝐹𝑖. 

 (3) Checking for drift of values that indicate that the system is not equilibrated. 

 (4) Restarting, when equilibrated. 

(d) For 𝑛𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑅𝑢𝑛 timesteps: 

(1) Solving the equations of motion for {𝑟𝑖(𝑡 + Δt)} and momenta {𝑝𝑖(𝑡 + Δt)} from values 

and forces at time 𝑡. 

(2) Calculating the kinetic energy 𝐾, potential energy 𝑈, 𝐸 = 𝐾 + 𝑈, and other quantities 

of interest as well as forces 𝐹𝑖. 
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 (3) Accumulating values of 𝐾, 𝑈, etc. for averaging. 

(e) Analyzing data: averages, correlations, etc. 

 The LAMMPS (Large-scale Atomic-Molecular Massively Parallel Simulator) [28] 

package is one of the most popular classical MD simulator. LAMMPS is an open-source code 

which is distributed by Sandia National Laboratories. The result of LAMMPS simulation is the 

trajectories of atoms throughout the simulation which then can be visualized and post-processed 

using other software packages such as OVITO (the Open Visualization Tool) [29]. 

 

2.3.1 Interatomic potential 

Potential energy, which is the sum of the energetic interactions between the atoms, is the most 

fundamental quantity that governs the thermodynamics of materials. Cohesive energy (i.e., 

potential energy at 0 K) of a system of 𝑁 atoms is equal to: 

𝑈 = 𝐸(𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠) −∑𝐸𝑖

𝑁

𝑖=1

 , (2.3) 

where 𝐸(𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠) is the total energy of the system, and 𝐸𝑖 is the energy of isolated atom 𝑖. In a 

more general form, the potential energy 𝑈 of system can be written as: 

𝑈 = ∑𝑣1(𝑟𝑖)

𝑁

𝑖=1

+
1

2
∑∑′𝜙𝑖𝑗(𝑟𝑖 , 𝑟𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

+
1

6
∑∑∑′𝑣3(𝑟𝑖 , 𝑟𝑗 , 𝑟𝑘)

𝑁

𝑘=1

𝑁

𝑗=1

𝑁

𝑖=1

 , (2.4) 

where the ′ sign indicates that the 𝑖 = 𝑗 terms and the 𝑖 = 𝑗, 𝑗 = 𝑘, 𝑘 = 𝑖, 𝑖 = 𝑗 = 𝑘 terms are 

not included in the second and third sets of sums, respectively. In equation 2.4, the second and 

third terms correspond to two-body and three-body interactions between atoms, respectively [2]. 

 Interatomic potentials are the potentials between atoms that reflect the bonding between 

them. The interaction energy between atoms 𝑖 and 𝑗, located at 𝑟𝑖 and 𝑟𝑗 positions is equal to: 

𝜙𝑖𝑗(𝑟𝑖 , 𝑟𝑗) = 𝐸(𝑖 + 𝑗) − 𝐸(𝑖) − 𝐸(𝑗) , (2.5) 

where 𝐸(𝑖 + 𝑗) is the energy of the pair of atoms, and 𝐸(𝑖) and 𝐸(𝑗) are the energies of individual 

atoms with infinite separation. If the distance between atoms 𝑖 and 𝑗 is very small, then a repulsive 
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force should exist between them. For greater separations, however, there must be an attractive 

force between them [2]. An example of pair potentials is the Lennard-Jones 12-6 potential: 

𝜙𝐿𝐽(𝑟) = 𝜖 [(
𝑟0
𝑟
)
12

− 2 (
𝑟0
𝑟
)
6

] = 4𝜖 [(
𝑑

𝑟
)
12

− (
𝑑

𝑟
)
6

] , (2.6) 

where 𝜖 = 𝜙𝐿𝐽 (𝑟 = 𝑟0 = 2
1

6 𝑑) is the depth of potential well and 𝑑 is the distance at which the 

potential is equal to zero, i.e., 𝜙𝐿𝐽(𝑑) = 0. A graph of the Lennard-Jones 12-6 potential is shown 

in figure 2.6. The dependence 𝑟−6 in equation 2.6 is obtained theoretically, and the dependence 

𝑟−12 is chosen mainly because of the convenience in numerical calculation. The Lennard-Jones 

12-6 potential is effectively a short-range potential, since 𝜙𝐿𝐽(𝑟) is practically equal to zero for 

𝑟 > 2.5 𝑑 [27]. 

 

Figure 2.6: The plot of the Lennard-Jones 12-6 potential (Reproduced from [27], with the permission of 

Elsevier: https://doi.org/10.1016/B978-0-12-420143-9.00001-6). 

 

 In metals, the interaction between the electrons must be considered in the description of 

bonding. As a result, simple pair potentials such as the Lennard-Jones potential cannot adequately 

describe the binding and other properties of metals [2]. Nowadays, the embedded-atom method 

(EAM) potentials that were initially proposed by Daw and Baskes [30] are the most common 

interatomic potentials for metals. EAM potentials are motivated by density functional theory and 

have the form of: 

https://doi.org/10.1016/B978-0-12-420143-9.00001-6
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𝑈𝐸𝐴𝑀 =∑𝐺𝑖 [∑𝑓𝑖𝑗(𝑟𝑖𝑗)

𝑗≠𝑖

]

𝑖

+
1

2
∑∑′𝜙𝑖𝑗(𝑟𝑖𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 , (2.7) 

where 𝜙 is a pair potential, and 𝑓 is a function of the interatomic distance which represents an 

approximation of the electron density. In equation 2.7, 𝐺𝑖 is the energy needed to embed atom 𝑖 in 

a uniform electron gas of density ∑ 𝑓𝑖𝑗(𝑟𝑖𝑗)𝑗≠𝑖  (i.e., considering the effect of neighboring atoms). 

𝐺 is a non-linear function which cannot be written as a sum of pair potentials, thus represents a 

true many-body interaction. Different types of EAM potentials have different choices for the 

functions 𝐺, 𝑓 and 𝜙. These functions depend on parameters that can be determined by fitting the 

predictions to the available and reliable experimental or analytical material data, such as cohesive 

energy, vacancy formation energy, etc. [2,27]. 

 

2.3.2 Time integration of Newton’s equations of motion 

Newton’s second law states that the force applied on a particle is equal to its mass times its 

acceleration: 

𝐹𝑖 = 𝑚𝑖𝑎𝑖 = 𝑚𝑖
𝑑2𝑟𝑖

𝑑𝑡2
 , (2.8)

where, 𝑚𝑖 and 𝑎𝑖 are the mass and acceleration of particle 𝑖, respectively. Also, classical mechanics 

explains that the force acting on a particle is equal to the negative of the gradient of the potential 

energy with respect to the particle’s position: 

𝐹𝑖 = −∇𝑖𝑈(𝑟
𝑁) = −(

𝜕𝑈(𝑟𝑁)

𝜕𝑥𝑖
𝑥 +

𝜕𝑈(𝑟𝑁)

𝜕𝑦𝑖
�̂� +

𝜕𝑈(𝑟𝑁)

𝜕𝑧𝑖
�̂�) , (2.9) 

where 𝑈(𝑟𝑁) = 𝑈(𝑟1, 𝑟2, … , 𝑟𝑁) is the interatomic potential which is a function of position of 

atoms, i.e., 𝑟𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) [2]. If initial velocity and particle positions are set, then by integration 

of Newton’s equations of motion, their values can be determined at other points in time [27]. 

