
Santa Clara University
Scholar Commons

Engineering Ph.D. Theses Student Scholarship

6-2019

Deep Learning for Recommender Systems
Travis Akira Ebesu

Follow this and additional works at: https://scholarcommons.scu.edu/eng_phd_theses

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

This Dissertation is brought to you for free and open access by the Student Scholarship at Scholar Commons. It has been accepted for inclusion in
Engineering Ph.D. Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Ebesu, Travis Akira, "Deep Learning for Recommender Systems" (2019). Engineering Ph.D. Theses. 22.
https://scholarcommons.scu.edu/eng_phd_theses/22

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/student_scholar?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_phd_theses/22?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

SANTA CLARA UNIVERSITY
Department of Computer Engineering

Date: June 2019

I HEREBY RECOMMENDED THAT THE THESIS PREPARED UNDER

DR. YI FANG BY

Travis Akira Ebesu

ENTITLED

Deep Learning for Recommender Systems

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE & ENGINEERING

Thesis Advisor
Dr. Yi Fang

Chairman of Department

Dr. Nam Ling

ci^.^-e^U ^
r-

Dr

<| ^A{ZS '•'

sl

A;

LL

Thesis Reader
. Behnam Dezfouli

j-i m

_4
Thesis Reader

Dr. Yuhong Liu

J j »
11 A \^-

Thesis Reader

Dr. Haibing Lu

Thesis Reader
Dr. Weijia Shang

Deep Learning for Recommender Systems

by

Travis Akira Ebesu

Dissertation

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
in Computer Science & Engineering

in the School of Engineering at Santa Clara University, 2019

Santa Clara, California

Dedicated to my family. . .

iii

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor Prof.

Yi Fang for the continuous guidance, encouragement and enthusiasm throughout my

doctoral studies. Everything composed in this thesis has been the fruit fostered by him

from the late nights before paper submissions to long hours of mentoring. He provided

an environment which cultivated my skills not only as a researcher but also in personal

development. It has been a privilege to work with such an excellent mentor and role

model.

I would also like to thank my doctoral committee consisting of Prof. Behnam Dezfouli,

Prof. Yuhong Liu, Prof. Haibing Lu, and Prof. Weijia Shang for their time, effort and

valuable suggestions to improve this thesis.

It was a pleasure to work with the other graduate students in our research group. I

enjoyed our group meetings, presentations and thoughtful discussions which fostered a

better understanding of complex topics.

Finally, I would like to thank my family and friends. My parents, whom provided

unconditional love and support throughout my life. To Kellie, your love and patience

helped to get me through this long journey.

iv

Deep Learning for Recommender Systems

Travis Akira Ebesu

Department of Computer Engineering
Santa Clara University
Santa Clara, California

2019

ABSTRACT

The widespread adoption of the Internet has led to an explosion in the number of

choices available to consumers. Users begin to expect personalized content in modern

E-commerce, entertainment and social media platforms. Recommender Systems (RS)

provide a critical solution to this problem by maintaining user engagement and satis-

faction with personalized content.

Traditional RS techniques are often linear limiting the expressivity required to model

complex user-item interactions and require extensive handcrafted features from domain

experts. Deep learning demonstrated significant breakthroughs in solving problems that

have alluded the artificial intelligence community for many years advancing state-of-the-

art results in domains such as computer vision and natural language processing.

The recommender domain consists of heterogeneous and semantically rich data such

as unstructured text (e.g. product descriptions), categorical attributes (e.g. genre of

a movie), and user-item feedback (e.g. purchases). Deep learning can automatically

capture the intricate structure of user preferences by encoding learned feature represen-

tations from high dimensional data.

In this thesis, we explore five novel applications of deep learning-based techniques to ad-

dress top-n recommendation. First, we propose Collaborative Memory Network, which

unifies the strengths of the latent factor model and neighborhood-based methods in-

spired by Memory Networks to address collaborative filtering with implicit feedback.

Second, we propose Neural Semantic Personalized Ranking, a novel probabilistic gener-

ative modeling approach to integrate deep neural network with pairwise ranking for the

item cold-start problem. Third, we propose Attentive Contextual Denoising Autoen-

coder augmented with a context-driven attention mechanism to integrate arbitrary user

and item attributes. Fourth, we propose a flexible encoder-decoder architecture called

Neural Citation Network, embodying a powerful max time delay neural network encoder

augmented with an attention mechanism and author networks to address context-aware

citation recommendation. Finally, we propose a generic framework to perform conversa-

tional movie recommendations which leverages transfer learning to infer user preferences

from natural language. Comprehensive experiments validate the effectiveness of all five

proposed models against competitive baseline methods and demonstrate the successful

adaptation of deep learning-based techniques to the recommendation domain.

Contents

Acknowledgements iv

Abstract v

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 15
1.1 Motivation . 15
1.2 Overview . 20
1.3 Contributions . 24
1.4 Outline . 26

2 Related Work 28
2.1 Recommendation Systems . 28

2.1.1 Implicit Feedback . 29
2.1.2 Cold-Start Problem . 29
2.1.3 Citation Recommendation . 30

2.2 Deep Learning . 31
2.2.1 CNN for NLP . 32
2.2.2 Neural Machine Translation . 32
2.2.3 Memory Augmented Neural Networks 33

2.3 Deep Learning in Recommendation Systems 34

3 Collaborative Memory Networks 40
3.1 Introduction . 40
3.2 Collaborative Filtering . 43

vii

Contents viii

3.2.1 Latent Factor Models . 44
3.2.2 Neighborhood-based Similarity Models 45
3.2.3 Hybrid Models . 47

3.3 Collaborative Memory Network . 49
3.3.1 User Embedding . 49
3.3.2 Neighborhood Attention . 50
3.3.3 Output Module . 52
3.3.4 Multiple Hops . 53
3.3.5 Parameter Estimation . 55
3.3.6 Computational Complexity . 56

3.4 Relation to Existing Models . 57
3.4.1 Latent Factor Model . 57
3.4.2 Neighborhood-based Similarity Model 58
3.4.3 Hybrid Model . 59
3.4.4 Memory Networks . 59

3.5 Experimental Results . 60
3.5.1 Datasets . 60
3.5.2 Evaluation . 61
3.5.3 Baselines and Settings . 61
3.5.4 Baseline Comparison . 65
3.5.5 Embedding Size . 67
3.5.6 Effects of Attention and Nonlinearity 69
3.5.7 Negative Sampling . 70
3.5.8 Attention Visualization . 72

3.6 Summary . 75

4 Neural Semantic Personalized Ranking 77
4.1 Introduction . 77
4.2 Neural Semantic Personalized Ranking 81

4.2.1 Probabilistic Generative Modeling 82
4.2.2 Parameter Estimation . 86
4.2.3 Pairwise Probability . 88

4.2.3.1 Logistic Probability . 88
4.2.3.2 Probit Probability . 89

4.2.4 Prediction for Cold-Start Items 90
4.3 Experimental Results . 91

4.3.1 Datasets . 91
4.3.2 Evaluation Metrics . 92
4.3.3 Baselines and Settings . 93
4.3.4 Baseline Comparison . 95
4.3.5 Number of Latent Factors . 97

Contents ix

4.3.6 Architecture of NSPR . 101
4.3.7 Impact of Item Variance . 103
4.3.8 Qualitative Evaluation . 104

4.4 Summary . 106

5 Attentive Contextual Denoising Autoencoder 108
5.1 Introduction . 108
5.2 Attentive Contextual Denoising Autoencoder 113

5.2.1 The Architecture . 114
5.2.2 Top-n Recommendation . 117

5.3 Experimental Results . 119
5.3.1 Datasets . 119
5.3.2 Experimental Setup . 120
5.3.3 The Effect of Hidden Units and Corruption Ratio 127
5.3.4 Baseline Comparisons . 127

5.4 Summary . 129

6 Neural Citation Network 131
6.1 Introduction . 131
6.2 Neural Citation Network . 135

6.2.1 Encoder . 135
6.2.2 Decoder . 137
6.2.3 Author Networks . 138

6.3 Experimental Results . 140
6.3.1 Setup . 140
6.3.2 Baselines . 141
6.3.3 Qualitative Study . 142

6.4 Summary . 143

7 Conversational Recommendation 145
7.1 Introduction . 145
7.2 Recommendations through Conversational Transfer 147

7.2.1 Interaction Function . 148
7.2.2 Encoder . 149
7.2.3 Mixture of Item Latent Factors 150
7.2.4 Parameter Estimation . 152
7.2.5 Recommendation . 153
7.2.6 Choice of Interaction Function . 153

7.3 Experimental Results . 155
7.3.1 Dataset . 155
7.3.2 Evaluation Metrics . 156
7.3.3 Baselines and Settings . 157

Contents x

7.3.4 Baseline Comparison . 159
7.3.5 Effect of Encoder . 160

7.4 Summary . 160

8 Conclusion 162
8.1 Summary . 162
8.2 Future Work . 165

Bibliography 168

List of Figures

3.1 Proposed architecture of Collaborative Memory Network (CMN) with a
single hop (a) and with multiple hops (b). 48

3.2 Experimental results for CMN varying the embedding size from 20-100
and hops from 1-4. 68

3.3 Experimental results for CMN varying the number of negative samples
from 2-10 and hops from 1-3. 71

3.4 Heatmap of the attention weights over four hops. The color scale indi-
cates the intensities of the weights, darker representing a higher weight
and lighter a lower weight. Each column represents a user in the neigh-
borhood labeled with the number of items in common with the target
user / number of ratings in training set. For example, 11/167 indicates
user 1 has 11 items corated with the current user u and has rated a total
of 167 items in the training set. 73

4.1 Graphical model representation of NSPR. The double circled nodes rep-
resent observed variables and other nodes are latent variables. 83

4.2 Logistic and Probit pairwise probability functions in NSPR 90
4.3 Recall@300 (left) and NDCG@10 (right) for varying number of latent

factors (K) and hidden layers (L) averaged over 10-folds on the citeulike-
a dataset. 98

4.4 Recall@300 (left) and NDCG@10 (right) for varying number of latent
factors (K) and hidden layers (L) averaged over 10-folds on the Yahoo!
Movies dataset. 99

5.1 Attentive Contextual Denoising Autoencoder Architecture 113
5.2 Hidden Unit Count Selection . 121
5.3 Corruption Ratio Selection . 121

6.1 Example citation context with a placeholder denoted by [•] indicating
where the corresponding cited paper would appear. 133

6.2 The proposed architecture of Neural Citation Network (NCN) with the
attention mechanism and author networks. The dashed arrows represent
recurrent dependencies. 134

xi

List of Figures xii

6.3 Recall, NDCG, MAP, and MRR as the number of recommendations vary
from 1 to 10. 143

7.1 Example dialogue between the Seeker asking for recommendations and
the Recommender providing suggestions from the ReDial dataset. The
movies mentions are in bold. 146

List of Tables

3.1 Dataset statistics. 60
3.2 Experimental results for different methods on the Epinions, citeulike-a

and Pinterest datasets. Best results highlighted in bold. † indicates the
improvement over baselines is statistically significant on a paired t-test
(p < 0.01). 64

3.3 CMN variants without attention (CMN-Attn); linear activation with at-
tention (CMN-Linear); and linear without attention (CMN-Linear-Attn). 64

4.1 Notations . 82
4.2 Dataset statististics . 91
4.3 Experimental results for different methods on the citeulike-a dataset. The

best results in each metric are highlighted. 95
4.4 Experimental results for different methods on the Yahoo! Movies dataset.

The best results in each metric are highlighted. 96
4.5 Variance over 10-Folds of NSPR variants for varying the number of latent

factors (K) and hidden layers (L) on the citeulike-a dataset. We denote
P/1 to indicate NSPR-Probit with one hidden layer and similarly, L/2 to
indicate NSPR-Logistic with two hidden layers. 100

4.6 Variance over 10-Folds of NSPR variants for varying the number of latent
factors (K) and hidden layers (L) on the Yahoo! Movies dataset. We
denote P/1 to indicate NSPR-Probit with one hidden layer and similarly,
L/2 to indicate NSPR-Logistic with two hidden layers. 100

4.7 Recall@300 for NSPR with different number of hidden layers (L = 1, 2, 3, 4)
for citeulike-a. 102

4.8 Recall@300 for NSPR with different number of hidden layers (L = 1, 2, 3, 4)
for Yahoo! Movies. 102

4.9 Recall@300 for different values of σ2
e on the citeulike-a dataset 104

4.10 Recall@300 for different values of σ2
e on the Yahoo! Movies dataset . . . 104

4.11 Top-5 recommended articles by NSPR-L, CDL and CTR. The positive
items are highlighted. 105

4.12 Top-5 recommended movies by NSPR-L, CDL and CTR. The positive
items are highlighted. 106

5.1 Data Statistics . 120

xiii

List of Tables xiv

5.2 Experimental Results - New York . 124
5.3 Experimental results - San Francisco . 124
5.4 Experimental results - Washington DC 125
5.5 Experimental results - Chicago . 125
5.6 Experimental results - Movielens 100K 126

6.1 Performance comparison of the top 10 recommendations on Recall, MAP,
MRR, and NDCG. (NCN is statistically significant from all baselines on
a paired t-test p < 0.001) . 140

6.2 Top 3 recommendations for NCN, CTM and RNN-to-RNN for the citation
context (query), correct recommendations are in bold. 144

7.1 Statistics of the ReDial dataset . 155
7.2 Experimental results for different methods reporting Recall (R), nor-

malized discounted cumulative gain (NDCG) and mean reciprocal rank
(MRR) at cut offs at 25, 50 and 100. 158

7.3 Experimental results for different encoder functions reporting Recall (R),
normalized discounted cumulative gain (NDCG) at cut offs at 25, 50 and
100. 159

Chapter 1

Introduction

1.1 Motivation

The widespread adoption of the Internet has led to an explosion in the number of

choices available to consumers. Users begin to expect personalized content in modern

E-commerce, entertainment, and social media platforms. Recommender systems (RS)

have been established as a crucial solution to keep users engaged and satisfied with

personalized content in addition to helping users navigate the vast variety of choices.

RS stem from the simple observation that users take recommendations from others. For

example, users will read product reviews before deciding to purchase a product. Sim-

ilarly, employers desire strong letters of recommendations from prospective employees.

Users are often faced with the information overload problem as the amount of content

available in a given platform expands at an ever increasing rate making it difficult to

15

Chapter 1: Introduction 16

find an appropriate choice from the large number of items. The recommendation or

suggestion is primarily concerned with a decision making process whether it is the next

song to listen to, news story to read, movie to watch, or the next job to apply to.

RS address this issue by filtering out a few highly relevant items the user may find

interesting from the vast number of irrelevant items in the catalog. The system should

predict user preferences from past interactions such as viewing a product page (implicit

feedback) or writing a review for a movie (explicit feedback). Successful systems span

a wide variety of platforms such as Amazon’s book recommendations, Netflix’s movie

recommendations or Pandora’s music recommendations [106, 31, 75].

Next, we briefly outline the business value associated with the successful implementation

of a RS. We refer to the term ‘item’ as the product, service, movie etc. being recom-

mended. First and foremost, RS provide value by increasing the number of items sold or

user consumption rate leading to a growth in revenue. For instance, entertainment giant

Netflix reports 80% of all hours watched stem from recommendations [31]. Second, RS

can improve the diversity of items being sold. Having a large catalog of items produces

no utility if the items are never bought or consumed. Conversely, the most popular

items have limited stock and may lead to unhappy customers if the recommended item

is unavailable. The system can carefully balance the current item’s availability, popular-

ity and diversity. Third, RS can improve the overall user’s experience and satisfaction

with personalized and relevant content. An increase in user satisfaction may result in

expanding user loyalty and growth in revenue. Maintaining user loyalty leads to an

increase in the number of user interactions resulting in better personalization and more

Chapter 1: Introduction 17

accurate recommendations. Lastly, the inferred user preferences can provide insights

into other tasks or decision making processes such as forecasting item stock, production

or the level of targeted advertisement to specific regions or groups. An ideal system

would provide all of the aforementioned qualities. In addition, the system must also

be robust to the highly sparse nature of the data while simultaneously maintaining

scalability to a large number of users and items, ideally in real-time.

