
Santa Clara University
Scholar Commons

Mechanical Engineering Master's Theses Engineering Master's Theses

6-2018

Numerical Analysis of Fatigue Crack Growth of
Low Porosity Auxetic Materials using the Contour
J-integral
Garivalde S. Dominguez
Santa Clara University, gdominguez@scu.edu

Follow this and additional works at: https://scholarcommons.scu.edu/mech_mstr

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Master's Theses at Scholar Commons. It has been accepted for inclusion in
Mechanical Engineering Master's Theses by an authorized administrator of Scholar Commons. For more information, please contact
rscroggin@scu.edu.

Recommended Citation
Dominguez, Garivalde S., "Numerical Analysis of Fatigue Crack Growth of Low Porosity Auxetic Materials using the Contour J-
integral" (2018). Mechanical Engineering Master's Theses. 23.
https://scholarcommons.scu.edu/mech_mstr/23

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_master_theses?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr/23?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu




ii 

 

 

Numerical Analysis of Fatigue Crack Growth of Low 

Porosity Auxetic Materials using the Contour J-integral 

 

 

by Garivalde S. Dominguez 

B.S. Mechanical Engineering 

Department of Mechanical Engineering  

University of the Philippines 

 

 

MASTER THESIS 

 

Submitted in Partial Fulfillment of the Requirements  

For the Degree of Master of Science 

In Mechanical Engineering 

In the School of Engineering 

 

at 

 

Santa Clara University 

 

June 2018 

 

 

 

 

 

 

Santa Clara, California 

 



iii 

 

DEDICATION 
 

 

 

 

 

 

 

 

 

This work is dedicated to my wife, Justine,  

for her wholehearted support and encouragement. 

 

 

 

 

 

 

 

 

 



iv 

 

ACKNOWLEDGEMENT 
 

 

I would like to express my sincere appreciation to my thesis advisor, Dr. Michael Taylor, 

for his motivation and support throughout my research. Also, I am thankful for my thesis 

reader, Dr. Robert Marks, for his patience and advice for the improvement of my work. To 

the rest of computational solid mechanics group, Luca, Max, and Shawn, thank you for the 

intellectual discussion and camaraderie. 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

TABLE OF CONTENTS 
 

DEDICATION ................................................................................................................... iii 
ACKNOWLEDGEMENT ................................................................................................. iv 
TABLE OF FIGURES ...................................................................................................... vii 

NOMENCLARURE .......................................................................................................... ix 
ABSTRACT ....................................................................................................................... xi 
CHAPTER I: Introduction .................................................................................................. 1 
CHAPTER II: Fundamentals of Fracture Mechanics ......................................................... 3 

2.1 Background ............................................................................................................... 3 

2.2 Energy Release Rate ................................................................................................. 3 

2.3 Stress Intensification Factor ...................................................................................... 3 

2.4 Relationship between 𝒢 and 𝐾𝐼. ................................................................................ 6 

2.5 Fatigue and Paris Law ............................................................................................... 6 

2.6 J-integral Analytical and Numerical Solution ........................................................... 8 

CHAPTER III: Extended Finite Element Method (XFEM) ............................................. 10 
3.1   Background ........................................................................................................... 10 

3.2   Partition of Unity .................................................................................................. 10 

3.3   XFEM Enrichment ................................................................................................ 12 

3.4   Solution for Discontinuity..................................................................................... 12 

3.5   Crack-tip Enrichment ............................................................................................ 14 

3.6   XFEM Discretization ............................................................................................ 15 

CHAPTER IV: Abaqus Implementation .......................................................................... 20 

4.1   Background ........................................................................................................... 20 

4.2   Fracture Criterion .................................................................................................. 20 

4.3   Crack Initiation ..................................................................................................... 21 

4.4   Finite Element Solution for J-integral................................................................... 24 

 



vi 

 

CHAPTER V: Auxetic Structure ...................................................................................... 26 

5.1   Background ........................................................................................................... 26 

5.2   Specific Test Sample ............................................................................................. 26 

5.3   Periodic Structure.................................................................................................. 26 

5.4   Axis Ratio ............................................................................................................. 28 

5.5   Porosity ................................................................................................................. 28 

CHAPTER VI: Numerical Analysis ................................................................................. 29 
6.1   Background ........................................................................................................... 29 

6.2   Numerical Methods on J-integral.......................................................................... 29 

6.3   Variation of Geometry .......................................................................................... 34 

6.3.1 Constant Porosity ............................................................................................. 34 

6.3.2 Constant Minimum Hole Distance................................................................... 40 

CHAPTER VII: Results and Discussion........................................................................... 46 
7.1   Background ........................................................................................................... 46 

7.2   Experimental Data and Results ............................................................................. 46 

7.3   Comparison to the Numerical Data to the Experimental Data ............................. 48 

CHAPTER VIII: Conclusion ............................................................................................ 56 

REFERENCES ................................................................................................................. 58 
APPENDIX ....................................................................................................................... 62 

 

 

 

 

 

 

 

 



vii 

 

TABLE OF FIGURES 
 

 

Figure 1. 

 

Single edge crack on an infinitely wide plate……………………….. 

 

4 

 

Figure 2. Log-log plot of change in crack length per change in cycle vs. 

change in stress intensity factor……………………………………... 7 

Figure 3. Contour combination forming a closed contour on a region A∗…….. 8 

Figure 4. Arbitrary crack line divided into two enriched regions………........... 13 

Figure 5. A body in state of elastostatic equilibrium………………………….. 16 

Figure 6. Abaqus simulation model: 40 mm by 40 mm plate single-edge notch 

tension test…………………………………………………………... 

22 

 

Figure 7. Crack propagation simulation using Abaqus: maximum principal 

stress within crack vicinity from initial rupture to final crack length. 23 

Figure 8. Numerical integration path to evaluate J-integral…………………... 24 

Figure 9. Whole test model of auxetic materials with their corresponding 

representative volume element (RVE)……………………………… 27 

Figure 10. Double notch initial crack of an RVE with circular void subjected 

into tensile test……………………………………………………… 30 

Figure 11. Evolution of normalized stress intensity factor along the normalized 

crack length. Comparison of the 5% porosity reference data model 

to the calculated model of RVEs under periodic boundary condition 

using Abaqus……………………………………………………….. 32 

Figure 12. Evolution of normalized stress intensity factor along the normalized 

crack length. Comparison of the reference data model to the 

calculated model of RVE under finite boundary condition using 

Abaqus……………………………………………………………… 33 

Figure 13. Evolution of normalized stress intensity factor along the normalized 

crack length. Variation of RVE with 5% porosity ellipse void by 

increasing ARe in increments of 3………………………………….. 35 

Figure 14. Evolution of normalized stress intensity factor along the normalized 

crack length. Variation of RVE with 5% porosity stop-hole void by 

increasing ARsl in increments of 3………………………………….. 36 

Figure 15. Evolution of normalized stress intensity factor along the normalized 

crack length. Variation of RVE with 5% porosity stop-hole void by 

increasing ARsl in increments of 3………………………………….. 37 

Figure 16. Maximum principal stress distribution of RVE circle void model A 

and stop-hole void models B and C………………………………… 39 



viii 

 

Figure 17. Evolution of normalized stress intensity factor along the normalized 

crack length. Variation of RVE ellipse void by increasing ARe in 

increments of 5 in constant Lmin……………………………………. 41 

Figure 18. Evolution of normalized stress intensity factor along the normalized 

crack length. Variation of RVE slot void by increasing ARe in 

increments of 5 in constant Lmin……………………………………... 42 

Figure 19. Evolution of normalized stress intensity factor along the normalized 

crack length. Variation of RVE stop-hole void by increasing ARr in 

increments of 2 in constant Lmin………….......................................... 43 

Figure 20. Contour maps of the Lagrangian strains from the DIC of the non-

auxetic and non-auxetic samples……………………………………. 47 

Figure 21. Abaqus assembly diagram for fatigue test simulation of laminate 

with circular void pattern and laminate with stop-hole void pattern... 48 

Figure 22. Maximum principal stress contour map from Abaqus with crack 

growth fracture simulation at specified percentage of time step of 

enriched region of sample with circular void pattern……………….. 50 

Figure 23. Maximum principal stress contour map from Abaqus with crack 

growth fracture simulation at specified percentage of time step of 

enriched region of sample with stop-hole void pattern……………... 51 

Figure 24. Porous areas of the whole test specimens specifying outer and inner 

crack regions………………………………………………………... 52 

Figure 25. Evolution of stress intensity factor along the normalized crack 

length for Region I and Region II of the whole test specimen 

comparing circular void model (non-auxetic) to stop-hole void 

model (auxetic). For Region II, periodic models of circle void and 

stop-hole voids are compared………………………………………. 54 

 

 

 

 

 

 

 

 

 

 



ix 

 

NOMENCLARURE 
 

𝛼 : Paris’ law constant 

𝑎 : crack length 

𝑎𝑖 : initial crack length 

𝑎𝑓 : final crack length 

𝑎𝑒 : major axis length of ellipse void 

𝑎𝑠𝑙 : major axis length of slot void 

𝑎𝑠ℎ : major axis length of stop-hole void 

𝐚𝑗 : enrichment additional degrees of freedom associated with crack-body 

𝐴∗ : contour integral area 

𝐴𝑅𝑒 : axis ratio of ellipse void 

𝐴𝑅𝑠𝑙 : axis ratio of slot void 

𝐴𝑅𝑠ℎ : axis ratio of stop-hole void 

𝛽 : Paris’ law constant 

𝑏𝑒 : minor axis length of ellipse void 

𝑏𝑠𝑙 : minor axis length of slot void 

𝑏𝑠ℎ : minor axis length of stop-hole void 

𝐛 : body force 

𝐛𝑘
𝑙  : enrichment additional degrees of freedom associated with crack-tip 

𝐁 : strain-displacement matrix 

𝐶− : lower crack contour 

𝐶+ : upper crack contour 

𝐶1 : outer contour near crack region 

𝐶2 : inner contour near crack region 

𝐂 : material modulus 

𝛿𝑖𝑗 : kronecker delta 

ε𝑖𝑗
𝑚 : mechanical strain 

𝐸 : modulus of elasticity 

𝑓 : damage criterion 

𝑓tol : damage tolerance 

𝐟ext : nodal external forces 

𝐹𝑘
𝑙  : crack-tip enrichment function 

𝛤 : general boundary 

𝛤𝑐𝑟 : crack region boundary 

𝛤𝑡 : traction boundary 

𝛤𝑢 : displacement boundary 

𝒢 : strain energy release rate 

𝐻 : Heaviside function 



x 

 

𝐽 : contour J-intergral 

𝐾𝐼 : tensile stress intensity factor 

𝐾𝐼𝐼 : in-plane shear stress intensity factor 

𝐾𝐼𝐼𝐼 : out-of-plane shear stress intensity factor 

𝐿min : minimum hole spacing 

𝐿0 : hole spacing along 𝑥1 direction at 𝑥2 = 0 

𝑛 : number of elements of standard finite element 

𝐦 : normal unit vector to 𝐶2 

𝑚 : number of elements of enriched crack-body 

𝑚𝑓 : number of elements of enriched crack-tip 

𝐧 : normal unit vector to 𝐶1 

𝑁𝑖
fe(𝐱) : shape function associated with the standard finite element 

𝑁𝑖
enr1(𝐱) : shape function associated with the discontinuity function of crack body 

𝑁𝑖
enr2(𝐱) : shape function associated with the enrichment function of the crack-tip 

𝑁𝑓 : number of fatigue cycles 

𝛺 : crack domain 

𝜑 : partition of unity basis function 

𝜓 : porosity 

𝜙 : partition of unity arbitrary field enrichment function 

𝛱 : potential energy 

𝑞 : smoothing function under closed contour of the crack region 

𝑟 : near distance from the crack tip to an arbitrary point 

𝑟𝑠ℎ : stop-hole void radius 

𝑅 : circle void radius 

𝜎 : applied stress 

𝜎11 : local normal stress along 𝑥1 direction 

𝜎12 : local shear stress along 𝑥1 direction 

𝜎22 : local normal stress along 𝑥2 direction 

𝜎𝑚𝑎𝑥 : cartesian component of stress 

𝜎𝑚𝑎𝑥
0  : maximum allowable principal stress 

𝜃 : direction of arbitrary point with respect to the crack-tip 

𝐭 : traction 

𝑡 : time of fracture at an arbitrary crack length 

𝑡𝑓 : time at complete fracture 

𝐮 : displacement vector 

𝜈 : Poisson’s ratio 

𝑊 : strain density 

𝑤𝑝 : Gaussian weight 

𝜉 : arbitrary point location associated with 𝑥 

𝑥1 : cartesian horizontal direction 

𝑥2 : cartesian vertical direction 



xi 

 

ABSTRACT 
 

Recent studies suggest that auxetic materials such as porous metals with orthogonal 

periodic void patterns have an increased fatigue life compared to non-auxetic materials. 

This study provides numerical solution to support the existing experiments with the use of 

contour J-integral as a parameter of stress intensity factor for computing the number of 

fatigue life cycle of the materials with auxetic structures. Representative volume elements 

(RVEs) were constructed to characterize the physical test specimens with void patterns 

such as ellipse, slot, and stop-hole. Extended finite element method (XFEM) was 

performed to verify the direction of crack propagation on auxetic materials. Sixty-five 

distinct RVEs were made for each void shape with increasing horizontal double notch to 

mimic the crack propagation. Using Abaqus, the contour J-integral was calculated 

automatically at the crack-tip region. Numerical computation showed that auxetics have 

lower rate of overall crack propagation compared to non-auxetics. Variation of geometric 

parameters were employed to the void patterns of the RVE which changed the porosity and 

the minimum hole distance of the auxetics. Computation on stress intensity factor for each 

crack increment showed that models with relatively larger negative Poisson’s ratio have 

faster crack initiation. XFEM and J-integral simulations were performed on aluminum 

plates with circular and stop-hole void patterns and compared with experimental data.  

Results were in good agreement to the experiment where stop-hole void model had lower 

rate of crack evolution compared to the circular void model. 

 

 

 

 

 



1 

 

CHAPTER I 

Introduction 

 

Auxetics are materials that exhibit unusual behavior compared to typical 

engineering materials in that when they are stretched axially they expand transversely [1].  

The concept behind this exceptional property is Poisson’s ratio, 𝑣 – the ratio of the negative 

value of the lateral strain to the longitudinal strain of a material subjected in unidirectional 

load or displacement which ranges from -1.0 to 0.50 [2]. For a conventional engineering 

material (e.g. metal, wood, polymers), 𝑣 is greater than zero, but for auxetic materials, 𝑣 is 

less than zero. This includes but is not limited to metallic foams [2], polycrystalline 

ceramics [3], microporous polymer [4], metallic nanoplates [5], fiber reinforced composite 

[6] and laminates [7]. The physical behavior of these metamaterials comes from its internal 

structures which affect their deformation mechanism [8]. These structures allow a 

combination of flexure, hinging, and stretching of the material’s unit cell [9] to achieve a 

negative Poisson’s ratio. To tailor such structure, one of the physical features auxetics 

should have is high porosity [10], and auxetic behavior has been demonstrated on star-

honeycomb [11], sinusoid ligament [12], and lozenge grid [13] structures. However, a 

recent study by Taylor et. al. paved the way on the investigation of low porosity auxetic 

material (2% to 5% porosity). In this study, an aluminum alloy sheet with symmetric, 

orthogonal elliptical voids subjected to tensile testing showed that increasing the aspect 

ratio of the elliptical voids reduces the Poisson’s ratio to a more negative value [14]. 

Francesconi et. al. expanded the research of metallic sheets with two-dimensional, 

orthogonal void by studying the in-plane and out-of-plane eigenmodes of porous materials 

with more geometric variation of void patterns [15].  

Javid et. al. demonstrated for stainless steel, that auxetic samples with novel 

orthogonal S-shaped void have longer fatigue life than non-auxetic samples with circular 

holes [16]. However, this research is limited to only one geometric feature of an auxetic 

material for a fatigue experiment, so to fill this literature gap, this paper employs an 

additional variation of geometries that will allow the reader to identify that: changing the 

shape parameter and porosity has an effect on the fatigue crack behavior of auxetics. This 



2 

 

paper was also motivated by the experimental results obtained by Francesconi et. al. in 

which the authors tested the fatigue life of auxetic materials with circular voids and stop-

holes under tensile cyclic load [17]. Numerical analysis is used to model the observed 

behavior with the use of extended finite element method (XFEM), and the contour J-

integral. XFEM was implemented to predict the crack initiation location and the 

propagation behavior while the contour J-integral was calculated to approximate the strain 

energy release rate. Then, we used the concept of Paris Law [18] to determine the number 

of cycles to failure of the auxetic materials. Sixty-five representative volume element 

models were created, each having a distinct representation of a horizontal double notched 

crack. The crack lengths were based on the minimum distance between holes, ranging from 

10% to 90% of the minimum hole spacing. We have improved the procedure of Javid et. 

al. by employing a wider range of crack propagation path for the calculation of contour J-

integral. In previous study, the crack length range makes it limited to observing the middle 

phase of crack propagation where the crack initiation and total rupture phase are excluded 

[18]. To enhance the simulation, we implemented 1% to 99% of minimum hole spacing to 

observe the crack initiation, crack evolution, and rupture. Aside from using periodic 

boundary condition, we also have applied finite boundary conditions on the actual plate 

specimen and demonstrated the comparison between the two methods. 

The first part of the paper addresses the theory and numerical computation while 

the second part demonstrates the methodology and numerical results. Chapter II outlines 

the underlying concepts of linear elastic fracture theory, while Chapter III provides 

discussion of XFEM which is applied to simulate the crack behavior and predict its 

direction. The commercially available software package, Abaqus Simulia (by Dassault 

Systemes), was utilized to implement the finite element analysis and the procedure of the 

simulation is documented Chapter IV. Chapter V provides specification on the material 

and geometries that was used in the experiment and Chapter VI lists the methodology on 

obtaining the result of stress intensification factor at their respective crack length. Lastly, 

Chapter VII demonstrates a comparison of the experimental result to the numerical method 

that was described from the previous sections. 



3 

 

CHAPTER II 

Fracture Mechanics Fundamentals 

 

2.1 Background 

In providing a quantitative interpretation of the fatigue crack growth of a linearly 

elastic auxetic material, it is important to understand the theoretical concepts governing the 

general behavior of crack propagation. This will be beneficial in the succeeding chapters 

since it will provide explanation on the relation of crack length extension to energy, stress 

and displacement. Furthermore, topics on fracture mechanics such as Paris Law and path-

independent J-integral will be examined to provide analytical information on the numerical 

solution on the subsequent topics such as in Chapter III and Chapter V. 

 

2.2 Energy Release Rate 

Equivalent to Griffith energy balance on defining a crack extension [19], Irwin 

proposed an approach in which the energy release rate 𝒢 is in terms of the potential energy 

𝛱 and the crack length 𝑎 [20].  

 

 

Equation 2.1 states that 𝒢 is a measure of the rate of change of the potential energy 

dissipation with the crack length. 

 

2.3 Stress Intensification Factor 

Consider three modes of loading that can be applied to an infinitely wide plate. As 

illustrated in Figure 1a, Mode I represents a tensile loading normal to the crack area that 

may result to a crack opening along  𝑥1 direction. Mode II and Mode III demonstrate an 

𝒢 = −
d𝛱

d𝑎
 (2.1) 



4 

 

in-plane shear and out-of-plane shear respectively [21]. In this study, the research on the 

test specimen is subjected to cyclic tensile loading. Thus, the succeeding discussion is 

focused on Mode I type of loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Westergaard pioneered the solution for the local stresses near the crack tip [22] 

followed up by the works of Irwin, Sih and Sanford who formulated a generalized formula 

for the stress solution [23-25]. Given an initial crack length, 𝑎, and applied stress, 𝜎, 

Equations 2.2 to 2.4 outline the local stresses located at a specific magnitude, 𝑟, and 

⊗ 

⊙ 

Mode I 

Mode II 

Mode III 

r 
θ 

𝜎 

𝜎 

Figure 1. Single edge crack on an infinitely wide plate. (a) Three modes of loading applied to a crack 

(b) coordinate axis representation of local stress near the crack tip of a plate subjected to a remote 

tensile stress, 𝜎. 