 The Verlet algorithm [31] is one of the well-known methods for numerically solving the 

Newton’s equations of motion. This algorithm starts with considering the Taylor expansions of 

𝑥𝑡+1 and 𝑥𝑡−1: 
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𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡Δt +
1

2
𝑎𝑡(Δ𝑡)

2 +𝑂((Δ𝑡)3) , (2.10) 

𝑥𝑡−1 = 𝑥𝑡 − 𝑣𝑡Δt +
1

2
𝑎𝑡(Δ𝑡)

2 +𝑂((Δ𝑡)3) , (2.11) 

where Δt is the timestep and 𝑥𝑡, 𝑣𝑡, and 𝑎𝑡 are the position, velocity, and acceleration of a particle 

at the beginning of the time interval, respectively. Combining equations 2.10 and 2.11 results in: 

𝑥𝑡+1 = 2𝑥𝑡 − 𝑥𝑡−1 + 𝑎𝑡(Δ𝑡)
2 + 𝑂((Δ𝑡)3) . (2.12) 

Also, velocity is determined as follows [27]: 

𝑣𝑡 =
𝑥𝑡+1 − 𝑥𝑡−1

2Δ𝑡
 . (2.13) 

 The error in the Verlet algorithm is of the third order of Δ𝑡 in position and of the second 

order of Δ𝑡 in velocity. However, the velocity is not used in integration of equations of motion. 

The Verlet algorithm is simple and accurate enough. Yet, it has one disadvantage: it is not self-

starting. In other words, it is necessary to use another algorithm to determine the first couple of 

points. The velocity form of the Verlet algorithm (the following scheme), however, does not have 

that limitation [27]: 

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡Δt +
1

2
𝑎𝑡(Δ𝑡)

2 , (2.14) 

𝑣𝑡+1 = 𝑣𝑡 +
1

2
(𝑎𝑡+1 + 𝑎𝑡)Δ𝑡 . (2.15) 

 In any MD simulation, the optimal value for timestep, i.e., Δ𝑡, is always a balance between 

accuracy and computation time. Large timesteps result in larger errors in the calculation since the 

assumption that the acceleration is constant during a time interval becomes less reasonable. On the 

other hand, using a smaller timestep lead to higher computational expense since each timestep 

requires a force calculation [2]. 

 For an MD simulation which is under adiabatic and constant volume constraints, the total 

energy, i.e., 𝐸 = 𝐾 + 𝑈, should not change with time. As a result, the important criterion for the 

choice of timestep is to check how well the simulation result follows this conservation law. It is 

true that since the equations of motion are not integrated exactly, 𝐸 will never be constant, but for 
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the right choice of timestep, 𝐸 should fluctuate around an average value and there should not be 

any significant change in the average value over time. The choice of the timestep depends on the 

shortest vibration period in the system. In solids, the shortest vibration period is of the order of a 

picosecond (i.e., 10−12 seconds) or less. The number of timesteps needed to accurately integrate 

the equation of motion over a vibrational period depends on the method that is being used for 

integration. For the Verlet algorithm, of the order of 50 timesteps per vibrational period are usually 

needed to result in enough accuracy for energy conservation. In other words, the timestep should 

typically be of the order of 10−15 − 10−14 seconds [2]. It is also important to note that drastic 

changes in 𝐸 do not necessarily imply that the employed timestep was not correct, but it can also 

be an indication of the poor choice of algorithm for integration of the Newton’s equations of 

motion [2].  

 

2.3.3 Statistical thermodynamics and ensemble averages 

Statistical thermodynamics, also referred to as statistical mechanics, is a field of study that explains 

how the macroscopic properties of a system are related to its microscopic variables. The macrostate 

of a system refers to the bulk behavior of system that can be described by thermodynamics whereas 

the microstate of a system is the instantaneous value of its internal variables such as atomic 

coordinates and momenta. The microstates changes over time as the system evolves. Statistical 

thermodynamics explains how to relate averages over the microstates to the thermodynamics of 

the macrostates. There are two ways to connect macrostates to microstates, by time averages or by 

ensemble averages [2]. 

 The instantaneous microstate of a system that contains 𝑁 atoms at any specific time 𝑡 can 

be described in a 6𝑁 dimensional space, i.e., phase space. These 6𝑁 quantities are the positions 

(3𝑁) and velocities (3𝑁) of atoms. Therefore, the average of a quantity 𝐻 would be a time average 

of that quantity over some long time period 𝑡0: 

〈𝐻〉 =
1

𝑡0
∫ 𝐻(𝑡)𝑑𝑡
𝑡0

0

 , (2.16) 

where 𝐻 is a variable of time, and 𝐻(𝑡) is the value of 𝐻 determined at the phase space, at time 𝑡. 

But there is also another way to calculate average quantities, i.e., ensemble averages. Instead of 
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observing the system over a long period of time, it is possible to create a very large number of 

identical systems and allow them to evolve independently, i.e., an ensemble of systems. Although 

these systems are identical, they are in different states. The probability density of occupying a 

specific state can be calculated by dividing the number of times that the given state is observed in 

the ensemble of systems by the total number of systems. Thus, the average of quantity 𝐻 is equal 

to: 

〈𝐻〉 = ∑  

𝑁𝑠𝑡𝑎𝑡𝑒𝑠

𝛼=1

𝜌𝛼  𝐻𝛼  , (2.17) 

where 𝐻𝛼 is the value of quantity 𝐻 at each distinct state 𝛼, and 𝜌𝛼 is the probability density of 

state 𝛼, where ∑  
𝑁𝑠𝑡𝑎𝑡𝑒𝑠
𝛼=1 𝜌𝛼 = 1. The probability density for an ensemble of systems depends on 

the constraints that are put upon the system. These constraints are normally the thermodynamic 

quantities that are fixed [2]. Some of the well-known ensembles are as follows: 

➢ Microcanonical ensemble (NVE): constant number of atoms, volume and total energy, 

➢ Canonical ensemble (NVT): constant number of atoms, volume and temperature, 

➢ Isobaric-isothermal ensemble (NPT): constant number of atoms, pressure and temperature. 

 

2.3.4 NPT ensemble 

Most experimental systems in the laboratory are under constant temperature and pressure. Neither 

the microcanonical (NVE) nor the canonical (NVT) ensemble can perfectly describe such a 

system. That system can be described by the isobaric-isothermal (NPT) ensemble, in which the 

total energy and the volume are not fixed, and at equilibrium, they both fluctuate around an average 

value. The NPT ensemble is particularly useful when studying phase transformations during which 

the volume changes at a constant pressure [2]. 

 Nose-Hoover thermostat [32,33] is an algorithm for fixing the temperature in MD 

simulations. The main idea is to introduce a new variable 𝑠, which couples the system to a heat 

bath. In this method, the velocity of atoms is related to the time derivative of position, i.e., 𝑣 =

𝑠
𝑑𝑟

𝑑𝑡
. Therefore, changing 𝑠 will result in a change in kinetic energy and temperature. Also, a 
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fictitious potential energy 𝑈𝑠 and a kinetic energy 𝑘𝑠 associated with the bath are introduced in 

this method: 

𝑈𝑠 = ℒ 𝑘𝐵 𝑇𝑠 ln(𝑠) , (2.18) 

𝐾𝑠 =
𝑃𝑠
2

2𝑄
 , (2.19) 

where ℒ = 3𝑁 + 1, 𝑘𝐵 is the Boltzmann constant, 𝑇𝑠 is the temperature of the heat bath, 𝑃𝑠 =

𝑄 𝑑𝑠/𝑑𝑡 is the momentum associated with the variable 𝑠, and 𝑄 is a coupling parameter. Parameter 

𝑄 is an input into the simulation that defines the degree of coupling to the heat bath. Too small 

values for 𝑄 result in poor equilibration, while too large values for 𝑄 lead to slow energy flow [2]. 

Similarly, the main idea in Nose-Hoover barostat [33,34] is to introduce an additional variable, 

which in this case is the volume of simulation cell. 

 

2.3.5 Periodic boundary conditions 

The purpose of most material models and simulations is to describe the characteristics of a 

macroscopic system which is infinitely large compared to the actual model size that is being 

simulated with the use of computer. Thus, a way for mimicking the characteristics of the real 

system is needed when simulating a system of manageable size. The most common approach is to 

use periodic boundary conditions, in which a macroscopic system is described as an infinite array 

of equivalent finite systems. The system of interest is placed in a finite-sized volume, i.e., 

simulation cell, which is then replicated throughout the space to approximate the effect of the rest 

of the material [2]. 