We distinguish three different classes of recommendation algorithms: collaborative fil-

tering (CF), content-based, and hybrid methods which combine the latter two. Below

we provide a short overview of each approach. CF is a successful technique to im-

plementing recommendation systems which attempts to identify preferences of users

based on the user-item feedback matrix [100, 62]. This matrix is provided in two forms.

The first is known as explicit feedback in which the user intentionally provides a rat-

ing or review for a given item. While the latter is implicit feedback which is collected

automatically typically from clicks or views. Since implicit feedback can be collected

automatically and is more abundant, hence is the focus of this thesis. CF has two main

approaches, model-based methods and memory/neighborhood-based methods [61, 100].

Model-based methods such as matrix factorization attempts to decompose the user-item

feedback matrix by projecting each user and item into a common low dimensional space

[63]. Memory or neighborhood-based methods focus on identifying similar groups of

users known as neighbors to perform recommendations [40].

Content-based recommenders focus on recommending items similar to the items the

user has liked in the past [77], in contrast to CF methods which recommend items

Chapter 1: Introduction 18

based on users with similar preferences. Users and items are represented by some form of

auxiliary metadata, typically text or categorical attributes. For example, items could be

represented by their textual description such as a movie plot. A user could be represented

with their respective profile information such as a self-written biography, age, gender, or

location. A simple approach is the vector space model which computes the similarity of

item content and the content consisting of the user’s past item interactions. Similarity

is often computed by the cosine similarity of the term frequency inverse document

frequency (TF-IDF) vectors. The items with the highest similarity score are presented

to the user.

The hybrid approach combines the above mentioned techniques to integrate the user-

item interaction matrix with content to remedy their respective drawbacks. The lack of

interaction data from a new user or item into a system leads to the cold-start problem.

CF suffers from the inability to handle the cold-start problem which is commonplace

in real world systems. On the other hand, content-based systems can leverage the new

item’s content but may require specialized domain knowledge or feature engineering

such as a knowledge base ontology to express special relations between entities such as

movies and actors. Below, we motivate the usage of deep learning to remove the burden

of a domain expert crafting specialized features while seamlessly integrating nonlinear

user-item interactions from past feedback.

Recently, deep learning demonstrated advancements in many research areas obtaining

state of the art performance in computer vision [37], question answering [118, 109, 66,

123], learning programs [35], machine translation [2], recommender systems [128, 3] and

Chapter 1: Introduction 19

many other domains [68]. A fundamental reason is the ability to automatically encode

learned representation from the data removing the need for feature engineering from

domain experts. These learned representations from data typically perform better than

the handcrafted versions. Furthermore, neural networks can approximate any function

to an arbitrary precision given sufficient capacity [34]. A neural network consists of

multiple layers, each performing a simple nonlinear transformation. Each layer learns

multiple levels of abstractions starting with coarse structure at the lowest layers and

further refinement in subsequent layers. Collectively, the entire network learns a full

hierarchy of abstract concepts with increasing complexity. The terminology ‘deep learn-

ing’ refers to the depth or number of nonlinear layers stacked together that are learned

in an end-to-end fashion.

RS consist of high dimensional data due to the increasing volume of users and items.

Items are often accompanied with some form of rich metadata such as unstructured text

from a summary or product description and categorical data such as the genre of a movie.

Hence, deep learning can be leveraged to extract rich feature representations from item

content in an automated fashion. In conjunction with nonlinear interactions between

users and items, more intricate structure of user preferences can be extracted from the

high dimensional data. Furthermore, many traditional recommendation algorithms can

be expressed in the form of a shallow neural architecture consisting of a single linear

layer [39, 121, 122].

Chapter 1: Introduction 20

1.2 Overview

In this thesis, we explore various techniques to integrate deep learning-based methods

into the recommender domain. We propose five novel deep learning-based recommen-

dation models each addressing a specific challenge of user personalization. The focus of

this thesis is on top-n item ranking with implicit feedback with the exception of Chapter

7 where user feedback is directly extracted from natural language conversations. The

proposed models demonstrate the successful integration of various deep learning ar-

chitectures such as multi-layer perceptrons, denoising autoencoders, memory networks,

convolutional neural networks and recurrent neural networks into the RS domain.

We will first contextualize the relationship of each problem addressed at a high level.

First, Chapter 3 based on our work [27], introduces nonlinear interactions to extract

diverse user preferences in a traditional CF setting. In order to alleviate the problems

associated with introducing new items into a system, Chapter 4 based on our work in

[26], extends the CF setting to address the item cold-start problem by utilizing content

information. Third, to exploit the high availability of contextual information in the

CF setting, Chapter 5 based on our work [53], introduces the integration of contextual

attributes into user personalization. Fourth, Chapter 6 based on our work [25], shifts

towards addressing personalization in a purely content-based setting of context-aware

citation recommendation. Finally, Chapter 7 further expands upon the adoption of

content-based personalization to a conversational setting. Below we provide a more

detailed breakdown of each methodology.

Chapter 1: Introduction 21

As previously discussed, a popular and successful technique, CF, assumes similar users

will consume similar items by establishing the similarity between users and items from

past interactions (e.g. clicks, ratings, purchases). The successful integration of deep

learning methods in recommendation systems have demonstrated the noticeable advan-

tages of complex nonlinear transformations over traditional linear models [128]. We

propose Collaborative Memory Networks (CMN), a deep architecture to unify the two

classes of CF models capitalizing on the strengths of the global structure of latent factor

model and local neighborhood-based structure in a nonlinear fashion yielding a unified

nonlinear hybrid model. Specifically, we fuse a memory component and neural attention

mechanism as the neighborhood component. The associative addressing scheme with

the user and item memories in the memory module encodes complex user-item rela-

tions coupled with the neural attention mechanism to learn a user-item specific neigh-

borhood. Finally, the output module jointly exploits the neighborhood with the user

and item memories to produce the ranking score. Stacking multiple memory modules

together yield deeper architectures capturing increasingly complex user-item relations.

Furthermore, we show strong connections between CMN components, memory networks

and the three classes of CF models. Comprehensive experimental results demonstrate

the effectiveness of CMN on three public datasets outperforming competitive baselines.

Qualitative visualization of the attention weights provide insight into the model’s rec-

ommendation process and suggest the presence of higher order interactions.

A core problem when employing CF techniques is the item cold-start problem, which is

caused by the system’s incapability of dealing with new items due to the lack of past

Chapter 1: Introduction 22

relevant transaction history. At a high level the key idea to address this problem is to

obtain item latent factors from rating matrix and content matrix respectively and couple

them in the shared latent space. These methods extend the traditional matrix factor-

ization models by integrating content information, but the latent representation learned

is often not effective especially when the content information is very sparse which is

the case for many recommendation tasks where the item descriptions are usually quite

short. The ineffectiveness may lie in the fact that these techniques can be viewed as

shallow models in capturing latent topics from item descriptions and feedback informa-

tion by applying simple transformations (often linear) on the observed data, while the

ideal latent factors may have more complex relations with the observations.

To address the above challenges, we propose a probabilistic modeling approach called

Neural Semantic Personalized Ranking (NSPR) to unify the strengths of deep neu-

ral network and pairwise learning. Specifically, NSPR tightly couples a latent factor

model with a deep neural network to learn a robust feature representation from both

implicit feedback and item content, subsequently allowing our model to generalize to

unseen items. We demonstrate NSPR’s versatility to integrate various pairwise prob-

ability functions and propose two variants based on the Logistic and Probit functions.

We conduct a comprehensive set of experiments on two real-world public datasets and

demonstrate that NSPR significantly outperforms the state-of-the-art baselines.

Traditional collaborative filtering techniques have demonstrated effectiveness in a wide

range of recommendation tasks, but they are unable to capture complex relationships be-

tween users and items as prior work does not incorporate contexual information, which

Chapter 1: Introduction 23

is usually largely available in many recommendation tasks. Furthermore, integrating

additional features such as contextual information to existing deep learning-based RS

often require modifications to create a specialized neural network architecture. We pro-

pose a generic deep learning based model for contexual recommendation to seamlessly

integrate arbitrary user and item contextual information. Specifically, the model con-

sists of a denoising autoencoder neural network architecture augmented with a context-

driven attention mechanism, referred to as Attentive Contextual Denoising Autoencoder

(ACDA). The attention mechanism is utilized to encode the contextual attributes into

the hidden representation of the user’s preference, which associates personalized context

with each user’s preference to provide recommendation targeted to that specific user.

Experiments conducted on multiple real-world datasets on event and movie recommen-

dations demonstrate the effectiveness of the proposed model over the state-of-the-art

baseline methods.

We now shift our focus to the task of context-aware citation-recommendation. The

accelerating rate of scientific publications makes it difficult to find relevant citations

or related work. Context-aware citation-recommendation aims to solve this problem by

providing a curated list of high-quality candidates given a short passage of text. Existing

literature adopts bag-of-word representations leading to the loss of valuable semantics

and lacks the ability to integrate metadata or generalize to unseen manuscripts in the

training set. We propose a flexible encoder-decoder architecture called Neural Citation

Network (NCN), embodying a robust representation of the citation context with a max

Chapter 1: Introduction 24

time delay neural network, further augmented with an attention mechanism and au-

thor networks. The recurrent neural network decoder consults this representation when

determining the optimal paper to recommend based solely on its title. Quantitative

results on the large-scale CiteSeer dataset reveal NCN cultivates a significant improve-

ment over competitive baselines. Qualitative evidence highlights the effectiveness of

the proposed end-to-end neural network revealing a promising research direction for

citation-recommendation.

Lastly, we tackle the challenge of performing movie-recommendations in the conversa-

tional setting with a generic framework using transfer learning. Specifically, we transfer

existing learned item preferences from the large scale MovieLens dataset and apply it

to the conversational domain. Since no user interaction history exists we infer user

preferences from the natural language conversation and learn a new user latent factor

in an online fashion. Experimental results with two different interaction functions con-

firm the benefits of our framework. In addition, we examine the effect between the two

interaction functions and multiple state of the art language model encoders.

1.3 Contributions

The contributions of this thesis can be summarized as follows:

• We propose a novel hybrid architecture, Collaborative Memory Network (CMN),

which unifies the strengths of the latent factor model and neighborhood-based

Chapter 1: Introduction 25

methods inspired by Memory Networks to address collaborative filtering (CF)

with implicit feedback. Comprehensive experiments on three different datasets

demonstrate significant performance gains for seven competitive baselines.

• We propose Neural Semantic Personalized Ranking (NSPR), a novel probabilistic

generative modeling approach to integrate deep neural network (DNN) with pair-

wise ranking. With the modeling power of deep learning, we can extract semantic

representation from items and couple it with the latent factors learned from im-

plicit feedback. The experiments show that the proposed approach significantly

outperforms the competitive baselines on two real-world public datasets.

• We propose Attentive Contextual Denoising Autoencoder (ACDA) based on de-

noising autoencoders augmented with a context-driven attention mechanism al-

lowing the integration of arbitrary user and item attributes into the hidden rep-

resentation. Extensive experiments on the tasks of movie-recommendation and

Event recommendation validate the effectiveness of the proposed approach against

competitive baseline methods.

• We propose a flexible encoder-decoder architecture called Neural Citation Network

(NCN), embodying a powerful max time delay neural network encoder further

augmented with an attention mechanism and author networks to address context-

aware citation-recommendation. Quantitative results on the large-scale CiteSeer

dataset reveal NCN cultivates a significant improvement over competitive base-

lines.

Chapter 1: Introduction 26

• We propose a generic framework called Recommendation through Conversational

Transfer (RCT) to perform movie-recommendations in a conversational setting

leveraging transfer learning. We infer user preferences from the natural language

conversation and construct a mixture of transferred item latent factors to facili-

tate learning a new user latent factor in an online fashion. Experimental results

validate the advantages of our framework with two different interaction functions

and various language model encoders.

1.4 Outline

This thesis is organized as follows, Chapter 2 reviews related work of traditional rec-

ommendation systems, deep learning, and finally the application of deep learning to

recommendation systems. Chapter 3 proposes Collaborative Memory Networks which

extends the traditional linear CF methods to a deep nonlinear architecture. To mitigate

the issues of the item cold-start problem introduced in the CF setting due to the lack of

past interaction data, Chapter 4 introduces Neural Semantic Personalized Ranking to

tightly integrate item content (side information) with a latent factor model to address

the item cold-start problem. The incorporation of additional metadata often requires a

specialized deep learning architectures. Hence, Chapter 5 proposes a generic framework

for the seamless integration of arbitrary user and item side information with a denoising

auto encoder and attention mechanism. Chapter 6 presents a purely content-based ap-

proach to context-aware citation-recommendation under a Seq2Seq framework. Chapter

Chapter 1: Introduction 27

7 proposes a transfer learning framework to address movie-recommendation in a con-

versational setting. Finally, we conclude the work in Chapter 8 and highlight promising

future directions and challenges on the application of deep learning for recommender

systems.

Chapter 2

Related Work

In this section, we present three lines of related work. First, we discuss recommendation

systems in general. Second, we review specific deep learning-based techniques used in

this thesis and finally, we review the application of deep learning to recommendation

systems.

2.1 Recommendation Systems

This thesis focuses on the item recommendation task under multiple settings: the tradi-

tional collaborative filtering (CF) setting; the item cold-start problem; the integration

of contextual item information; and context-aware citation recommendation. In the

following subsections, we briefly review these categories of the existing work relevant to

ours.

28

Chapter 2: Related Work 29

2.1.1 Implicit Feedback

Matrix factorization has been adapted to learn from implicit feedback for recommen-

dation. Regularized least-square optimization with case weights is proposed in [45] and

[88]. One of the most effective techniques is based on Bayesian personalized ranking

(BPR) [99] which has been shown to provide strong results in many item recommenda-

tion tasks. Several extensions of BPR include pairwise interaction tensor factorization

[98], multi-relational matrix factorization [65], and non-uniformly sampled items [28].

Pan and Chen [90] proposed group Bayesian personalized ranking (GBPR) via introduc-

ing group preference. Rendle and Freudenthaler [97] incorporate an adaptive sampling

method to speed up learning convergence rate by utilizing the fact that the implicit

feedback matrix follows a tailed distribution of item popularity.

2.1.2 Cold-Start Problem

Cold-start problems are prevalent in recommender systems. They are often alleviated

by utilizing content information or some auxilrary information. Standard collaborative

filtering methods require past interaction history in order to make recommendations and

hence cannot be used. Word-based similarity methods [91] recommend items based on

textual content similarity in word vector space. Collaborative Topic Regression (CTR)

couples a matrix factorization model with probabilistic topic modeling to generalize to

unseen items [115]. Collective matrix factorization (CMF) [105] simultaneously factor-

izes both rating matrix and content matrix with shared item latent factors. SVDFeature

Chapter 2: Related Work 30

[12] combines content features with collaborative filtering. The latent factors are inte-

grated with user, item, and global features. SVDFeature demonstrated state-of-the-art

performance in benchmark evaluations.

2.1.3 Citation Recommendation

Citation recommendation broadly falls in two categories based on the textual context

utilized. A local context comprises the immediate text surrounding a placeholder. In

contrast, a global context may consist of a paper’s title, abstract or full text [4].

Citation recommendation spans a variety of methodologies such as traditional informa-

tion retrieval, topic modeling, Restricted Boltzmann Machines, collaborative filtering,

statistical machine translation (SMT) and neural networks [4, 49]. Huang et al. [48] ap-

ply topic modeling to a global context combined with a local context CTM [47] for the

RefSeer production system. In SMT, a translation model treats the citation context and

cited document content as parallel sequences [78, 47, 36]. The objective is to learn an

alignment or transition probability the given citation context requires a citation. Lu et

al. [78] learn an alignment from the citation context and the corresponding document’s

text, demonstrating improved performance over information retrieval methods when

aligning to the shorter abstract rather than the full body of text. Similarly, Citation

Translation Model (CTM) [47] treats each cited document as a token aligning the cita-

tion contexts to this reference. In order to address the noisy alignment between citation

contexts and documents, He et al. [36] argues the parallel pairs of citation contexts and

Chapter 2: Related Work 31

documents lack a canonical alignment unlike the gold standard present in traditional

machine translation. They address the noisy alignment problem by leveraging topical

information in their SMT model. More recently, Huang et al. [49] learned a distributed

word representation of the citation context and the associated document embedding via

a feedforward neural network. In an analogous task, Tan et al. [110] recommend quotes

using a listwise learning to rank approach, where the papers are books. A comprehensive

survey on citation recommendation can be found in [4].