(a) (b) 

𝑥1 

𝑥2 

𝜎11 

𝜎22 
𝜎12 



5 

 

direction, 𝜃, at the very end of the crack tip described in Figure 1b. According to 

Westergaard’s complex variable solution, the stresses near the crack tip of an isotropic 

linear elastic type of material with a Mode I type of loading can be derived as follows: 

 

 

 

 

 

 

Irwin modified the above equations [23] by introducing a constant called stress 

intensity factor, 𝐾𝐼 = 𝜎√𝜋𝑎 (Mode I). Referring to Equations 2.5 to 2.7, the use of 𝐾𝐼 is 

convenient since the applied force on the plate and the crack length is combined to a single 

constant that can be considered as an amplitude of the local stress fields within a singularity, 

1/√𝑟. 

 

 

 

 

 

 

For linear elastic fracture mechanics, the validity of stress intensity factor only 

applies to a singularity dominated zone where 𝑟 approaches zero. Within that region, 𝐾𝐼 

can be defined as amplitude of the stress field at a given 𝑟 and 𝜃.  

𝜎11 =
𝜎 √𝑎

√2𝑟
cos

1

2
𝜃 ൬1 − sin

1

2
𝜃 sin

3

2
𝜃൰ 

𝜎12 =
𝜎 √𝑎

√2𝑟
sin

1

2
𝜃 cos

1

2
𝜃 cos

3

2
𝜃 

𝜎22 =
𝜎 √𝑎

√2𝑟
cos

1

2
𝜃 ൬1 + sin

1

2
𝜃 sin

3

2
𝜃൰ 

(2.2) 

(2.3) 

(2.4) 

𝜎11 =
𝐾𝐼

√2𝜋𝑟
cos

1

2
𝜃 ൬1 − sin

1

2
𝜃 sin

3

2
𝜃൰ 

𝜎22 =
𝐾𝐼

√2𝜋𝑟
cos

1

2
𝜃 ൬1 + sin

1

2
𝜃 sin

3

2
𝜃൰ 

(2.5) 

(2.6) 

𝜎12 =
𝐾𝐼

√2𝜋𝑟
sin

1

2
𝜃 cos

1

2
𝜃 cos

3

2
𝜃 (2.7) 



6 

 

2.4 Relationship between 𝓖 and 𝑲𝑰. 

Strain energy release rate and stress intensification factor play an important role in 

fracture mechanics. While 𝒢 describes crack propagation globally as the degradation of 

potential energy due to crack extension, 𝐾𝐼 characterizes the magnitude of stress field 

locally, these two parameters are related to one another [26]. For a single notch crack with 

uniform tensile stress at an infinitely wide plate exhibiting a linear elastic behavior and 

plane stress condition, the relationship between 𝒢 and  𝐾𝐼 is 

 

 

where 𝐸 is the modulus of elasticity. 

 

2.5 Fatigue and Paris Law 

Given 𝒢 and 𝐸, one can manipulate Equation 2.8 to evaluate the stress intensity 

factor which will be used to identify the behavior of a crack growth. As illustrated in Figure 

2, log
d𝑎

d𝑁
  vs. log ∆K plot demonstrates a sigmoidal curve which can be observed as a fatigue 

crack behavior of metals. The curve is divided into three regions. Region I, at the lower 

end of the curve, is composed of a crack growth rate starting from a stress intensification 

factor threshold, 𝐾𝑡ℎ, then the change in crack length per cycle extends slowly to the 

boundary of Region II. Region III, at the upper portion, is represented by a relatively faster 

crack growth until rupture at critical stress intensity factor, 𝐾𝐶. Region II is where Paris 

and Erdogan described the section from which the crack propagation shows a linear 

behavior with slope 𝛽 on logarithmic scale plot [18]. Equation 2.9 describes the plot within 

Region II.  

 

 

𝒢 =
𝐾𝐼

2

𝐸
 (2.8) 

d𝑎

d𝑁
= 𝛼∆𝐾𝛽 (2.9) 



7 

 

A power-law relationship for fatigue crack growth where change in crack length 

per cycles is proportional to a power of change in stress intensity factor. 𝛼 and 𝛽 are 

material constants which depend on material and environmental condition determined from 

experiments [21]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given the change in stress intensity factor and the values of material constants, the 

number of fatigue life cycles can be obtained by integrating Equation 2.1 [18, 21]: 

 

 

𝐈 

𝐈𝐈 

𝐈𝐈𝐈 

𝛽 

log ∆𝐾 

log
d𝑎

d𝑁
 

𝐾𝑡ℎ 𝐾𝐶 

Figure 2. Log-log plot of change in crack length per change in cycle vs. change in 

stress intensity factor which represents the fatigue crack growth of metals  

(reproduced without permission) [21]. 

𝑁𝑓 = න
d𝑎

𝛼∆𝐾𝛽

𝑎𝑓

𝑎𝑖

 (2.10) 



8 

 

2.6 J-integral Analytical and Numerical Solution 

For a common tensile test with simple geometry such as single edged notched 

specimen or center-crack specimen, the analytical solution for stress intensity factor is 

formulated based on the geometry of the test samples [21]. On the other hand, the J-integral 

is used for more complex geometries on the samples such as those of auxetic materials to 

approximate the value of the 𝐾𝐼 [18].  

 

 

 

 

 

 

 

 

 

 

 

 

Applying the concept of virtual crack extension [26], the J-integral can be 

interpreted as 

 

which is equivalent to the energy release rate for linear elastic material.  

 

𝑥1 

𝑥2 

Figure 3. Contour combination forming a closed contour on a region A∗ 

(reproduced without permission) [27]. 

  

 𝐶1 𝐶2 

𝐶+ 

𝐧 

𝐶− 𝐦 

𝐴∗ 

𝐽 = −
d𝛱

d𝑎
 , (2.11) 

𝐽 = 𝒢. (2.12) 



9 

 

Referring to Figure 3, a closed contour forming an area, 𝐴∗, can be written as 

follows: 

 

where 𝐶+and 𝐶−are the contour in opposite direction facing the crack and 𝐶1and 𝐶2 are the 

outer and inner contour surrounding the crack tip. It is also important to note that 𝑚𝑖 =

 − 𝑛𝑖, where 𝐦 and 𝐧 are unit normal vectors of 𝐶1 and 𝐶2 respectively. 

Shih et. al presented a generalized solution on J-integral [27], assuming a crack 

extension along 𝑥1 direction at a certain crack tip region, 𝐶2, at quasi-static condition, 

 

 

where 𝑊 is the strain energy density given as: 

 

 

where 𝜎𝑖𝑗  is the cartesian components of stress and 𝑢𝑗  and 𝜖𝑖𝑗 are the displacement and 

mechanical strain respectively, 𝑛𝑖 is the unit normal vector along 𝐶2 [28]. 

Li derived Equation 2.14 by applying path-independence concept of the contour  

and by assuming that integrals along 𝐶+and 𝐶−cancelled each other out and 𝐶2 is at the 

very tip of the crack [27-29]. 

 

 

where 𝑞 is a smooth function enclosing the area 𝐴 under the close contour 𝐶 that is unity 

on 𝐶2 and 𝐶1 as 𝐶2 approaches zero. 

𝑊 =  න 𝜎𝑖𝑗

𝜖𝑖𝑗 

0

d𝜖𝑖𝑗 (2.15) 

𝐽 =  lim
𝐶2→0

න ൫𝑊𝛿1𝑖 − 𝜎𝑖𝑗𝑢𝑗,1൯
 

𝐶

𝑛𝑖 d𝐶 (2.14) 

𝐶 =  𝐶+ + 𝐶− +  𝐶1 −  𝐶2 (2.13) 

𝐽 =  න ൣ൫𝜎𝑖𝑗𝑢𝑗,1 − 𝑊𝛿1𝑖൯𝑞൧
,𝑖

 

𝐴∗

d𝐴 (2.16) 



10 

 

CHAPTER III 

Extended Finite Element Method (XFEM) 

 

3.1   Background 

The numerical method that is implemented to predict the crack length and direction 

applying the concept of fracture mechanics to finite element method is called extended 

finite element method (XFEM). In the study described in the succeeding chapters (Chapter 

V and VI), the employment of XFEM is vital in verifying the path of the crack which will 

be used to support the assumption of the J-integral numerical analysis. 

XFEM features an efficient method of numerical approximation where, instead of 

remeshing multiple times as crack propagates at a certain period to account for new 

boundaries, jump dislocation functions and enrichment functions are utilized to enable 

representation of a crack which may be located between mesh nodes [30-34]. Thus, crack 

can move through the finite elements. In this chapter, the fundamentals of XFEM are 

described. The discretization of the XFEM solution is also explained to unveil the 

underlying numerical concepts used in finite element analysis (FEA) software. 

 

3.2   Partition of Unity 

We continue the discussion by introducing the most basic mathematical framework 

of XFEM. Developed by Melenk and Babuska [35], the so-called partition of unity method 

(PUM) accounts for the structured composition of a global space to an approximation of a 

local behavior solution of a finite element space. Within a domain 𝛺, the partition of unity 

of the set of 𝑛 functions 𝜑𝑖(𝐱), is defined as 

 

 
෍ 𝜑𝑖(𝐱)

𝑛 

𝑖=1

= 1 (3.1) ∀ 𝐱 ∈ 𝛺 

 



11 

 

Proceeding from Equation 3.1, given an arbitrary field, 𝜙(𝐱) the following property 

should be satisfied, 

 

 

Equation 3.2 represents the concept of completeness of a solution in which the 

function 𝜑𝑖(𝐱) is approximated by expressing in terms of the order of the function 𝜙(𝐱) 

[33]. 

A classical implementation of this concept is the 𝑛  number of shape function of 

the set of an isoparametric finite elements given as, 

 

 

Similar to Equation 3.2, partition of unity can be applied to a displacement field 𝐮 : 

 

 

where 𝐮(𝐱) is the interpolant of 𝐮𝑖(𝐱). 

Completeness is necessary to achieve a desired accuracy from a given series of 

functions to approximate a particular smooth function. For example, in elasticity, 𝐮 can 

take on constant values to represent a rigid body motion and constant strain states. Also, 

completeness is important such that trial solutions and weight functions including their 

derivatives converge as the finite element size approach zero [36]. PUM ensures that finite 

element approximation is complete. 

 

෍ 𝜑𝑖(𝐱)

 𝑛

𝑖=1

𝜙𝑖(𝐱) = 𝜙(𝐱) 

 

(3.2) 

෍ 𝑁𝑖(𝐱)

 𝑛

𝑖=1

= 1 
(3.3) 

෍ 𝑁𝑖(𝐱)

 𝑛

𝑖=1

𝐮𝑖(𝐱) = 𝐮(𝐱) (3.4) 



12 

 

3.3   XFEM Enrichment 

The concept of the PUM is employed in XFEM where the classical displacement 

solution in finite element function is composed of an additional set of 𝑚 enrichment 

functions, 𝜙(𝐱) [33] (Equation 3.6) 

 

 

 

where 𝑁𝑖
fe(𝐱) are the standard shape functions and 𝑁𝑖

enr(𝐱) is the shape function 

associated enrichment solution, while 𝐮𝑖(𝐱) are the standard nodal degrees of freedom for 

finite element method and 𝐚𝑖 are the additional unknown degrees of freedom. Note that by 

PUM when 𝐚𝑖 = 𝟏 and 𝐮𝑖 = 𝟎, the enrichment function 𝜙(𝐱) represents exactly the 

approximation of 𝐮(𝐱). Typically, both standard approximation and enrichment 

approximation use equal shape functions (𝑁𝑖
fe(𝐱) =  𝑁𝑖

enr(𝐱)) but in some case where the 

enrichment region uses different type of elements with respect to the standard finite 

element region (e.g. quadrilateral for standard region, and sub-triangles for enriched 

regions) 𝑁𝑖
fe(𝐱) ≠  𝑁𝑖

enr(𝐱) [30, 37]. 

Enrichment region for XFEM crack model has two parts as illustrated in Figure 4 

and will be discussed in the succeeding sections. Region with circular nodes are the 

enriched elements of the discontinuous crack-body while the square nodes are applied for 

the enrichment of crack-tip. 

 

3.4   Solution for Discontinuity  

To model the discontinuity of the enriched crack region, a modified Heaviside 

function, 𝐻(ξ), (signed function) is implemented as the enrichment function  

 

𝐮(𝐱) = ෍ 𝑁𝑖
fe(𝐱)𝐮𝑖(𝐱)

𝑛 

𝑖=1

+ ෍ 𝑁𝑖
enr(𝐱)

𝑚 

𝑖=1

𝜙(𝐱)𝐚𝑖 (3.6) 

𝐮(𝐱) = 𝐮fe + 𝐮enr (3.5) 

𝜙 = 𝐻(𝜉) = ൜
−1,      if 𝜉 < 0
+1,      if 𝜉 > 0

 (3.7) 



13 

 

where 𝜉 is the arbitrary location point associated to 𝑥 [35]. 𝐻(𝜉) = +1 represents one side 

of the discontinuous element while 𝐻(𝜉) = −1 represents the other [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

With the application of (3.7), (3.6) can be written as 

 

 

However, if we verify the approximation of (3.8) the interpolation of value of the 

displacement field 𝐮(𝐱) is derived as 

 

𝐮(𝐱) = ෍ 𝑁𝑖
fe(𝐱)𝐮𝑖(𝐱)

𝑛 

𝑖=1

+ ෍ 𝑁𝑖
enr(𝐱)𝐻(𝜉)𝐚𝑖.

𝑚 

𝑖=1

 (3.8) 

Figure 4. Arbitrary crack line divided into two enriched regions  

(reproduced without permission) [38]. 

crack 

crack-body nodes 

crack-tip nodes 

 

𝐮(𝐱𝒊) = 𝐮𝑖 + 𝐻(𝜉𝑖)𝐚𝑖 ≠  𝐮𝑖 . 

. 

(3.9) 



14 

 

From (3.9) the field variable 𝐮(𝐱) means that the displacement field is not an interpolation 

of nodal parameters 𝐮𝑖. To account for interpolation error correction, 𝐻(𝜉) is shifted to a 

node of interest [30, 37]. Thus (3.8) is modified to 

 

 

 

 

3.5   Crack-tip Enrichment 

Since (3.10) only applies for the representation of the discontinuity of the crack-body, 

additional functions to include the enrichment for the crack-tip is accounted in the XFEM 

solution,  

 

 

 

 

where 𝐛𝑖
𝑘 are unknown values for the degrees of freedom associated to the crack-tip region 

[37]. 

As shown in Figure 4, multiple elements are enriched around the crack-tip region. 

This explains the summation on the function 𝐹 
𝑘 (𝑥) where the generalized PUM is 

employed to represent 𝑚𝑓 number of domains [39]. 

Focusing on the function 𝐹 
𝑘 (𝑥), the basis of this crack-tip enrichment function is 

the Westergaard field at the very near tip region which is redefined by Fleming [40]. 

Parallel to the formulation of stress intensification factor, 𝐹𝑘 (𝑥) can also be derived 

through polar form as in (3.12) to (3.15). 

𝐮(𝐱) = ෍ 𝑁𝑖
fe(𝐱)𝐮𝑖(𝐱)

𝑛 

𝑖=1

+ ෍ 𝑁𝑖
enr(𝐱)൫𝐻(𝜉) − 𝐻(𝜉𝑖)൯𝐚𝑖.

𝑚 

𝑖=1

 (3.10) 

𝐮(𝐱) = ෍ 𝑁𝑖
fe(𝐱)𝐮𝑖(𝐱)

𝑛 

𝑖=1

+ ෍ 𝑁𝑖
enr1(𝐱)(𝐻(𝜉(𝑥)) − 𝐻(𝜉𝑖))𝐚𝑖

𝑚 

𝑖=1

+ ෍ 𝑁𝑖
enr2(𝐱) ൥෍ 𝐹 

𝑘 (𝑥)𝐛𝑖
𝑘

𝑚𝑝

𝑘=1

൩ ,

𝑚𝑓 

𝑖=1

 

(3.11) 



15 

 

 

 

 

 

 

Similar to the remedy in (3.10), 𝐹 
𝑘 (𝑟, 𝜃) is shifted to guarantee the appropriate 

interpolation correction given in the generalized XFEM solution  

 

 

 

 

 

 

where 𝑁𝑖
enr2(𝐱) is the set of 𝑚𝑓 shape functions associated with the enrichment on the 

crack-tip region [37]. 

 

3.6   XFEM Discretization 

As a preliminary before discussing the XFEM discretization, it is important to 

define the fundamental equations of a crack model in elastosatic equilibrium and this will 

be the foundation of the XFEM discrete solutions (Figure 5). Given 𝛺 as the region 

bounded by the smooth curve 𝛤 with displacement, 𝐮, traction, 𝐭 and body force, 𝐛, the 

strong form of the initial boundary value problem has the following equations [34, 30]: 

 

𝐮(𝐱) = ෍ 𝑁𝑖
fe(𝐱)𝐮𝑖(𝐱)

𝑛 

𝑖=1

+ ෍ 𝑁𝑖
enr1(𝐱)(𝐻(𝜉(𝑥)) − 𝐻(𝜉𝑖))𝐚𝑖

𝑚 

𝑖=1

+ ෍ 𝑁𝑖
enr2(𝐱) ൥෍(𝐹 

𝑘 (𝑟, 𝜃) − 𝐹 
𝑘 (𝑥𝑖))𝐛𝑖

𝑘

4

𝑘=1

൩

𝑚𝑓 

𝑖=1

 

(3.16) 

𝐹 
1  (𝑟, 𝜃) = √𝑟 sin ൬

𝜃

2
൰ (3.12) 

𝐹 
2  (𝑟, 𝜃) = √𝑟 cos ൬

𝜃

2
൰ (3.13) 

𝐹3 (𝑟, 𝜃) = √𝑟 sin ൬
𝜃

2
൰ sin 𝜃 (3.14) 

𝐹 
4  (𝑟, 𝜃) = √𝑟 cos ൬

𝜃

2
൰ sin 𝜃 (3.15) 



16 

 

 

 

 

 

 

where 𝝈 is the Cauchy stress tensor, 𝐭 ̅and 𝐮̅ are the prescribed traction and displacement 

respectively, 𝐧 is the outward unit vector with respect to 𝛤. 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, the weak form of the initial boundary value problem is 

 

∇ ∙ 𝝈 + 𝐛 = 𝟎 (3.17) in    𝛺 

𝐮 = 𝐮ത (3.18) in    𝛤𝑢 

𝝈 ∙ 𝐧 = 𝐭 ̅ (3.19) in    𝛤𝑢 

𝝈 ∙ 𝐧 = 𝟎 (3.20) in    𝛤𝑐𝑟 

න 𝛔 ∙ δ𝜺
 

𝛺

= න 𝐛 ∙ δ𝐮
 

𝛺

d𝛺 + න 𝐭 ∙ δ𝐮
 

𝛤

d𝛤 (3.21) 

𝛤 

𝛺 

𝛤𝑢 

𝛤𝑐𝑟 

𝛤𝑡 

× × × × × × 

𝐭 

𝐛 

𝐮 = 𝐮ത 

Figure 5. A body in state of elastostatic equilibrium. 



17 

 

where 𝜺 is defined as the strain. The later equation will be used to formulate the standard 

discrete equation of XFEM [32].  

 While fracture models consist of a growing discontinuous region, the strong form 

is difficult to use because it complicates the required boundary conditions. Thus, we use 

weak form (3.21) since the continuity requirement is reduced for the finite element 

approximation and evaluation of element stiffness involves polynomial functions that are 

easy to interpolate by numerical methods such as Gauss Quadrature [39]. 