 Figure 2.7(A) shows the concept of periodic boundary conditions where atom 𝐴0 interacts 

not only with atom 𝐴 which is located within the simulation cell but also with its image, i.e., atom 

𝐴′. In this figure, atom 𝐴′ is shifted relative to 𝐴 by a distance that is equal to the length of the 

simulation cell. Figure 2.7(B) shows the periodic boundary conditions which are applied in two 

directions [27]. 
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Figure 2.7: Interaction between atoms in presence of periodic boundary conditions (Reproduced from [27], 

with the permission of Elsevier: https://doi.org/10.1016/B978-0-12-420143-9.00001-6). 

 

 Since atoms can move during MD simulation, using periodic boundary conditions also 

affects the way that the new position of atoms should be calculated. For instance, if atom 𝐴 exits 

the simulation cell from one side, then its image, i.e., atom 𝐴′, will enter the simulation cell from 

the opposite side. In other words, the position of atom 𝐴′ is calculated using the equation below: 

𝑥𝐴′ = {
𝑥𝐴 − 𝐿, 𝑥𝐴 > 𝐿
𝑥𝐴 + 𝐿, 𝑥𝐴 < 0

 , (2.20) 

where 𝐿 is the length of simulation cell [27]. It is worth mentioning that it is not necessary to use 

periodic boundary conditions in all directions of the simulation cell. Using non-periodic 

boundaries can be useful in case of simulating a system which contains free surfaces or fixed 

surfaces along a specific direction. 

 

2.4 Analysis of Molecular Dynamics simulation results 

Crystallographic defects play an important role in materials behavior. Yet, classical MD simulation 

models do not keep track of the crystallographic defects explicitly. Therefore, in order to identify 

crystallographic defects, separate algorithms are needed to analyze the positions of atoms predicted 

by MD simulations. Most of these algorithms attempt to match the local atomic structure to a 

perfect one (such as FCC or BCC), and measure how closely they fit [35]. Two of the most 

commonly used structure characterization algorithms for MD simulations are common neighbor 

https://doi.org/10.1016/B978-0-12-420143-9.00001-6
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analysis (CNA) [36] and dislocation extraction algorithm (DXA) [37]. Both of these algorithms 

are implemented in the OVITO (the Open Visualization Tool) visualization package [29]. 

 

2.4.1 Common neighbor analysis 

Common neighbor analysis (CNA) [36] can be used to identify the local crystal structure of an 

atom. Normally, two atoms are assumed to be neighbors if the distance between them is less than 

a specified cutoff distance, i.e., 𝑟𝑐𝑢𝑡. For FCC structure this distance is set to be halfway between 

the first and second neighbor shells. In other words: 

𝑟𝑐𝑢𝑡
𝐹𝐶𝐶 =

1

2
 (√

1

2
+ 1) 𝑎𝐹𝐶𝐶  , (2.21) 

where 𝑎𝐹𝐶𝐶 is the lattice constant of the crystal structure [35]. 

 To assign a local crystal structure to a specific atom, a triplet of indices (𝑛𝑐𝑛 𝑛𝑏 𝑛𝑙𝑐𝑏) is 

calculated for each of the 𝑁 neighbor bonds of the given atom, where 𝑛𝑐𝑛 is the number of common 

neighbors of the central atom and its neighbor, 𝑛𝑏 is the number of bonds between these common 

neighbors, and 𝑛𝑙𝑐𝑏 is the number of bonds in the longest continuous chain of bonds between the 

common neighbors. This yields 𝑁 triplets which then can be compared with table 2.1 to identify 

the local crystal structure of the given atom [35]. 

Table 2.1: CNA signatures (triplets) of common crystal structures (Reproduced from [35], with the 

permission of IOP Publishing: https://doi.org/10.1088/0965-0393/20/4/045021) 

fcc (𝑁 = 12) hcp (𝑁 = 12) bcc (𝑁 = 14) cubic diamond (𝑁 = 16) 

12 × (421) 6 × (421) 

6 × (422) 

8 × (666) 

6 × (444) 

12 × (543) 

4 × (663) 

 

2.4.2 Dislocation extraction algorithm 

Dislocation extraction algorithm (DXA) [37] can be used to identify different types of dislocations 

and their Burgers vector. In this algorithm, first, the strain-free atomic arrangement is determined 

https://doi.org/10.1088/0965-0393/20/4/045021
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locally using the CNA algorithm. Then, a two-dimensional manifold which is called interface mesh 

is constructed. The interface mesh separates the strain-free region from the distorted region. Next, 

two Burgers circuits are constructed and displaced in the opposite directions on the interface mesh 

sweeping along the dislocation line (see figure 2.8). During the sweeping phase, the shape of the 

dislocation line is recorded by computing the position of the center of mass for the two Burgers 

circuits [37]. 

 

Figure 2.8: Generating the shape of the dislocation line during the sweeping process in DXA (Reproduced 

from [37], with the permission of IOP Publishing: https://doi.org/10.1088/0965-0393/20/8/085007). 

 

2.5 Objective 

The objective of this computational research work is to study the contact between two Al flat 

substrates at the nanoscale with the use of MD and investigate: 

- the JC behavior between (111)-oriented surfaces, 

- the effect of interatomic potential, temperature, and misorientation angle between 

substrates on the critical distance for JC, and 

- the effect of misorientation angle and initial separation between substrates on the 

distribution and density of crystallographic defects after contact, at equilibrium. 

https://doi.org/10.1088/0965-0393/20/8/085007
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3 Simulation process 

MD simulations are performed using the LAMMPS [28] simulator and embedded-atom method 

(EAM) potential for aluminum [38]. The cutoff distance and predicted melting temperature for 

this interatomic potential are 6.5 Å and 880 K, respectively [38]. Time integration is done using 

the velocity form of the Verlet algorithm [31]. Temperature and pressure (only in 𝑥 and 𝑦 

directions) are kept constant (i.e., NPT ensemble) using the Nose-Hoover thermostat and barostat 

[32–34]. The simulation timestep is chosen to be 0.002 ps. Periodic boundary conditions are used 

along the 𝑥 and 𝑦 directions of simulation cell. 

 The whole simulation process is comprised of the following four steps: 

Step 1- Creating a simulation cell containing two aluminum substrates: 

Initially, a simulation cell is created which its 𝑥, 𝑦, and 𝑧 directions are along the [11̅0], [112̅], 

and [111] crystallographic directions of a perfect FCC crystal, respectively. Two in-registry 

aluminum substrates are created and placed away from each other. Each substrate contains 

12, (111) atomic layers along the 𝑧 direction of simulation cell. Figure 3.1 shows the simulation 

cell at the end of this step. 

 

Figure 3.1: Atomic configuration in the simulation cell, at the end of step 1. Red atoms are surface atoms. 