2.2 Deep Learning

In this section, we review literature relevant to the specific deep learning techniques

used in this thesis. Recently, deep learning demonstrated advancements in many re-

search areas obtaining state of the art performance in computer vision [37], question

answering [118, 109, 66, 123], learning programs [35], machine translation [2], recom-

mender systems [128, 3] and many other domains [68]. In particular, due to the ability to

automatically encode learned feature representation and increasingly complex nonlinear

transformations.

Chapter 2: Related Work 32

2.2.1 CNN for NLP

Convolutional neural networks (CNNs) demonstrate competitive performance to recur-

rent neural networks (RNNs) on natural language processing (NLP) tasks yet compu-

tationally cheaper by exploiting parallelism. In particular, the max time delay neural

network (TDNN) [17] architecture performs a 1-dimensional convolution over a win-

dow of words constructing feature detectors followed by a max-pooling layer to extract

relevant features from each sequence (time) simultaneously producing a fixed length

representation from a variable length sequence. Generalizing the convolution to contain

multiple channels, Kim [59] use two word embeddings per a word. One set of pretrained

word vectors are fixed while the other set is allowed to be updated during training.

Kalchbrenner et al. [56] introduce dynamic k-max pooling to adaptively pool features

from variable length context window.

2.2.2 Neural Machine Translation

Neural Machine Translation (NMT) provides a general framework to address parallel

pairs of arbitrary length sequences, where the source sequence is encoded to a fixed

length representation followed by a decoder translating this representation to the tar-

get sequence conditioned on all previous states one token at a time. The encoder and

decoder functions are application specific, in machine translation RNNs are typically

used for both the encoder and decoder [16, 2] while in imaging captioning the encoder

may be represented as a CNN [124]. Bahdanau et al. [2] propose adding an alignment

Chapter 2: Related Work 33

mechanism or attention model to the encoder-decoder framework alleviating the bottle-

neck placed on the encoder function to represent the entire source sequence. Instead the

attention mechanism assists the decoder by selecting the most useful encoded represen-

tation at each timestep. Secondly, the attention mechanism provides interpretability in

visualizing the alignment of the source to target sequences.

2.2.3 Memory Augmented Neural Networks

We first provide a brief overview of the inner workings of memory-based architectures.

Memory augmented neural networks, generally consist of two components: an external

memory typically a matrix and a controller which perform operations on the mem-

ory (e.g. read, write, and erase). The memory component increases model capacity

independent of the controller (typically a neural network) while providing an internal

representation of knowledge to track long-term dependencies and perform reasoning.

The controller manipulates these memories with either content-based or location-based

addressing. Content-based or associative addressing finds a scoring function between the

given question (query) and a passage of text, typically the inner product followed by the

softmax operation leading to softly reading each memory location [118, 109, 66, 123, 2].

Performing a soft read over the memory locations allows the model to maintain differen-

tiation hence can be trained via backpropagation. The latter type of addressing (usually

combined with content-based) performs sequential reads or random access [35].

Chapter 2: Related Work 34

The initial framework proposed by Weston et al. [118] demonstrated promising results to

track long-term dependencies and perform reasoning over synthetic question answering

tasks. Sukhbaatar et al. [109] alleviated the strong levels of supervision required to train

the original memory network becoming an End-to-End system. The notion of attention

is biologically motivated how humans do not uniformly process all information in a given

task but focus on specific subsets of information. Attention mechanisms also provide

a level of insight into the deep learning black box by visualizing the attention weights

[2]. Kumar et al. [66] improve upon the existing architecture by introducing an episodic

memory component allowing for multiple passes or consultations of the memory before

producing the final answer. The flexibility of the memory network architecture allows

it to perform visual question answering [123] and joint task learning for identifying the

sentiment and the relation to target entity [71]. Additional tasks were introduced by

Dodge et al. [20] such as dialogue based movie recommendation, and question answering.

Interested readers may refer to Goodfellow et al. [34] for a more comprehensive treatment

on deep learning.

2.3 Deep Learning in Recommendation Systems

Recently, a surge of interest in applying deep learning to recommendation systems has

emerged. In particular, deep learning allows for learning robust nonlinear representa-

tions from data.

Chapter 2: Related Work 35

Autoencoders have been a popular choice of deep learning architecture for recommender

systems [120, 116, 103, 73, 127]. Autoencoders are a feedforward neural network which

constructs a compressed representation by forming a bottleneck in the architecture be-

fore attempting to recover the model’s initial inputs. Essentially, the autoencoder acts

as a nonlinear decomposition of the rating matrix replacing the traditional linear inner

product in matrix factorization. For example, AutoRec [103] decomposes the rating ma-

trix with an autoencoder followed by reconstruction to directly predict ratings obtaining

competitive results on numerous benchmark datasets. Two variants are proposed: user-

based (U-AutoRec) and item-based (I-AutoRec). The study evaluates both models on

the Netflix dataset and concludes that the item-based (I-AutoRec) version performs

better than the user-based (U-AutoRec) model due to the high variance in the number

of user ratings. Incorporating corrupt inputs or noise to auto-encoders further improved

performance and as a result, many variants utilizing denoising auto-encoders have since

emerged. Another example is Collaborative denoising autoencoders (CDAE) [120] which

address top-n recommendation by integrating a user-specific bias into an autoencoder

demonstrating CDAE can be seen as a generalization of many existing collaborative

filtering methods examining both pointwise and pairwise loss functions. Strub and

Jeremie [107] establish a methodology capable of training deep architecture of stacked

denoising auto-encoders by interpolating the corrupt input and reconstruction error as

a loss function. Li et al. [73] adopt a marginalized denoising autoencoder to diminish

the computational costs associated with deep learning. Employing two autoencoders,

one for item content and the other for user content bridged with user and item latent

Chapter 2: Related Work 36

factors. AutoSVD++ [127] extends the original SVD++ model with a contrastive au-

toencoder to capture implicit user feedback and auxiliary item content. Collaborative

deep learning (CDL) [116] a hierarchical Bayesian model, is proposed to tightly couple

deep representation learning for the content information and collaborative filtering for

the rating matrix, allowing two-way interaction between the two. Collaborative deep

ranking (CDR) [125] later extends CDL to include a pairwise loss.

We now shift our attention to models using multi-layer perceptrons (MLP). CoFactor

[74] jointly factorizes the ratings matrix and the shifted positive pointwise mutual in-

formation (SSPMI) item embeddings matrix. Factoring the SSPMI matrix has been

shown to be equivalent to Word2Vec [82] for item co-occurence embeddings [70]. Neural

Network Matrix Factorization (NNMF) [24] take a different approach by replacing the

traditional inner product of matrix factorization with a function learned from a feedfor-

ward neural network. Similarly, Neural Collaborative Filtering (NCF) [39] partners the

output of a MLP concatenated with the latent factors from matrix factorization apply-

ing a nonlinear transformation to produce a local interaction before performing the final

recommendation. The MLP and matrix factorization each retain separate embedding

spaces for the user and item latent factors accommodating the required complexity for

the task at hand. Volkovs et al. [114] tightly couple a deep neural network to learning a

mapping from content and existing learned latent factors to both the user and item item

latent factors to address either the user or item cold-start problem. Cheng et al. [15]

tackle mobile app recommendation in the Google Play store by jointly training a gen-

eralized linear model and DNN on hand engineered user demographic and implicit app

Chapter 2: Related Work 37

installations. The DNN produces diverse mobile app recommendations while the linear

model mediates overgeneralization to irrelevant recommendations. The joint interaction

between the two provides recommendation in middle ground between the two. Zhang

et al. [130] confront click-through-rates by modifying the input layer of a feedforward

neural network to perform different types of transformations over multi-field categorical

data. Three transformations are proposed based on factorization machines, restricted

boltzman machines (RBM) and denoising auto-encoders.

The sequential nature of RNNs provides desirable properties for time-aware [119] and

session-based recommendation systems [42]. For example, Recurrent Recommender Net-

works (RRN) [119] represent user latent and item latent factors with two RNNs to

capture the temporal aspect of movie recommendation. Collectively, the RNNs hidden

states represent the user’s preference and ratings at each time interval while additional

stationary factors are maintained to handle a user’s long-standing preferences. While

other methods heuristically define relative temporal changes [7, 133] others propose

complex and specialized recurrent cells based on the long-short term memory (LSTM)

cell and gated recurrent unit (GRU) cell [21, 133, 92]. Jannach and Ludewig [51] in-

terpolate K-Nearest Neighbor (KNN) with the session-based RNN proposed by Hidasi

et al. [42] demonstrating further performance gains. Jing and Smola [54] endow an RNN

with survival analysis to predict the future return of a given user. The RNN addresses

the temporal aspect consulting previous hidden states with the survival rate to address

the user’s return time. Zheng et al. [131] portray user behavior and item properties

with parallel CNNs on user reviews and item reviews respectively, before employing a

Chapter 2: Related Work 38

final shared interaction layer. Chen et al. [13] tackle sequential recommendation with a

memory network architecture. A fixed-size queue is used to store previous interactions

forming the memory component to capture long-term dependencies.

Van den Oord et al. [111] tackled music recommendation by a two-step approach: matrix

factorization is used to obtain the latent factors for items and then conventional CNN is

applied to learn feature representation for content information by treating these latent

factors as the output. In other words, the deep learning components of their models

are deterministic and only loosely coupled with the matrix factorization of the rating

matrix. They do not exploit the interactions between content information and ratings.

CNN in recommendation systems have also been used to capture localized item fea-

ture representations text [104, 58] and images [128]. CNN overcomes the bag-of-words

limitation by learning weight filters to identify the most prominent phrases within the

text. Zhang et al. [126] leverage textual, structural and visual knowledge bases with

convolutional and denoising auto-encoders to enhance the latent factor model.

The attention mechanism has been widely adopted in deep learning for tasks related to

image recognition and natural language processing [124, 2] and is more recently being

explored in recommender systems. Gong and Zhang [32] perform hashtag recommen-

dation with a CNN augmented with an attention channel to concentrate on the most

informative (trigger) words. However, a hyperparameter must be carefully set to con-

trol the threshold of triggering the word to be informative. Huang et al. [46] tackle

the same task with an End-to-End Memory Network [109] integrating a hierarchical at-

tention mechanism over the user’s previous tweets on a word and sentence level. Chen

Chapter 2: Related Work 39

et al. [11] incorporate multimedia content with an item level attention representing the

user preferences and a component level attention to isolate item specific visual features.

Similarly, Seo et al. [104] introduce a local and global attention mechanism over convo-

lutions to model review text. Xiao et al. [122] extend Factorization Machines [96] with

an attention mechanism to learn the importance of each pairwise interaction rather than

treating them uniformly.

Additional work include, Salakhutdinov et al. [102] addressing CF with a two layer RBM

modeling tabular movie ratings and Georgiev and Nakov [30] later extended this work

in a unified non-IID framework. Neural Autoregressive Density Estimator (NADE) ob-

tained state-of-the-art performance by modeling an ordinal cost [132]. Wang et al. [117]

unify the generative and discriminative methodologies under the generative adversarial

network [33] framework for web search, item recommendation, and question answering.

Interested readers may find comprehensive surveys on deep learning for recommender

systems in [128, 3].

Chapter 3

Collaborative Memory Networks

3.1 Introduction

In this chapter, we present a novel deep learning-based model named Collaborative

Memory Networks to capture complex and nonlinear user-item interactions. Recall,

Collaborative Filtering (CF) can generally be grouped in three categories: memory

or neighborhood-based approaches, latent factor models and hybrid models [100, 61].

Memory or neighborhood-based methods form recommendations by identifying groups

or neighborhoods of similar users or items based on the previous interaction history.

The simplicity of these models such as item K-nearest neighbor (KNN) have shown

success in production systems at Amazon [75, 106]. Latent factor models such as matrix

factorization project each user and item into a common low dimensional space capturing

latent relations. Neighborhood methods capture local structure but typically ignore the

40

Chapter 3: Collaborative Memory Networks 41

mass majority of ratings available due to selecting at most K observations from the

intersection of feedback between two users or items [61]. On the other hand, latent

factor models capture the overall global structure of the user and item relationships but

often ignore the presence of a few strong associations. The following weaknesses between

the local neighborhood-based and global latent factor models lead to the development of

hybrid models such as SVD++ [61] and generalizations such as Factorization Machines

[96] which integrate both neighborhood-based approaches and latent factor models to

enrich predictive capabilities. However, these models are limited in their model capacity

due to their linear nature.

The successful integration of deep learning methods in recommendation systems have

demonstrated the noticeable advantages of complex nonlinear transformations over tra-

ditional linear models [128]. However, existing composite architectures incorporate the

latent factor model ignoring the integration of neighborhood-based approaches in a non-

linear fashion. Hence, we propose to represent the neighborhood-based component with

a Memory Network [118, 109] to capture higher order complex relations between users

and items. An external memory permits encoding rich feature representations while the

neural attention mechanism infers the user specific contribution from the community.

We propose a unified hybrid model which capitalizes on the recent advances in Memory

Networks and neural attention mechanisms for CF with implicit feedback. The memory

component allows read and write operations to encode complex user and item relations in

the internal memory. An associative addressing scheme acts as a nearest neighborhood

model finding semantically similar users based on an adaptive user-item state. The

Chapter 3: Collaborative Memory Networks 42

neural attention mechanism places higher weights on specific subsets of users who share

similar preferences forming a collective neighborhood summary. Finally, a nonlinear

interaction between the local neighborhood summary and the global latent factors1

derives the ranking score. Stacking multiple memory components allows the model to

reason and infer more precise neighborhoods further improving performance.

Our primary contributions can be summarized as follows:

• We propose Collaborative Memory Network (CMN) inspired by the success of

memory networks to address implicit collaborative filtering. CMN is augmented

with an external memory and neural attention mechanism. The associative ad-

dressing scheme of the memory module acts as a nearest neighborhood model

identifying similar users. The attention mechanism learns an adaptive nonlinear

weighting of the user’s neighborhood based on the specific user and item. The

output module exploits nonlinear interactions between the adaptive neighborhood

state jointly with the user and item memories to derive the recommendation.

• We reveal the connection between CMN and the two important classes of collabo-

rative filtering models: the latent factor model and neighborhood-based similarity

model. Furthermore, we reveal the advantages of the nonlinear integration fusing

the two types of models yielding a hybrid model.
1We use the terms user/item latent factors, memories and embeddings interchangeably.

Chapter 3: Collaborative Memory Networks 43

• Comprehensive experiments on three public datasets demonstrate the effectiveness

of CMN against seven competitive baselines. Multiple experimental configurations

confirm the added benefits of the memory module 2.

• Qualitative visualizations of the attention weights provide insight into the mem-

ory component providing supporting evidence for deeper architectures to capture

higher order complex interactions.

3.2 Collaborative Filtering

Generally speaking, there are two main categories of recommendation tasks: rating

prediction and item recommendation. The objective of rating prediction is to predict

the rating that a user may give to an item that she has not interacted with before.

Movie rating prediction in Netflix [6] is such an example. For item recommendation,

recommender systems provide a user with a ranked list of items that she might prefer.

Examples include product recommendation in Amazon [75, 106] and point-of-interest

recommendation in location-based social networks [14].

Collaborative filtering (CF) is a popular and effective technique to perform user specific

personalized item recommendations from previous user interactions. The Netflix Prize

popularized and spurred many advancements in CF techniques. A core underlying

assumption is that like minded users will consume similar items. Fundamentally, CF
2Source code available at: http://github.com/tebesu/CollaborativeMemoryNetwork

http://github.com/tebesu/CollaborativeMemoryNetwork

Chapter 3: Collaborative Memory Networks 44

is concerned with two main entities: users and items. In this section, we introduce the

core concepts associated with CF and the three approaches in CF.

If users have similar preferences in the past, then recommendations from these other

users should be of interest as well. These similar preferences are inferred from a central

concept to CF, user feedback. This feedback can be in the form of implicit or explicit.

In the explicit case, the user provides a direct signal of preference such as rating a movie

from 1 to 5 or providing a product review. In implicit feedback, the user provides an

indirect signal of preferences. For example, if a user has viewed an item we record

this in a binary fashion where positive feedback as a 1 otherwise a 0. Since implicit

feedback can be collected at a larger scale automatically from user views/clicks it is

more pervasive and abundant in practice. In this thesis, we focus on the setting of item

ranking (top−n recommendation) with implicit feedback.