From (3.16), we can now define the strain solution by substituting the displacement 

approximation 𝐮 = 𝐮̅  to the strain expression 

 

where the strain-displacement matrix and displacement matrix are as follows 

 

 

The 𝐁̅ matrix specific components are as follows: 

 For standard finite element: 

 

  

 

For the enriched region on the crack-body: 

 

  

 

 

𝜺 = 𝐁̅𝐮̅  (3.22) 

𝐁̅ =  ൣ𝐁𝑖
u 𝐁𝑖

a    𝐁𝑗
b1 𝐁𝑗

b2 𝐁𝑗
b3    𝐁𝑗

b4൧  (3.23) 

𝐮̅T =  ൣ𝐮𝑖 𝐚𝑖     𝐛𝑗
1 𝐛𝑗

2 𝐛𝑗
3    𝐛𝑗

4൧  (3.24) 

𝐁𝑖
u =  ൦

𝑁𝑖,1
fe 0

0 𝑁𝑖,2
fe

𝑁𝑖,2
fe 𝑁𝑖,1

fe

൪  (3.25) 

𝐁𝑖
a =  

ۏ
ێ
ێ
ێ
𝑁𝑖ۍ

enr1 ቀ𝐻൫𝜉(𝑥)൯ − 𝐻൫𝜉𝑗൯ቁ ,1 0

0 𝑁𝑖
enr1 ቀ𝐻൫𝜉(𝑥)൯ − 𝐻൫𝜉𝑗൯ቁ ,2

𝑁𝑖
enr1 ቀ𝐻൫𝜉(𝑥)൯ − 𝐻൫𝜉𝑗൯ቁ ,2 𝑁𝑖

enr1 ቀ𝐻൫𝜉(𝑥)൯ − 𝐻൫𝜉𝑗൯ቁ ے1,
ۑ
ۑ
ۑ
ې

  
(3.26) 



18 

 

For the enriched region on the crack-tip: 

 

 

  

 

 

 

One can also obtain the standard discrete system of equations by substituting (3.16) to the 

following, 

 

where 𝐟ext is the nodal external forces and are given as  

 

 

The details of the values from the expression of (3.28) are the following 

 

 For standard finite element: 

 

 

For the enriched region on the crack-body: 

 

 

 

𝐟ext = 𝐊𝐮̅  (3.28) 

𝐟extT
=  ൣ𝐟𝑖

u 𝐟𝑖
a    𝐟𝑗

b1 𝐟𝑗
b2 𝐟𝑗

b3    𝐟𝑗
b4൧  (3.29) 

𝐟𝑖
u =  න 𝑁𝑖

fe𝐭 ̅dΓ
 

𝛤𝑡

+  න 𝑁𝑖
fe𝐛

 

Ω

d𝛺 (3.30) 

𝐁𝑗
b𝑘ห

𝒌=1,2,3,4

=  ൦

𝑁𝑖
enr2൫𝐹 

𝑘 (𝑟, 𝜃) − 𝐹 
𝑘 (𝑥𝑗)൯,1 0

0 𝑁𝑖
enr2൫𝐹 

𝑘 (𝑟, 𝜃) − 𝐹 
𝑘 (𝑥𝑗)൯,2

𝑁𝑖
enr2൫𝐹 

𝑘 (𝑟, 𝜃) − 𝐹 
𝑘(𝑥𝑗)൯,2 𝑁𝑖

enr2൫𝐹 
𝑘 (𝑟, 𝜃) − 𝐹 

𝑘(𝑥𝑗)൯,1

൪  

 

(3.27) 

𝐟𝑖
a =  න 𝑁𝑖

enr1 ቀ𝐻൫𝜉(𝑥)൯ − 𝐻൫𝜉𝑗൯ቁ 𝐭 ̅dΓ
 

𝛤𝑡

+  න 𝑁𝑖
enr1 ቀ𝐻൫𝜉(𝑥)൯ − 𝐻൫𝜉𝑗൯ቁ 𝐛

 

𝛺

d𝛺 

 

(3.31) 



19 

 

 

For the enriched region on the crack-tip: 

 

 

 

 

In addition, the stiffness matrix, 𝐊, from Equation 27 is formulated by the following 

expression: 

 

 

where 𝐂 is the material modulus matrix [30, 34]. 

For plane stress assumption, the isotropic material has the following matrix, 

 

 

 

where 𝑣 is the Poisson’s ratio of the bulk material [36]. 

 

 

 

 

𝐊 =   න 𝐁̅T𝐂𝐁̅
 

𝛺

d𝛺, (3.33) 

𝐂 =  
𝐸

1 − 𝑣2
൥
1 𝑣 0
𝑣 1 0
0 0 (1 − 𝑣)/2

൩,  
(3.34) 

𝐟𝑗
b𝑘ห

𝑘=1,2,3,4
=  න 𝑁𝑖

enr2 ቀ𝐹 
𝑘 (𝑟, 𝜃) − 𝐹 

𝑘 ൫𝑥𝑗൯ቁ 𝐭 ̅d𝛤
 

𝛤𝑡

      (3.32) 

   + න 𝑁𝑖
enr2൫𝐹 

𝑘 (𝑟, 𝜃) − 𝐹 
𝑘 (𝑥𝑗)൯𝐛

 

𝛺

d𝛺 



20 

 

CHAPTER IV 

Abaqus Implementation 

 

4.1   Background 

As stated earlier in the introduction, Abaqus was utilized to simulate crack 

propagation. Chapter III is connected to this sub-topic since Abaqus provides XFEM 

features that can implement enrichment function and discontinuity which allows simulation 

of crack propagation. Here, we will focus on the software implementation of fracture 

criterion, crack initiation, crack path, and damage evolution [41]. Additional information 

on how J-integral is discretized and implemented in Abaqus is also discussed in this 

Chapter. 

 

4.2   Fracture Criterion 

Traction-separation cohesive behavior was used to implement the simulation of 

crack propagation since it is more suitable for ductile materials, which are the focus of this 

work, compared to other methods [16, 41]. One of its damage initiation criteria, 𝑓, is based 

on the ratio of the maximum principal stress determined from finite element method, 𝜎max  

and the allowable principal stress, 𝜎max
0 , 

 

 

It is also important to note that 𝜎max is assumed to be zero if its value is negative. This 

means that if the stress is purely compressive, the damage will not be initiated. Intuitively, 

damage occurs if 𝑓 reaches the value of 1.0 or greater. 

Abaqus requires an initial crack to be placed in the specimen because the basis of 

the model is linear elastic fracture mechanics by default. However, if initial crack is not 

specified, Abaqus will allow nucleation based on the area where maximum principal stress 

𝑓 =  ൜  
𝜎max

𝜎max
0   ൠ.  (4.1) 



21 

 

exceeds the allowable value. In addition to the damage criterion, an input of damage 

tolerance, 𝑓tol, such that the range for damage is  

 

 

At specific tolerance, if 𝑓 >  1.0 +  𝑓tol, the standard time increment is refined until the 

value of 𝑓 is within the range of (4.2). 

 

4.3   Crack Initiation 

For the crack direction on two-dimensional model, when maximum allowable 

principal stress is specified, by default, the crack direction is always orthogonal to the 

direction of the maximum principal stress. However, there is an option in the software that 

applies the work Erdogan and Sih [42] to compute for the crack direction, 

 

 

where 𝐾I, and  𝐾II are stress intensity factors based on the modes of loading (see Section 

II). To specify the direction, Abaqus requires the user to input the modulus of elasticity, 𝐸, 

and strain energy release rates 𝒢 and use (2.8) to estimate the value of the stress 

intensification factor. However, in the case of unidirectional tensile loading (mode I), from 

(4.3), the direction 𝜃 will become zero. 

To illustrate Abaqus’ implementation, a 40 mm by 40 mm by 1 mm stainless steel 

plate with initial crack length of 2.5 mm was created (Figure 6). This provides a simple 

example of the input, procedure and result of Abaqus in running a traction-separation crack 

propagation simulation under plane-stress condition. The elastic properties for stainless 

steel are 𝐸 = 193 GPa and 𝑣 = 0.33. For the damage property, 𝜎max
0 = 250 MPa was 

included as the criterion for damage initiation. The strain energy release rate,  𝒢 = 4 J/mm2, 

1.0 ≤ 𝑓 ≤  1.0 +  𝑓tol. (4.2) 

𝜃 = arccos ൭
2𝐾II

2 + ඥ𝐾I
4 + 8𝐾I

2𝐾II
2

𝐾I
2 + 9𝐾II

2 ൱ , (4.3) 



22 

 

was also used for the initial direction of the crack extension. For the load and boundary 

conditions, a 500 N distributed load at the top edge and fix boundary at the bottom was 

inputted respectively. In order to apply the XFEM option the middle section of the plate 

(Figure 7) was selected as the enrichment region. We have implemented a 4-node bilinear 

plane-stress quadrilateral element (Abaqus Element Code: CPS4). Also, we used global 

seed mesh of 4 mm for the whole region except for the enrichment region where we used 

1 mm. 

 

 

 

 

 

 

  

 

 

 

 

 

In Figure 7, we define 𝑡 as the time of fracture at a specific crack length.  The simulation 

shows that crack initiation occurred at the region near the crack tip where the local stress 

reached the maximum allowable principal stress at 𝑡 = 0.57 s. The damage continued and 

repeated for a number of time increments until 𝑡 = 0.811 s, where the crack length is 

9.1 mm. 

initial crack length: 

a = 2.5 mm 

enrichment 

region 

distributed load: 

P = 500 N 

encastre  

length:  

l = 40 mm 

width:  

w = 40 mm 

Figure 6. Abaqus simulation model: 40 mm by 40 mm plate single-edge notch tension test. 



23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Crack propagation simulation using Abaqus: maximum principal stress within crack vicinity 

from initial rupture (𝑡 =  0.57 𝑠) to final crack length (𝑡 =  0.80 𝑠). Black region corresponds to stress 

less than 0 MPa while Gray region corresponds to stress greater than 250 MPa. 

S, Max. Principal 

(Discontinuities) 

+2.500e+02 

+2.292e+02 

+2.083e+02 

+1.875e+02 

+1.667e+02 

+1.458e+02 

+1.250e+02 

+1.042e+02 

+8.333e+01 

+6.250e+01 

+4.167e+01 

+2.083e+01 

+0.000e+00 

 

𝑡 =  0.5719 𝑠 

 𝑎 =  2.5 mm 

 

𝑎 =  9.1 mm 

 

𝑡 =  0.8011 𝑠 
 



24 

 

4.4 Finite Element Solution for J-integral 

Here, we explore how the software discretizes the analytical solution of the contour 

J-integral from (2.16) which is beneficial in understanding how Abaqus implements 

numerical solution especially in Chapter VI and VII. 

To discretize the domain form solution of energy release rate in (2.16), a 2 × 2 

Gaussian integration is applied summing all the J-integral values for all elements, 𝑛𝑒, on 

the region 𝐴∗ [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐽 = ෍ ቐ෍ ቊ൤൫𝜎𝑖𝑗𝑢𝑗,1 − 𝑊𝛿1𝑖൯
𝜕𝑞

𝜕𝑥𝑖
൨ det ቆ

𝜕𝑥𝑗

𝜕𝜉𝑘
ቇ ቋ

𝑔

𝑤𝑔

𝑛𝑔

𝑔=1

ቑ

𝑒

𝑛𝑒

𝑒=1

  (4.4) 

 C1 Γ 

C+ 

C− 

𝐧 

𝑥1 

𝑥2 

𝜉 

𝜂 

+ 

+ 

+ + 

+ 

+ 

+ 

+ 

+ 

𝟏 

𝟒 

𝟑 

𝟐 
𝟕 

𝟔 

𝟓 

𝟖 

𝟗 

Figure 8. Numerical integration path to evaluate J-integral  

(reproduced without permission) [43]. 

𝜎 

𝜎 

Gaussian Points 

A∗ 



25 

 

 

The values within the {   }𝑔 are evaluated at Gauss points shown in Figure 8 and 𝑤𝑔 is the 

Gaussian weight. 

The spatial gradient of 𝑞 and the nodal solution for strain energy, 𝑊 from (4.4) are 

as follows [20, 27] 

 

 

 

 

Given that J-integral is calculated through finite element method, (2.8) and (2.12) is 

combined to form a solution for stress intensity factor [16] which leads to  

 

 

 

 

 

 

 

 

 

 

𝜕𝑞

𝜕𝑥𝑖
= ෍ ෍

𝜕𝑁𝑖

𝜕𝜉𝑘

𝜕𝜉𝑘

𝜕𝑥𝑗
𝑞𝑖

2

𝑘=1

𝑁nodes

𝑖=1

  (4.5) 

𝑊 =  
1

2
ൣ𝜎11𝑢1,1 +  𝜎12൫𝑢1,2 + 𝑢2,1൯𝑢1,1 + 𝜎22𝑢2,2൧ (4.6) 

𝐾𝐼 = ඥ𝐽𝐸. (4.7) 



26 

 

CHAPTER V 

Auxetic Structure 

 

5.1   Background 

In this chapter, we describe the geometry of the auxetic structures analyzed in this 

work. We differentiate between auxetic test samples and a unit cell that represents the 

whole structure. We also define some geometric parameters that are used to change the 

characteristics of the auxetic material. 

 

5.2   Specific Test Sample 

We have examined the auxetics that have two-dimensional symmetric, orthogonal 

void pattern such as ellipse, slot, and stop-hole. We also included circle pattern as point of 

comparison to the other models (non-auxetic structure). As shown in Figure 9, the 

specimens are similar to the conventional dog-bone test material, the only difference is that 

they consist of pores that are purposefully located at the middle section of the sample. The 

blank specimens are 260 mm by 44 mm and 2 mm in thickness. Each grip section (top 

and bottom) has 50 mm distance from the end. The equivalent number of orthogonal void 

patterns is 20 and each has equal distance from one another. 

 

5.3   Periodic Structure 

 We also analyzed representative volume elements (RVE) that are used to model a 

very large object with array of repeating structure. In Figure 9, each test model has its 

corresponding RVE and we based the structure of the unit cell by getting parameters at the 

very center of the plate. We modeled 10 mm by 10 mm RVE plates with vertical void at 

the center and corners of the cell; whole horizontal voids are found at the middle section 

of each edge. 



27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐿𝑚𝑖𝑛
∗:  minimum hole distance 

𝐿∗:  length and width of RVE 

𝐿min 

𝐿 

𝑅 

2
6

0
 m

m
∗
 

5
0

 m
m

∗
 

44 mm∗ 

(a) 

𝑅:  circle radius 

𝐿 

𝐿min 

𝑎𝑒 

𝑏𝑒 

(b) 

𝑎𝑒: ellipse major axis length 

𝑏𝑒: ellipse minor axis length 

L 

𝐿min 

𝑎𝑠𝑙 

𝑏𝑠𝑙 

(c) 

𝑎𝑠𝑙: slot major axis length 

𝑏𝑠𝑙: slot minor axis length 

𝑎𝑠ℎ 

𝑏𝑠ℎ 

𝐿 

𝐿min 

(d) 

𝑟𝑠ℎ 

𝑎𝑠ℎ: stop-hole (slot)  

        major axis length 

𝑏𝑠ℎ: stop-hole (slot)  

        minor axis length 

𝑟𝑠ℎ: stop-hole radius 

*applies for a, b, c, d 

Figure 9. Whole test model of auxetic materials with their corresponding representative volume 

element (RVE), (a) Circle Void, (b) Elliptical Void, (c) Slot Void, (d) Stop-hole Void 



28 

 

5.4   Axis Ratio 

In parallel to the previous studies [16], for example on Figure 9b, the major and 

minor axis length are specified and can be further relate the two dimensions to obtain the 

aspect ratio of the ellipse.  

 

 

𝐴𝑅e was methodically altered, from previous investigation and in this study, to acquire the 

desired porosity of the RVE. In a similar manner, the ratio of the geometry of the other 

sample is also included. We have specified that the ratio of the slot length to the slot width 

as 𝐴𝑅sl and the ratio of the stop-hole void effective length (formed by combination of slot 

and circle voids) to the stop-hole slot as 𝐴𝑅𝑠ℎ. 

 

 

 

5.5   Porosity 

Porosity, 𝜓, is the fraction of the void area over the total area of the material 

(conventionally ranges from 0 to 100%). As an input parameter in the numerical model, 𝜓 

is considered as the initial blank area of the RVE divided by the total area of the void. 

 

 

On the succeeding section, changing the porosity will be presented and its effect to the 

fatigue crack propagation parameters such as in stress intensity factor. 

 

𝜓 =
𝐴void

𝐴total
 (4.4) 

𝐴𝑅𝑒 =
𝑎𝑒

𝑏𝑒
 (4.1) 

𝐴𝑅𝑠𝑙 =
𝑎𝑠𝑙

𝑏𝑠𝑙
 (4.2) 

𝐴𝑅𝑠ℎ =
𝑎𝑠ℎ

𝑏𝑠ℎ
 (4.3) 



29 

 

CHAPTER VI 

Numerical Analysis 

 

6.1   Background 

In this chapter, the analysis for obtaining the value of stress intensity factor is 

examined from the work of Javid et. al. [16]. We briefly summarize the previous study on 

acquiring the J-integral with the use of Abaqus. We have both replicated some of Javid’s 

main results, but also expanded on them to include parameter studies on porosity and 

minimum hole distance as well as XFEM analysis. We also introduced a new approach of 

using finite boundary condition in analyzing the model of actual test samples. This section 

is important since the methodology of numerical result of J-integral will be used in the 

calculation in Chapter VII. 

 

6.2   Numerical Methods on J-integral 

Since the samples that were tested are plates with 1 mm thickness, plane-stress 2D 

elements were used to simulate the crack propagation using XFEM. In particular, 4-node 

bilinear plane-stress quadrilateral elements were implemented to discretize the model 

(Abaqus Code: CPS4). For the materials, Javid et. al used stainless steel as subject with 

Modulus of elasticity of 193 GPa and Poisson’s ratio of 0.33, which we also use here. 

There are two different steps in the procedure: first was to employ XFEM option on the 

test specimen to verify the direction of the crack through a uniaxial static analysis, second 

was to approximate 𝐾𝐼 by gathering the J-integral results within a crack length increment.  

For the XFEM, methods from Chapter IV were implemented, the difference is that apart 

from actual geometry of the auxetic material, double notch initial crack was place on the 

middle left and right void of the RVE as shown in Figure 10. The traction separation was 

selected as a damage option and the damage criterion was based on the maximum principal 

stress, 𝜎𝑚𝑎𝑥
0 = 250 MPa. In addition, the value of strain energy release rate was input as a 



30 

 

parameter, where 𝒢 = 4 J/mm2. In brief, the maximum allowable principal stress was used 

for damage initiation, while the strain energy release rate was used to apply a power law 

energy model for damage evolution. 

 

 

 

 

 

 

 

 

 

 

 

For the J-integral, the same feature of crack model was used (Figure 10) but instead 

of using enrichment functions, 65 distinct models of RVE were created each with 

increment of cracks between  0.1𝐿min and 0.9𝐿min formulated as follows [16]: 

 

 

The assumption on the models is to have a horizontal crack at each increment along 

𝑥1 direction where the maximum principal stress is located at the crack tip. The minimum 

hole spacing 𝐿min, was used to normalize the crack length in (6.1) since it is the maximum 

length of the crack between the two holes. 

Figure 10. Double notch initial crack of an RVE with circular void subjected into tensile test  

(reproduced without permission) [16]. 

𝑎 = 0.1
𝑎

𝐿min
+ 𝑗0.8

𝑎

𝐿min
, 𝑗 = 0,1,2, … 64 (6.1) 



31 

 

The RVE models are subjected to periodic boundary conditions with applied 

uniaxial tensile strain of 0.002. An interaction option was selected to perform calculations 

of the J-integral at the crack-tip section of the RVE. After gathering the result of the 

contour, (2.20) was used to evaluate the 𝐾𝐼, and Paris Law was used (Equation 2.10) to 

approximate the value of 𝑁𝑓.  