Blue atoms will be kept fixed during simulation while the yellow and red atoms will be allowed to move 

(i.e., Newtonian atoms). All atoms are aluminum atoms. Image is visualized using OVITO [29]. 
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Step 2- Preparing atomic configurations with varied misorientation angles: 

In order to produce atomic configurations with different misorientation angles, the two substrates 

are rotated by 𝜃/2 and −𝜃/2 about the 𝑧 direction of simulation cell. The rotation is performed 

based on the approach described in [20]. Because of the three-fold rotational symmetry of FCC 

crystals about [111] and the two-fold rotational symmetry about [110], only configurations with 

0 ≤ 𝜃 ≤ 𝜋/3 are distinct. In order to have periodic boundary conditions in the 𝑥 and 𝑦 directions, 

the requirement below should be fulfilled [20]: 

{
 
 

 
 𝑛 =

√3

tan
𝜃
2

                  𝑓𝑜𝑟       0 < 𝜃 <
𝜋

6
   𝑜𝑟    𝜃 =

𝜋

3

𝑛 =
√3

tan (
𝜋
6 −

𝜃
2)
      𝑓𝑜𝑟      

𝜋

6
< 𝜃 <

𝜋

3
   𝑜𝑟    𝜃 = 0

 , (3.1) 

where 𝑛, the periodicity in both 𝑥 and 𝑦 directions, is an integer. Thus, the minimum simulation 

cell lengths in these two directions should be [20]: 

{
 
 

 
 𝐿𝑥 =

𝑛 𝑎

√2 𝑐𝑜𝑠(
𝜃
2)
=
𝐿𝑦

√3
                𝑓𝑜𝑟         0 < 𝜃 <

𝜋

6
   𝑜𝑟   𝜃 =

𝜋

3

𝐿𝑦 =
𝑛 𝑎

√2 𝑐𝑜𝑠(
𝜋
6 −

𝜃
2)
=
𝐿𝑥

√3
       𝑓𝑜𝑟         

𝜋

6
< 𝜃 <

𝜋

3
   𝑜𝑟   𝜃 = 0

 , (3.2) 

where 𝑎 is the lattice constant. At the end of this step, 34 atomic configurations are generated 

corresponding to 34 misorientation angles in the range of 0 ≤ 𝜃 ≤ 𝜋/3. Steps 1 and 2 are done by 

running an automated Python script which is included in Appendix A. 

 

Step 3- Replication, relaxation, and thermalization: 

All atomic configurations corresponding to different misorientation angles are replicated to have 

about 300000 atoms in the simulation cell. Minimization of energy is performed at 0 K for each 

atomic configuration using the conjugate gradient method which is implemented in LAMMPS. 

Energy minimization is done by iteratively adjusting the position of atoms until a pre-defined 

stopping criterion (i.e., a tolerance value for energy or force) is satisfied. The conjugate gradient 

algorithm determines the search direction along which the atom coordinates are being changed as 

well as how the minimization should be restarted once it fails to make further progress. Once the 
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energy minimization is finished, each system is thermalized at 300 K for 20 ps. A sample 

LAMMPS code corresponding to this step is included in Appendix B. 

 

Step 4- Performing contact simulation for varied interfacial distances: 

Finally, for each thermalized system corresponding to different misorientation angles, the two 

substrates are placed at varied interfacial distances and contact simulation is performed for each 

distance at 300 K for 20 ps. This step is done for several interfacial distances in the range of 2.5 Å 

and 6.0 Å because of two reasons: firstly, to determine the critical interfacial distance below which 

JC occurs, and secondly, to investigate the effect of initial interfacial distance on the distribution 

and density of crystallographic defects after contact. A sample LAMMPS code corresponding to 

this step is included in Appendix C. 

 

4 Results and Discussion 

Sections 4.1 and 4.2 include the discussion of the JC behavior and analysis of crystallographic 

defects at the interface at equilibrium, respectively. The results are obtained from MD simulations 

performed for misorientation angles 𝜃 in the range of 0° and 60° and initial interfacial distances 

in the range of 2.5 Å and 6.0 Å. 

 

4.1 Jump-to-contact behavior 

In order to determine the JC occurrence, similar to the approach used in [39], a deviation parameter 

is defined as follows: 

𝐷(𝑡, 𝜃) =
|ℎ(𝑡, 𝜃) − 𝑑|

𝑑
 , (4.1) 

where ℎ(𝑡, 𝜃) is the instantaneous distance between contacting surfaces as a function of time and 

misorientation angle, and 𝑑 is the interplanar spacing of (111) planes at 300 K, in a perfect FCC 

crystal (~2.35 Å). When JC occurs, the deviation parameter will have a positive value very close 

to zero. The value of the deviation parameter is calculated throughout the simulations by outputting 
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the average of 𝑧 positions of all atoms in the contacting layers. Moreover, the average of 𝐷(𝑡, 𝜃) 

in the last 2 ps of simulations is named 𝐷𝑎𝑣𝑒 . 

 

4.1.1 Occurrence of jump-to-contact 

The plot of the deviation parameter, 𝐷, as a function of simulation time is shown in figure 4.1. 

This figure shows the results of simulations with the same misorientation angle (𝜃 = 0°), but 

different initial interfacial distances. For initial interfacial distances less than or equal to 5.8 Å, JC 

occurs since the value of 𝐷 drops to a positive value close to zero over a relatively short period of 

time and oscillates around that value until the system is at equilibrium. For the case with initial 

interfacial distance of 6 Å, however, JC does not occur. 

 

 

Figure 4.1: Plot of deviation parameter, D, versus simulation time for simulations with θ = 0°, but different 

initial interfacial distances. 



 

 

26 

 Figure 4.2 shows the 2D maps of the local interfacial distance during the simulation of the 

case with misorientation angle of 𝜃 = 0° and initial interfacial distance of 5.5 Å. This figure shows 

that JC occurs locally at random locations (see figure 4.2(b)), and then after a short period of time, 

contact is formed across the whole interface. Those random locations are the places where the 

atoms on one surface come into a close vicinity of the atoms on the other contacting surface. It 

also worth mentioning that since there is no misorientation between surfaces in this case, the final 

2D map of the local interfacial distance is very uniform. 

 

 

Figure 4.2: 2D maps of the local interfacial distance for the simulation with θ = 0° and initial interfacial 

distance of 5.5 Å. 

 

(a) (b) (c)

(d) (e) (f)

t = 0 ps

Initial State
t = 0.6 ps t = 0.8 ps

t = 1 ps t = 1.2 ps
t = 20 ps

Final State
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4.1.2 Critical distance for jump-to-contact 

To determine the critical distance for JC, the plot of 𝐷𝑎𝑣𝑒  (i.e., average of 𝐷 in the last 2ps) as a 

function of initial interfacial distance for simulations with misorientation angle of 𝜃 = 0° is 

presented in figure 4.3. This figure shows that the critical distance below which JC occurs is 5.8 Å, 

which is approximately 2.5 × 𝑑, where 𝑑 is the interplanar spacing of (111) planes in a perfect 

FCC Al crystal at 300 K. This distance corresponds to approximately 7% elastic strain in the 

system. 

 

Figure 4.3: Plot of Dave versus initial interfacial distance for simulations with θ = 0°. The critical distance 

for JC is 5.8 Å. 

 

4.1.2.1 Effect of interatomic potential 

In order to find out whether the interatomic potential has an effect on the critical distance for JC 

or not, three additional sets of simulations are performed employing different interatomic 

potentials. All simulations are performed for the case with misorientation angle of 𝜃 = 0°, but with 

various initial interfacial distances between 4.5 Å and 6.5 Å. Table 4.1 shows the details of the 

interatomic potentials that are used, as well as the resulting critical distance for JC computed from 
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simulations using those interatomic potentials. Al.lammps.eam [38] is the main interatomic 

potential used in this thesis. Al99.eam.alloy [40] is another well-tested EAM interatomic potential 

for Al. The values of  and  for the two Lennard-Jones (LJ) potentials are based on [41], where 

 is the distance at which the potential is zero, and  is the depth of potential well. The cutoff 

distance for the two LJ potentials is chosen to be 6.5 Å to enable comparison with the 

Al.lammps.eam potential and determine the effect of type of potential. Also, in both cases, 6.5 Å 

is very close to the value of 2.5 that is generally considered as an acceptable cutoff for LJ 

potentials. 

 Comparing the two EAM potentials, it can be seen that the potential with a larger cutoff 

distance results in a greater critical distance for JC. This is due to considering more long-range 

attractive forces between the atoms located on the two substrates. Also, comparing the 

Al.lammps.eam EAM potential with any of the two LJ potentials (with the same cutoff distance), 

it is clear that the critical distance for JC is lower when an LJ potential is used. This is due to the 

fact that LJ potentials are two-body potentials and they neglect the effect of surrounding atoms on 

the force between two specific atoms. This is the main reason that they are not ideal for studying 

phenomena in metals. Lastly, comparing the two LJ potentials with each other, it can be seen that 

the critical distance for JC is smaller when the LJ 12-6 potential is used. This is due to LJ 12-6 

potential having a steeper repulsion term compared to the LJ 9-6 potential. 