3.2.1 Latent Factor Models

We first introduce some notation. The set of all users in the recommender system is

denoted as U and similarly the set of all items as I. A given user u ∈ U , we use

i+ ∈ I+
u to denote a positive item (i.e., interacted/observed item) where I+

u is the set

of all positive items for user u. Similarly, we use i− ∈ I \ I+
u for a negative item (i.e.,

uninteracted/unobserved item). For a given user u we denote the user’s latent factor as

a d dimensional vector mu ∈ M and similarly, item i’s latent factor ei ∈ E where the

entire matrix of user latent factors M ∈ R|U|×d and item latent factors E ∈ R|I|×d.

Chapter 3: Collaborative Memory Networks 45

The key intuition behind latent factor models are to disentangle latent features au-

tomatically from user feedback. Each user and item are projected into a shared low

dimensional latent space. The item latent factor may represent concrete variations such

as a genre of a movie or more subjective aspects such as a product’s ease of use or to

a completely hidden and uninterpretable latent structure. On the other hand, the user

latent factors indicate the user’s level of interest (or lack of) to each of the corresponding

item latent dimensions. The user’s affinity for a given item is measured as the similarity

between the user-item latent feature interactions.

More specifically, user u’s ranking score for item i is defined as the inner product between

item i’s latent factor ei and the user’s latent factor mu

r̂ui = mT
uei (3.1)

3.2.2 Neighborhood-based Similarity Models

Neighborhood-based or memory-based approaches provide recommendations based on

all the feedback in the system or over a specific group of users’ feedback known as

neighbors. This is implemented in two main approaches: user-based or item-based. In

the user-based variant, neighbors represent the level of interest of the target user to an

item using ratings from other users’ feedback for this item. The latter type performs

recommendations based on the ratings of the current user. The primary difference

Chapter 3: Collaborative Memory Networks 46

between the two is the definition of the neighbors. We focus on the user-based variant

but equivalently swapping the users and items yields the item-based approach.

Formally, neighborhood-based similarity methods estimate a user-user similarity matrix

S ∈ R|U|×|U| in the user-based variant 3. For each user who rated item i (neighborhood)

the item’s ranking score is the sum of similarity score Typically, the neighborhood

is restricted to be the weighted combination of the K most similar users based on

the similarity matrix S. The neighborhood performs two roles, to select the trusted

neighbors and identify their contribution to the final recommendation. The general

ranking score of neighborhood similarity models for user u and item i are:

r̂ui = αi
∑
v∈N(i)

Suv (3.2)

where N(i) the neighborhood of all users who provided implicit feedback for item i and

αi is a normalization term to smooth the ranking score against the potentially large and

variable size of the neighborhood. A common normalization scheme is αi = |N(i)|−ρ

where ρ is a hyperparameter controlling the level of similarity required to obtain a high

score. The similarity matrix S can be computed in various ways, we first introduce a

common heuristic method. A given user u’s observed preferences are a k-hot encoded

vector denoted as xu ∈ RQ. Each dimension of the vector represents an item, i.e. if

user u has observed item i, xui = 1 otherwise xui = 0. A common similarity metric
3Equivalently estimating the item-item similarity matrix S ∈ R|I|×|I| yields the item-based variant

Chapter 3: Collaborative Memory Networks 47

frequently used in information retrieval is the cosine similarity [79] computed in vector

space.

Suv = cos(xu,xv) =
xT
uxv

||xu||2||xv||2
(3.3)

where ||·||2 denotes the l2 vector norm. Other heuristic similarity metrics include Pearson

Correlation, adjusted cosine similarity and Spearman Rank Correlation [87, 63]. Instead

of using a heuristic method to compute the similarity matrix another approach is to learn

the similarity function for S [86, 55].

3.2.3 Hybrid Models

Previously, the two main approaches to CF was introduced however, each with their

own drawbacks. Neighborhood methods capture local structure but typically ignore the

mass majority of ratings available due to the inclusion of only a subset of interactions

[61]. On the other hand, latent factor models capture the overall global structure of

the user and item relationships but often ignore the presence of a few strong associa-

tions. The following weaknesses between the local neighborhood-based and global latent

factor models lead to the development of hybrid models such as SVD++ [61] and gener-

alizations such as Factorization Machines [96] which integrate both neighborhood-based

approaches and latent factor models to enrich predictive capabilities.

Chapter 3: Collaborative Memory Networks 48

(b)

Output Module

Hop 1

Hop

(a)

User Embedding

Neighborhood Attention

Output Module

..

.

Figure 3.1: Proposed architecture of Collaborative Memory Network (CMN) with a
single hop (a) and with multiple hops (b).

We can combine the latent factor model and the neighborhood-based model together

yielding

r̂ui = mT
uei + αi

∑
v∈N(i)

Suv (3.4)

The first term captures the global interactions from the latent factor model while the

second term captures the local neighborhood structure for a holistic view of all user

feedback. Inherently, traditional CF models are linear and lack the ability to model more

complex user-item interactions. We now explore methods to overcome this limitation

with the integration of nonlinear interactions via deep learning.

Chapter 3: Collaborative Memory Networks 49

3.3 Collaborative Memory Network

In this section, we introduce our proposed model Collaborative Memory Network (CMN),

see Figure 3.1a for a visual depiction of the architecture. At a high level, CMN main-

tains three memory states: an internal user-specific memory, an item-specific memory,

and a collective neighborhood state. The architecture allows for the joint nonlinear

interaction of the specialized local structure of neighborhood-based methods and the

global structure of latent factor models. The associative addressing scheme acts as

a nearest neighbor similarity function that learns to select semantically similar users

based on the current item. The neural attention mechanism permits learning an adap-

tive nonlinear weighting function for the neighbor model, where the most similar users

contribute higher weights at the output module. We later extend the model to a deeper

architecture by stacking multiple hops in Section 3.3.4 depicted in Figure 3.1b.

3.3.1 User Embedding

The memory component consists of a user memory matrix M ∈ R|U|×d and an item

memory matrix E ∈ R|I|×d, where |U| and |I| represents the number of users and items

respectively and d denotes the size (dimensionality) of each memory cell. Each user u

is embedded in a memory slot mu ∈M storing her specific preferences. Similarly, each

item i corresponds to another memory slot ei ∈ E encoding the item’s specific attributes.

We form a user preference vector qui where each dimension quiv is the similarity of the

Chapter 3: Collaborative Memory Networks 50

target user u’s level of agreement with user v in the neighborhood given item i as:

quiv = mT
umv + eTi mv ∀ v ∈ N(i) (3.5)

where N(i) represents the set of all users (neighborhood) who have provided implicit

feedback for item i. We would like to point out N(i) could be replaced or combined

with R(i) to handle the case of explicit feedback where R(i) denotes the set of all users

who provided explicit feedback for item i. The intuition is as follows, the first term

computes compatibility between the target user and the users who have rated item i.

The second term introduces the level of confidence user v supports the recommendation

of item i. Hence, the associative addressing scheme identifies the internal memories with

the highest similarity of the target user u with respect to neighborhood of users given

the specific item.

3.3.2 Neighborhood Attention

The neural attention mechanism learns an adaptive weighting function to focus on a

subset of influential users within the neighborhood to derive the ranking score. Tradi-

tional neighborhood methods predefine a heuristic weighting function such as Pearson

correlation or cosine similarity and require specifying the number of users to consider

[100]. While factorizing the neighborhood partially alleviates this problem, it is still

linear in nature [55]. Instead by learning a weighting function over the entire neighbor-

hood, we no longer need to empirically predefine the weighting function or number of

Chapter 3: Collaborative Memory Networks 51

neighbors to consider. Formally, we compute the attention weights for a given user to

infer the importance of each user’s unique contribution to the neighborhood:

puiv =
exp(quiv)∑

k∈N(i) exp(quik)
∀ v ∈ N(i) (3.6)

which produces a distribution over the neighborhood. The attention mechanism allows

the model to focus on or place higher weights on specific users in the neighborhood while

placing less importance on user’s who may be less similar. Next we construct the final

neighborhood representation by interpolating the external neighborhood memory with

the attention weights:

oui =
∑
v∈N(i)

puivcv (3.7)

where cv is another embedding vector for user v which is called external memory in the

original memory network framework [118]. Denoting the vth column of the embedding

matrix C with the same dimensions as M. The external memory allows the storage of

long-term information pertaining specifically to each user’s role in the neighborhood. In

other words, the associative addressing scheme identifies similar users within the neigh-

borhood acting as a key to weight the relevant values stored in the memory matrix C via

the attention mechanism. The attention mechanism selectively weights the neighbors

according to the specific user and item. The final output oui represents a weighted sum

over the neighborhood composed of the relations between the specific user, item and

the neighborhood.

Chapter 3: Collaborative Memory Networks 52

CMN captures the similarity of users and dynamically assigns the degrees of contribu-

tion to the collective neighborhood based on the target item rather than a predefined

number of neighbors which may restrict generalization capacity. Furthermore, the atten-

tion mechanism reduces the bottleneck of encoding all information into each individual

memory slot and allows the joint exploitation of the user and item observations.

3.3.3 Output Module

As noted earlier neighborhood models capture the local structure from the rating matrix

via the neighbors while latent factor models identify the global structure of the rating

matrix [61]. Hence we consider the collective neighborhood state to capture localized

user-item relations and the user and item memories to capture the global user-item

interactions. The output module smoothly integrates a nonlinear interaction between

the local collective neighborhood state and the global user and item memories. Existing

models lack the nonlinear interaction between the two terms potentially limiting the

extent of captured relations [127, 11]. For a given user u and item i the ranking score

is given as:

r̂ui = vTφ
(
U(mu � ei) + Woui + b

)
(3.8)

where � is the elementwise product; W,U ∈ Rd×d; and v,b ∈ Rd are parameters to be

learned. We first apply the elementwise product between the user and item memories

followed by a linear projection with U, subsequently introducing a skip-connection thus

Chapter 3: Collaborative Memory Networks 53

reducing the longest path from the output to input. Skip-connections have been shown

to encourage the flow of information and ease the learning process [38]. In this way,

the model can better correlate the specific target addresses (user and item memories)

with the ranking score to propagate the appropriate error signals. We further motivate

this choice by demonstrating its connection to the latent factor model (Section 3.4.1).

Similarly, the final neighborhood representation oui is projected to a latent space with

W then combined with the previous term followed by a nonlinear activation function

φ(·). Empirically we found the rectified linear unit (ReLU) φ(x) = max(0, x) to work

best due to its nonsaturating nature and suitability for sparse data [34, 38].

Our proposed model provides the following advantages. First, consider the case where

the amount of feedback for a given user is sparse, we can leverage all users who have rated

the item to gain additional insight about the existing user and item relations. Second,

the neural attention mechanism adjusts the confidence of each user’s contribution to

the final ranking score dependent on the specific item. Finally, the nonlinear interaction

between the local neighborhood and global latent factors provide a holistic view of the

user-item interactions.

3.3.4 Multiple Hops

We now extend our model to handle an arbitrary number of memory layers or hops. Fig-

ure 3.1b (right) illustrates CMN’s architecture with multiple hops. Each hop queries the

internal user memory and item memory followed by the attention mechanism to derive

Chapter 3: Collaborative Memory Networks 54

the next collective neighborhood state vector. The first hop may introduce the need to

acquire additional information. Starting from the second hop, the model begins to take

into consideration the collective user neighborhood guiding the search for the represen-

tation of the community preferences. Each additional hop repeats this step considering

the previous hop’s newly acquired information before producing the final neighborhood

state. In other words, the model has the chance to look back and reconsider the most

similar users to infer more precise neighborhoods. More specifically, multiple memory

modules are stacked together by taking the output from the hth hop as input to the

(h+ 1)th hop. Similar to [109, 71, 123] we apply a nonlinear projection between hops:

zhui = φ(Whzh−1
ui + ohui + bh) (3.9)

where Wh is a square weight matrix mapping the user preference query zh−1
ui to a

latent space coupled with the existing information from the previous hop followed by

a nonlinearity and the initial query z0
ui = mu + ei. Intuitively, the initial consultation

of the memory may introduce the need for additional information to infer more precise

neighborhoods. The nonlinear transformation updates the internal state then solicits

the user neighborhood:

qh+1
uiv = (zhui)

Tmv ∀ v ∈ N(i) (3.10)

The newly formed user preference vector then recomputes the compatibility between

the target user and the neighborhood followed by the adaptive attention mechanism

Chapter 3: Collaborative Memory Networks 55

producing an updated collective neighborhood summary. This process is repeated for

each hop yielding an iterative refinement. The output module receives the weighted

neighborhood vector from the last (H th) hop to produce the final recommendation.

3.3.5 Parameter Estimation

Since our objective is to study implicit feedback which is more pervasive in practice and

can be collected automatically (e.g. clicks, likes). In the case of implicit feedback, the

rating matrix contains a 1 if the item is observed and 0 otherwise. We opt for the pairwise

assumption, where a given user u prefers the observed item i+ over unobserved or

negative item i−. The traditional pointwise approach assumes the user is not interested

in the item i− but in reality may not be aware of the item. We can form triplet

preferences (u, i+, i−) since the number of preference triplets is quadratic in nature we

uniformly sample a ratio of positive items to negative items which we further investigate

in Section 3.5.7. We leverage the Bayesian Personalized Ranking (BPR) optimization

criterion [99] as our loss function which approximates AUC (area under the ROC curve):

L = −
∑

(u,i+,i−)

log σ(r̂ui+ − r̂ui−) (3.11)

where σ(x) = 1/
(
1 + exp(−x)

)
is the logistic sigmoid function. It is worth noting we

are not restricted to setting σ(x) as the logistic sigmoid function. Other pairwise prob-

ability functions such as the Probit function can be used. Since the entire architecture

is differentiable, CMN can be efficiently trained with the backpropagation algorithm.

Chapter 3: Collaborative Memory Networks 56

To reduce the number of parameters we perform layerwise weight tying sharing all em-

bedding matrices across hops [109, 71, 123].

3.3.6 Computational Complexity

The computational complexity for a forward pass through CMN for a user is O
(
d|N(i)|+

d2 +d
)
where |N(i)| denotes the size of the neighborhood for item i and d is the embed-

ding size. The first term O
(
d|N(i)|

)
is the cost for computing the user preference vector

and the latter terms correspond to the final interactions in the output module. Each

additional hop introduces O
(
d|N(i)| + d2

)
complexity. During training two forward

passes are computed one for the observed positive item and the second for the negative

unobserved item. Parameters can be updated via backpropagation with the same com-

plexity. In real-world datasets, |N(i)| is usually slightly larger than or comparable to d,

and thus the primary computational complexity is computing O(d|N(i)|). The cost is

reasonable since other deep learning methods such as CDAE [120] compute a forward

pass in O
(
|I|d

)
where |I| is the total number of items. The proposed memory module

only computes the similarity with the target user’s neighbors (not over all users) and

|N(i)| is often less than or comparable to |I|. Thus, the training in CMN is quite effi-

cient. In practice, prefiltering techniques can be used to limit the number of neighbors

to the top-K because not all neighbors may be indicative in contributing to the final

prediction [100]. Since the purpose of our study is to understand the characteristics of

CMN, we leave prefiltering techniques to future work.

Chapter 3: Collaborative Memory Networks 57

Recommendation can be performed by computing the predicted ranking score (Equation

3.8) for a given user and item with a single pass through the network. The item with the

highest value is recommended to the user. The computational complexity for runtime

recommendation is the same with that of the single forward pass during training.

3.4 Relation to Existing Models

CMN consists of components which can be interpreted in terms of the three classes of

collaborative filtering methods. We show the connection with the latent factor model

and neighborhood-based similarity models, and finally the relation to hybrid models such

as SVD++. We conclude the section by drawing parallels between memory networks

and CMN.

3.4.1 Latent Factor Model

The latent factor model discovers hidden relations by decomposing the ratings matrix

into two lower rank matrices. By omitting the neighborhood term and bias, and further

setting U to the identity matrix Equation 3.8 becomes the following:

r̂ui = vTφ(mu � ei) (3.12)

which leads to a generalized matrix factorization (GMF) model [39]. Removing the

nonlinearlity by setting φ(·) to the identity function and constraining v to 1 vector of

Chapter 3: Collaborative Memory Networks 58

all ones, we recover matrix factorization. Under our pairwise loss function (Equation

3.11) we recover BPR [99].