The result showed from the reference paper that the crack evolution for the circular 

void model have higher values of stress intensity factor compared to the ellipse void model. 

From Figure 11, having 5% porosity applied for all models, it is illustrated that the behavior 

of the circular void model has positive slope which means that as the crack propagates the 

stress intensity factor increases. On the other hand, the stress intensity factor decreases with 

crack length for elliptical voids. Based on Paris Law from (2.10), ∆𝐾 is inversely 

proportional to the number of cycles, 𝑁𝑓.  Additionally, ∆𝐾 is equal to the difference 

between the stress intensity factor at a specific crack length, 𝐾𝑝, and initial stress intensity 

factor, 𝐾0. 𝐾0 is assumed to be equal to zero, therefore ∆𝐾 is equal to 𝐾𝑝. Thus, the elliptical 

void model has a higher value of 𝑁𝑓 compared to the circular void model which is in 

agreement with the experimental results of the reference study [16]. The procedure of Javid 

et. al was also followed for the normalization of the stress intensity factor. The computed 

value of the stress intensity factor from (4.7), also considered as the maximum stress 

intensity factor the tip of the crack (𝐾max), is divided by the stress intensity of the bulk 

material which is equal to 𝐺0/√𝐿, where 𝐺0 is the strain energy release rate of the bulk 

material. This was implemented so that the RVEs, having different geometries, were 

transformed into unit form for ease of comparison [16]. 

We have replicated the aforementioned procedure as shown where the multiple 

points fit the plot of reference models by applying periodic boundary condition (PBC). An 

additional two models were included on the plot. 5% porosity was used for slot void and 

stop-hole void models based on their corresponding geometry. Figure 11 also shows that 

these behave almost identically with the elliptical void model in which the normalized 𝐾 

decreases as 
𝑎

𝐿min
 increases. Note that the method of obtaining the contour J-integral was 



32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Evolution of normalized stress intensity factor along the normalized crack length. 

Comparison of the 5% porosity reference data model [16] to the calculated model of RVEs under 

periodic boundary condition using Abaqus. 

𝑎𝑒 = 6.4174 

𝐿𝑚𝑖𝑛 = 6.4174 

𝑏𝑒 = 0.1903 

𝐴𝑅𝑒 = 35.7 

𝑅 = 0.6307 

𝐿min = 7.4768 

𝑎𝑠ℎ = 6.0744 

𝐿min = 3.2019 

𝑏𝑠ℎ = 0.1500 

𝐴𝑅𝑠ℎ = 10.6 

𝑟𝑠ℎ = 0.5736 

𝑎𝑠𝑙 = 6.5552 

𝐿min = 3.2019 

𝑏𝑠𝑙 = 0.2427 

𝐴𝑅𝑠𝑙 = 27.0 

Normalized Crack Length, 𝑎/𝐿min  

N
o
rm

al
iz

ed
 S

tr
es

s 
In

te
n
si

ty
 F

ac
to

r,
 𝐾

m
a

x
√

𝐿
/𝐺

0
  



33 

 

implemented on Abaqus and we have created a Python script (Appendix A.1) to 

automatically generate the PBC to each model. Apart from the existing method, another 

approximation was implemented by using finite boundary conditions (FBC). In Chapter 

VII, we compare finite element samples to their corresponding RVEs models and the 

following analysis verifies that Javid’s procedure works with FBC. In this procedure, a 

displacement of 0.01 mm was applied on the top and bottom edges of the RVEs which is 

computed by multiplying the center to center distance, 𝐿, with half of applied uniaxial 

tensile strain load. A similar procedure was applied to the RVEs, where J-intergral results 

were calculated based on 65 models with increasing crack length based on the crack 

increment in (6.1). Figure 12 shows that this method also approximates the reference 

model. Compared to the reference model, the circular void model has greater values of 

stress intensity factor until the point of inflection at 
𝑎

𝐿min
= 0.66. For the elliptical, slot, and 

stop-hole void models, although the decline of stress intensity was observed similar to the  

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Evolution of normalized stress intensity factor along the normalized crack length. Comparison of the 

reference data model [16] to the calculated model of RVE under finite boundary condition using Abaqus. 

Normalized Crack Length, 𝒂/𝑳𝐦𝐢𝐧  

N
o
rm

al
iz

ed
 S

tr
es

s 
In

te
n
si

ty
 F

ac
to

r,
 𝑲

𝐦
𝐚

𝐱
√

𝑳
/𝑮

𝟎
  



34 

 

ellipse void reference model, the points deviates from the reference as the crack is 

extended. 

6.3   Variation of Geometry 

To observe further the behavior of the stress intensity factor vs. crack length, 𝐴𝑅 

were varied while holding either the porosity or minimum separation constant. The 

variations were divided into parts based on the constants that were fixed, porosity, and 

minimum hole spacing. Furthermore, we have also computed the effective Poisson’s ratio 

of each model to see its relation to the stress intensity factor during the crack evolution. 

We also changed the range of the crack evolution by using 1% to 99% of 𝐿min. Using this 

method, the crack initiations and crack propagations before total failure are observed. 

6.3.1 Constant Porosity 

For the ellipse void model with constant porosity of 5% in Figure 13, we have 

altered the model by increasing 𝐴𝑅e in increments of 3 from Model B to Model J. The 

circular void model, 𝐴𝑅e = 1, was also included on the plot as reference of comparison to 

the other models. The models with negative Poisson’s ratio was also highlighted to 

distinguish them from the other models.  

A slow decrease in normalized 𝐾 between 0.1 and 0.8 
𝑎

𝐿min
 was observed on models 

E to J and sudden increase in 𝐾 after 
𝑎

𝐿min
= 0.8. The plot also showed that at initial point, 

𝑎

𝐿min
= 0.01, the model with circle void has the lowest value of normalized stress intensity 

factor compared to the other models but increases rapidly as the crack length grows. 

Recalling Paris Law, this implies that crack initiation and the initial crack growth stage is 

relatively slow, but ultimately becomes faster than that in other geometries, ultimately 

giving the circular void configuration a shorter lifetime. It is depicted that after               

𝑎

𝐿min
= 0.044, Model J, having the largest value of negative Poisson’s ratio, was observed 

to have the lowest values of stress intensity factor followed by models I  to E. Based on 

that, for ellipse void model, we have observed that, as the negative Poisson’s ratio 

increases, 𝐾 magnitudes at each point from model decreases.



35 

 

 

Name 
Circular 
Void (A) 

Elliptical 
Void (B) 

Elliptical 
Void (C) 

Elliptical 
Void (D) 

Elliptical 
Void (E) 

Elliptical 
Void (F) 

Elliptical 
Void (G) 

Elliptical 
Void (H) 

Elliptical 
Void (I) 

Elliptical 
Void (J) 

Legend           

ae 1.261 0.728 3.090 3.784 4.370 4.886 5.352 5.781 6.180 6.555 

be 1.261 2.185 0.515 0.420 0.364 0.326 0.297 0.275 0.258 0.243 

Lmin 7.477 7.087 6.395 5.795 5.266 4.789 4.351 3.944 3.562 3.202 

ARe 1.00 3.00 6.00 9.00 12.00 15.00 18.00 21.000 24.000 27.000 

ψ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.050 0.050 0.050 

v 0.326 0.292 0.203 0.089 -0.041 -0.175 -0.306 -0.426 -0.532 -0.623 

A F  

  

B G 

  

C H 

  

D I 

  

E J 

  

 

 

Normalized Crack Length, 𝑎/𝐿min  

N
o
rm

al
iz

ed
 S

tr
es

s 
In

te
n
si

ty
 F

ac
to

r,
 𝐾

m
a

x
√

𝐿
/𝐺

0
 

Figure 13. Evolution of normalized stress intensity factor along the normalized crack length. Variation of RVE with 5% porosity elliptical 

void by increasing ARe in increments of 3 (from Model B to Model J). Center-to-center length of the RVE, L = 10 mm. 

3
5  



36 

 

 

Name 
Circular 
Void (A) 

Slot 
Void (B) 

Slot 
Void (C) 

Slot 
Void (D) 

Slot 
Void (E) 

Slot 
Void (F) 

Slot 
 Void (G) 

Slot 
Void (H) 

Slot 
Void (I) 

Slot 
Void (J) 

Legend           

asl 0.000 0.670 0.465 3.018 3.582 4.071 4.507 4.905 5.273 5.617 

bsl 1.261 1.340 2.324 0.377 0.326 0.291 0.265 0.245 0.229 0.216 

Lmin 7.477 7.320 6.746 6.228 5.766 5.348 4.963 4.605 4.269 3.951 

ARsl 1.00 3.00 6.00 9.00 12.00 15.00 18.00 21.000 24.000 27.000 

ψ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.050 0.050 0.050 

v 0.326 0.296 0.229 0.146 0.051 -0.051 -0.157 -0.261 -0.359 -0.450 

A F  

  

B G 

  

C H 

  

D I 

  

E J 

  

 

 

Normalized Crack Length, 𝑎/𝐿min  
 

N
o
rm

al
iz

ed
 S

tr
es

s 
In

te
n
si

ty
 F

ac
to

r,
 𝐾

m
a

x
√

𝐿
/𝐺

0
  

Figure 14. Evolution of normalized stress intensity factor along the normalized crack length. Variation of RVE with 5% porosity slot 

void by increasing ARsl in increments of 3 (from Model B to Model J). Center-to-center length of the RVE, L = 10 mm. 

3
6
 



37 

 

 

Name 
Circular 
Void (A) 

Stophole 
Void (B) 

Stophole 
Void (C) 

Stophole 
Void (D) 

Stophole  
Void (E) 

Stophole 
Void (F) 

Stophole 
Void (G) 

Stophole 
Void (H) 

Stophole 
Void (I) 

Stophole 
Void (J) 

Legend           

asl 0.000 0.670 0.465 3.018 3.582 4.071 4.507 4.905 5.273 5.617 

bsl 1.261 1.340 2.324 0.377 0.326 0.291 0.265 0.245 0.229 0.216 

Lmin 7.477 7.320 6.746 6.228 5.766 5.348 4.963 4.605 4.269 3.951 

ARsl 1.00 3.00 6.00 9.00 12.00 15.00 18.00 21.000 24.000 27.000 

ψ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.050 0.050 0.050 

v 0.326 0.296 0.229 0.146 0.051 -0.051 -0.157 -0.261 -0.359 -0.450 

A F  

  

B G 

  

C H 

  

D I 

  

E J 

  

 

Normalized Crack Length, 𝑎/𝐿min  
 

N
o
rm

al
iz

ed
 S

tr
es

s 
In

te
n
si

ty
 F

ac
to

r,
 𝐾

m
a

x
√

𝐿
/𝐺

0
  

Figure 15. Evolution of normalized stress intensity factor along the normalized crack length. Variation of RVE with 5% porosity stop-hole 

void by increasing ARsl in increments of 3 (from Model B to Model H) and increments of 6 (from Model H to Model J).  

3
7  



38 

 

For the slot void models with constant porosity of 5% in Figure 14, 𝐴𝑅sl 

was modified in increments of 3 from Model B to J. The starting points of the model 

is relatively lower than the models with elliptical void. These models have higher 

values of 𝑁𝑓 compared from the previous models which means that elliptical void 

model crack propagate faster than the slot void model. On the other hand, parallel 

to the behavior of the elliptical void, the slot void has decreasing value of 

normalized 𝐾 from 
𝑎

𝐿min
= 0.078 to 0.889. Model J which has the largest value of 

negative Poisson’s ratio is found to have the lowest values of normalized 𝐾, then 

followed by models I to F. It is also shown that circle void model, starts at the 

lowest portion of the graph but evolves rapidly until 
𝑎

𝐿min
= 0.990. 

For the stop-hole void model variation in Figure 15, the RVE were modified 

through changing 𝐴𝑅shwith increments of 3 from models B to G and increments of 

6 from models G to J. Like the slot void model, the first points of the stop-hole 

RVEs starts with lower values of normalized 𝐾 compared to the elliptical void 

model. The last three models (H-J), with negative Poisson’s ratio, are depicted to 

have the lower values of normalized 𝐾. Applying Paris Law, Models H to J implies 

that they have higher values of 𝑁𝑓 in boundaries between 
𝑎

𝐿min
= 0.078 to 0.821. 

This also means that they propagate slower than other models. 

Most of the stress intensity factor trend in the stop-hole void model, starts 

at the lowest point then exhibits an increasing trend until it climbs to its highest 

point at 
𝑎

𝐿min
= 0.990. However, for models B and C, their peaks are found at 

𝑎

𝐿min
=

0.922 and 0.899 respectively. A more detailed picture is shown in Figure 16, which 

shows the maximum principal stress distribution (ranging from 0 to 250 MPa) of 

B and C in comparison to model A. It is identified that the vertical void at the center 

of the RVEs B and C has high stress concentration on their stop-holes. Since the 

maximum principal stress of stop-hole models do not lie at 𝑥2 = 0 (reference: (0,0) 

center of the RVE), the assumption of the crack direction is violated. 



39 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S, Max. Principal 

  
+2.500e+02 

+2.292e+02 

+2.083e+02 

+1.875e+02 

+1.667e+02 

+1.458e+02 

+1.250e+02 

+1.042e+02 

+8.333e+01 

+6.250e+01 

+4.167e+01 

+2.083e+01 

+0.000e+00 

 

Figure 16. Maximum principal stress distribution of RVE circle void model A and stop-hole 

void models B and C. Gray colors show the areas of stress above maximum principal stress. 

𝑥1 

𝑥2 

Model C (Stop-hole Void) 

Model A (Circle Void) 

Model B (Stop-hole Void) 

Lmin 

L0 

Lmin 

L0 

Lmin 

L0 

𝐿min =  𝐿0 

𝐿min <  𝐿0 

𝐿min <  𝐿0 



40 

 

From Figure 16, we define 𝐿0 as the horizontal hole-to-hole distance at 𝑥2 = 0. We 

have observed that for circle void model, which satisfies the assumption of horizontal 

direction of crack, 𝐿0 = 𝐿min. On the other hand, for models B and C, 𝐿0 > 𝐿min, which 

violates the assumption of horizontal crack propagation. 

 

6.3.2 Constant Minimum Hole Spacing 

In this subsection, we have maintained the minimum hole spacing but change the 

porosity for every model by altering the 𝐴𝑅. This also allows parameters 𝑎, 𝑏, and 𝑟 to 

change.  As a reference, we have selected one model with negative Poisson’s ratio per void 

shape from Figures 13 to 15. The criteria of selection were based on the range of 𝐿min 

between 3 mm to 4 mm since we do not want 𝐿min to be too small that the distances of the 

holes are closer or too large that the range models that are computed has positive Poisson’s 

ratio. From the models on the previous subsection, several satisfies these criteria, but we 

only selected just one reference. We produce variation by subtracting and adding 

increments of constant number from the reference. We denote the selected reference model 

based on its previous name and add a superscript 0 to it (e.g. J to J0). In general, the models 

Jg, were denoted such that if g = 0 it represents the reference model and if g = −3, −2, −1, 

the models are associated with a decrease in the parameter of interest with respect to the 

reference while if g = +3, +2, +1, the models are associated with an increase in the 

parameter of interest with respect to the reference.   

For the elliptical void model in constant minimum hole spacing of 3.943 mm 

(Figure 17), model J was selected from Figure 13 and set as reference then changed the 

𝐴𝑅e by increasing (blue) and decreasing (red) the parameter in multiples of 5 with respect 

to the reference. In the plot, Model J-3, having the largest porosity of 0.160 and smallest 

value of negative Poisson’s ratio, is found to start at the lowest point in comparison to the 

other models but has the highest overall normalized stress intensity factor as the crack 

propagates. This is followed by models J-2 and J-1, considering that they have higher 

porosity but relatively small values of negative Poisson’s ratio, their normalized  



41 

 

 

 

 
Name 

Elliptical 

Void (J-3
) 

Elliptical 

Void (J-2) 

Elliptical 

Void (J-1) 

Elliptical 

Void (J0) 

Elliptical 

Void (J+1) 

Elliptical 

Void (J+2) 

Elliptical 

Void (J+3) 

Legend        

ae 5.047 5.506 5.678 5.781 5.824 5.861 5.888 
be 1.009 0.551 0.379 0.275 0.233 0.195 0.168 
Lmin 3.943 3.943 3.943 3.943 3.943 3.943 3.943 
ARe 5.00 10.00 15.00 21.00 25.00 30.00 35.00 
ψ 0.160 0.095 0.068 0.050 0.043 0.036 0.031 
v -0.224 -0.355 -0.400 -0.426 -0.436 -0.445 -0.452 

J0  

 

J-1 J+1 

  

J-2 J+2 

  

J-3 J+3 

  

Figure 17. Evolution of normalized stress intensity factor along the normalized crack length. Variation of RVE elliptical void by increasing ARe in 

increments of 5 (from Model J-3 to Model J+3) in constant Lmin (3.943 mm). Center-to-center length of the RVE, L = 10 mm. The solid black line 

represents the reference model H 0. 

 

Normalized Crack Length, 𝑎/𝐿min  

N
o
rm

al
iz

ed
 S

tr
es

s 
In

te
n
si

ty
 F

ac
to

r,
 

𝐾
m

a
x
√

𝐿
/𝐺

0
 4

1
 



42 

 

 

 

 Name 
Slot Void  

(H -3) 

Slot Void  

(H -2) 

Slot Void  

(H -1) 

Slot Void  

(H 0) 

Slot Void  

(H +1) 

Slot Void  

(H +2) 

Slot Void  

(H +3) 

Legend        

asl 4.316 4.856 5.035 4.905 5.179 5.215 5.241 
bsl 1.079 0.540 0.360 0.245 0.216 0.180 0.154 
Lmin 4.605 4.605 4.605 4.605 4.605 4.605 4.605 
ARsl 5.00 10.00 15.00 21.00 25.00 30.00 35.00 
ψ 0.223 0.114 0.077 0.050 0.046 0.039 0.033 
v -0.376 -0.347 -0.336 -0.261 -0.328 -0.326 -0.325 

H0  

 

H-1 H +1 

  

H -2 H +2 

  

H -3 H +3 

  Normalized Crack Length, 𝑎/𝐿min 

N
o
rm

al
iz

ed
 S

tr
es

s 
In

te
n
si

ty
 F

ac
to

r,
 

𝐾
m

a
x
√

𝐿
/𝐺

0
 

Figure 18. Evolution of normalized stress intensity factor along the normalized crack length. Variation of RVE slot void by increasing ARsl in 

increments of 5 (from Model H-3 to Model H+3) in constant Lmin (4.605 mm). Center-to-center length of the RVE, L = 10 mm. 

The solid black line represents the reference model H 0. 

 

4
2
 



43 

 

 

 Name 
Stop-hole 

Void (J-3) 

Stop-hole 

Void (J-2) 

Stop-hole 

Void (J-1) 

Stop-hole 

Void (J0) 

Stop-hole 

Void (J+1) 

Stop-hole 

Void (J+2) 

Stop-hole 

Void (J+3) 

Legend        

rsh 1.260 0.900 0.869 0.545 0.485 0.420 0.371 
ash 5.040 5.400 5.431 5.755 5.815 5.880 5.929 
Lmin 3.550 3.550 3.550 3.550 3.550 3.550 3.550 
ARr 4.00 6.00 8.00 10.00 12.00 14.00 16.00 
ψ 0.122 0.078 0.075 0.050 0.047 0.044 0.042 
v -0.577 -0.587 -0.587 -0.584 -0.582 -0.580 -0.578 

J0  

 

J-1 J+1 

  

J-2 J+2 

  

J-3 J+3 

  Normalized Crack Length, 𝑎/𝐿min  

N
o
rm

al
iz

ed
 S

tr
es

s 
In

te
n
si

ty
 F

ac
to

r,
 

𝐾
m

a
x
√

𝐿
/𝐺

0
  

Figure 19. Evolution of normalized stress intensity factor along the normalized crack length. Variation of RVE stop-hole void by increasing ARr in 

increments of 2 (from Model J-3 to Model J+3) in constant Lmin (3.550 mm). Center-to-center length of the RVE, L = 10 mm. The solid black line 

represents the reference model H 0. 