 

Table 4.1: Details of four employed interatomic potentials as well as the resulted critical distance for JC 

from simulations of the case with misorientation angle of θ = 0° 

Interatomic Potential Cutoff (Å)  (Å)  (eV) Critical distance for JC (Å) 

Al.lammps.eam  6.5 - - 5.8 

Al99.eam.alloy 6.287 - - 5.6 

Lennard-Jones 9-6 6.5 2.601 0.141 5.5 

Lennard-Jones 12-6 6.5 2.607 0.174 5.2 
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4.1.2.2 Effect of contact temperature 

To investigate the effect of contact temperature on the value of critical distance for JC, the contact 

simulations are performed for two additional temperatures, i.e., 450 K and 600 K. The 

misorientation angle is 0° in all simulations. Table 4.2 shows that the critical distance for JC is 

larger at higher temperatures, meaning that JC can occur at greater distances between surfaces. 

This observation is mainly due to higher amplitude of atomic vibrations at higher temperatures 

resulting in a higher possibility of surface atoms to come into a close vicinity of the atoms located 

on the opposing surface. 

 

Table 4.2: The critical distance for JC as a function of contact temperature for the simulations of the cases 

with misorientation angle of θ = 0° 

Temperature (K) 300 450 600 

Critical distance for JC (Å) 5.8 6.0 6.4 

 

4.1.2.3 Effect of crystallographic misorientation 

Simulations are performed for all 34 misorientation angles to see if misorientation angle has an 

effect on the critical distance for JC. The effect of misorientation angle is found to be insignificant 

since the critical distance was 5.8 ± 0.05 Å for all angles studied. The plot of 𝐷𝑎𝑣𝑒  versus initial 

interfacial distance is shown in figure 4.4, only for five misorientation angles. The results of 

simulations for some other misorientation angles between 0° and 30° are included in Appendix D. 

Although the critical distance is found to be independent of misorientation angle, the value of 𝐷𝑎𝑣𝑒 

is found to be a function of it, for the cases that JC occurs. This suggests that misorientation 

controls the distribution of resultant crystallographic defects at the interface since the value of 𝐷 

(and so 𝐷𝑎𝑣𝑒) represents how close the interfacial distance is to the interplanar spacing of (111) 

planes in a perfect crystal (see equation 4.1). 
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Figure 4.4: Plot of Dave versus initial interfacial distance for five simulations with different misorientation 

angles, θ. 

 

 To further investigate on this matter, the values of 𝐷𝑎𝑣𝑒 for all 34 misorientation angles are 

shown in figure 4.5, for three cases with different initial interfacial distances. The curves in figure 

4.5 follow a similar trend to the trend of the energy of Al (111) twist boundaries shown in figure 

2.5. This is not surprising since the effect of misorientation in our system has been expected to be 

similar to the twist boundaries. In other words, existence of interfacial gap does not disrupt the 

general effect of misorientation. Additionally, the two special CSL angles of 21.79° (Σ21) and 

38.21° (Σ7), reported by Wolf in [26], are noticeable on the curves. Using these two angles, the 

range of misorientation angle is divided into three ranges. It is seen that the curvature of the curves 

in ranges (I) and (III) is a function of the initial interfacial distance but is independent of it in range 

(II). This suggests that the existence of interfacial gap has to be compensated by defect formation, 

and different types of crystallographic defects should be expected in the middle range compared 

to the other two ranges. 
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Figure 4.5: The plot of Dave versus misorientation angle for three different initial interfacial distances. These 

initial interfacial distances are chosen because 2.5 Å is very close to the interplanar spacing of (111) planes 

in a perfect Al FCC crystal at 300 K and 5.5 Å is very close to the critical distance for JC. 

 

4.2 Analysis of crystallographic defects at the interface 

In the second part of this research work, the effect of crystallographic misorientation and initial 

interfacial distance on the final distribution and density of crystallographic defects at the interface 

after contact is investigated. Section 4.2.1 discusses the effect of the two parameters on the 

distribution of crystallographic defects, while section 4.2.2 presents a quantitative analysis of 

defects density. 

 

4.2.1 Distribution of crystallographic defects 

The resultant crystallographic defects at the interface (i.e., the two surface layers) after contact are 

detected using the dislocation analysis modifier [37] of OVITO [29]. Figure 4.6 illustrates the 

structure of interface for three different simulations, all within range (I) of misorientation angle. 
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The images in the first column show the top-view snapshots of the interface, where the dislocations 

and atoms are colored based on their type (not Burgers vector) and local crystal structure, 

respectively. Shockley partials and perfect dislocations are shown in yellow and blue colors, 

respectively. Also, atoms with FCC, HCP, and unidentified local crystal structure are colored as 

green, red, and white, respectively. As it can be seen, the disordered atoms (i.e., atoms with 

unidentified local crystal structure) are located near the Shockley partial dislocations with Burgers 

vectors of 1/6 < 112 >. The structure of interface is similar to the structure of Al (111) twist 

boundaries, as discussed in section 2.2.4, where three crossing sets of Shockley partial dislocations 

separate the regions of atoms with perfect FCC local crystal structure from the stacking fault 

regions, i.e., regions of atoms with HCP local crystal structure. The structure of interface in range 

(III) of misorientation angle is very similar to range (I). The only difference is that the partial 

dislocations separate two structurally different stacking fault regions from each other instead of a 

perfect FCC region from a stacking fault region. More information on the difference between the 

structure of interface in ranges (I) and (III) is provided in Appendix E. In range (II), however, the 

whole interface is composed of disordered atoms and no dislocations exist. 

 The images in the second column of figure 4.6 show the disordered atoms only. Comparing 

figures 4.6(a) and (b) with figures 4.6(g) and (h), it can be understood that for a constant initial 

interfacial distance, as misorientation angle increases, the distance between Shockley partial 

dislocations decreases, hence, the number of disordered atoms increases. Moreover, comparison 

of figures 4.6(a) and (b) with figures 4.6(d) and (e) shows that for a constant misorientation angle, 

the number of disordered atoms at the interface is increased at greater initial interfacial distances. 

Therefore, it may be concluded that although, the general pattern of atomic arrangements and the 

type of crystallographic defects is mainly a function of misorientation angle, the initial interfacial 

distance affects the density of disordered atoms. 

 Additionally, 2D maps of the local interfacial distance are shown in the third column of 

figure 4.6. These figures show that the interfacial distance is greater in the areas of disordered 

atoms, and, this distance is increased by increase in initial interfacial distance. 
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Figure 4.6: Top-view snapshots of equal size (150 Å × 150 Å), showing the final state of crystallographic 

defects at the interface (the first two columns) and local interfacial distance (the third column) in simulations 

with misorientation angles and initial interfacial distances of (a-c) 2.45°, 2.5 Å, (d-f) 2.45°, 5.5 Å, and (g-

i) 6.00°, 2.5 Å. Atoms with FCC (green), HCP (red), unidentified (white) local crystal structure are 

indicated. Shockley partial (yellow) and perfect (blue) dislocations are specified. Detection of 

crystallographic defects is done with the use of dislocation analysis modifier [37] of OVITO [29]. 
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4.2.2 Density of crystallographic defects 

The density of point defects (i.e., disordered atoms) and various types of dislocations as a function 

of misorientation angle are calculated and shown in figure 4.7, for three different initial interfacial 

distances. As figure 4.7(a) shows, the percentage of disordered atoms increases as the 

misorientation angle deviates from 0° or 60°, and it becomes approximately constant in range (II), 

where all atoms at the interface are disordered atoms. Figure 4.7(b) shows that as the 

misorientation angle deviates from 0° or 60°, the density of Shockley partial dislocations with 

Burgers vectors of 1/6 < 112 > increases until they start to interact with each other and that is 

the point where perfect dislocations with Burgers vectors of 1/2 < 110 > start to appear. The 

interaction between Shockley partial dislocations is due to the decrease in the distance between 

them as misorientation angle increases, as discussed in the previous section. Dislocations that are 

named “other” in figure 4.7(b) are the dislocations formed as a result of interaction between 