3.4.2 Neighborhood-based Similarity Model

The objective of neighborhood-based similarity models are to estimate a user-user4 sim-

ilarity matrix S ∈ RP×P . For each user who rated item i an aggregated similarity score

produces the confidence of recommending the item. The general form of neighborhood

similarity models are:

r̂ui = αi
∑
v∈N(i)

Suv (3.13)

where αi is a normalization term to weight the ranking score. In the simplest case, the

normalization term is set to |N(i)|−ρ where ρ is a hyperparameter controlling the level of

similarity required to obtain a high score. In KNN, the neighborhood N(i) is restricted

to be the weighted combination of the K most similar users and the similarity matrix S

is approximated with a heuristically predefined function such as Pearson correlation or

cosine similarity. Another approach is to learn the similarity function by approximating

S [86, 55]. In our case, the attached memory module from Equation 3.7 acts as the

neighborhood similarity matrix. If we designate the attention mechanism as a predefined

normalization term the user-user similarity matrix is then factorized as S = CCT. Using

the prediction rule from Equation 3.13 the memory module yields a user-based variant

of FISM and under the BPR loss function we recover FISMauc [55].
4Equivalently switching users with items yields item-based methods.

Chapter 3: Collaborative Memory Networks 59

3.4.3 Hybrid Model

We have shown the connection between the components of CMN and the two classes

of collaborative filtering models. Hybrid models such as SVD++ [61] contains two

general terms, a user-item latent factor interaction and a neighborhood component. The

output module (Equation 3.8) smoothly integrates the latent factors and the similarity

or neighborhood terms together leading to a hybrid model.

r̂ui = vTφ
(Latent Factors︷ ︸︸ ︷

mu � ei +
∑
v∈N(i)

puivcv︸ ︷︷ ︸
Neighborhood

)
(3.14)

We remove the projection matrices and bias terms for clarity. We can see the global

interaction from the latent factors consist of the user and item memories. The memory

module represents the localized neighborhood component and the neighborhood nor-

malization term is replaced with the adaptive attention mechanism pushed inside the

summation becoming a user-item specific weighting scheme. Unlike SVD++, our hybrid

model allows for complex nonlinear interactions between the two terms to model the

diverse tastes of users.

3.4.4 Memory Networks

Traditional memory networks address the task of question answering. A short story or

passage of text is provided along with a question for which the answer can be derived by

leveraging some form of reasoning. If we pose recommendation as a question answering

Chapter 3: Collaborative Memory Networks 60

Dataset Ratings Users Items Sparsity
Epinions 664,823 40,163 139,738 99.98%
citeulike-a 204,987 5,551 16,980 99.78%
Pinterest 1,500,809 55,187 9,916 99.73%

Table 3.1: Dataset statistics.

problem we are asking how likely will this user enjoy the item where the user neighbor-

hood is the story and the output ranking score is the answer. Continuing our analogy,

each word in the story acts as a user in the neighborhood providing supporting evidence

for the recommendation.

3.5 Experimental Results

3.5.1 Datasets

We study the effectiveness of our proposed approach on three publicly available datasets.

The first dataset is collected from Epinions5 [80] which provides an online service for

users to share product feedback in the form of explicit ratings (1-5) and reviews. We

convert the explicit ratings to implicit feedback as a 1 if the user has rated the item and

0 otherwise. The second dataset is citeulike-a6 [115] collected from CiteULike an online

service which provides users with a digital catalog to save and share academic papers.

User preferences are encoded as 1 if the user has saved the paper (item) in their library.

The third dataset from Pinterest7 [29] allows users to save or pin an image (item) to their
5http://www.trustlet.org/downloaded_epinions.html
6http://www.cs.cmu.edu/~chongw/data/citeulike/
7http://sites.google.com/site/xueatalphabeta/

http://www.trustlet.org/downloaded_epinions.html
http://www.cs.cmu.edu/~chongw/data/citeulike/
http://sites.google.com/site/xueatalphabeta/

Chapter 3: Collaborative Memory Networks 61

board indicating a 1 or positive interaction otherwise a 0 and preprocessed according to

[39]. Table 3.1 summarizes the statistics of the datasets.

3.5.2 Evaluation

We validate the performance of our proposed approach using the leave-one-out evalua-

tion method following the prior work [39, 11, 99]. Closely following the setup from He

et al. [39], for each user we randomly hold out one item the user has interacted with and

sample 100 unobserved or negative items to form the test set. The remaining positive

examples form the training set. If the user has only rated a single item we keep it in the

training set to prevent the cold-start setting. We rank the positive item along with the

100 negative items and adopt two common ranking evaluation metrics Hit Ratio (HR)

and Normalized Discounted Cumulative Gain (NDCG) [100]. Intuitively, HR measures

the presence of the positive item within the top N and NDCG measures the items

position in the ranked list and penalizes the score for ranking the item lower in the list.

3.5.3 Baselines and Settings

We compare our proposed approach against seven competitive baselines representing

neighborhood-based; traditional latent factor models; hybrid model and deep learning-

based models.

Chapter 3: Collaborative Memory Networks 62

• KNN [100] is a neighborhood-based approach computing the cosine item-item

similarity to provide recommendations.

• Factored Item Similarity Model (FISM) [55] is a neighborhood-based approach

factorizing the item-item similarity matrix into two low rank matrices optimizing

the BPR loss function.

• Bayesian Personalized Ranking (BPR) [99] is a competitive pairwise matrix fac-

torization for implicit feedback.

• SVD++ [61] is a hybrid model combining the neighborhood-based similarity and

the latent factor model.

• Generalized Matrix Factorization (GMF) [39] is a nonlinear generalization of the

latent factor model. We use the ReLU activation function and optimize the BPR

loss function.

• Collaborative Denoising Auto Encoder (CDAE) [120] is an item-based deep learn-

ing model for item ranking with a user specific bias.

• Neural Matrix Factorization (NeuMF) [39] is a composite matrix factorization

jointly coupled with a multilayer perceptron model for item ranking.

We would like to note that FISM [55] improves upon Sparse Linear Methods (SLIM)

[86] by factorizing the item-item similarity matrix to handle missing entries hence we

do not compare to SLIM. We exclude baselines utilizing additional information for fair

Chapter 3: Collaborative Memory Networks 63

comparison since our objective is to study implicit collaborative filtering without content

or contextual information.

All hyperparameters are tuned according to the validation set. The validation set is

formed by holding out one interaction per user from the training set [39]. We per-

form a grid search over each model’s latent factors from {10, 20, 30, 40, 50} and regular-

ization terms {0.1, 0.01, 0.001}. In addition, we varied CDAE’s corruption ratio from

{0, 0.2, 0.4, 0.6, 0.8, 1.0} and NeuMF’s layers from {1, 2, 3}. The number of negative

samples is set to 4. Careful initialization of deep neural networks is crucial to avoid sad-

dle points and poor local minima [34]. Thus, CMN initializes the user (M) and item (E)

memory embeddings from a pretrained model according to Equation 3.12. Remaining

parameters are initialized according to [37] which adapts the variance preserving Xavier

initialization [34] for the ReLU activation function. The gradient is clipped if the norm

exceeds 5; l2 weight decay of 0.1 with the exception of the user and item memories;

and the mini-batch size is set to 128 for Epinions, citeulike-a and 256 for Pinterest. We

adopt the RMSProp [34] optimizer with a learning rate of 0.001 and 0.9 for both decay

and momentum. The default number of hops is set to 2 and memory or embedding size

d to 40, 50 and 50 for the Epinions, citeulike-a and Pinterest datasets respectively. The

effects of these hyperparameters are further explored in Sections 3.5.5 and 3.5.7.

Chapter 3: Collaborative Memory Networks 64

E
pi

ni
on

s
ci

te
ul

ik
e-

a
P
in

te
re

st
H

R
@

5
H

R
@

10
N

D
C

G
@

5
N

D
C

G
@

10
H

R
@

5
H

R
@

10
N

D
C

G
@

5
N

D
C

G
@

10
H

R
@

5
H

R
@

10
N

D
C

G
@

5
N

D
C

G
@

10
K
N
N

0.
15
49

0.
15
55

0.
14
33

0.
14
35

0.
69
90

0.
73
48

0.
57
89

0.
59
09

0.
57
38

0.
83
76

0.
34
50

0.
43
10

F
IS
M

0.
55
42

0.
67
17

0.
41
92

0.
45
73

0.
67
27

0.
80
72

0.
51
06

0.
55
45

0.
67
83

0.
86
54

0.
46
58

0.
52
68

B
P
R

0.
55
84

0.
66
59

0.
43
34

0.
46
83

0.
65
47

0.
80
83

0.
48
58

0.
53
57

0.
69
36

0.
86
74

0.
49
12

0.
54
79

SV
D
+
+

0.
56
28

0.
67
54

0.
41
12

0.
44
77

0.
69
52

0.
81
99

0.
52
44

0.
56
49

0.
69
51

0.
86
84

0.
47
96

0.
53
62

G
M
F

0.
53
65

0.
65
62

0.
40
15

0.
44
04

0.
72
71

0.
83
26

0.
56
89

0.
60
34

0.
67
26

0.
85
05

0.
47
37

0.
53
16

C
D
A
E

0.
56
66

0.
68
44

0.
43
33

0.
47
15

0.
67
99

0.
81
03

0.
51
06

0.
55
32

0.
70
08

0.
87
22

0.
49
66

0.
55
25

N
eu
M
F

0.
55
00

0.
66
60

0.
42
14

0.
45
90

0.
76
29

0.
86
47

0.
59
85

0.
63
16

0.
70
41

0.
87
32

0.
49
78

0.
55
30

C
M
N
-1

0.
59
62

0.
69
43

0.
46
84

0.
50
03

0.
66
92

0.
78
09

0.
52
13

0.
55
75

0.
69
84

0.
86
62

0.
49
60

0.
55
07

C
M
N
-2

0.
60
17
†

0.
70

07
†

0.
47
24
†

0.
50
45
†

0.
79

59
†

0.
89

21
†

0.
61
85
†

0.
65
00
†

0.
72
67
†

0.
89
04
†

0.
51

80
†

0.
57
14
†

C
M
N
-3

0.
60

20
†

0.
69
85
†

0.
47

48
†

0.
50

62
†

0.
79
32
†

0.
89
01
†

0.
62

34
†

0.
65

51
†

0.
72

77
†

0.
89

31
†

0.
51
75
†

0.
57

15
†

T
a
bl

e
3.

2:
E
xp

er
im

en
ta
l
re
su
lt
s
fo
r
di
ffe

re
nt

m
et
ho

ds
on

th
e

E
pi

ni
on

s,
ci

te
ul

ik
e-

a
an

d
P
in

te
re

st
da

ta
se
ts
.

B
es
t
re
su
lt
s

hi
gh

lig
ht
ed

in
bo

ld
.
†
in
di
ca
te
s
th
e
im

pr
ov
em

en
t
ov
er

ba
se
lin

es
is

st
at
is
ti
ca
lly

si
gn

ifi
ca
nt

on
a
pa

ir
ed

t-
te
st

(p
<

0.
01

).

E
pi

ni
on

s
ci

te
ul

ik
e-

a
P
in

te
re

st
H

R
@

5
H

R
@

10
N

D
C

G
@

5
N

D
C

G
@

10
H

R
@

5
H

R
@

10
N

D
C

G
@

5
N

D
C

G
@

10
H

R
@

5
H

R
@

10
N

D
C

G
@

5
N

D
C

G
@

10
C
M
N

0.
60
17

0.
70
07

0.
47
24

0.
50
45

0.
79
59

0.
89
21

0.
61
85

0.
65
00

0.
72
67

0.
89
04

0.
51
80

0.
57
14

C
M
N
-A

tt
n

0.
58
07

0.
69
48

0.
44
38

0.
48
09

0.
74
11

0.
85
89

0.
55
03

0.
58
87

0.
69
95

0.
87
73

0.
49
49

0.
55
30

C
M
N
-L
in
ea
r

0.
59
54

0.
69
77

0.
46
60

0.
49
92

0.
77
21

0.
86
65

0.
59
74

0.
62
82

0.
69
92

0.
87
77

0.
49
51

0.
55
34

C
M
N
-L
in
ea
r-
A
tt
n

0.
58
30

0.
69
37

0.
44
57

0.
48
16

0.
76
49

0.
86
76

0.
59
22

0.
62
56

0.
69
96

0.
87
75

0.
49
47

0.
55
27

T
a
bl

e
3.

3:
C
M
N

va
ri
an

ts
w
it
ho

ut
at
te
nt
io
n
(C

M
N
-A

tt
n)
;l
in
ea
r
ac
ti
va
ti
on

w
it
h
at
te
nt
io
n
(C

M
N
-L
in
ea
r)
;a

nd
lin

ea
r
w
it
ho

ut
at
te
nt
io
n
(C

M
N
-L
in
ea
r-
A
tt
n)
.

Chapter 3: Collaborative Memory Networks 65

3.5.4 Baseline Comparison

Table 3.2 lists results of CMN with one, two and three hops along with the baselines

for HR and NDCG with cut offs at 5 and 10 on the Epinions, citeulike-a and Pinterest

datasets. We denote CMN with one hop as ‘CMN-1’, two hops with ‘CMN-2’ and so on.

At a high-level CMN variants obtain the best performance across both HR and NDCG

at all cut offs for all datasets. We now provide a detailed breakdown of our results

on the Epinions dataset. All baselines with the exception of KNN show competitive

performance with each other across all metrics and cut offs. Since CMN shares the same

loss function with BPR, FISM and GMF, we can attribute the performance increase

to the memory component. The application of a nonlinear transformation does not

necessarily help as evident from BPR outperforming its nonlinear counterpart GMF.

KNN demonstrated the poorest performance particularly due to the restrictive ability

to handle sparse data when only a few neighbors are present and a large number (139k)

of items. However, FISM’s learned similarity function performs better since it can

address missing entries in the item-item similarity matrix. On the other hand, CMN can

leverage the global structure of the latent factors encoded in the memory vectors and the

additional memory component to infer complex user preferences. Furthermore, CMN’s

performance gains over CDAE, GMF and NeuMF portray the successful integration

of the memory component and attention mechanism over existing nonlinear and deep

learning-based methods.

The denser citeulike-a dataset contains fewer items than the Epinions dataset leading

Chapter 3: Collaborative Memory Networks 66

to competitive performance from the item-based KNN method obtaining the strongest

baseline NDCG@5. SVD++ outperforms the neighborhood-based FISM and latent fac-

tor BPR revealing the effectiveness of combining two approaches into a single hybrid

model. The linear decomposition of the item-item similarity matrix in FISM may lack

the expressiveness to capture complex preferences as suggested by the nonlinear GMF

outperforming the linear BPR. CMN demonstrates improved performance over the fixed

neighborhood-based weighting of KNN and the learned linear similarity scheme of FISM

indicating the additional nonlinear transformation and adaptive attention mechanism

captures more complex semantic relations between users. CMN can be viewed as NeuMF

by replacing the memory network component with a multilayer perceptron. CMN out-

performing NeuMF further establishes the advantage of the memory network component

to identify complex interactions and iteratively update the internal neighborhood state.

In the Pinterest dataset, CMN with a single hop demonstrates competitive performance

to baseline methods but with additional hops performance is further enhanced. SVD++

demonstrates competitive performance but may lack the full expressiveness of nonlin-

earity found in deep learning-based models to capture latent user-item relations. The

larger dataset helps the two deep learning baselines to outperform the non-deep learning-

based methods but the hybrid nature of CMN allows the joint nonlinear exploitation of

the local neighborhood and global latent factors yielding additional performance gains.

Overall, CMN with two hops outperforms CMN with a single hop but supplementing

additional hops greater than two did not provide significant advantages.