 

4
3  



44 

 

stress intensity factor is greater compared to J0. Models J+3, J+2, and J+1 have found to be at 

the lower level of J0. This implies that these models, having the relatively lower amount of 

porosity but larger negative Poisson’s ratio, have the lowest amount of normalized stress 

intensity factor hence their crack propagates slowly compared to the other models. 

 For the slot void model in Figure 18, the constant minimum hole spacing of 4.605 

mm was selected from model H of Figure 14 and set as reference model H0. From H0 we 

have changed the value of 𝐴𝑅sl in multiples of 5 on models that have increased parameter 

and models with decreased parameter, similar in the RVE elliptical void. It is depicted on 

Figure 18 that the reference model, H0, with smallest value of Poisson’s ratio have the 

highest values of stress intensity factors to the rest of the plot. Model H-3, having the largest 

value of negative Poisson’s ratio of -0.376, begins at the lowest point of the plot then had 

an increasing value of 𝐾 until 
𝑎

𝐿min
= 0.179, decrease gradually as the crack length evolve 

to 
𝑎

𝐿min
= 0.821 where 𝐾 increase until it reaches the highest point. Similar behavior was 

observed to the other models. The only differences are the points between 
𝑎

𝐿min
= 0.010 to 

0.821, where Model H-3 is followed by Models H-2 and H-1 (with negative Poisson’s ratio 

of -0.347 and -0.336 respectively). Models such as H+1, H+2 and H+3 were identified to have 

higher starting point than H-3, H-2 and H-1 models. Based on Paris Law, this proves that 

models have increased values of 𝐴𝑅sl with respect to H0 models (red) tends to have initial 

crack in contrast to the models with decreased values of 𝐴𝑅sl (blue).  

 For the stop-hole void model in Figure 19, Model J, with constant minimum hole 

spacing of 3.550 mm and slot width of 0.15 mm, was selected as the reference model from 

Figure 15. A different approach was implemented to vary the geometry of the stop-holes, 

instead of using 𝐴𝑅𝑠ℎ =
𝑎𝑠ℎ

𝑏𝑠ℎ
 (Figure 8d) as a changing parameter we defined 𝐴𝑅𝑟 as the 

ratio of the slot length, bsh and the stop-hole radius, rsh. Then, we changed 𝐴𝑅𝑟 by 

increasing (red) and decreasing (blue) the values in multiples of 2 from the reference model 

where 𝐴𝑅𝑟 = 10, hence altered the stop-hole radius but maintaining the values of Lmin and 

bsh. It is shown in Figure 19 that models with lower 𝐴𝑅𝑟 from the reference J0 such as J-3, 



45 

 

J-2 and J-1 have the lowest starting point of stress intensity factor. However, Model J-3 with 

the smallest value of negative Poisson’s ratio and highest porosity, is observed to have the 

highest overall amount of stress intensity factor as the crack evolves. The models J+1, J+2 

and J+3 have values of negative effective Poisson’s ratio near to the reference J0 and their 

plots demonstrates to be approximately equivalent to J0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

CHAPTER VII 

Results and Discussion: Comparison to the Experimental Data 

 

7.1   Background 

In this chapter, we apply the numerical modeling procedure developed in previous 

chapters to analyze the fatigue experiments on low porosity metallic structures done by 

Francesconi et. al. [17]. In particular, the investigation was a comparison of thin plates with 

circular and stop-hole voids, which have non-auxetic and auxetic behavior, respectively. 

These specimens were subjected to tensile sinusoidal cyclic load and their fatigue fracture 

behavior was observed. The author captured strain contour maps using optical digital image 

correlation (DIC). It was determined that the test subject with stop-hole void has higher 

fatigue life compared to the specimen with circular void. From crack initiation, propagation 

to rupture, the experimental result showed that non-auxetic structure had a faster rate of 

crack evolution in comparison to the auxetic. While this test examination result gives a 

favorable result to a material with auxetic pattern, numerical analysis is useful to support 

such conclusion and try to explain the phenomenon. Therefore, in this chapter we have 

applied methods of finite element analysis, both XFEM and contour J-integral analysis, to 

simulate the actual crack evolution of the test specimen as well as to compare with the 

experimental results of the fatigue behavior. 

 

7.2   Experimental Data and Results 

In this section, we provide a brief summary of the experiment and results. The material 

that was used for the plate samples were 260 mm by 40 mm Aluminum 6060 -T6 with 

2 mm thickness. The Young’s modulus of the material is 65.4 GPa and its Poisson’s ratio 

is 0.32. Also, based on the stress strain curve of the specimen, the yield strength is 

195 MPa and the ultimate tensile strength is 216 MPa. The experimental samples have 

circular voids with radius, 𝑅, of 1.784 mm while the stop-holes have the following 



47 

 

dimensions: 𝑎𝑠ℎ  =  4.625 mm, 𝑎𝑠ℎ = 450 mm, and 𝑟𝑠ℎ  =  0.625 mm. Both were 

specifically fabricated to acquire a 10% porosity. 

For the fatigue test, a mode I load-controlled, sinusoid cyclic type of loading was 

applied to each specimen. Since the two different whole patterns lead to different effective 

material properties, the loads that were applied to each sample were calculated based on 

several factors affecting the fatigue test such as geometrical features, material, fabrication 

and stress concentration [17]. This was done to make fatigue comparison as “fair” as 

possible. Based on the author’s computation, the applied load for the laminate with circular 

void is 6050 N while the applied load for the laminate with stop-hole void is 3505 N. In 

addition, the total number of fatigue cycles were tuned to have 50,000 cycles and 68,000 

cycles. To compare the behavior of the crack, the controlled final cycles were used to 

normalize the number of cycles at each phase of the crack propagation. 

 

 

 

 

 

 

 

 

The result showed from the DIC that significant strain concentrations were 

observed between 25% and 30% of each cycle. The crack initiated at 52% of the total 

cycles for the specimen with circular void while at 66% of the total life cycles for the 

specimen with stop-hole void. A contour map on Figure 20 illustrates the crack initiation 

of the samples. 

Figure 20. Contour maps of the Lagrangian strains from the DIC of the non-auxetic (left) and non-

auxetic samples (right) [17]. 

52% fatigue test 66% fatigue test 

Multiple crack tips 

undetectable with 

the unaided eye 
Multiple crack tips 

undetectable with 

the unaided eye 



48 

 

7.3   Comparison to the Numerical Data to the Experimental Data 

 Using the actual material properties and the loading conditions from the 

experiment, we implemented the XFEM procedure to verify the path of the crack which 

was used to support the assumption for the computation of the J-integral. We performed a 

static analysis with dimensions identical to the plates that were tested.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Abaqus assembly diagram for fatigue test simulation of plate with circular void 

pattern (a) and plate with stop-hole void pattern (b). Magnified section (XFEM enriched 

region) of specimen with circle void (c) and with stop-hole void (d). 

(b) (a) 

(c) 

(d) 

XFEM Enrichment Region 

traction 

(grip region) 

encastred 

(grip region) 



49 

 

We modeled two-dimensional plate under plane-stress condition with applied 

tensile displacement of 6.4 mm computed from the stress-strain curve of the material. To 

ensure an accurate result, we implemented 8-node biquadratic plane-stress quadrilaterals 

(Abaqus Code: CPS8) with 0.1 mm seed mesh for the enrichment region while we used 

1 mm seed mesh for the rest of the parts (Figure 21). As shown in the reference 

configuration, we also included the initial cracks with 1% size of 𝐿min (see red highlights 

in Figure 21c and Figure 21d). The basis of the locations of initial crack were the maximum 

stress is located when the specimens were simulated in static analysis. 

In the simulation, we denote 𝑡 which indicates the time for an arbitrary crack length, 

and it ranges from  0 to 𝑡, (0 ≤ 𝑡 ≤ 𝑡𝑓), where 𝑡𝑓 is the time when the crack has completely 

propagated through the specimen. 

The maximum principal stress contour map from Figure 22 shows magnified 

section of the whole specimen with circular void pattern. These magnified sections were 

the region in which XFEM enrichment was implemented. With initial crack deliberately 

placed at feasible location, the crack initiated at 𝑡 = 0.32𝑡𝑓 before total rupture where the 

maximum principal stress was located. In the simulation, the crack continuously grew 

horizontally while the stress surrounding the crack increases its area from 𝑡 = 0.87𝑡𝑓 to 

𝑡 = 0.97𝑡𝑓.  

 Equivalent to the contour map of the circle model, the simulation for the stop-hole 

model shows that the crack also grew at the location where the maximum principal stresses 

were concentrated. The XFEM simulation showed that, in the enriched region the crack 

evolved at 𝑡 = 0.24𝑡𝑓. Then it propagated with increasing stress concentration around the 

crack region, and this was observed between 𝑡 = 0.52𝑡𝑓  and 𝑡 = 0.94𝑡𝑓 (Figure 23). 

 

 

 



50 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 22. Maximum principal stress contour map from Abaqus with crack growth fracture 

simulation at specified percentage of time step of enriched region of sample with circular void 

pattern. Gray regions indicate stress above maximum allowable principal stress (216 MPa). 

S, Max. Principal 

  +2.160e+02 

  

  

+1.800e+02 

  

  

+1.260e+02 

  

  

+5.400+01 

  

  

+0.000e+00 

 

𝑡 = 0.32𝑡𝑓 

𝑡 = 0.87𝑡𝑓 

 

𝑡 = 0.97𝑡𝑓 

 



51 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The XFEM results for the two models demonstrated that the crack evolved 

horizontally based on the damage criteria of maximum allowable principal stress. Hence, 

S, Max. Principal 

  +2.160e+02 

  

  

+1.800e+02 

  

  

+1.260e+02 

  

  

+5.400+01 

  

  

+0.000e+00 

 

Figure 23. Maximum principal stress contour map from Abaqus with crack growth fracture 

simulation at specified percentage of time step of enriched region of sample with stop-hole void 

pattern. Gray regions indicate stress above maximum allowable principal stress (216 MPa). 
 

𝑡 = 0.24𝑡𝑓 
 

𝑡 = 0.52𝑡𝑓 

 

𝑡 = 0.94𝑡𝑓 

 



52 

 

we have employed these results to have a logical assumption in the contour J-integral 

models. 

 With this assumption, we proceed by creating a finite element model of the actual 

test specimen exactly the same as Figure 21 and introduced artificial cracks on the models. 

They are similar to what was implemented in the RVEs in Chapter VI but applied for the 

whole test specimen models. Unlike the RVEs, the whole test specimens have 4 crack 

locations. Considering that there are no imperfections involved, the contour J-integral on 

the left crack must be equal to the right crack. Thus, we obtain two results of the contour 

J-integral for the whole test specimen: one is from the outer cracks (relative to the center) 

and the other is at the inside cracks, and we denote these regions as Region I and Region 

II, respectively (Figure 24). Then we created 130 distinct models (65 models per region) 

of the  

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Porous areas of the whole test specimens specifying outer and inner crack regions. 

(a) Circular void model, (b) Stop-hole void model. 

 

(a) (b) 

outer 

cracks inner crack 

Region II 

Region I Region I 

outer 

crack 

outer 

crack 

inner crack 

Region II 



53 

 

test specimen, with increasing horizontal cracks based on 𝐿min (6.1) but with crack range 

of 0.01𝐿min to 0.99𝐿min. 

In the simulation, we used the material properties of the actual test specimen. For 

each test specimen, we modeled 8-node biquadratic plane stress quadrilaterals (Abaqus 

code: CPS8) with seed mesh size of 0.1 mm. We also applied 6050 N and 3505 N of force 

for circular void model and stop-hole void model, respectively. We simulated each model 

by creating a Python script that allows to create an increasing crack length at region I and 

II (Appendix A.2).  

We compared the finite test sample models to the RVEs (infinite periodic models).  

We created two-dimensional RVEs from the dimensions and material properties of each 

test specimen. Also, applied on each are 8-node biquadratic plane stress quadrilaterals 

(Abaqus code: CPS8) with seed mesh size of 0.1 mm. 

For the contour J-integral result, we created 65 models with increasing constant 

value based on the range of 1% to 99% of 𝐿min. Like the previous simulation in Chapter 

VI, we utilized periodic boundary conditions to each model. Since different loads were 

applied to the specimen, we have computed first for the equivalent applied stress based on 

the maximum applied load given from the experimental result. Then, we used the material 

stress-strain curve to interpolate the corresponding strain (Table 1). 

 

 Circular Void Model Stop-hole Void Model 

Applied Force (N) 6050 3505 

Applied Stress (MPa) 75.6 43.8 

Applied Strain (mm/mm) 0.001049 0.000773 

 
Table 1. Computed load applied to the J-integral models of circular void and stop-hole void. 



54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5
4  

Figure 25. Evolution of stress intensity factor along the normalized crack length for Region I and Region II of the whole test specimen 

comparing circular void model (non-auxetic) to stop-hole void model (auxetic). For Region II, periodic models of circle void and stop-hole 

voids are compared. 

 

Normalized Crack Length, 𝑎/𝐿min  

S
tr

es
s 

In
te

n
si

ty
 F

ac
to

r,
 𝐾

 (
M

P
a 

√
m

m
) 

Normalized Crack Length, 𝑎/𝐿min  

Region I  Region II  

S
tr

es
s 

In
te

n
si

ty
 F

ac
to

r,
 𝐾

 (
M

P
a 

√
m

m
) 



55 

 

For Region I, the results show that the circular void model for the test specimen 

starts at the lower stress intensity factor compared to the stop-hole void model. After  

𝑎

𝐿min
= 0.35, the stress intensity factor of the of the stop-hole void model is lower than the 

circular void model. Based on Paris Law, this means that in outer crack region, crack 

initiation for stop-hole model is faster than the circle model. However, at a certain time in 

propagation phase, the rate of crack extension of circular void model becomes faster than 

the stop-hole void model. 

For Region II, the 𝐾 vs 
𝑎

𝐿min
 shows that both whole test specimen started at 

approximately same level of stress intensity factor which means that the cracks initiate at 

the same time for both of the test specimens. However, the rate of circular void model is 

much faster as the crack propagates, while the stop-hole void model has relatively slower 

rate. It is also observed that in crack propagation, there is only slight difference of stress 

intensity factor between Region I and Region II for stop-hole void model. For the circular 

void model, the stress intensity factors are much higher in Region II compared to Region 

I.  

We also graphed the 𝐾 vs 
𝑎

𝐿min
 of the RVE models and compare it to the whole test 

specimen models in Region II. The results showed that the test specimen models have 

higher set of stress intensity factors compared to the infinite models. However, it is 

consistent for both finite and infinite models that the stress intensity of stop-hole void 

model is lower compared to the circular void model. Applying Paris law, in which 𝐾 is 

inversely proportional to the number of fatigue cycles, the numerical data showed that the 

crack propagation was faster for the circular void model compared to stop-hole void model. 

In other words, these data support the experimental data where the crack initiated first for 

circular void model in comparison to the other and the number of fatigue cycles for stop-

hole void model is much higher than that of the model with circular void. 

 

 



56 

 

CHAPTER VIII 

Conclusion 

 

The purposes of this study were:  first, to provide a numerical analysis of the fatigue 

fracture behavior of auxetic structures with various geometric parameters through the use 

of the contour J-integral, and second, to apply a similar procedure of numerical methods to 

the existing experimental data. XFEM was also applied in both analyses in order to 

simulate the actual crack propagation of the models and to support the assumption 

underlying the J-integral calculation. 

For the variation of parameter, the dimensions of models with symmetric 

orthogonal patterns, such as ellipse, slot, and stop-hole, were changed by altering the axis-

ratio of the void shapes. The analysis was divided into two, where the one parameter that 

was maintained to be constant, 𝜓 and Lmin. For analysis where 5% porosity was fixed the 

following result showed that: 

(1) when axis-ratio were changed with increasing amount, hence  Lmin decreased 

for every increment of the axis ratio in which also the RVE approached a more 

negative Poisson’s ratio, the values of stress intensity factor along the crack 

evolution were decreasing, 

(2) both slot void and stop-hole void models have lower starting point of stress 

intensity factor compared to the elliptical void model in which we conclude 

based on Paris’ Law, that elliptical void pattern of auxetic structure had faster 

crack initiation compared to the other two models. 

For the analysis where Lmin defined as constant for each void shape pattern the following 

result showed that: 

(3) when axis ratio was shifted into multiples of 5 on models above (J+1, J+2 and 

J+3) and below (J-3, J-2 and J-1) the reference model of elliptical void pattern, 

J0, higher stress intensity factors were computed for the models J-3, J-2 and J-1 



57 

 

compared to the models J+1, J+ and J+3. We also conclude, based on Paris’ Law, 

that for the RVE with ellipse pattern, higher porosity (which also have the 

lowest value of negative Poisson’s ratio), tend to have shorter fatigue life, 

(4) when axis ratio was shifted into multiples of 5 on models above (H+1, H+2 and 

H+3) and below (H-3, H-2 and H-1) the reference model of slot void pattern, H0, 

lower stress intensity factors at crack initiation were found for the models H-3, 

H-2 and H-1 compared to the models H+1, H+2 and H+3. We conclude that for a 

constant 𝐿min, models H+1, H+2 and H+3 have faster crack initiation compared 

to the models H-3, H-2 and H-1, 

(5) for the stop-hole void model, when axis ratio was fixed but stop-hole radius 

was changed in order to simulate specific 𝐴𝑅𝑟, lower stress intensity factors at 

crack initiation were found for the models below (J-3, J-2 and J-1) the reference 

model, J0. For stop-hole void, models J-3, J-2 and J-1 (at constant 𝐿min ), having 

lower stress intensity factor, tend to have slower crack initiation in comparison 

to the models (J+1, J+2 and J+3) above the reference model, J0. 

We also have provided numerical comparison to the actual fatigue fracture 

experiments. Here, plates with circular void (non-auxetic) pattern were compared to plates 

with stop-hole void pattern (auxetic) (both have constant porosity of 10%) in terms of their 

behavior along their life cycle. The contour J-integral computation results showed a good 

agreement to the experimental data where stop-hole void models showed lower values of 

K on both crack initiation and crack propagation compared to the model with circular void 

pattern. Based on Paris’ Law, we conclude that material with auxetic structure have the 

higher over-all fatigue life than the non-auxetic. 

Future research should consider a mix mode of loading for the test samples. It will 

be important to investigate the crack behavior of auxetic materials when biaxial or triaxial 

loads are applied. It will also help if larger specimens will be examined. This will be 

beneficial in comparing the large specimen with auxetic patterns to infinite models 

(periodic). 



58 

 

REFERENCES 
 

 

[1]   Lakes, R.S., Design considerations for negative Poisson’s ratio materials, ASME 

J Mech. Design, 115, 1993, pp. 696-700. 

 

[2]  Lakes, R.S., Foam structures with a negative Poisson's ratio, Science, 235, 1987, 

pp. 1038-1040. 

 

[3] Tan, X., Aulbach, W., Granzow, T., Kling., M., Marsilius, Kleebe, H.J., Rodel, J., 

Effect of uniaxial stress on ferroelectric behavior of [Bi(1/2)Na(1/2)] TiO(3)-based 

lead-free piezoelectric ceramics. Journal of Applied Physics, 106, 2009, 044107. 

 

[4] Caddock, B.D., Evans, K.E., Microporous materials with negative Poisson’s 

ratios: 1. Microstructure and mechanical properties. Journal of Physics D: Applied 

Physics 22 (12), 1989, pp. 1877–1882. 

 

[5]    Ho, D.T., Park, S.D., Kwon, S.Y., Park, K., Kim, S.Y., Negative Poisson’s ratios 

in metal nanoplates. Nature Communications. 5, 2014, p. 3255. 