Shockley partials and perfect dislocation. Figure 4.7 also shows that no dislocations exist in range 

(II) of misorientation angle. In other words, the mismatch between the two crystals cannot be 

accommodated by formation of dislocations. Thus, the interface is a typical planar defect in range 

(II) of misorientation angle, since all atoms are disordered atoms and no dislocations exist. Most 

importantly, the effect of initial interfacial distance on the density of defects can also be understood 

from figure 4.7. In ranges (I) and (III) of misorientation angle, the density of point defects and 

dislocations is a function of initial interfacial distance but independent of it in range (II). 
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Figure 4.7: Density of crystallographic defects as a function of misorientation angle. (a) and (b) show the 

density of point defects and various types of dislocations, respectively. Detection of crystallographic defects 

is done with the use of dislocation analysis modifier [37] of OVITO [29]. 
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5 Conclusions 

In this thesis, the contact between two Al substrates at the nanoscale is simulated using classical 

MD to analyze the JC behavior and generation of crystallographic defects at the interface as a 

result of contact. The critical distance for JC between (111) surfaces at room temperature is shown 

to be equal to 5.8 ± 0.05 Å, independent of misorientation angle between surfaces. It is shown that 

the critical distance for JC increases with temperature. Moreover, the effect of employed 

interatomic potential on the critical distance is discussed. 

 Although misorientation is shown to not have an effect on the critical distance for JC, it is 

found to affect the generation of crystallographic defects at the interface once the contact is formed 

and equilibrium is reached. The distribution of crystallographic defects is found to be distinctive 

in misorientation ranges of (I) 0° < 𝜃 < 21.79°, (II) 21.79° < 𝜃 < 38.21°, and (III) 38.21° <

𝜃 < 60°. In ranges (I) and (III), dislocations and point defects exist at the interface, while in the 

middle range, the interface is a 2D defect. The density of crystallographic defects is shown to be a 

function of initial interfacial distance between substrates in the middle ranges, but independent of 

it in range (II). 

 

6 Future work 

The JC phenomenon is a competition between short-range attractive forces between surfaces and 

the stiffness of substrates. Therefore, an interesting topic for future research would be to 

investigate how surface energy and elastic properties of material would affect the critical distance 

for JC. This can be achieved by comparing a few metals with each other. 

 It would also be interesting to see under what conditions, the interfacial dislocations can 

cross-slip away from the interface and enter the substrates. Parameters such as contact temperature, 

stacking fault energy of the material and the value of strain (due to existence of initial gap in the 

system) may be effective in that regard. 
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Appendix A: Python script for steps 1 and 2 of simulation process 

The following Python script corresponds to the steps 1 and 2 of simulation process section. Further 

information is provided within the script. 

1. # importing numpy library   
2. import numpy as np   
3.    
4. # function for creating an FCC substrate containing (111) planes along z direction   
5. # this function is taken from:   
6. # https://icme.hpc.msstate.edu/mediawiki/index.php/FCC_(111)_Surface_Generation_Script   
7. def generate_substrate(a,nx,ny,nz,t,zi):   
8.     # atom coordinates and types   
9.     x=[]; y=[]; z=[]; ty=[]   
10.     ax = a/np.sqrt(2)   
11.     ay = a/np.sqrt(2)*np.sqrt(3)   
12.     az = a*np.sqrt(3)   
13.     x0 = 0.0   
14.     x2 = np.sqrt(2)/4*a   
15.     y2 = np.sqrt(6)/4*a   
16.     y3 = np.sqrt(6)/6*a   
17.     y4 = np.sqrt(6)*5/12*a   
18.     y5 = np.sqrt(6)*2/6*a   
19.     y6 = np.sqrt(6)/12*a   
20.     xmin,xmax,ymin,ymax,zmin,zmax=-ax*nx,ax*nx,-ay*ny,ay*ny,zi,zi+az*nz   
21.     for i in range(-nx,nx):   
22.         for j in range(-ny,ny):   
23.             layer = 0   
24.             for k in range(0,nz):   
25.                 x.append(x0+i*ax); y.append(x0+j*ay); z.append(zi+layer/3.0*az)   
26.                 ty.append(t)   
27.                 x.append(x2+i*ax); y.append(y2+j*ay); z.append(zi+layer/3.0*az)   
28.                 ty.append(t); layer += 1   
29.                 x.append(x0+i*ax); y.append(y3+j*ay); z.append(zi+layer/3.0*az)   
30.                 ty.append(t)   
31.                 x.append(x2+i*ax); y.append(y4+j*ay); z.append(zi+layer/3.0*az)   
32.                 ty.append(t); layer += 1   
33.                 x.append(x0+i*ax); y.append(y5+j*ay); z.append(zi+layer/3.0*az)   
34.                 ty.append(t)   
35.                 x.append(x2+i*ax); y.append(y6+j*ay); z.append(zi+layer/3.0*az)   
36.                 ty.append(t); layer += 1   
37.     return ty,x,y,z,xmin,xmax,ymin,ymax,zmin,zmax   
38.    
39. # function for generating a LAMMPS datafile   
40. # this function is taken from:   
41. # https://icme.hpc.msstate.edu/mediawiki/index.php/FCC_(111)_Surface_Generation_Script   
42. def datafile(name,ty1,x1,y1,z1,ty2,x2,y2,z2,xmin,xmax,ymin,ymax,zmin,zmax):   
43.     fout = open(name,"w")   
44.     fout.write("Atomic locations\n\n")   
45.     fout.write("%d atoms\n"%(len(x1)+len(x2)))   
46.     fout.write("6 atom types\n")   
47.     fout.write(" %22.16f  %22.16f   xlo xhi\n"%(xmin,xmax))   
48.     fout.write(" %22.16f  %22.16f   ylo yhi\n"%(ymin,ymax))   
49.     fout.write(" %22.16f  %22.16f   zlo zhi\n"%(zmin,zmax))   
50.     fout.write("\nAtoms\n\n")   
51.     for i in range(len(x1)):   
52.         fout.write("%4d %3d %22.16f %22.16f %22.16f\n"%(i+1,ty1[i],x1[i],y1[i],z1[i]))   
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53.     for j in range(len(x2)):   
54.         fout.write("%4d %3d %22.16f %22.16f %22.16f\n"%(i+j+2,ty2[j],x2[j],y2[j],z2[j]))   
55.     fout.close()   
56.    
57. # function for rotating a supercell by phi degrees around z axis   
58. def rotate(x,y,z,phi):   
59.     xn = []; yn = []; zn = []   
60.     for i in range(len(x)):   
61.         xn.append(np.cos(phi)*x[i]+np.sin(phi)*y[i])   
62.         yn.append(-np.sin(phi)*x[i]+np.cos(phi)*y[i])   
63.         zn.append(z[i])   
64.     return xn,yn,zn   
65.    
66. # main function   
67. def main(theta,n,name):   
68.     a = 4.05   
69.     theta_rad = theta*np.pi/180   
70.     # creating lower and upper supercells   
71.     # nz*3 is the number of atomic layers in each slab   
72.     nx = 5*n; ny = 5*n; nz = 4   
73.     # z1 is the size of gap below lower slab and above upper slab   
74.     ty = 1; z1 = 10   
75.     type_ls,x_ls,y_ls,z_ls,xmin_ls,xmax_ls,ymin_ls,ymax_ls,zmin_ls,zmax_ls = generate_subs

trate(a,nx,ny,nz,ty,z1)   
76.     ty = 2; z2 = zmax_ls+20   
77.     type_us,x_us,y_us,z_us,xmin_us,xmax_us,ymin_us,ymax_us,zmin_us,zmax_us = generate_subs