Chapter 3: Collaborative Memory Networks 67

3.5.5 Embedding Size

We illustrate the effect of varying the size of memory slots or embeddings and the number

of hops for HR@10 and NDCG@10 on the Epinions dataset in Figure 3.2a. Since HR

and NDCG show similar patterns, we focus our analysis on NDCG. The general trend

shows a steady improvement as the embedding size increases with the exception of a

single hop where an embedding size of 40 shows peak HR@10 performance followed

by a degradation potentially due to overfitting. A single hop confines the model’s

expressiveness to infer and discriminate between the relevant and irrelevant information

encoded in each memory cell. With a small embedding size of 20 increasing the number

of hops provides negligible benefits but as the embedding size increases multiple hops

show significant improvement over a single hop.

For the citeulike-a dataset, Figure 3.2b portrays the best performance of a single hop at

an embedding size of 20 followed by a degradation as model capacity increases which is

somewhat similar to the Epinions dataset. At three hops and an embedding size of 40

shows an unusual drop in performance potentially from finding a poor local minima due

to the nonconvex nature of neural networks. Two and four hops show almost identical

performance with at most a deviation of 0.3% from each other on HR and NDCG. In

general, two hops demonstrates competitive performance against the three and four hop

models across all embedding sizes.

The Pinterest dataset in Figure 3.2c shows a similar trend of gradual performance gains

as the embedding size increases but a single hop shows insufficient capacity to model

Chapter 3: Collaborative Memory Networks 68

20 40 60 80 100
Embedding Size

0.66

0.69

0.72
HR

@
10

20 40 60 80 100
Embedding Size

0.48

0.50

0.52

ND
CG

@
10

1 Hop 2 Hop 3 Hop 4 Hop

(a) Epinions dataset

20 40 60 80 100
Embedding Size

0.7

0.8

0.9

HR
@

10

20 40 60 80 100
Embedding Size

0.45

0.55

0.65

ND
CG

@
10

1 Hop 2 Hop 3 Hop 4 Hop

(b) citeulike-a dataset

20 40 60 80 100
Embedding Size

0.80

0.84

0.88

HR
@

10

20 40 60 80 100
Embedding Size

0.45

0.50

0.55

ND
CG

@
10

1 Hop 2 Hop 3 Hop 4 Hop

(c) Pinterest dataset

Figure 3.2: Experimental results for CMN varying the embedding size from 20-100
and hops from 1-4.

Chapter 3: Collaborative Memory Networks 69

complex user-item interactions. Unlike the results from the previous datasets the per-

formance of a single hop does not degrade as the embedding size increases. The larger

dataset may provide some implicit form of regularization to prevent overfitting. Two,

three and four hops show similar performance and incremental with larger embedding

sizes. Identifying a sufficient number of hops initially takes precedence over the size of

the embeddings. With a sufficient number of hops the embedding size can be increased

yielding a trade off between computational cost and performance. By introducing addi-

tional hops, CMN can better manipulate the memories and internal state to represent

more complex nonlinear relations. Consistent with previous results, the addition of more

than two hops do not show significant benefit.

3.5.6 Effects of Attention and Nonlinearity

In this section, we seek to further understand the effect of individual components on

performance. In Table 3.3, the results for CMN without attention denoted ‘CMN-Attn’

uniformly performs worse than with attention hinting at the effectiveness of the atten-

tion mechanism. We also experimented with a linear version of CMN where all ReLU

activation functions are set to the identity function denoted as ‘CMN-Linear’. The lin-

ear version with the attention mechanism generally outperforms the nonlinear version

without attention. Further illustrating the effectiveness of the attention mechanism.

The final variation removes the attention mechanism from the linear version denoted

as ‘CMN-Linear-Attn’ which generally performs worse than the linear version with the

attention mechanism. In general, removing the nonlinear transformation and attention

Chapter 3: Collaborative Memory Networks 70

mechanism in some variation yield similar performance on the Epinions and Pinterest

datasets. In the citeulike-a dataset the linear version with and without the attention

mechanism show improvements over the nonlinear variant without the attention mech-

anism. This seems counter intuitive and may indicate a potential difficulty in finding a

good local minima or a vanishing gradient problem which is consistent with the unusual

drop in performance reported in Section 3.5.5. CMN requires a combination from both

the attention mechanism and nonlinear transformations to yield the best performance.

3.5.7 Negative Sampling

In this section, we study the characteristics of varying the negative samples for CMN

reporting HR@10 and NDCG@10. We exclude the results of four hops since the results

were consistent with that of three hops. We also omit 1 negative sample since CMN

was unable to distinguish between positive and negative samples leading to random

performance. Figure 3.3a illustrates the performance of CMN varying the negative

samples from 2-10 on the Epinions dataset. A single hop shows fluctuations reporting

low HR at 5 and 10 negative samples but outperforms the two and three hop versions

with 7 negative samples. A single hop uniformly performs worse than the two and

three hop counterparts in the citeulike-a dataset presented in Figure 3.3b. In Figure

3.3c, the results for a single hop on the Pinterest dataset describes a general upward

trend where performance improves as the number of negative samples increase. In both

the citeulike-a and Pinterest datasets we observe two and three hops show comparable

results and more stability to the number of negative samples while outperforming a

Chapter 3: Collaborative Memory Networks 71

2 3 4 5 6 7 8 9 10
Negative Samples

0.60

0.65

0.70

HR
@

10

2 3 4 5 6 7 8 9 10
Negative Samples

0.40

0.45

0.50

ND
CG

@
10

1 Hop 2 Hops 3 Hops

(a) Epinions dataset

2 3 4 5 6 7 8 9 10
Negative Samples

0.7

0.8

0.9

HR
@

10

2 3 4 5 6 7 8 9 10
Negative Samples

0.5

0.6

0.7

ND
CG

@
10

1 Hop 2 Hops 3 Hops

(b) citeulike-a dataset

2 3 4 5 6 7 8 9 10
Negative Samples

0.80

0.85

0.90

HR
@

10

2 3 4 5 6 7 8 9 10
Negative Samples

0.50

0.55

0.60

ND
CG

@
10

1 Hop 2 Hops 3 Hops

(c) Pinterest dataset

Figure 3.3: Experimental results for CMN varying the number of negative samples
from 2-10 and hops from 1-3.

Chapter 3: Collaborative Memory Networks 72

single hop. Overall, the performance of CMN is fairly stable with respect to the number

of negative samples when at least two hops are present. Similar to the previous section

on embedding size, we notice having at least two hops reduces the sensitivity to the

hyperparameter.

3.5.8 Attention Visualization

Attention mechanisms allow us to visualize the weights placed on each user in the

neighborhood with the hope of providing interpretable recommendations. We plot a

heatmap of the weights from Equation 3.6 in Figure 3.4. The color scale represents

the intensities of the attention weights, where a darker color indicates a higher value

and lighter colors indicate a lower value. For ease of reference, we label each column

representing a user in the neighborhood starting from 1 which may not necessarily reflect

the true user id from the dataset. Furthermore, for each user we provide additional

context in the form of user statistics. We denote 11/167 to indicate the user has rated

a total of 167 items with 11 items observed in common with the target user in the

training set. Since the size of the neighborhood can be large we limit the visualization

to top 5 neighbors sorted by the highest aggregated attention values. We would like to

point out that in some cases the attention weights can be small and hence not visually

distinguishable.

The attention weights for a random user from the Epinions dataset is portrayed in

Figure 3.4a. The user has a total of 49 neighbors thus we show only the top 5 neighbors

Chapter 3: Collaborative Memory Networks 73

1
11/167

2
6/646

3
3/272

4
7/409

5
8/75

Hop 4
Hop 3
Hop 2
Hop 1

(a) Epinions dataset

1
6/51

2
21/27

3
4/11

4
0/9

5
1/29

Hop 4
Hop 3
Hop 2
Hop 1

(b) citeulike-a dataset

1
2/37

2
1/20

3
4/27

4
3/27

5
2/73

Hop 4
Hop 3
Hop 2
Hop 1

(c) Pinterest dataset

Figure 3.4: Heatmap of the attention weights over four hops. The color scale in-
dicates the intensities of the weights, darker representing a higher weight and lighter
a lower weight. Each column represents a user in the neighborhood labeled with the
number of items in common with the target user / number of ratings in training set.
For example, 11/167 indicates user 1 has 11 items corated with the current user u and

has rated a total of 167 items in the training set.

Chapter 3: Collaborative Memory Networks 74

due to space constraints. We can see all the top users attended to have at least a single

item in common. The first hop places heavy levels of attention on user 1 and lightly

on user 3. At two hops the attention on user 3 increases. Progressing to three hops

the attention spread out across four users. Finally, at four hops user 2 and 3 have the

highest weight with a balance of the number items in common with the target user and

overall number of ratings observed suggesting these users may be the most influential

in the recommendation process. As shown in previous sections performance generally

increases with additional hops suggesting considering a combination of multiple users

may be beneficial.

Figure 3.4b illustrates the attention weights over four hops for a random user from the

citeulike-a dataset with a total of 9 neighbors. We observe the first hop places a large

amount of weight on a single user which may explain the poorer performance of CMN

with a single hop. User 1 has the highest number of observations out of the neighborhood

which may be a reasonable choice but it ignores other information that may be present

from other users. Examining the weights of the second hop we see the attention is spread

out across five users with a higher emphasis on users 1 and 2 who have the most items

in common with the target user. Four out of the five users have a common item with

the target user providing a strong indicator of the successful integration of the attention

mechanism. Next, we focus on three hops which removes the attention over user 5 and

reduces the intensities on user 4, 2 and 3. In the final hop, attention is returned to

user 5 with stronger weights than in hop two. The overall attention levels shift around

slightly but focus most heavily on user 2 which makes sense since it has the highest

Chapter 3: Collaborative Memory Networks 75

number of commonly rated items. Since user 4 has no items in common with the target

user but large attention weights this warranted further investigation. We found user 4

to have at least one item in common with all other users in the neighborhood which

may explain the attention placed on user 4 despite no corated items with the target user

in the training data. This demonstrates the memory component captures higher level

interactions within the neighborhood suggesting some form of transitive reasoning.

Figure 3.4c illustrates the attention weights over four hops for a random user from

the Pinterest dataset. Similar to the previous visualization the first hop places heavy

weights on a single user followed by a more dispersed weighting in the following hops. In

hops two through four, a small amount of attention is placed upon each user which may

not be visually distinguishable. Each hop allows CMN to examine the external memory

and perhaps through some form of trial and error arrives at identifying the most useful

neighbor as user 1 in hop four. We would like to note the attention mechanism may not

necessarily place weights on all users who have rated items in common.

3.6 Summary

We introduced a novel hybrid architecture unifying the strengths of the latent factor

model and neighborhood-based methods inspired by Memory Networks to address col-

laborative filtering (CF) with implicit feedback. We reveal the connection between com-

ponents of Collaborative Memory Network (CMN), the three important classes of CF

Chapter 3: Collaborative Memory Networks 76

models, and draw parallels with the original memory network framework. Comprehen-

sive experiments under multiple configurations demonstrate significant improvements

over competitive baselines. Qualitative visualization of the attention weights provide

insight into the model’s recommendation process and suggest higher order transitive

relations may be present.

Chapter 4

Neural Semantic Personalized Ranking

4.1 Introduction

The problem of item cold-start is of great practical importance because modern online

platforms publish thousands of new items everyday and effectively recommending them

is essential for keeping the users continuously engaged. Content-based approaches, on

the other hand, may still produce recommendations by using the descriptions of the

items, but they tend to achieve lower accuracy. Combining CF and content becomes

a common approach to item cold-start problems. Several hybrid latent factor models

were proposed in the literature including collective matrix factorization (CMF) [105]

and collaborative topic regression (CTR) [115]. The key idea is to obtain item latent

factors from rating matrix and content matrix respectively and couple them in the

shared latent space. These methods extend the traditional matrix factorization models

77

Chapter 4: Neural Semantic Personalized Ranking 78

by integrating content information, but the latent representation learned is often not

effective especially when the content information is very sparse which is the case for

many recommendation tasks where the item descriptions are usually quite short. The

ineffectiveness may lie in the fact that these techniques can be viewed as shallow models

in capturing latent topics from item descriptions and feedback information by applying

simple transformations (often linear) on the observed data, while the ideal latent factors

may have more complex relations with the observations.

Another challenge in many recommendation tasks is the presence of implicit feedback

where users’ explicit preferences (e.g., ratings) on items are unavailable. In the real

world, often only implicit feedback is available to learn a recommendation model. Exam-

ples of implicit feedback are clicks, watched movies, played songs, purchases or assigned

tags. Implicit feedback is tracked automatically and thus it is much easier to collect

than explicit feedback. A characteristic of implicit feedback is that it is one-class, i.e.

only positive observations are available. Moreover, the observed implicit feedback is

generally very sparse, which makes the preference modeling even more challenging. As

the result, existing solutions often deliver unsatisfactory recommendation accuracies.

On the other hand, deep learning models recently demonstrated great success for learn-

ing effective representations in various applications including computer vision, speech

recognition, and natural language processing [18, 68]. However, the existing literature

contains very few work on developing deep learning models for recommender systems,

especially for addressing the cold-start problem with implicit feedback. In this paper,

we propose a Neural Semantic Personalized Ranking (NSPR) probabilistic model by

Chapter 4: Neural Semantic Personalized Ranking 79

learning item representations using a deep neural network (DNN). To handle implicit

feedback, we adopt pairwise probability functions that aim to discriminate between a

small set of positive items and a very large set of all remaining items. In this way, items

both with and without feedback will contribute to learning the ranking function and

thus the data sparsity problem can be alleviated. DNN is used to map high-dimensional

sparse text features into low-dimensional dense features in a latent semantic space.

These low-dimensional features are tightly coupled with the latent factors learned from

the pairwise probability, which allows two-way interactions between the content informa-

tion and implicit feedback. The pairwise probability derived from the implicit feedback

can guide the learning of feature representations. The learned features can further im-

prove the predictive power of the pairwise model. The latent factors of new items can

be inferred by applying the trained DNN to their content and then be used for item

ranking. The contributions of the paper can be summarized as follows:

A popular and effective approach to recommendations is collaborative filtering (CF),

which focuses on finding users with similar interests and recommending items favored

by the like-minded [62]. One of the fundamental problems arising when employing CF

techniques is the item cold-start problem, which is caused by the system’s incapability

of dealing with new items due to the lack of relevant transaction history.

Recommender systems help users deal with information overload and enjoy a personal-

ized experience on the Web. One of the main challenges in these systems is the item

cold-start problem which is very common in practice since modern online platforms have

thousands of new items published every day. Furthermore, in many real-world scenarios,

Chapter 4: Neural Semantic Personalized Ranking 80

the item recommendation tasks are based on users’ implicit preference feedback such as

whether a user has interacted with an item. To address the above challenges, we pro-

pose a probabilistic modeling approach called Neural Semantic Personalized Ranking

(NSPR) to unify the strengths of deep neural network and pairwise learning. Specifi-

cally, NSPR tightly couples a latent factor model with a deep neural network to learn

a robust feature representation from both implicit feedback and item content, subse-

quently allowing our model to generalize to unseen items. We demonstrate NSPR’s

versatility to integrate various pairwise probability functions and propose two variants

based on the Logistic and Probit functions. We conduct a comprehensive set of ex-

periments on two real-world public datasets and demonstrate that NSPR significantly

outperforms the state-of-the-art baselines.

The architecture consists of an item and user auto-encoder for content information

coupled with a latent factor model. CDL and DCF models both share some similarities

with NSPR. However, they directly predict user ratings and lack the ability to address

implicit feedback which is pervasive in modern recommender systems. While CDR does

use a pairwise loss for implicit feedback it does not exploit a latent factor model.

NSPR has notable differences from the existing work. First of all, no prior work has

studied the cold-start problems by coupling deep semantic representation with user

feedback. Secondly, many previous deep models in recommender systems use denoising

auto-encoders to learn a feature representation from content, while NSPR utilizes a deep

neural network which allows to model the latent semantic space directly without mod-

eling the recovery of input as the auto-encoders do. We demonstrate the effectiveness

Chapter 4: Neural Semantic Personalized Ranking 81

of using a DNN to learn robust feature representations without complex preprocess-

ing data transformations. Last but not the least, NSPR utilizes stochastic gradient

descent for parameter estimation, which is often more scalable for large datasets than

the batch estimation methods [8] which were used in the existing deep learning based

recommendation models such as CDL and DCF.