 

[6]  Alderson, K.L., Simkins, V.R., Coenen, V.L., Davies, P.J., Alderson, A., Evans, 

K.E., How to make auxetic fibre reinforced composites. Physica Status Solidi B 242 

(3), 2005, pp. 509–518. 

 

[7]  Lim, T. C., Out-of-plane modulus of semi-auxetic laminates. European Journal of 

Mechanics A/Solids 28, 2009, pp. 752–756. 

 

[8]  Gaspar, N., Smith, C.W., Alderson, A., Grima, J.N., Evans, K.E., A Generalised 

Three-Dimensional Tethered-Nodule Model for Auxetic Materials, J. Mater. Sci., 

46, 2011, pp. 372-384. 

 

[9]  Attard, D., Grima, J.N., Modelling of hexagonal honeycombs exhibiting zero 

Poisson's ratio. Physica Status Solidi., 248, 2011, pp. 52-59. 

 

[10]   Liu, Y., Hu, H., A review on auxetic structures and polymeric materials, Scientific    

Research and Essays, 5, 2010, pp. 1052-1063. 

 

[11]  Lakes, R.S., Deformation mechanisms in negative Poisson's ratio materials: 

structural aspects. J. Mater. Sci., 26, 1991, pp. 2287-2292. 

 

[12]  Dolla, W.J.S., Fricke, B.A., Becker, B.R.., Structural and Drug Diffusion Models 

of Conventional and Auxetic Drug-eluting Stents. J. Medical Devices, 1, 2007, pp. 

47-55. 

 



59 

 

[13]  Smith, C.W., Grima, J.N., Evans, K.E., A novel mechanism for generating auxetic 

behaviour in reticulated foams: missing rib foam model. Acta. Mater., 48, 2000, 

pp. 4349-4356. 

 

[14]  Taylor, M., Francesconi, L., Gerendas, M., Shanian, A., Carson, C., Bertoldi, K., 

Low Porosity Metallic Periodic Structures with Negative Poisson's Ratio, 26, 2014, 

pp. 1-6. 

 

[15]  Francesconi, L., Taylor, M., Bertoldi., K., Baldi, A., A numerical-experimental 

investigation of thin auxetic metallic structures. 3, 2016, pp. 335-341. 

 

[16]  Javid F., Liu J., Rafsanjani, A., Schaenzer, Pham M.Q., Backman, D., Yandt, S., 

Innes, M.C., Booth-Morrison, C., Gerendas, M., Scarinci, T., Shanian, A., Bertoldi, 

K., On the design of porous structures with enhanced fatigue life. Extreme 

Mechanics Letters. 16, 2017, pp.13-17. 

 

[17]  Francesconi, L., Taylor, M., Baldi, A., An investigation of stress concentration, 

crack nucleation, and fatigue life of thin low porosity metallic auxetic structures, 

Proceedings of the 2018 SEM Annual Conference and Exposition on Experimental 

and Applied Mechanics, (submitted). 

 

[18]  Paris, P.C. and Erdogan, F., A Critical Analysis of Crack Propagation Laws. 

Journal of Basic Engineering, 85, 1960, pp. 528–534. 

 

[19]  Griffith, A.A., The Phenomena of Rupture and Flow in Solids. Philosophical 

Transactions, Series A, 221, 1920, pp. 163–198.  

[20]  Irwin, G.R., On Set of Crack Propagation in High Strength Steel and Aluminum 

Alloys. Sagamore Research Conference Proceedings, 2, 1956, pp 289-350. 

[21]  Anderson, T.L., Fracture Mechanics: Fundamentals and Applications. 3rd ed. CRC 

Press LLC. 2005, pp. 43, 52, 59.  

[22]  Westergaard, H.M., Bearing Pressures and Cracks. Journal of Applied Mechanics, 

6, 1939, pp. 49–53. 

[23]  Irwin, G.R., Analysis of Stresses and Strains near the End of a Crack Traversing a 

Plate. Journal of Applied Mechanics, 24, 1957, pp. 361–364. 

[24]  Sih, G.C., On the Westergaard Method of Crack Analysis. International Journal of 

Fracture Mechanics, 2, 1966, pp. 628–631. 

[25]  Sanford, R.J., A Critical Re-Examination of the Westergaard Method for Solving 

Opening Mode Crack Problems. Mechanics Research Communications, 6, 1979, 

pp. 289–294. 



60 

 

[26]  Helen, T.K., On the method of virtual crack extension. Int. J. Numer. Meth. 

Engineering. 9, 1975, pp. 187-207. 

[27]  Shih, C.F., Moran, B., Nakamura, T., Energy release rate along a three-

dimensional crack front in a thermally stressed body. International Journal of 

Fracture. 30, 1986 pp. 79-102. 

[28]  Li, F.Z., Shih, C.F., Needleman, A., A comparison of methods for calculating 

energy release rates. Engineering Fracture Mechanics. 21, No. 2, 1985 pp. 405-

421. 

[29]  Rice, J. R. A path independent integral and the approximate analysis of strain 

concentration by notches and cracks. Journal of Applied Mechanics 35, 1968 pp. 

368–375. 

[30]  Mohammadi, S., Extended Finite Element Method for Fracture Analysis of 

Structures. Blackwell Publishing Ltd. 2008, pp. 59, 69-96.  

[31]  Cox, J.V., An extended finite element method with analytical enrichment for 

cohesive crack modeling, International Journal for Numerical Methods in 

Engineering, 78, 2009, pp. 48-83. 

[32]  Belytschko, T., Black T., Elastic crack growth in finite elements with minimal 

remeshing. Int. J. Numer. Meth. Engng. 45, 1999, pp. 601-620. 

[33]  Fries, T.P., Baydoun, M., Crack propagation with the extended finite element 

method and a hybrid explicit–implicit crack description, Int. J. Numer. Meth. 

Engng. 89, 2012; pp. 1527–1558. 

[34]  Stazi, F.L., Budyn, E., Chessa, J., Belytschko, T., An extended finite element 

method with higher-order elements for curved cracks. Computational Mechanics. 

31, 2003, pp. 38-48. 

[35]  Melenk J.M., Babuska, I., The partition of unity finite element method: basic theory 

and applications. Comput. Methods Appl. Mech. Eng. 39, 1996, pp. 289–314 

[36]  Belytschko, T., and Fish, J., A first course in finite elements. John Wiley and Sons 

Ltd., England, 2007, pp. 77-79, 223. 

 

[37]  Belytschko T., Gracie, R., Ventura G., A review of extended/generalized finite 

element methods for material modeling, Modelling Simul. Mater. Sci. Eng., 17, 

2009, 043001, pp. 1-24. 

 

[38]  Bordas, S., Nguyen, P.V., Dunant, C., Guidoum, Hung Nguyen-Dang, H., An 

extended finite element library. Int. J. Numer. Meth. Engng, 71, 2007, pp. 703–732. 

[39]  Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal 

of Numerical Methods in Engineering. 37, 1994, pp. 229-256. 



61 

 

[40]  Fleming, M., Chu Y.A., Moran, B., Belytschko, T., Enriched element-free galerkin 

methods for crack tip fields. Int. J. Numer. Meth. Eng. 40, 1997, pp. 1483–1504. 

 

[41]   Abaqus 6.14 Simulia, Abaqus Analysis User’s Guide, 2016. 

source:<http://130.149.89.49:2080/v2016/books/usb/default.htm?startat=pt04ch1

0s07at36.html > 

 

[42]  Erdogan, F., and Sih, G.C., On the Crack Extension in Plates under Plane Loading 

and Transverse Shear, Journal of Basic Engineering, 85, 1963, pp. 519–527. 

 

[43]  Oller, S., Fractura Mecánica. Un Enfoque Global, Centro Internacional de M 

étodos Numéricos EnIngeniería, 2001 Numerical Simulation of Mechanical, p. 

2001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 

 

APPENDIX 
 

A.1 Python Script for generating 65 models with increasing crack length using periodic 

boundary conditions: (Stop-hole void model). Same codes were applied to the circular 

void, ellipse void, and slot void models but with different part geometries.  

Note: For more information in the Python Script of other void geometries, contact  

Dr. Michael Taylor (mjtaylor@scu.edu). 

 

# Garivalde Dominguez 

# Reference: Michael Taylor 

# 03222018 

 

pathName 

="C:/Users/gdomingu/Python_Abaqus_Script/RVE_StopholeVoid__PBC_constPorosity_0p1/" 

os.chdir(pathName) 

 

# LIBRARY 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from optimization import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

from abaqusConstants import*  

 

import math 

import os 

 

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDINATE) 

# MODEL ------------------------------------------------------------------------------ 

# Model Name 

modelName = 'Unit_Stophole_Void' 

mdb.models.changeKey(fromName='Model-1', toName=modelName) 

 

# Material Properties ---------------------------------------------------------------- 

materialName = 'stainless_steel' 

Youngs_Modulus = 65.4e3    # Young's modulus (in MPa) 

Poissons_Ratio = 0.32  # Poisson's Ratio 

 

# Geometric Properties --------------------------------------------------------------- 

center_to_center = 10   # center to center distance for the holes (in mm) 

porosity = 0.10      # porosity 

thickness = 0.0   # thickness of the plates 

seed_mesh = 0.10  # seed-mesh (in mm) 

 

width_plate = 2.0*center_to_center;  # width of plate 

height_plate = 2.0*center_to_center; # height of plate 

 

mailto:mjtaylor@scu.edu


63 

 

stop_hole_radius = 0.6250  # stop hole radius (in mm) 

minor_axis_hole = 0.4500       # major axis of each void 

major_axis_hole = 4.6255        # major axis of each void 

 

# ratio between major and minor axis for the holes 

axes_ratio =  11.6677; 

 

# Crack Geometries --------------------------------------------------------------------- 

# minimum hole distamce (in mm) 

minimum_hole_distance = center_to_center - minor_axis_hole - major_axis_hole  

 - stop_hole_radius; 

# number of increments  

num_increments = 50;   

# crack length increment 

crack_length_increment = (0.99*minimum_hole_distance - 0.01*minimum_hole_distance) 

 /(num_increments-1); 

 

print 'minimum_hole_distance: ' + str(minimum_hole_distance) 

 

# Displacement Load -------------------------------------------------------------------- 

strain_load = 0.000773  # strain load (in mm/mm) 

displacement_load = strain_load*center_to_center; # displacement (in mm) 

 

for crack_counter in range(0, num_increments): 

 # crack length (in mm) 

 crack_length = 0.01*minimum_hole_distance + crack_counter*crack_length_increment;  

  

 print 'counter: ' + str(crack_counter +1 ) 

 print 'crack length: ' + str(crack_length)  

 print 'number of increments: ' + str(num_increments) 

 print 'crack length increment: ' + str(crack_length_increment) 

  

 # round crack length for naming 

 crack_length_5deci = math.ceil(crack_length*1000000)/1000000; 

  

 subPath = pathName + 'P' + str(porosity).replace('.','p') + '_AR'  

+ str(axes_ratio).replace('.','p') + '_MS' = 

str(seed_mesh).replace('.','p')  

  + '_CL' + str(crack_length_5deci).replace('.','p') + "/" 

  

 if not os.path.exists(subPath): 

  os.makedirs(subPath) 

 os.chdir(subPath) 

  

 # PARTS -------------------------------------------------------------------------- 

 # PART: Virtual Point at x coordinate 

 mdb.models[modelName].Part(dimensionality=TWO_D_PLANAR, name='part_VPx',  

 type=DEFORMABLE_BODY) 

 mdb.models[modelName].parts['part_VPx'].ReferencePoint(point=(0.0, 0.0, 0.0)) 

 # PART: Virtual Point at y coordinate 

 mdb.models[modelName].Part(dimensionality=TWO_D_PLANAR, name='part_VPy',  

 type=DEFORMABLE_BODY) 

 mdb.models[modelName].parts['part_VPy'].ReferencePoint(point=(0.0, 0.0, 0.0)) 

 # Part Name 

 partName = 'RVE_Plate' 

 # PART: Base plate 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].rectangle( 

  point1=(-1.0*center_to_center, -1.0*center_to_center),  

  point2=(center_to_center, center_to_center)) 

 mdb.models[modelName].Part(dimensionality=TWO_D_PLANAR, name=partName, 

 type=DEFORMABLE_BODY) 

 mdb.models[modelName].parts[partName].BaseShell(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 # PART: Center-Center Void 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 



64 

 

 mdb.models[modelName].sketches['__profile__'].rectangle( 

  point1=(-1.0*minor_axis_hole, -1.0*major_axis_hole),  

  point2=(minor_axis_hole, major_axis_hole)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(0, major_axis_hole),  

point1=(0, major_axis_hole + stop_hole_radius)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(0, -1.0*major_axis_hole),  

  point1=(0, -1.0*major_axis_hole - stop_hole_radius)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 # PART: Center-Top Void 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].rectangle( 

  point1=(-1.0*major_axis_hole, center_to_center - minor_axis_hole),  

  point2=(major_axis_hole, center_to_center + minor_axis_hole)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(-1.0*major_axis_hole, center_to_center),  

  point1=(-1.0*major_axis_hole - stop_hole_radius, center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(major_axis_hole, center_to_center),  

  point1=(major_axis_hole + stop_hole_radius, center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 # PART: Center-Bottom Void 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].rectangle( 

  point1=(-1.0*major_axis_hole, -1.0*center_to_center - minor_axis_hole),  

  point2=(major_axis_hole, -1.0*center_to_center + minor_axis_hole)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(-1.0*major_axis_hole, -1.0*center_to_center),  

  point1=(-1.0*major_axis_hole - stop_hole_radius, -1.0*center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(major_axis_hole, -1.0*center_to_center),  

  point1=(major_axis_hole + stop_hole_radius, -1.0*center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 # PART: Right-Center Void 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].rectangle( 



65 

 

  point1=(-1.0*major_axis_hole + center_to_center, -1.0*minor_axis_hole),  

  point2=(major_axis_hole + center_to_center, minor_axis_hole)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(-1.0*major_axis_hole + center_to_center, 0),  

  point1=(-1.0*major_axis_hole - stop_hole_radius + center_to_center, 0)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(major_axis_hole + center_to_center, 0),  

  point1=(major_axis_hole + stop_hole_radius + center_to_center, 0)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 # PART: Left-Center Void 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].rectangle( 

  point1=(-1.0*major_axis_hole - center_to_center, -1.0*minor_axis_hole),  

  point2=(major_axis_hole - center_to_center, minor_axis_hole)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(-1.0*major_axis_hole - center_to_center, 0),  

  point1=(-1.0*major_axis_hole - stop_hole_radius - center_to_center, 0)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(major_axis_hole - center_to_center, 0),  

  point1=(major_axis_hole - stop_hole_radius - center_to_center, 0)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 # PART: Top-Left-Corner Void 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].rectangle( 

  point1=(-1.0*minor_axis_hole - center_to_center, -1.0*major_axis_hole  

  + center_to_center),  

  point2=(minor_axis_hole - center_to_center, major_axis_hole  

  + center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(-1.0*center_to_center, major_axis_hole + center_to_center),  

  point1=(-1.0*center_to_center, major_axis_hole + stop_hole_radius  

  + center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(-1.0*center_to_center, -1.0*major_axis_hole + center_to_center),  

  point1=(-1.0*center_to_center, -1.0*major_axis_hole - stop_hole_radius  

  + center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 



66 

 

 # PART: Top-Right-Corner Void 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].rectangle( 

  point1=(-1.0*minor_axis_hole + center_to_center, -1.0*major_axis_hole  

  + center_to_center),  

  point2=(minor_axis_hole + center_to_center, major_axis_hole  

  + center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(center_to_center, major_axis_hole + center_to_center),  

  point1=(center_to_center, major_axis_hole + stop_hole_radius  

  + center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(center_to_center, -1.0*major_axis_hole + center_to_center),  

  point1=(center_to_center, -1.0*major_axis_hole - stop_hole_radius  

  + center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 # PART: Bottom-Left-Corner Void 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].rectangle( 

  point1=(-1.0*minor_axis_hole - center_to_center, -1.0*major_axis_hole  

  - center_to_center),  

  point2=(minor_axis_hole - center_to_center, major_axis_hole  

  - center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(-1.0*center_to_center, major_axis_hole - center_to_center),  

  point1=(-1.0*center_to_center, major_axis_hole - stop_hole_radius  

  - center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(-1.0*center_to_center, -1.0*major_axis_hole - center_to_center),  

  point1=(-1.0*center_to_center, -1.0*major_axis_hole - stop_hole_radius  

  - center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 # PART: Bottom-Right-Corner Void 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].rectangle( 

  point1=(-1.0*minor_axis_hole + center_to_center, -1.0*major_axis_hole  

  - center_to_center),  

  point2=(minor_axis_hole + center_to_center, major_axis_hole  

  - center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(center_to_center, major_axis_hole - center_to_center),  

  point1=(center_to_center, major_axis_hole - stop_hole_radius  

  - center_to_center)) 



67 

 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].CircleByCenterPerimeter( 

  center=(center_to_center, -1.0*major_axis_hole - center_to_center),  

  point1=(center_to_center, -1.0*major_axis_hole - stop_hole_radius  

  - center_to_center)) 

 mdb.models[modelName].parts[partName].Cut(sketch= 

 mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 # PART: Left-Crack and Right Crack 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].Line( 

  point1=(-1.0*center_to_center + major_axis_hole + stop_hole_radius, 0.0),  

  point2=(-1.0*center_to_center + major_axis_hole + stop_hole_radius  

  + crack_length,0.0)) 

 mdb.models[modelName].sketches['__profile__'].Line( 

  point1=(center_to_center - major_axis_hole - stop_hole_radius, 0.0),  

  point2=(center_to_center - major_axis_hole -stop_hole_radius  

  - crack_length,0.0))  

 mdb.models[modelName].parts[partName].PartitionFaceBySketch( 

  faces=mdb.models[modelName].parts[partName].faces,sketch= 

  mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 

 # MATERIAL ----------------------------------------------------------------------- 

 mdb.models[modelName].Material(description='Linear elastic material model', name= 

  materialName).Elastic(table=((Youngs_Modulus, Poissons_Ratio),)) 

 

 # SECTION ------------------------------------------------------------------------ 

 mdb.models[modelName].HomogeneousSolidSection(material=materialName,  

  name='unit_cell', thickness=None) 

 mdb.models[modelName].parts[partName].SectionAssignment(region= 

  Region(faces=mdb.models[modelName].parts[partName].faces), 

  sectionName='unit_cell') 

 # ASSEMBLY ----------------------------------------------------------------------- 

 instName = 'voided_plate' 

 mdb.models[modelName].rootAssembly.DatumCsysByDefault(CARTESIAN) 

 mdb.models[modelName].rootAssembly.Instance(dependent=OFF, name=instName,  

  part=mdb.models[modelName].parts[partName]) 

 # Virtual point to constrain x motion 

 mdb.models[modelName].rootAssembly.Instance(dependent=ON, name='inst_VPx',  

  part=mdb.models[modelName].parts['part_VPx']) 

 # Virtual point to constrain y motion 

 mdb.models[modelName].rootAssembly.Instance(dependent=ON, name='inst_VPy',  

  part=mdb.models[modelName].parts['part_VPy']) 

  

 # INTERACTION -------------------------------------------------------------------- 

 # center of left crack at x-direction (in mm) 

 left_crack_x = -1.0*center_to_center + major_axis_hole + stop_hole_radius  

  + crack_length/2.0; 

 # center of right crack at x-direction (in mm) 

 right_crack_x = center_to_center - major_axis_hole - stop_hole_radius  

  - crack_length/2.0; 

 # INTERACTION: Assign Crack Set 

 mdb.models[modelName].rootAssembly.Set(edges= 

  mdb.models[modelName].rootAssembly.instances[instName].edges.findAt((( 

   right_crack_x, 0.0, 0.0), )), name='right_crack') 

 mdb.models[modelName].rootAssembly.Set(edges= 

  mdb.models[modelName].rootAssembly.instances[instName].edges.findAt((( 

   left_crack_x, 0.0, 0.0), )), name='left_crack') 