trate(a,nx,ny,nz,ty,z2)   
78.     # rotating supercells by theta/2 degree in opposite directions around x-azis   
79.     xnew_ls,ynew_ls,znew_ls = rotate(x_ls,y_ls,z_ls,theta_rad/2)   
80.     xnew_us,ynew_us,znew_us = rotate(x_us,y_us,z_us,-theta_rad/2)   
81.     # calculating periodic distances and simulation cell lengths   
82.     if theta < 30:   
83.         # Burgurs vector of perfect dislocation   
84.         b = a/np.sqrt(2)   
85.         ax = b   
86.         ay = np.sqrt(3)*b   
87.         lx = n * ax / np.cos(theta_rad/2)   
88.         ly = n * ay / np.cos(theta_rad/2)   
89.     elif theta > 30:   
90.         b = a/np.sqrt(2)   
91.         ax = np.sqrt(3)*b   
92.         ay = b   
93.         lx = n * ax / np.cos(np.pi/6-theta_rad/2)   
94.         ly = n * ay / np.cos(np.pi/6-theta_rad/2)   
95.     # removing atoms that are outside of the simulation cell box   
96.     xmin = 1; xmax = lx+1   
97.     ymin = 1; ymax = ly+1   
98.     zmin = zmin_ls-z1; zmax = zmax_us+z1   
99.     xnewest_ls=[]; ynewest_ls=[]; znewest_ls=[]   
100.     xnewest_us=[]; ynewest_us=[]; znewest_us=[]   
101.     for i in range(len(xnew_ls)):   
102.         if (xmin<xnew_ls[i]<=xmax) and (ymin<ynew_ls[i]<=ymax):   
103.             xnewest_ls.append(xnew_ls[i])   
104.             ynewest_ls.append(ynew_ls[i])   
105.             znewest_ls.append(znew_ls[i])   
106.     for j in range(len(xnew_us)):   
107.         if (xmin<xnew_us[j]<=xmax) and (ymin<ynew_us[j]<=ymax):   
108.             xnewest_us.append(xnew_us[j])   
109.             ynewest_us.append(ynew_us[j])   
110.             znewest_us.append(znew_us[j])   
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111.     datafile(name,type_ls,xnewest_ls,ynewest_ls,znewest_ls,type_us,xnewest_us,ynewest_u
s,znewest_us,xmin,xmax,ymin,ymax,zmin,zmax)   

112.    
113. # main code   
114. # main(theta,n), where n is the required periodicity in x and y directions   
115. # theta = 2*arctan(sqrt(3)/n) for theta<30   
116. # theta = 2*(30-arctan(sqrt(3)/n)) for theta>30   
117. main(0.00,3,"0.00")   
118. main(2.45,81,"2.45")   
119. main(4.40,45,"4.40")   
120. main(5.36,37,"5.36")   
121. main(6.00,33,"6.00")   
122. main(6.60,30,"6.60")   
123. main(7.34,27,"7.34")   
124. main(7.93,25,"7.93")   
125. main(8.26,24,"8.26")   
126. main(8.61,23,"8.61")   
127. main(9.00,22,"9.00")   
128. main(9.43,21,"9.43")   
129. main(9.88,20,"9.88")   
130. main(10.42,19,"10.42")   
131. main(10.99,18,"10.99")   
132. main(11.63,17,"11.63")   
133. main(12.36,16,"12.36")   
134. main(13.17,15,"13.17")   
135. main(14.11,14,"14.11")   
136. main(15.18,13,"15.18")   
137. main(16.43,12,"16.43")   
138. main(17.89,11,"17.89")   
139. main(19.65,10,"19.65")   
140. main(21.79,9,"21.79")   
141. main(24.43,8,"24.43")   
142. main(27.80,7,"27.80")   
143.    
144. main(32.20,7,"32.20")   
145. main(35.57,8,"35.57")   
146. main(38.21,9,"38.21")   
147. main(40.35,10,"40.35")   
148. main(42.11,11,"42.11")   
149. main(43.57,12,"43.57")   
150. main(44.82,13,"44.82")   
151. main(45.89,14,"45.89")   
152. main(46.83,15,"46.83")   
153. main(47.64,16,"47.64")   
154. main(48.37,17,"48.37")   
155. main(49.01,18,"49.01")   
156. main(49.58,19,"49.58")   
157. main(50.12,20,"50.12")   
158. main(50.57,21,"50.57")   
159. main(51.00,22,"51.00")   
160. main(51.39,23,"51.39")   
161. main(51.74,24,"51.74")   
162. main(52.07,25,"52.07")   
163. main(52.66,27,"52.66")   
164. main(53.40,30,"53.40")   
165. main(54.00,33,"54.00")   
166. main(54.64,37,"54.64")   
167. main(55.60,45,"55.60")   
168. main(57.55,81,"57.55")   
169. main(60.00,3,"60.00")    
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Appendix B: LAMMPS script for step 3 of simulation process 

The following LAMMPS script corresponds to the step 3 of simulation process section. Further 

information is provided within the script. 

1. # defining unit system   

2. units metal   

3. # 3D simulation cell   

4. dimension 3   

5. # periodic boundary conditions along x and y directions, fixed z direction   

6. boundary p p f   

7. # defining particle style   

8. atom_style atomic   

9. # defining parameters needed for building pairwise neighbor lists, 2.0 Å is the extra dist

ance beyond the interatomic potential cutoff   

10. neighbor 2.0 bin   

11. neigh_modify every 1 delay 5 check yes   

12. # reading datafile which contains IDs and coordinates of atoms   

13. # each datafile corresponds to one specific misorientation angle   

14. # depending on the datafile, lines 17, 19, 20, 25, 26, 31, 32, 36, and 37 should be modifi

ed   

15. read_data datafile   

16. # replicating simulation cell along periodic directions, so approximately 300000 atoms exi

st in the simulation cell   

17. replicate 1 1 1   

18. # defining regions and groups of atoms for the fixed and mobile atoms in the lower slab   

19. region rLoSlFix block INF INF INF INF 9 13 units box   

20. region rLoSlMob block INF INF INF INF 14 36 units box   

21. group gLoSlFix region rLoSlFix   

22. group gLoSlMob region rLoSlMob   

23. group gLoSl union gLoSlMob gLoSlFix   

24. # defining regions and groups of atoms for the fixed and mobile atoms in the upper slab   

25. region rUpSlFix block INF INF INF INF 73 76 units box   

26. region rUpSlMob block INF INF INF INF 49 72 units box   

27. group gUpSlFix region rUpSlFix   

28. group gUpSlMob region rUpSlMob   

29. group gUpSl union gUpSlMob gUpSlFix   

30. # defining regions and groups of atoms for the first and last Newtonian atomic layers in t

he lower slab   

31. region rLoSlF block INF INF INF INF 14 15 units box   

32. region rLoSlL block INF INF INF INF 35 36 units box   

33. group gLoSlF region rLoSlF   

34. group gLoSlL region rLoSlL   

35. # defining regions and groups of atoms for the first and last Newtonian atomic layers in t

he upper slab   

36. region rUpSlF block INF INF INF INF 71 72 units box   

37. region rUpSlL block INF INF INF INF 49 51 units box   

38. group gUpSlF region rUpSlF   

39. group gUpSlL region rUpSlL   

40. # defining groups of atoms for all mobile atoms and all fixed atoms   
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41. group gMob union gLoSlMob gUpSlMob   

42. group gFix union gLoSlFix gUpSlFix   

43. # defining atom types for different layers only for the purpose of coloring   

44. set group gLoSlFix type 1   

45. set group gLoSlMob type 2   

46. set group gLoSlL type 3   

47. set group gUpSlMob type 5   

48. set group gUpSlL type 4   

49. set group gUpSlFix type 6   

50. # defining the style of interaction between atoms   

51. pair_style eam/alloy   

52. # reading the interatomic potential file   

53. pair_coeff * * Al.lammps.eam Al Al Al Al Al Al   

54. # defining computations for temperature and pressure   

55. compute TLF gLoSlFix temp   

56. compute TLM gLoSlMob temp   

57. compute TUF gUpSlFix temp   

58. compute TUM gUpSlMob temp   

59. compute TMob gMob temp   

60. compute PMob all pressure TMob   

61. # defining computations for everage of z positions of atoms   

62. compute AZLSF gLoSlF reduce ave z   

63. compute AZLSL gLoSlL reduce ave z   

64. compute AZUSF gUpSlF reduce ave z   

65. compute AZUSL gUpSlL reduce ave z   

66. # outputting the values of thermodynamic variables and computations each 1000 timesteps   