4.2 Neural Semantic Personalized Ranking

We take a pairwise approach to item recommendation by assuming that a user prefers

the items that she has interacted with rather than those items that she has not interacted

with. This assumption is more reasonable than the pointwise assumption which treats

all observed entries in the user-item interaction/feedback matrix as positive examples

and all missing entries as negative examples.

Formally, given user u ∈ U , we use i+ ∈ I+
u to denote a positive item (i.e., interact-

ed/observed item) where I+
u is the set of all positive items for user u. Similarly, we use

i− ∈ V \ I+
u for a negative item (i.e., uninteracted/unobserved item) where V is the set

of all items. Since item i+ is preferred over item i−, we can form a preference instance

(u, i+, i−) ∈ DS where DS = {(u, i+, i−)|u ∈ U , i+ ∈ I+
u , i

− ∈ V \ I+
u } is the whole set of

preference instances. The total number of preference triplets is quadratic in the number

of items. Thus, we sample from DS for training instead of going over the complete set

of item pairs (Section 4.3.3 gives the details about our sampling strategy). Table 4.1

lists the main notations used in the paper.

Chapter 4: Neural Semantic Personalized Ranking 82

Table 4.1: Notations

u, i Index for user and item respectively
U ,V User set and item set respectively
mu Latent factor for user u
ei Latent factor for item i
r̂ui Ranking score of item i for user u
I+
u Set of all positive items for user u

(u, i+, i−) A preference triplet indicating user u
prefers item i+ over item i−

Ds Set of preference triplet instances
Du Set of preference instances for user u
xi Input content vector for item i
yi Output latent feature vector for item i
al, Wl, bl Activation output, weight matrix and bias

vector at the lth layer in DNN respectively
σ2
m Variance in user prior distribution
σ2
e Variance of noise in latent item factor
σ2
r Variance of noise in ranking score
K Number of latent factors
L Number of layers in DNN
N Size of vocabulary

4.2.1 Probabilistic Generative Modeling

We propose Neural Semantic Personalized Ranking (NSPR) by tightly incorporating a

deep neural network (DNN) [43] to learn effective feature representation from item con-

tent. The DNN architecture maps the raw text features into the features in a semantic

space. The input (raw text features) to the DNN is a high dimensional term vector, e.g.,

TF-IDF of terms in the item content, and the output of the DNN is a concept vector

in a low-dimensional semantic feature space. Formally, we denote xi as the input term

vector, yi as the output vector, l as the lth hidden layer (l ∈ [1, L− 1]). al, Wl and bl

are the activation output, weight matrix and bias vector respectively. We have

Chapter 4: Neural Semantic Personalized Ranking 83

(u, i+, i−)

r(u, i+)

ei+

yi+

r(u, i−)

ei−

yi−

σ2
e

mu

σ2
m

...

di+

...

di−

|Di|

|U |

Figure 4.1: Graphical model representation of NSPR. The double circled nodes
represent observed variables and other nodes are latent variables.

a1,i = W1di

al,i = ψ(Wlal−1,i + bl)

yi = WLaL−1,i + bL

where we use the tanh as the activation function ψ at the hidden layers and the identity

function for the output layer.

ψ(x) =
1− e−2x

1 + e−2x
(4.1)

Chapter 4: Neural Semantic Personalized Ranking 84

The output concept vector yi is used to calibrate the latent item factor vector ei learned

from the feedback matrix. On the other hand, the weights and bias in DNN are learned

with the guidance of ei. In other words, yi and ei are tightly coupled, which allows two-

way interactions between the content information and implicit feedback. Specifically,

NSPR can be viewed as a probabilistic modeling approach with the generative process

described as follows (the graphical model representation of NSPR is shown in Figure

4.1).

1. For each item i,

(a) Map high-dimensional sparse text feature vector di into low-dimensional

dense features yi via DNN

(b) Draw a latent item offset vector from normal distribution:

εj ∼ N (0, σ2
eIK) (4.2)

(c) Set the latent item vector to be

ei = yi + εi

2. For each user u, draw a latent user factor

mu ∼ N (0, σ2
mIK)

Chapter 4: Neural Semantic Personalized Ranking 85

3. For item i given user u, calculate the ranking score r(u, i) = f(mu, ei). For

user u, item i+ and i−, form the preference triplet (u, i+, i−) with the probability

S
(
r(u, i+)− r(u, i−)

)
where S is a sigmoid ‘S’ shape class of functions.

Here S
(
r(u, i+)− r(u, i−)

)
defines a pairwise probability that is a monotonically non-

decreasing function with respect to the argument r(u, i+) − r(u, i−). The intuitive

explanation is that if item i+ is preferred over i− for user u, the difference between their

ranking scores r(u, i+) and r(u, i−) is maximized given the monotonically non-decreasing

function S(x). As a result, item i+ is more preferable than item i−. In Section 4.2.3,

we define two variants over the NSPR framework drawing on the Logistic and Probit

probability functions.

In this paper, we set the ranking score as r(u, i) = f(mu, ei) = mT
uei, which leads to

r(u, i+)− r(u, i−) = mT
u (ei+ − ei−)

It is worth noting that the output of the DNN serves as a bridge between the feedback

and content information, which is the key that enables NSPR to simultaneously learn

an effective feature representation and capture the implicit preference relations between

items. The low-dimensional output obtained by DNN is tightly coupled with the latent

factors learned from the pairwise probability. The pairwise probability derived from the

implicit feedback can guide the learning of feature representations. The learned features

can further improve the predictive power of the pairwise ranking model. Thus, the

Chapter 4: Neural Semantic Personalized Ranking 86

low-dimensional feature representation obtained by DNN captures the latent semantic

of item content while being predictive for item ranking, which is very desirable for

addressing the item cold-start problem.

4.2.2 Parameter Estimation

Based on the NSPR framework above, the posterior likelihood of observing all the

preference triplets is:

L =
∏
u

∏
i+,i−

S
(
r(u, i+)− r(u, i−)

) ∏
i+,i−

N (ei|yi, σ2
eI)
∏
u

N (mu|0, σ2
mI)

By taking the log of the likelihood and simplifying we obtain

L =
∑
u

∑
i+,i−

logS
(
r(u, i+)− r(u, i−)

)
− 1

2σ2
e

∑
i+,i−

||ei − yi||22 −
1

2σ2
m

∑
u

||mu||22 (4.3)

The parameters to be learned include latent factors mu and ei, and the weights Wl and

bias bl in the DNN. The second term in the objective function above is to encode a

deep neural network using the latent item vectors ei as the target.

Chapter 4: Neural Semantic Personalized Ranking 87

We use Stochastic Gradient Descent (SGD) to obtain the Maximum A Posteriori (MAP)

estimate. For a given triplet of latent factors (mu, ei+ , ei−), we compute the stochastic

gradients given the current outputs of the DNN (i.e. yi).

∂L
∂mu

=
1

S
∂S
∂x

(
ei+ − ei−

)
− 1

σ2
m

mu (4.4)

∂L
∂ei+

=
1

S
∂S
∂x

mu −
1

σ2
e

(
ei+ − yi+

)
(4.5)

∂L
∂ei−

= − 1

S
∂S
∂x

mu −
1

σ2
e

(
ei− − yi−

)
(4.6)

where ∂S
∂x

is the stochastic gradient of the pairwise probability S(·) with respect to its

input ranking score preference. Section 4.2.3 will derive ∂S
∂x

for various forms of S(·).

Given the current ei+ and ei− , we can then update the weights Wl and biases bl for each

layer of the DNN using the Backpropagation algorithm [101]. The stochastic gradients

of the likelihood with respect to Wl and biases bl are as follows:

∂L
∂Wl

= δl,ia
T
l,i and

∂L
∂bl

= δl,i

where δl,i = WT
l+1δl+1,i � (1− al,i � al,i)

and δL,i = ei − yi

where � is the element-wise product. The algorithm iterates over the gradient updates

for each preference triplet (u, i+, i−) until convergence. Section 4.3.3 discusses the details

about the setting of the algorithm.

Chapter 4: Neural Semantic Personalized Ranking 88

4.2.3 Pairwise Probability

NSPR seamlessly integrates with a multitude of pairwise probability functions for S(·).

In our case, the two pairwise functions we chose can also be interpreted as cumulative

distribution functions. We define two variants over the NSPR framework to demonstrate

its capabilities.

4.2.3.1 Logistic Probability

One of the most widely used sigmoid functions is the Logistic function, defined as

S(x) =
1

1 + exp(−x)
(4.7)

It is worth noting in this setting, if σ2
e goes to infinity, the maximization of the objective

function Eq.(4.3) is degenerated to the BPR-MF model [99]. The use of non-zero σ2
e

in NSPR enables the coupling between the semantic item representation learned by

the deep neural network and the latent item factors learned from the pairwise implicit

feedback. This tight coupling is missing in the BPR based models.

Computing the stochastic gradient, we obtain the following

∂S
∂x

=
(

1− S
(
r(u, i+)− r(u, i−)

))
S
(
r(u, i+)− r(u, i−)

)
(4.8)

Plugging Eq. (4.8) into Eq.(4.4), (4.5) and (4.6), we obtain the parameter estimation

update for the Logistic variant of NSPR, called as NSPR-L.

Chapter 4: Neural Semantic Personalized Ranking 89

4.2.3.2 Probit Probability

In statistics, closely related to the Logistic function are the Probit function and Probit

model [81]. The Logistic and Probit are both sigmoid functions with a domain between

0 and 1, which makes them both quantile functions - i.e., inverses of the cumulative

distribution function (CDF) of a probability distribution. In fact, the Logistic is the

quantile function of the Logistic distribution, while the Probit is the quantile function

of the Gaussian distribution. We derive the Probit variant of NSPR, denoted as NSPR-

P, by setting S(x) = Φ(x) as the cumulative distribution function of the Gaussian

distribution as follows:

Φ(x) =

∫ x

−∞

1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
dx

We can then obtain the stochastic gradient of the objective function as follows:

∂S
∂x

= N
(
r(u, i+)− r(u, i−)

)

where

N =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)

For simplicity we set µ = 0 and σ2 = 1 yielding the standard normal Gaussian distribu-

tion. Figure 4.2 plots the Logistic, Probit, and Heaviside step functions. As we can see,

these functions have a similar ‘S’ shape. The Logistic has a slightly flatter tail while the

Probit curve approaches the axes more quickly. In the Probit function, as we increase

Chapter 4: Neural Semantic Personalized Ranking 90

−4 −2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

S
(x

)

Heaviside
Probit
Sigmoid

Figure 4.2: Logistic and Probit pairwise probability functions in NSPR

the variance the curve will become flatter and elongated. The experiments in Section

5.3 compare the performance of the two variants of NSPR.

4.2.4 Prediction for Cold-Start Items

Once the NSPR model is trained, the parameters are used to calculate the ranking score

r(u, i) for item i given user u. The items are ranked in descending order of r(u, i) for

providing personalized recommendation. Similar to Wang and Blei [115], we use the

MAP point estimates of parameters to calculate the predicted ranking score

r(u, i) ≈ (m∗u)
T (yi + ε∗i) = (m∗u)

T (e∗i) (4.9)

Chapter 4: Neural Semantic Personalized Ranking 91

citeulike-a Yahoo! Movies
Users 5,551 7,642
Items 16,980 11,915
Ratings 204,987 211,231
Sparsity 99.78% 99.76%
Vocabulary Size 68,911 39,664
Avg. Words/Document 187.97 68.26
Avg. Ratings/User 37.92 118.50

Table 4.2: Dataset statististics

where m∗u and e∗i are the point estimates by SGD in Section 4.2.2 for the random

variables m and e. y is deterministic mapped from the content feature vector d.

For the cold-start problem when the item i is unseen in the training data, we set the

noise offset ε∗i in Eq.(4.9) to be zero and obtain the predicted ranking score as follows

r(u, i) ≈ (m∗u)
T (WLaL−1,i + bL) (4.10)

where WLaL−1,i + bL is the output of DNN based on item content input di.

4.3 Experimental Results

4.3.1 Datasets

We evaluate our model on two public datasets from CiteULike1 and Yahoo! Movies2.

CiteULike is a web service that allows users to save and share citations to academic
1http://www.citeulike.org
2R4 - Yahoo! Movies User Ratings and Descriptive Content Information, v.1.0

http://webscope.sandbox.yahoo.com/

Chapter 4: Neural Semantic Personalized Ranking 92

papers. The first dataset citeulike-a3 [115] contains 5,551 users, 16,980 items with

204,987 positive entries. Implicit feedback is encoded as positive if the user has the item

in their personal library and encoded as negative otherwise. The second dataset, Yahoo!

Movies consists of users rating movies on a scale of 1-5 with a short synopsis. To be

consistent with the implicit feedback setting, we extract only positive ratings (rating 5)

for training and testing. After removing movies without a synopsis, this yields 7,642

users, 11,915 items, and 221,367 positive ratings. The characteristics of the dataset

are summarized in Table 4.2. It is worth noting that citeulike-a is sparser in ratings

and has over twice the number of average words per a document while the contrary is

true for Yahoo! Movies. Similar to [115, 116], we preprocess the data by removing the

users with fewer than 3 positive entries, concatenating the title and abstract (movie

synopsis), removing stopwords, stemming and construct our vocabulary from the top

N terms based on TF-IDF then use raw term counts. We randomly hold out 20% of

the items for testing and the remaining 80% of the items are used for training. The

split of data yields the cold-start setting since the items in each set are disjoint from

the other sets, and are new items for the users. We set the vocabulary size (N) to 8,000

and 20,000 for the citeulike-a and Yahoo! Movies datasets, respectively.

4.3.2 Evaluation Metrics

The accuracy of a recommendation model is measured by using three commonly used

metrics, namely Mean average precision (MAP), Normalized discounted cumulative gain
3http://www.cs.cmu.edu/~chongw/data/citeulike

Chapter 4: Neural Semantic Personalized Ranking 93

(NDCG), and Recall (R) [79]. MAP is widely adopted for evaluation of item recom-

mendation. Because users are usually interested in a few top-ranked items, NDCG@N

is used to compare the top-n recommendation performance. We also use Recall be-

cause the feedback information is implicit. Precision oriented metrics such as MAP and

NDCG may not be sufficient since a negative entry could be caused by the fact that the

user is not interested in the item, or that the user is not aware of its existence.

4.3.3 Baselines and Settings

We use the following baselines for comparison in the experiments. They are the state-

of-the-art recommendation algorithms for recommendation tasks and consider content

information a requirement for an algorithm to address the item cold-start problem.

• SVDFeature [12], which performs feature-based matrix factorization allowing for

additional content and relationships.

• Collective matrix factorization (CMF) [105], which simultaneously factors multiple

matrices to learn integrating relations between them.

• Collaborative topic regression (CTR) [115], which combines probabilistic topic

modeling with a latent factor model.

• Collaborative deep learning (CDL) [116], which creates a deep feature representa-

tion using stacked denoising auto-encoders with CTR.

Chapter 4: Neural Semantic Personalized Ranking 94

• Neural Semantic Personalized Ranking (NSPR) with two variants: Logistic (NSPR-

L) and Probit (NSPR-P) which we proposed in Section 4.2.

We select all hyperparameters by cross-validation grid search, holding out 10% of the

training data to create a separate validation set. We then tune hyperparameters ac-

cording to Recall@300 achieved on the validation set. In our experimental results, we

utilize both the training and validation sets as training data. For SVDFeature, we use

the ranking setting and found good results when λu and λv are set to 0.04. In CMF,

we set both matrices (rating and item content) to the sparse setting and 0.1 and 0.05

for the ratings and item content matrices respectively. CTR performed best when we

set a = 1, b = 0.01, λu = 0.1, and λv=10. CDL performed best with the architecture

“200-200-K-200-200" with λv = 10, λu = 1 and λn = 100.