 # INTERACTION: Assign Seam 

 mdb.models[modelName].rootAssembly.engineeringFeatures.assignSeam(regions= 

  mdb.models[modelName].rootAssembly.sets['right_crack']) 

 mdb.models[modelName].rootAssembly.engineeringFeatures.assignSeam(regions= 

  mdb.models[modelName].rootAssembly.sets['left_crack']) 



68 

 

 # INTERACTION: Contour Integral 

 # tip of left crack at x-direction (in mm) 

 left_crack_tip = -1.0*center_to_center + major_axis_hole + stop_hole_radius  

  + crack_length; 

 # tip of right crack at x-direction (in mm)  

 right_crack_tip = center_to_center - major_axis_hole - stop_hole_radius  

  - crack_length;             

 mdb.models[modelName].rootAssembly.engineeringFeatures.ContourIntegral( 

  collapsedElementAtTip=NONE,crackFront=Region(edges= 

  

 mdb.models[modelName].rootAssembly.instances[instName].edges.findAt((( 

   right_crack_x, 0.0, 0.0), ), )), crackTip=Region(vertices= 

  

 mdb.models[modelName].rootAssembly.instances[instName].vertices.findAt(( 

(right_crack_tip, 0.0, 0.0), ), )), 

extensionDirectionMethod=Q_VECTORS, 

   midNodePosition=0.5, name='right_crack', qVectors=((  

   

 mdb.models[modelName].rootAssembly.instances[instName].vertices.findAt(( 

right_crack_tip, 0.0, 0.0), ), (-1.0, 0.0, 0.0)), ), 

symmetric=ON) 

 mdb.models[modelName].rootAssembly.engineeringFeatures.ContourIntegral( 

  collapsedElementAtTip=NONE,crackFront=Region(edges= 

  mdb.models[modelName].rootAssembly.instances[instName].edges.findAt(( 

  (left_crack_x, 0.0, 0.0), ), )), crackTip=Region(vertices= 

  

 mdb.models[modelName].rootAssembly.instances[instName].vertices.findAt((( 

left_crack_tip, 0.0, 0.0), ), )), 

extensionDirectionMethod=Q_VECTORS,  

    midNodePosition=0.5, name='left_crack', qVectors=((  

   

 mdb.models[modelName].rootAssembly.instances[instName].vertices.findAt(( 

left_crack_tip, 0.0, 0.0), ), (1.0, 0.0, 0.0)), ), 

symmetric=ON) 

   

 # STEP --------------------------------------------------------------------------- 

 mdb.models[modelName].StaticStep(description='Uniaxial Tension in y-y direction',  

  name='Tension', previous='Initial')  

 mdb.models[modelName].steps['Tension'].setValues(adaptiveDampingRatio=None,  

continueDampingFactors=False, matrixSolver=DIRECT, 

solutionTechnique=FULL_NEWTON,  

  stabilizationMethod=NONE) 

  

 # MESH(based on Assembly) -------------------------------------------------------- 

 # MESH: Seed Mesh 

 mdb.models[modelName].rootAssembly.seedPartInstance(deviationFactor=0.1,  

  minSizeFactor=0.1, regions=( 

  mdb.models[modelName].rootAssembly.instances[instName], ), size=seed_mesh) 

 # MESH: Element Type  

 mdb.models[modelName].rootAssembly.setElementType(elemTypes=( 

  ElemType(elemCode=CPS8, elemLibrary=STANDARD), ElemType(elemCode=CPS8,  

  elemLibrary=STANDARD)), regions=(mdb.models[modelName].rootAssembly. 

instances[instName].faces.findAt((center_to_center/2.0, 

center_to_center/2.0,  

  thickness/2.0),),)) 

 # MESH: Control 

 mdb.models[modelName].rootAssembly.setMeshControls(elemShape=QUAD,  

 

 regions=(mdb.models[modelName].rootAssembly.instances[instName].faces.findAt( 

  (center_to_center/2.0, center_to_center/2.0, thickness/2.0),),)) 

 # MESH: Generate Mesh  

 mdb.models[modelName].rootAssembly.generateMesh(regions= 

  (mdb.models[modelName].rootAssembly.instances[instName], )) 

 

 # -------------------------------------------------------------------------------- 

 # Set: All nodes 

 mdb.models[modelName].rootAssembly.Set(name='set_AllElements', elements= 



69 

 

  mdb.models[modelName].rootAssembly.instances[instName].elements) 

 mdb.models[modelName].rootAssembly.Set(name='set_AllNodes', nodes= 

 mdb.models[modelName].rootAssembly.instances[instName].nodes) 

 # Create arrays and Sets containing node numbers for all faces of plate ---------- 

  

 # initialize arrays for edges 

 nodes_rightEdge = [] 

 nodes_leftEdge = [] 

 nodes_topEdge = [] 

 nodes_bottomEdge = [] 

 node_RBM = [] 

  

 # define arbitrary tolerance for boolean comparison 

 eps = seed_mesh/100.0 

  

 # loop over all nodes and sort out nodes on the edges 

 for N in mdb.models[modelName].rootAssembly.instances[instName].nodes: 

  

  nodeCoord = N.coordinates 

   

  #print 'nodeCoord: ' + str(nodeCoord [0]) + ',' + str(nodeCoord [1]) 

   

  if (fabs(nodeCoord[0]-major_axis_hole - stop_hole_radius) < 100.0*eps)  

and (fabs(nodeCoord[1]-major_axis_hole - stop_hole_radius) < 

100.0*eps): 

   node_RBM.append(N.label) 

    

  elif (fabs(nodeCoord[0] + center_to_center) < eps): 

   nodes_leftEdge.append(N.label) 

    

  elif (fabs(nodeCoord[0] - center_to_center) < eps): 

   nodes_rightEdge.append(N.label) 

  

  elif (fabs(nodeCoord[1] + center_to_center) < eps): 

   nodes_bottomEdge.append(N.label) 

  

  elif (fabs(nodeCoord[1] - center_to_center) < eps): 

   nodes_topEdge.append(N.label) 

 

 mdb.models[modelName].rootAssembly.SetFromNodeLabels(name= 

  'set_NodesRightEdge', nodeLabels=((instName, nodes_rightEdge),)) 

 mdb.models[modelName].rootAssembly.SetFromNodeLabels(name= 

  'set_NodesLeftEdge', nodeLabels=((instName, nodes_leftEdge),)) 

 mdb.models[modelName].rootAssembly.SetFromNodeLabels(name= 

  'set_NodesTopEdge', nodeLabels=((instName, nodes_topEdge),)) 

 mdb.models[modelName].rootAssembly.SetFromNodeLabels(name= 

  'set_NodesBottomEdge', nodeLabels=((instName, nodes_bottomEdge),)) 

 mdb.models[modelName].rootAssembly.SetFromNodeLabels(name= 

  'set_NodeRBM', nodeLabels=((instName, (node_RBM[0],)),)) 

  

 # Set: Virtual Points 

 mdb.models[modelName].rootAssembly.Set(name='set_VPx', referencePoints= 

 

 (mdb.models[modelName].rootAssembly.instances['inst_VPx'].referencePoints[1], )) 

 mdb.models[modelName].rootAssembly.Set(name='set_VPy', referencePoints= 

 

 (mdb.models[modelName].rootAssembly.instances['inst_VPy'].referencePoints[1], )) 

  

 # Create sets of periodic node pairs --------------------------------------------- 

  

 # Look at left and right sides 

 for i in range (0, len(nodes_leftEdge)): 

  leftCoords = mdb.models[modelName].rootAssembly. 

   sets['set_NodesLeftEdge'].nodes[i].coordinates 

  mdb.models[modelName].rootAssembly.SetFromNodeLabels( 

   name='set_NodesLPair_'  

   + str(i), nodeLabels=((instName , (nodes_leftEdge[i],)),)) 



70 

 

  for j in range (0, len(nodes_rightEdge)): 

   rightCoords = mdb.models[modelName].rootAssembly. 

    sets['set_NodesRightEdge'].nodes[j].coordinates 

   if (fabs(leftCoords[1] - rightCoords[1]) < eps): 

    mdb.models[modelName].rootAssembly.SetFromNodeLabels( 

     name='set_NodesRPair_'  

   + str(i), nodeLabels=((instName, (   

   nodes_rightEdge[j],)),)) 

   

 # Look at top and bottom sides 

 for i in range (0, len(nodes_topEdge)): 

  topCoords = mdb.models[modelName].rootAssembly. 

   sets['set_NodesTopEdge'].nodes[i].coordinates 

 

 mdb.models[modelName].rootAssembly.SetFromNodeLabels(name='set_NodesTPair_'  

   + str(i), nodeLabels=((instName, (nodes_topEdge[i],)),)) 

  for j in range (0, len(nodes_bottomEdge)): 

   bottomCoords = mdb.models[modelName].rootAssembly. 

    sets['set_NodesBottomEdge'].nodes[j].coordinates 

   if (fabs(topCoords[0] - bottomCoords[0]) < eps): 

    mdb.models[modelName].rootAssembly.SetFromNodeLabels( 

     name='set_NodesBPair_'  

+ str(i), nodeLabels=((instName, 

(nodes_bottomEdge[j],)),)) 

 

 # BOUNDARY CONDITIONS ------------------------------------------------------------ 

 

 # fix point to prevent rigid body motion 

 mdb.models[modelName].DisplacementBC(amplitude=UNSET, createStepName= 

 'Tension', distributionType=UNIFORM, fieldName='', fixed=OFF, 

 localCsys=None, name='bc_preventRBM', region= 

 mdb.models[modelName].rootAssembly.sets['set_NodeRBM'] 

 , u1=0.0, u2=0.0, ur3=UNSET) 

 

 # externally applied strain through the virtual points (x-dir) 

 #------------------------------------------------------------ 

 mdb.models[modelName].DisplacementBC(amplitude=UNSET, createStepName= 

 'Tension', distributionType=UNIFORM, fieldName='', fixed=OFF, 

 localCsys=None, name='bc_VPx', region= 

 mdb.models[modelName].rootAssembly.sets['set_VPx'] 

 , u1=UNSET, u2=0.0, u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

  

 # externally applied strain through the virtual points (y-dir) 

 #------------------------------------------------------------ 

 mdb.models[modelName].DisplacementBC(amplitude=UNSET, createStepName= 

 'Tension', distributionType=UNIFORM, fieldName='', fixed=OFF, 

 localCsys=None, name='bc_VPy', region= 

 mdb.models[modelName].rootAssembly.sets['set_VPy'] 

 , u1=0.0, u2=1.0*strain_load, u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

 

 # Set up periodic constraint equations  ------------------------------------------ 

 

 # right and left edges 

 for i in range(0,len(nodes_leftEdge)): 

  

 # preparation of Coefficients 

leftCoord=mdb.models[modelName].rootAssembly.sets['set_NodesLPair_' + 

str(i)].nodes[0].coordinates 

rightCoord=mdb.models[modelName].rootAssembly.sets['set_NodesRPair_' + 

str(i)].nodes[0].coordinates 

  

  coeff1 = -(rightCoord[0]-leftCoord[0]) 

  

  # x-coordinate (Ux_Vpx, H11) 

  mdb.models[modelName].Equation(name='constraint_xLR_' + str(i), terms=( 

   ( 1.0, 'set_NodesRPair_' + str(i), 1), 

   (-1.0, 'set_NodesLPair_' + str(i), 1), 



71 

 

   (coeff1, 'set_VPx', 1))) 

  

  # y-coordinate (Uy_Vpx, H21) 

  mdb.models[modelName].Equation(name='constraint_yLR_' + str(i), terms=( 

   ( 1.0, 'set_NodesRPair_' + str(i), 2), 

   (-1.0, 'set_NodesLPair_' + str(i), 2), 

   (coeff1, 'set_VPx', 2))) 

    

 # top and bottom edges 

 for i in range(0,len(nodes_bottomEdge)): 

  # preparation of Coefficients 

  bottomCoord=mdb.models[modelName].rootAssembly.sets['set_NodesBPair_'  

   + str(i)].nodes[0].coordinates 

  topCoord=mdb.models[modelName].rootAssembly.sets['set_NodesTPair_'  

   + str(i)].nodes[0].coordinates 

  coeff2 = -(topCoord[1]-bottomCoord[1]) 

  # x-coordinate (Ux_Vpy, H12) 

  mdb.models[modelName].Equation(name='constraint_xTB_' + str(i), terms=( 

   ( 1.0, 'set_NodesTPair_' + str(i), 1), 

   (-1.0, 'set_NodesBPair_' + str(i), 1), 

   (coeff2, 'set_VPy', 1))) 

 

  # y-coordinate (Uy_Vpy, H22) 

  mdb.models[modelName].Equation(name='constraint_yTB_' + str(i), terms=( 

   ( 1.0, 'set_NodesTPair_' + str(i), 2), 

   (-1.0, 'set_NodesBPair_' + str(i), 2), 

   (coeff2, 'set_VPy', 2))) 

  

 # OUTPUT REQUEST ----------------------------------------------------------------- 

 # OUTPUT REQUEST: Field Output Request 

 mdb.models[modelName].fieldOutputRequests['F-Output-1'].setValues( 

  variables=('S', 'E', 'U', 'RF', 'CF')) 

 # OUTPUT REQUEST: History Output Request 

 # History Output Request: Right Crack 

 mdb.models[modelName].historyOutputRequests['H-Output-1'].setValues( 

contourIntegral='right_crack', numberOfContours=1, rebar=EXCLUDE, 

sectionPoints=DEFAULT) 

 mdb.models[modelName].HistoryOutputRequest(contourIntegral='right_crack',  

  contourType=K_FACTORS, createStepName='Tension', kFactorDirection=MERR,  

name='H-Output-2', numberOfContours=1, rebar=EXCLUDE, 

sectionPoints=DEFAULT) 

 # History Output Request: Left Crack 

 mdb.models[modelName].HistoryOutputRequest(contourIntegral='left_crack',  

  createStepName='Tension', name='H-Output-3', numberOfContours=1, rebar= 

  EXCLUDE, sectionPoints=DEFAULT) 

 mdb.models[modelName].HistoryOutputRequest(contourIntegral='left_crack',  

  contourType=K_FACTORS, createStepName='Tension', kFactorDirection=MERR,  

name='H-Output-4', numberOfContours=1, rebar=EXCLUDE, 

sectionPoints=DEFAULT) 

 # JOB ----------------------------------------------------------------------------  

jobName = 'job_crack_SH' + str(int(crack_counter + 1)) + 'P' + 

str(porosity).replace('.','p')  

+ '_AR' + str(axes_ratio).replace('.','p') + '_MS' + 

str(seed_mesh).replace('.','p') + '_CL'  

  + str(crack_length_5deci).replace('.','p') 

  mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,  

  explicitPrecision=DOUBLE, getMemoryFromAnalysis=True, historyPrint=OFF,  

  memory=16000, memoryUnits=MEGA_BYTES, model=modelName, modelPrint= 

OFF, multiprocessingMode=DEFAULT, name=jobName, 

nodalOutputPrecision=SINGLE 

  , numCpus=1, numGPUs=0, queue=None, resultsFormat=ODB, scratch='', type= 

  ANALYSIS, userSubroutine='', waitHours=0, waitMinutes=0, 

  parallelizationMethodExplicit=DOMAIN, numDomains=1)  

 mdb.jobs[jobName].submit(consistencyChecking=OFF) 

 mdb.jobs[jobName].waitForCompletion() 

 mdb.saveAs(pathName=subPath + str(int(crack_counter + 1)) + 'Stophole_CL'  

  + str(crack_length_5deci).replace('.','p') + '.cae') 



72 

 

A.2 Python Script for generating 130 models with increasing crack length using finite 

boundary condition on the whole specimen (Stop-hole void model). Same codes were 

applied to the circular void model but with different part geometries. 

# Garivalde Dominguez 

# 06062018 

 

pathName = "C:/Users/gdomingu/Python_Abaqus_Script/Whole_Model_StopholeVoid_R2/" 

os.chdir(pathName) 

 

# Library 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from optimization import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

from abaqusConstants import*  

 

import math 

import os 

 

# Sketch Source 

path_Dogbone = 

'C:/Users/gdomingu/Python_Abaqus_Script/Whole_Model_StopholeVoid_R2/Sketch_Source/dog_bon

e.stp' 

path_Stopholevoid = 

'C:/Users/gdomingu/Python_Abaqus_Script/Whole_Model_StopholeVoid_R2/Sketch_Source/stophol

e_void.stp' 

 

session.journalOptions.setValues(replayGeometry=COORDINATE,recoverGeometry=COORDINATE) 

 

# MODEL --------------------------------------------------------------------------------- 

modelName = 'Unit_Circle_Void' 

mdb.models.changeKey(fromName='Model-1', toName=modelName) 

  

mdb.openStep(path_Dogbone, scaleFromFile=OFF) 

mdb.models[modelName].ConstrainedSketchFromGeometryFile(geometryFile=mdb.acis, 

name='Dog_bone') 

  

mdb.openStep(path_Stopholevoid, scaleFromFile=OFF) 

mdb.models[modelName].ConstrainedSketchFromGeometryFile(geometryFile=mdb.acis, 

name='Stophole_void') 

  

 

# Material Properties ------------------------------------------------------------------- 

materialName = 'stainless_steel' 

Youngs_Modulus = 65.4e3   # Young's modulus (in MPa) 

Poissons_Ratio = 0.32  # Poisson's Ratio 

 

# Geometric Properties ------------------------------------------------------------------ 

center_to_center = 10   # center to center distance for the holes (in mm) 

porosity = 0.10    # porosity 

thickness = 0.0   # thickness of the plates 

seed_mesh = 1  # seed-mesh (in mm) 

 



73 

 

width_plate = 2.0*center_to_center;  # width of plate 

height_plate = 2.0*center_to_center; # height of plate 

 

stop_hole_radius = 0.6250   # stop hole radius (in mm) 

minor_axis_hole = 0.4500       # major axis of each void 

major_axis_hole = 4.625751        # major axis of each void 

 

# ratio between major and minor axis for the holes 

axes_ratio =  11.6677; 

 

# Crack Geometries ---------------------------------------------------------------------- 

# minimum hole distamce (in mm) 

minimum_hole_distance = center_to_center - minor_axis_hole - major_axis_hole - 

stop_hole_radius; 

# number of increments                        

num_increments = 130; 

# crack length increment                                                                                    

crack_length_increment = (0.99*minimum_hole_distance - 

0.01*minimum_hole_distance)/(num_increments/2-1); 

 

# Displacement Load --------------------------------------------------------------------- 

strain_load = 0.001     # strain load (in mm/mm) 

# displacement_load = strain_load*center_to_vertend; # displacement (in mm) 

displacement_load = 0.027055 

 

for crack_counter in range(0, num_increments): 

 

 if crack_counter + 1.0 <= num_increments/2: 

  

  crack_length = 0.01*minimum_hole_distance + 

crack_counter*crack_length_increment; # crack length (in mm) 

  print 'counter: ' + str(crack_counter + 1 ) 

  print 'frist region crack: ' + str(crack_length)  

  print 'crack_length: ' + str(crack_length)  

  print 'num_increments: ' + str(num_increments) 

  print 'crack_length_increment: ' + str(crack_length_increment) 

   

  #round crack length for naming 

  crack_length_5deci = math.ceil(crack_length*1000000)/1000000; 

   

 if crack_counter + 1.0 > num_increments/2: 

  # crack length (in mm) 

crack_length = 0.01*minimum_hole_distance + (crack_counter - 

num_increments/2)*crack_length_increment;  

  print 'counter: ' + str(crack_counter + 1 ) 

  print 'second region crack: ' + str(crack_length)  

print 'crack_length: ' + str(crack_length + center_to_center + 

major_axis_hole)  

  print 'num_increments: ' + str(num_increments) 

  print 'crack_length_increment: ' + str(crack_length_increment) 

   

  # round off crack length for naming 

crack_length_5deci = math.ceil((crack_length + center_to_center + 

major_axis_hole)*1000000)/1000000; 