67. thermo 1000   

68. thermo_style custom step etotal pe ke lx ly lz vol temp c_TLF c_TLM c_TUF c_TUM c_TMob pre

ss pxx pyy pzz c_PMob c_PMob[1] c_PMob[2] c_PMob[3] c_PMob[4] c_PMob[5] c_PMob[6] c_AZLSF 

c_AZLSL c_AZUSF c_AZUSL atoms   

69. # minimzation of energy   

70. min_style cg   

71. minimize 1.0e-4 1.0e-6 1000 10000   

72. # outputting the coordinates, force in z direction, and velocity in z direction each 1000 

timesteps   

73. dump d1 all custom 1000 r1.txt id type x y z fz vz   

74. # difining timestep to be 2 femtosecond   

75. timestep 0.002   

76. # restting timestep value to zero   

77. reset_timestep 0   

78. # assigning velocity to atoms based on gaussian distribution   

79. velocity gMob create 300.0 8930793 dist gaussian   

80. # assinging velocity of zero to fixed atoms   

81. velocity gLoSlFix set 0.0 0.0 0.0 units box   

82. velocity gUpSlFix set 0.0 0.0 0.0 units box   

83. # fixing the fixed atoms during the dynamic run   

84. fix f1 gLoSlFix setforce 0.0 0.0 0.0   

85. fix f2 gUpSlFix setforce 0.0 0.0 0.0   

86. # integrating Newton's equations of mothion using the velocity-

verlet algorithm in an NPT ensemble   

87. fix f3 gMob npt temp 300.0 300.0 1.0 x 0.0 0.0 1.0 y 0.0 0.0 1.0 couple xy   

88. fix_modify f3 temp TMob   



 

 

46 

89. # initializing the dynamic run for 10000 timesteps   

90. run 10000   

91. # unfixing the pre-defined fixes   

92. unfix f1   

93. unfix f2   

94. unfix f3   

95. # writing the current state of MD simulation in a restart file   

96. # the restart file will be used as an input for the simulations of step 4   

97. write_restart rf1.txt   
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Appendix C: LAMMPS script for step 4 of simulation process 

The following LAMMPS script corresponds to the step 4 of simulation process section. Further 

information is provided within the script. 

1. # defining varibales for running simulations   

2. # this set of variables will run the code for initial interfacial distances of 2.5 Å, 4 Å,

 and 5.5 Å   

3. variable d1 equal 2.50   

4. variable d equal ${d1}   

5. variable interval equal 1.50   

6. variable d2 equal 5.50   

7. # defining a label for the line so we can jump to this line again and run the code from th

is line   

8. label lab1   

9. # clear all variables in the memory except the equal style variables   

10. clear   

11. # read the restarl file which is the final state of simulation of step 3   

12. read_restart rf1.txt   

13. # defining parameters needed for building pairwise neighbor lists, 2.0 Å is the extra dist

ance beyond the interatomic potential cutoff   

14. neighbor 2.0 bin   

15. neigh_modify every 1 delay 5 check yes   

16. # defining the style of interaction between atoms   

17. pair_style eam/alloy   

18. # reading the interatomic potential file   

19. pair_coeff * * Al.lammps.eam Al Al Al Al Al Al   

20. # making a directory with the name of initial interfacial distance and entering that direc

tory   

21. shell mkdir ${d}   

22. shell cd ${d}   

23. # defining computations for temperature and pressure   

24. compute TLF gLoSlFix temp   

25. compute TLM gLoSlMob temp   

26. compute TUF gUpSlFix temp   

27. compute TUM gUpSlMob temp   

28. compute TMob gMob temp   

29. compute PMob all pressure TMob   

30. # defining computations for everage of z positions of atoms   

31. compute AZLSF gLoSlF reduce ave z   

32. compute AZLSL gLoSlL reduce ave z   

33. compute AZUSF gUpSlF reduce ave z   

34. compute AZUSL gUpSlL reduce ave z   

35. # outputting the values of thermodynamic variables and computations each 10 timesteps   

36. thermo 10   

37. thermo_style custom step etotal pe ke lx ly lz vol temp c_TLF c_TLM c_TUF c_TUM c_TMob pre

ss pxx pyy pzz c_PMob c_PMob[1] c_PMob[2] c_PMob[3] c_PMob[4] c_PMob[5] c_PMob[6] c_AZLSF 

c_AZLSL c_AZUSF c_AZUSL atoms   

38. # outputting the coordinates, force in z direction, and velocity in z direction each 1000 

timesteps   
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39. dump d1 all custom 1000 r2.txt id type x y z fz vz   

40. # running the simulation for 0 timestep just for the values of computations get updated   

41. run 0   

42. # displacing the upper slab downwards to the desired distance from the lower slab   

43. variable m equal -(c_AZUSL-c_AZLSL)+${d}   

44. displace_atoms gUpSl move 0.0 0.0 $m units box   

45. # change the name of the file which is being used for outputting the values of thermodynam

ic variables and computations   

46. log log2.lammps   

47. # difining timestep to be 2 femtosecond   

48. timestep 0.002   

49. # restting timestep value to zero   

50. reset_timestep 0   

51. # fixing the fixed atoms during the dynamic run   

52. fix f1 gLoSlFix setforce 0.0 0.0 0.0   

53. fix f2 gUpSlFix setforce 0.0 0.0 0.0   

54. # integrating Newton's equations of mothion using the velocity-

verlet algorithm in an NPT ensemble   

55. fix f3 gMob npt temp 300.0 300.0 1.0 x 0.0 0.0 1.0 y 0.0 0.0 1.0 couple xy   

56. fix_modify f3 temp TMob   

57. # initializing the dynamic run for 10000 timesteps   

58. run 10000   

59. # unfixing the pre-defined fixes   

60. unfix f1   

61. unfix f2   

62. unfix f3   

63. # writing the current state of MD simulation in a restart file just in case it is needed l

ater   

64. write_restart rf2.txt   

65. # going back one directory   

66. shell cd ..   

67. # defining the finishing condition for the simulations which corresponds to the last initi

al interfacial distance   

68. if "${d}==${d2}" then quit   

69. # assigning the next value in the list to the initial interfacial distance variable   

70. variable d equal ${d}+${interval}   

71. # jump to the line of label lab1 within the same script (filename: v2.lampps)   

72. jump v2.lammps lab1   
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Appendix D: supplementary material for section 4.1.2.3 

Figure D.1 is a supplementary material for figure 4.4 which shows that the effect of 

crystallographic misorientation on the critical distance for JC is insignificant. It also shows that 

the misorientation has an effect on the value of 𝐷𝑎𝑣𝑒 for the cases that JC occurs. A more in-depth 

discussion is provided in section 4.1.2.3. 

 

 

Figure D.1: Plot of Dave versus initial interfacial distance, for some other misorientation angles between 0° 

and 30°, which are not shown in figure 4.4. 
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Appendix E: supplementary material for section 4.2.1 

Figure E.1 is a supplementary material for section 4.2.1 which shows the difference in the structure 

of interface for ranges (I) and (III) of misorientation angle. 

 

 

Figure E.1: Top-view snapshots of equal size. showing the final state of the structure of interface (the two 

contacting layers) in simulations with misorientation angles of (a) 0°, (b) 60°, (c) 2.45° and (d) 57.55°. The 

initial interfacial distance is 2.5 Å for all of them. Atoms with FCC (green), HCP (red), and unidentified 

(white) local crystal structure are indicated. 

(a) (b)

(c) (d)
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