 

  

subPath = pathName + 'P' + str(porosity).replace('.','p') + '_AR' + 

str(axes_ratio).replace('.','p') + '_MS' + str(seed_mesh).replace('.','p') + '_CL' 

+ str(crack_length_5deci).replace('.','p') + "/" 

  

 if not os.path.exists(subPath): 

  os.makedirs(subPath) 

 os.chdir(subPath) 

  

 # PART --------------------------------------------------------------------------- 

 partName = 'whole_spec' 

 



74 

 

 # PART: Dog bone 

 mdb.models[modelName].ConstrainedSketch(name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].sketchOptions.setValues( 

gridOrigin=(0.0, 0.0)) 

 mdb.models[modelName].sketches['__profile__'].retrieveSketch( 

sketch=mdb.models[modelName].sketches['Dog_bone']) 

mdb.models[modelName].Part(dimensionality=TWO_D_PLANAR, name=partName, 

type=DEFORMABLE_BODY) 

 mdb.models[modelName].parts[partName].BaseShell( 

sketch=mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

 

 # PART: Circle void 

 mdb.models[modelName].ConstrainedSketch( 

name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].sketchOptions.setValues( 

gridOrigin=(0.0, 0.0)) 

 mdb.models[modelName].sketches['__profile__'].retrieveSketch( 

sketch=mdb.models[modelName].sketches['Stophole_void']) 

 mdb.models[modelName].parts[partName].Cut( 

sketch=mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

  

 #PART: Grip Partition: top and bottom 

 mdb.models[modelName].ConstrainedSketch( 

name='__profile__', sheetSize=200.0) 

 mdb.models[modelName].sketches['__profile__'].Line( 

point1=(-20.0, 70.0),  

point2=(20.0,70.0)) 

 mdb.models[modelName].sketches['__profile__'].Line( 

point1=(-20.0, -70.0),  

point2=(20.0,-70.0)) 

 mdb.models[modelName].parts[partName].PartitionFaceBySketch( 

  faces=mdb.models[modelName].parts[partName].faces,    

  sketch=mdb.models[modelName].sketches['__profile__']) 

 del mdb.models[modelName].sketches['__profile__'] 

  

 # PART: Left-Crack and Right Crack (First Regions) 

 if crack_counter + 1.0 <= num_increments/2: 

  mdb.models[modelName].ConstrainedSketch( 

name='__profile__', sheetSize=200.0) 

  mdb.models[modelName].sketches['__profile__'].Line( 

point1=(-1.0*center_to_center - major_axis_hole - stop_hole_radius, 0.0),  

point2=(-1.0*center_to_center - major_axis_hole - stop_hole_radius - 

crack_length, 0.0)) 

  mdb.models[modelName].sketches['__profile__'].Line( 

point1=(1.0*center_to_center + major_axis_hole + stop_hole_radius, 0.0),  

point2=(1.0*center_to_center + major_axis_hole + stop_hole_radius + 

crack_length,0.0))  

mdb.models[modelName].parts[partName].PartitionFaceBySketch(   

faces=mdb.models[modelName].parts[partName].faces,sketch=mdb.models[modelN

ame].sketches['__profile__']) 

  del mdb.models[modelName].sketches['__profile__'] 

   

  # PART: Left-End-Seam1 

  mdb.models[modelName].ConstrainedSketch( 

name='__profile__', sheetSize=200.0) 

  mdb.models[modelName].sketches['__profile__'].rectangle( 

       point1=(-1.0*center_to_center, -0.001),  

point2=(-1.0*center_to_center+major_axis_hole+stop_hole_radius+ 

crack_length, 0.001)) 

  mdb.models[modelName].parts[partName].Cut( 

sketch=mdb.models[modelName].sketches['__profile__']) 

  del mdb.models[modelName].sketches['__profile__'] 

 

  # PART: Right-End-Seam1 

  mdb.models[modelName].ConstrainedSketch( 



75 

 

name='__profile__', sheetSize=200.0) 

  mdb.models[modelName].sketches['__profile__'].rectangle( 

       point1=(1.0*center_to_center, -0.001),  

point2=(1.0*center_to_center-major_axis_hole- 

stop_hole_radius-crack_length, 0.001)) 

  mdb.models[modelName].parts[partName].Cut( 

sketch=mdb.models[modelName].sketches['__profile__']) 

  del mdb.models[modelName].sketches['__profile__'] 

   

 # PART: Left-Crack and Right Crack (Second Region) 

 if crack_counter + 1.0 > num_increments/2: 

  mdb.models[modelName].ConstrainedSketch( 

name='__profile__', sheetSize=200.0) 

  mdb.models[modelName].sketches['__profile__'].Line( 

point1=(-1.0*center_to_center + major_axis_hole + stop_hole_radius, 0.0),  

point2=(-1.0*center_to_center + major_axis_hole + stop_hole_radius + 

crack_length,0.0)) 

  mdb.models[modelName].sketches['__profile__'].Line( 

point1=(1.0*center_to_center - major_axis_hole  

- stop_hole_radius, 0.0),  

   point2=(1.0*center_to_center - major_axis_hole - stop_hole_radius  

-  crack_length,0.0))  

mdb.models[modelName].parts[partName].PartitionFaceBySketch(      

faces=mdb.models[modelName].parts[partName].faces,sketch=mdb.models

[modelName].sketches['__profile__']) 

  del mdb.models[modelName].sketches['__profile__'] 

   

  # PART: Left-End-Seam2 

  mdb.models[modelName].ConstrainedSketch( 

name='__profile__', sheetSize=200.0) 

  mdb.models[modelName].sketches['__profile__'].rectangle( 

       point1=(-1.0*center_to_center, -0.001),  

point2=(-1.0*center_to_center - major_axis_hole - stop_hole_radius  

-crack_length, 0.001)) 

  mdb.models[modelName].parts[partName].Cut( 

sketch=mdb.models[modelName].sketches['__profile__']) 

  del mdb.models[modelName].sketches['__profile__'] 

 

  # PART: Right-End-Seam2 

  mdb.models[modelName].ConstrainedSketch( 

name='__profile__', sheetSize=200.0) 

  mdb.models[modelName].sketches['__profile__'].rectangle( 

      point1=(1.0*center_to_center, -0.001),  

point2=(1.0*center_to_center + major_axis_hole 

+stop_hole_radius+crack_length, 0.001)) 

  mdb.models[modelName].parts[partName].Cut( 

sketch=mdb.models[modelName].sketches['__profile__']) 

  del mdb.models[modelName].sketches['__profile__'] 

  

 # MATERIAL ----------------------------------------------------------------------- 

 mdb.models[modelName].Material( 

description='Linear elastic material model', 

name=materialName).Elastic(table=((Youngs_Modulus, Poissons_Ratio),)) 

 # SECTION ------------------------------------------------------------------------ 

 mdb.models[modelName].HomogeneousSolidSection( 

material=materialName,  

name='WM_CircleVoid', thickness=None) 

 mdb.models[modelName].parts[partName].SectionAssignment( 

region=Region(faces=mdb.models[modelName].parts[partName].faces), 

sectionName='WM_CircleVoid') 

 # ASSEMBLY ----------------------------------------------------------------------- 

 instName = 'WM_CircleVoid' 

 mdb.models[modelName].rootAssembly.DatumCsysByDefault(CARTESIAN) 

 mdb.models[modelName].rootAssembly.Instance( 

dependent=OFF,  

name=instName,  

part=mdb.models[modelName].parts[partName]) 



76 

 

   

 # INTERACTION -------------------------------------------------------------------- 

 if crack_counter + 1.0 <= num_increments/2: 

  # center of left crack at x-direction (in mm) 

left_crack_x = -1.0*center_to_center - major_axis_hole - stop_hole_radius 

- crack_length/2.0;   

  # center of right crack at x-direction (in mm)   

right_crack_x = 1.0*center_to_center + major_axis_hole + stop_hole_radius 

+ crack_length/2.0; 

  # INTERACTION: Assign Crack Set 

  mdb.models[modelName].rootAssembly.Set( 

edges=mdb.models[modelName].rootAssembly.instances[instName].edges.

findAt( 

       ((left_crack_x, 0.0, 0.0), )), name='left_crack')   

  mdb.models[modelName].rootAssembly.Set( 

edges=mdb.models[modelName].rootAssembly.instances[instName].edges.

findAt( 

       ((right_crack_x, 0.0, 0.0), )), name='right_crack') 

  # INTERACTION: Assign Seam 

  mdb.models[modelName].rootAssembly.engineeringFeatures.assignSeam( 

       regions=mdb.models[modelName].rootAssembly.sets['left_crack']) 

  mdb.models[modelName].rootAssembly.engineeringFeatures.assignSeam( 

       regions=mdb.models[modelName].rootAssembly.sets['right_crack']) 

 

  # INTERACTION: Contour Integral 

  # tip of left crack at x-direction (in mm) 

  left_crack_tip = -1.0*center_to_center - major_axis_hole  

- stop_hole_radius - crack_length; 

  # tip of right crack at x-direction (in mm)  

right_crack_tip =1.0*center_to_center + major_axis_hole + stop_hole_radius 

+ crack_length; 

mdb.models[modelName].rootAssembly.engineeringFeatures.ContourIntegral( 

collapsedElementAtTip=NONE, 

crackFront=Region( 

edges=mdb.models[modelName].rootAssembly.instances[instName].edges.

findAt(((right_crack_x, 0.0, 0.0), ), )), 

crackTip=Region(vertices=mdb.models[modelName].rootAssembly.instanc

es[instName].vertices.findAt(((right_crack_tip, 0.0, 0.0), ), )), 

extensionDirectionMethod=Q_VECTORS, midNodePosition=0.5, 

name='right_crack', qVectors=(( 

mdb.models[modelName].rootAssembly.instances[instName].vertices.fin

dAt((right_crack_tip, 0.0, 0.0), ), (20.0, 0.0, 0.0)), ), 

symmetric=ON) 

 

  mdb.models[modelName].rootAssembly.engineeringFeatures.ContourIntegral( 

collapsedElementAtTip=NONE,crackFront=Region(edges=mdb.models[modelName].r

ootAssembly.instances[instName].edges.findAt(((left_crack_x, 0.0, 0.0), ), 

)), crackTip=Region( 

vertices=mdb.models[modelName].rootAssembly.instances[instName].ver

tices.findAt(((left_crack_tip, 0.0, 0.0), ), )), 

extensionDirectionMethod=Q_VECTORS, midNodePosition=0.5, 

name='left_crack', qVectors=(( 

mdb.models[modelName].rootAssembly.instances[instName].vertices.fin

dAt((left_crack_tip, 0.0, 0.0), ), (-20.0, 0.0, 0.0)), ), 

symmetric=ON) 

      

 if crack_counter + 1.0 > num_increments/2: 

  

  # center of left crack at x-direction (in mm) 

left_crack_x = -1.0*center_to_center + major_axis_hole + stop_hole_radius 

+ crack_length/2.0;   

  # center of right crack at x-direction (in mm)   

right_crack_x = 1.0*center_to_center - major_axis_hole - stop_hole_radius  

- crack_length/2.0; 

  print 'left_crack_x :' + str(left_crack_x) 

  print 'right_crack_x :' + str(right_crack_x)  

  # INTERACTION: Assign Crack Set 



77 

 

mdb.models[modelName].rootAssembly.Set(edges=mdb.models[modelName].rootAss

embly.instances[instName].edges.findAt(((left_crack_x, 0.0, 0.0), )), 

name='left_crack')   

  mdb.models[modelName].rootAssembly.Set( 

edges=mdb.models[modelName].rootAssembly.instances[instName].edges.

findAt(((right_crack_x, 0.0, 0.0), )), name='right_crack') 

   

  # INTERACTION: Assign Seam 

  mdb.models[modelName].rootAssembly.engineeringFeatures.assignSeam( 

regions=mdb.models[modelName].rootAssembly.sets['left_crack']) 

  mdb.models[modelName].rootAssembly.engineeringFeatures.assignSeam( 

regions=mdb.models[modelName].rootAssembly.sets['right_crack']) 

   

  # INTERACTION: Contour Integral 

  # tip of left crack at x-direction (in mm) 

  left_crack_tip = -1.0*center_to_center + major_axis_hole  

+ stop_hole_radius + crack_length; 

  # tip of right crack at x-direction (in mm)  

  right_crack_tip = 1.0*center_to_center - major_axis_hole  

- stop_hole_radius - crack_length; 

mdb.models[modelName].rootAssembly.engineeringFeatures.ContourIntegral( 

collapsedElementAtTip=NONE,crackFront=Region(edges=mdb.models[modelName].r

ootAssembly.instances[instName].edges.findAt(((right_crack_x, 0.0, 0.0), 

), )), 

crackTip=Region(vertices=mdb.models[modelName].rootAssembly.instances[inst

Name].vertices.findAt(((right_crack_tip, 0.0, 0.0), ), )), 

extensionDirectionMethod=Q_VECTORS, midNodePosition=0.5, 

name='right_crack', qVectors=(( 

mdb.models[modelName].rootAssembly.instances[instName].vertices.findAt((ri

ght_crack_tip, 0.0, 0.0), ), (-1.0, 0.0, 0.0)), ), symmetric=ON) 

 

  mdb.models[modelName].rootAssembly.engineeringFeatures.ContourIntegral( 

collapsedElementAtTip=NONE,crackFront=Region(edges=mdb.models[modelName].r

ootAssembly.instances[instName].edges.findAt(((left_crack_x, 0.0, 0.0), ), 

)), 

crackTip=Region(vertices=mdb.models[modelName].rootAssembly.instances[inst

Name].vertices.findAt(((left_crack_tip, 0.0, 0.0), ), )), 

extensionDirectionMethod=Q_VECTORS, midNodePosition=0.5, 

name='left_crack', qVectors=(( 

mdb.models[modelName].rootAssembly.instances[instName].vertices.findAt((le

ft_crack_tip, 0.0, 0.0), ), (1.0, 0.0, 0.0)), ), symmetric=ON) 

 # STEP --------------------------------------------------------------------------- 

mdb.models[modelName].StaticStep(description='Uniaxial Tension in y-y direction', 

name='Tension', previous='Initial') 

mdb.models[modelName].steps['Tension'].setValues(adaptiveDampingRatio=None, 

continueDampingFactors=False, matrixSolver=DIRECT, solutionTechnique=FULL_NEWTON, 

stabilizationMethod=NONE) 

#mdb.models[modelName].StaticStep(initialInc=0.001, maxInc=0.01, maxNumInc=10000, 

minInc=1e-09, name='Tension', previous='Initial') 

   

 # MESH (based on Assembly) 

 # MESH: Seed Mesh 

mdb.models[modelName].rootAssembly.seedPartInstance(deviationFactor=0.1, 

minSizeFactor=0.1, regions=( 

  mdb.models[modelName].rootAssembly.instances[instName], ), size=seed_mesh) 

 # MESH: Element Type  

 mdb.models[modelName].rootAssembly.setElementType(elemTypes=( 

  ElemType(elemCode=CPS8, elemLibrary=STANDARD), ElemType(elemCode=CPS6,  

  elemLibrary=STANDARD)), 

regions=(mdb.models[modelName].rootAssembly.instances[instName].faces.findAt((cent

er_to_center/2.0, center_to_center/2.0, thickness/2.0),),)) 

 # MESH: Control 

 mdb.models[modelName].rootAssembly.setMeshControls(elemShape=QUAD,  

regions=(mdb.models[modelName].rootAssembly.instances[instName].faces.findAt((cent

er_to_center/2.0, center_to_center/2.0, thickness/2.0),),)) 

 # MESH: Generate Mesh  

 mdb.models[modelName].rootAssembly.generateMesh( 



78 

 

regions=(mdb.models[modelName].rootAssembly.instances[instName], )) 

  

 # BOUNDARY CONDITION ------------------------------------------------------------- 

 # BOUNDARY CONDITION: Grips Set 

 mdb.models[modelName].rootAssembly.Set( 

faces=mdb.models[modelName].rootAssembly.instances[instName].faces.findAt(

((0,100,0),),), name='top_grip') 

 mdb.models[modelName].rootAssembly.Set( 

faces=mdb.models[modelName].rootAssembly.instances[instName].faces.findAt(

((0,-100,0),),), name='bottom_grip') 

  

 # BOUNDARY CONDITION: Top Displacement Load 

 mdb.models[modelName].DisplacementBC( 

amplitude=UNSET, createStepName='Tension', distributionType=UNIFORM, 

fieldName='', fixed=OFF, localCsys=None, name='top_disp', 

region=mdb.models[modelName].rootAssembly.sets['top_grip'], u1=UNSET, 

u2=displacement_load, ur3=UNSET) 

 # BOUNDARY CONDITION: Bottom Displacement Load 

 mdb.models[modelName].DisplacementBC( 

amplitude=UNSET, createStepName='Tension', distributionType=UNIFORM, 

fieldName='', fixed=OFF, localCsys=None, name='bottom_disp', 

region=mdb.models[modelName].rootAssembly.sets['bottom_grip'], u1=UNSET, u2=-

1.0*displacement_load, ur3=UNSET) 

  

 # FIELD OUTPUT REQUEST ----------------------------------------------------------- 

mdb.models[modelName].fieldOutputRequests['F-Output-1'].setValues(variables=('S', 

'E', 'U', 'RF', 'CF')) 

 # HISTORY OUTPUT REQUEST --------------------------------------------------------- 

 # HISTORY OUTPUT REQUEST: Right Crack 

 mdb.models[modelName].historyOutputRequests['H-Output-1'].setValues( 

contourIntegral='right_crack', numberOfContours=1, rebar=EXCLUDE, 

sectionPoints=DEFAULT) 

 mdb.models[modelName].HistoryOutputRequest(contourIntegral='right_crack',  

  contourType=K_FACTORS, createStepName='Tension', kFactorDirection=MERR,  

name='H-Output-2', numberOfContours=1, rebar=EXCLUDE, 

sectionPoints=DEFAULT) 

 # HISTORY OUTPUT REQUEST: Left Crack 

 mdb.models[modelName].HistoryOutputRequest(contourIntegral='left_crack',  

  createStepName='Tension', name='H-Output-3', numberOfContours=1, rebar= 

  EXCLUDE, sectionPoints=DEFAULT) 

 mdb.models[modelName].HistoryOutputRequest(contourIntegral='left_crack',  

  contourType=K_FACTORS, createStepName='Tension', kFactorDirection=MERR,  

name='H-Output-4', numberOfContours=1, rebar=EXCLUDE, 

sectionPoints=DEFAULT) 

 # JOB ---------------------------------------------------------------------------- 

jobName = 'job_crack_C' + str(int(crack_counter + 1)) + 'P' + 

str(porosity).replace('.','p') + '_AR' + str(axes_ratio).replace('.','p') + '_MS' 

+ str(seed_mesh).replace('.','p') + '_CL' + 

str(crack_length_5deci).replace('.','p') 

   

 mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,  

  explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,  

  memory=16000, memoryUnits=MEGA_BYTES, model=modelName, modelPrint= 

OFF, multiprocessingMode=DEFAULT, name=jobName, 

nodalOutputPrecision=SINGLE 

  , numCpus=1, numGPUs=0, queue=None, resultsFormat=ODB, scratch='', type= 

  ANALYSIS, userSubroutine='', waitHours=0, waitMinutes=0, 

  parallelizationMethodExplicit=DOMAIN, numDomains=1) 

   

 mdb.jobs[jobName].submit(consistencyChecking=OFF) 

 mdb.jobs[jobName].waitForCompletion() 

 mdb.saveAs(pathName=subPath + str(int(crack_counter + 1)) + 'Circle_CL' + 

str(crack_length_5deci).replace('.','p') + '.cae') 


	Santa Clara University
	Scholar Commons
	6-2018

	Numerical Analysis of Fatigue Crack Growth of Low Porosity Auxetic Materials using the Contour J-integral
	Garivalde S. Dominguez
	Recommended Citation


	tmp.1539283859.pdf.YAz83