For the SGD algorithm of our NSPR models, we use the adaptive subgradient method

(AdaGrad) [23] to schedule the learning rate with the initial value of 0.1. The regular-

ization parameter σ2
m of latent user factors are set to be 9. We randomize the preference

triplets (u, i+, i−) for SGD training by uniformly randomly sampling a user u from U ,

a positive item from I+
u , and a negative item from V \ I+

u , respectively. This sampling

strategy reduces the chance of updating the same user-item combination in consecutive

iterations, which otherwise may lead to poor convergence [99]. The initial values of

the parameters in the SGD algorithm are uniformly randomly sampled from [0, 1] and

the stopping criteria is when the relative change of the likelihood function is less than

0.01%. The default number of nodes for each hidden layer is 256. We set the default

Chapter 4: Neural Semantic Personalized Ranking 95

SVDFeature CMF CTR CDL NSPR-P NSPR-L
R@10 0.0039 0.0023 0.0692 0.0919 0.1294 0.1290
R@25 0.0095 0.0055 0.1516 0.1693 0.2324 0.2308
R@50 0.0188 0.0110 0.2518 0.2580 0.3402 0.3378
R@100 0.0335 0.0562 0.3802 0.3634 0.4716 0.4646
R@150 0.0493 0.0919 0.4616 0.4304 0.5526 0.5443
R@200 0.0666 0.1066 0.5197 0.4807 0.6100 0.6042
R@250 0.0825 0.1198 0.5647 0.5203 0.6547 0.6515
R@300 0.0985 0.1459 0.6044 0.5514 0.6862 0.6859
MAP@500 0.0025 0.0026 0.0522 0.0672 0.0923 0.0906
NDCG@5 0.0027 0.0024 0.0457 0.0773 0.1296 0.1259
NDCG@10 0.0039 0.0026 0.0578 0.0809 0.1432 0.1418

Table 4.3: Experimental results for different methods on the citeulike-a dataset. The
best results in each metric are highlighted.

parameters for both variants on the citeulike-a dataset with 128 latent factors, σ2
e to

500 and dropout to 0.1 with two hidden layers. In the Yahoo! Movies dataset, both

variants use two hidden layers with K = 16. We set σ2
e to 9 and 200 for NSPR-L and

NSPR-P respectively. We use the default parameter values in the experiments unless

otherwise specified.

4.3.4 Baseline Comparison

Table 4.3 contains the results of NSPR compared to the baseline models measuring

Recall@M , MAP@500, NDCG@5, and NDCG@10 on the citeulike-a dataset. We can

see that both NSPR models perform equally well and outperform all baselines across

all metrics. The nearest competitor is CTR for Recall@300. Concerning MAP@500

and NDCG, the three models using deep learning (NSPR-P, NSPR-L and CDL) obtain

superior performance over models that do not. We can speculate deep learning methods

utilize learned latent semantics from item content to prioritize more relevant items. CMF

Chapter 4: Neural Semantic Personalized Ranking 96

SVDFeature CMF CTR CDL NSPR-P NSPR-L
R@10 0.0042 0.0013 0.0051 0.0234 0.0200 0.0453
R@25 0.0109 0.0040 0.0112 0.0414 0.1193 0.1361
R@50 0.0209 0.0090 0.0200 0.0653 0.0619 0.0840
R@100 0.0427 0.0324 0.0336 0.1071 0.2054 0.2127
R@150 0.0625 0.0769 0.0495 0.1439 0.2764 0.3010
R@200 0.0837 0.1161 0.0639 0.1816 0.3377 0.3559
R@250 0.1046 0.1395 0.0778 0.2181 0.4436 0.4437
R@300 0.1259 0.1551 0.0903 0.2518 0.5179 0.5266
MAP@500 0.0034 0.0022 0.0042 0.0168 0.0173 0.0221
NDCG@5 0.0028 0.0015 0.0044 0.0172 0.0094 0.0217
NDCG@10 0.0035 0.0018 0.0046 0.0175 0.0186 0.0380

Table 4.4: Experimental results for different methods on the Yahoo! Movies dataset.
The best results in each metric are highlighted.

outperforms SVDFeature when the metric is at a higher level, i.e. when Recall is at 100

or greater but SVDFeature reports better NDCG while both have similar performance

on MAP@500. SVDFeature may place a higher priority on relevant recommendations

by drawing upon stronger user-based features. Both models use relatively simple linear

transformations on the item content deteriorating performance to generalize to new

items. These results indicate the benefits of using deep learning to construct robust

feature representations of item content for the cold-start problem.

In the Yahoo! Movies dataset, NSPR models outperform or demonstrate competitive

performance against each baseline for all metrics shown in Table 4.4. Again, NSPR-L

performs best with NSPR-P performing very closely. As noted earlier, the dataset is

characterized by denser ratings and sparser item content may lead to a more complex

relation. Subsequently, topic models may lack the ability to capture this intricate rela-

tionship with sparser documents leading to CTR’s poor performance. SVDFeature and

CMF both obtain better Recall@300 at 0.1259 and 0.1551, respectively. The fact that

Chapter 4: Neural Semantic Personalized Ranking 97

CDL outperforms other baselines additionally with NSPR’s performance demonstrate

the advantages of deep learning models which aim to capture complex and subtle re-

lations between item content and latent features. The NSPR framework’s flexibility to

integrate different types of pairwise probability functions demonstrates its adaptability.

Furthermore, the difference in NSPR variations performance is the pairwise function.

The Probit function’s hyperparameters µ and σ2 could be further optimized to suit

different dataset characteristics which we leave to future work. These results prove the

effectiveness of NSPR using a pairwise probability for implicit feedback and utilizing

DNN for learning latent semantics from item content, compared to the pointwise loss

and auto-encoder in CDL. As we can see, the NSPR models demonstrate competitive

or superior performance over the state-of-the-art baselines across all metrics.

4.3.5 Number of Latent Factors

Selecting the optimal number of latent factors and hidden layers can have a devastating

effect on performance as we demonstrate in this section. Varying these hyperparameters

may introduce noise causing difficulty in isolating the actual effect. To account for the

variance, we perform 10-Fold cross-validation by splitting the items into ten equal parts.

We use nine folds as training data and the final fold as testing such that we yield a cold-

start setting as described earlier in Section 4.3.3. We repeat this process ten times each

with a different test fold and report the average Recall@300 and NDCG@10.

Chapter 4: Neural Semantic Personalized Ranking 98

16 32 64 128 256

Number of Latent Factors (K)

0.45

0.50

0.55

0.60

0.65

0.70

R
e
ca
ll@
3
0
0

16 32 64 128 256

Number of Latent Factors (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
D
C
G
@
1
0

16 32 64 128 256

Number of Latent Factors (K)

0.45

0.50

0.55

0.60

0.65

0.70

R
e
ca
ll@
3
0
0

16 32 64 128 256

Number of Latent Factors (K)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
D
C
G
@
1
0

NSPR-L

Probit 1 Layer

Logistic 1 Layer

Probit 2 Layers

Logistic 2 Layers

Probit 3 Layers

Logistic 3 Layers

Probit 4 Layers

Logistic 4 Layers

NSPR-P

Figure 4.3: Recall@300 (left) and NDCG@10 (right) for varying number of latent
factors (K) and hidden layers (L) averaged over 10-folds on the citeulike-a dataset.

Figure 4.3 illustrates the effect of varying the number of latent factors (K=16, 32,

64, 128, and 256) and hidden layers (L=1,2,3,4) for both NSPR variants reporting

the mean Recall@300 and NDCG@10 for the citeulike-a dataset. In both variants, as

the number of latent factors increases a corresponding climb in performance is seen

on both metrics despite the number of hidden layers. Each particular configuration

obtains peak performance on both metrics at 128 latent factors with the exception of

NSPR-L where the curve continues to increase with 256 latent factors and four hidden

layers. With respect to the number of hidden layers in the DNN, a single hidden layer

struggles to capture the intricate non-linear semantics. The optimal Recall and NDCG

occurs at two and three hidden layers where sufficient modeling capacity exists. NSPR-L

Chapter 4: Neural Semantic Personalized Ranking 99

16 32 64 128 256

Number of Latent Factors (K)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
e
ca
ll@

3
0
0

16 32 64 128 256

Number of Latent Factors (K)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

N
D
C
G
@
1
0

16 32 64 128 256

Number of Latent Factors (K)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
e
ca
ll@

3
0
0

16 32 64 128 256

Number of Latent Factors (K)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

N
D
C
G
@
1
0

NSPR-L

Probit 1 Layer

Logistic 1 Layer

Probit 2 Layers

Logistic 2 Layers

Probit 3 Layers

Logistic 3 Layers

Probit 4 Layers

Logistic 4 Layers

NSPR-P

Figure 4.4: Recall@300 (left) and NDCG@10 (right) for varying number of latent
factors (K) and hidden layers (L) averaged over 10-folds on the Yahoo! Movies dataset.

(bottom) with two hidden layers obtains the best performance for Recall@300 with 128

latent factors. NSPR-P (top) simultaneously performs the best on Recall and NDCG

with three hidden layers and 128 latent factors. Multiple parameter configurations

demonstrate competitive performance across both metrics. We report the variance over

the ten folds in Table 4.5 where we find the variance is relatively small. Overall, lower

fluctuations were reported with latent factors in the range of [32, 64] and two hidden

layers in both variants. Conversely, the highest volatility is achieved with three hidden

layers and 256 latent factors

In Figure 4.4, both NSPR variants show the best performance with two hidden layers

and latent factors in the range of [32, 64] on the Yahoo! Movies dataset. In general,

Chapter 4: Neural Semantic Personalized Ranking 100

Recall@300 NDCG@10
16 32 64 128 256 16 32 64 128 256

P/1 0.0020 0.0022 0.0003 0.0012 0.0152 0.0001 0.0002 0.0001 0.0001 0.0011
P/2 0.0009 0.0010 0.0002 0.0003 0.0072 0.0001 0.0002 0.0002 0.0000 0.0008
P/3 0.0026 0.0017 0.0003 0.0003 0.0242 0.0001 0.0002 0.0003 0.0001 0.0012
P/4 0.0046 0.0020 0.0068 0.0025 0.0020 0.0002 0.0002 0.0008 0.0005 0.0004
L/1 0.0021 0.0007 0.0032 0.0011 0.0040 0.0001 0.0000 0.0002 0.0000 0.0001
L/2 0.0040 0.0003 0.0003 0.0001 0.0039 0.0002 0.0001 0.0002 0.0001 0.0006
L/3 0.0096 0.0007 0.0003 0.0003 0.0104 0.0003 0.0002 0.0002 0.0002 0.0010
L/4 0.0030 0.0011 0.0003 0.0008 0.0002 0.0004 0.0002 0.0002 0.0003 0.0001

Table 4.5: Variance over 10-Folds of NSPR variants for varying the number of latent
factors (K) and hidden layers (L) on the citeulike-a dataset. We denote P/1 to indicate
NSPR-Probit with one hidden layer and similarly, L/2 to indicate NSPR-Logistic with

two hidden layers.

Recall@300 NDCG@10
16 32 64 128 256 16 32 64 128 256

P/1 0.0205 0.0184 0.0116 0.0140 0.0134 0.0001 0.0002 0.0001 0.0001 0.0002
P/2 0.0146 0.0060 0.0053 0.0137 0.0128 0.0001 0.0000 0.0000 0.0005 0.0001
P/3 0.0091 0.0136 0.0171 0.0096 0.0107 0.0003 0.0001 0.0005 0.0001 0.0003
P/4 0.0166 0.0089 0.0058 0.0067 0.0119 0.0000 0.0000 0.0004 0.0004 0.0001
L/1 0.0124 0.0190 0.0185 0.0135 0.0246 0.0000 0.0000 0.0000 0.0002 0.0000
L/2 0.0196 0.0071 0.0138 0.0137 0.0166 0.0004 0.0016 0.0003 0.0001 0.0001
L/3 0.0121 0.0122 0.0167 0.0137 0.0140 0.0001 0.0002 0.0001 0.0002 0.0000
L/4 0.0123 0.0138 0.0118 0.0134 0.0143 0.0007 0.0000 0.0000 0.0000 0.0005

Table 4.6: Variance over 10-Folds of NSPR variants for varying the number of latent
factors (K) and hidden layers (L) on the Yahoo! Movies dataset. We denote P/1
to indicate NSPR-Probit with one hidden layer and similarly, L/2 to indicate NSPR-

Logistic with two hidden layers.

NSPR with a single hidden layer lacks the capability to model the complex relations

present. As three or more hidden layers are used a diminish in performance may suggest

overfitting. NSPR-P with one and two hidden layers show similar performance and a

balance between Recall and NDCG. Illustrating an equilibrium between the pairwise,

latent factors and DNN architecture is achievable. In some cases, high Recall does not

directly translate to the NDCG metric. Particularly we observe this behavior in NSPR-

L with four hidden layers and 256 latent factors, where Recall is among the lowest

obtained yet NDCG is among the highest. Demonstrating NSPR is flexible, and its

architecture can be fine tuned for specific metrics.

Table 4.6 summarizes the variance of NSPR over each of the ten folds for Recall and

Chapter 4: Neural Semantic Personalized Ranking 101

NDCG@10. Similar to the citeulike-a dataset, the variance is generally low across dif-

ferent configurations. Since the diversity on NDCG is too small, we limit our discussion

to the Recall metric. NSPR demonstrates the highest variance with a single hidden

consisting of 16 and 256 latent factors for NSPR-P and NSPR-L respectively. Cumu-

latively, NSPR-L has more variance. However, the variance reduces as the number of

layers increases. A similar yet more subtle trend is present in the Probit version. We

could speculate the optimization of the non-convex nature causes the DNN to become

stuck at a saddle point or bad local minium producing the variance. Nevertheless, the

small size of the dataset could easily lead to overfitting a large number of parameters. In

this case, initializing the DNN weights with pretrained word embeddings may improve

performance. In short, the Yahoo! Movies dataset contains denser ratings with sparse

item content leading to a more complex relation where deeper architectures can capture

these nonlinearlities.

4.3.6 Architecture of NSPR

In this section, we more closely examine the architecture of NSPR by varying the num-

ber of hidden layers from L = 1, 2, 3, 4 using the default parameters. Table 4.7 reports

the values of the citeulike-a dataset. We can see the performance is relatively stable

across different number of hidden layers for NSPR-P. For NSPR-L, we can see a single

hidden layer does not provide enough modeling capacity as performance increases with

additional layers. Both models obtain the best results with two hidden layers and in-

creasing the number of layers may result in overfitting. In the Yahoo! Movies dataset,

Chapter 4: Neural Semantic Personalized Ranking 102

citeulike-a
Hidden Layers (L) 1 2 3 4
NSPR-P 0.6730 0.6862 0.6663 0.6674
NSPR-L 0.5696 0.6859 0.6638 0.6381

Table 4.7: Recall@300 for NSPR with different number of hidden layers (L =
1, 2, 3, 4) for citeulike-a.

Yahoo! Movies
Hidden Layers (L) 1 2 3 4
NSPR-P 0.4583 0.5179 0.3921 0.1414
NSPR-L 0.4548 0.5266 0.4393 0.0941

Table 4.8: Recall@300 for NSPR with different number of hidden layers (L =
1, 2, 3, 4) for Yahoo! Movies.

we see performance also peaking around two hidden layers and then sharply decreas-

ing at four hidden layers in Table 4.8. We believe this to be an overfitting issue from

the DNN, also observed by Salakhutdinov et al. [102]. Dropout lead to a decrease in

performance and subsequently decreased the stability of the method across the num-

ber of hidden layers in contrast to the previous results on the citeulike-a dataset. In

general, a single hidden layer architecture lacks the modeling capacity to capture these

nonlinearlities where the two hidden layer architecture excelled. Additional layers lead

to overfitting possibly due to the small size of the dataset. In future work, we plan

to apply deeper architectures with large-scale test beds and exploit external knowledge

such as pretrained word embeddings.

In the core architecture of NSPR, the DNN is approximating the item latent space

and not a directly observable variable. One could view the item latent factor as an

additional hidden layer connecting to the DNN. The initial error propagates to the

latent item vector then we evaluate another error function with respect to the DNN

Chapter 4: Neural Semantic Personalized Ranking 103

output. We experimented with different combinations of activation functions ranging

from the tanh, Logistic, Rectified Linear Unit (ReLU) [85] and identity. We found

the best performance with the tanh function and the identity as the output. The

Logistic function provided slightly deteriorated performance. One explanation may be

the Logistic function is bound from [0, 1] slowing learning by outputting a positive mean

as inputs to subsequent hidden layers whereas the symmetry of tanh generally provides

a zero centered mean typically leading to better convergence [69]. In our particular

problem, we did not find ReLU’s to enhance performance as demonstrated in Cheng

et al. [15].

4.3.7 Impact of Item Variance

The item variance σ2
e in Eq.(4.2) models the interaction between the semantic learning

of DNN from item content and latent factor learning from implicit feedback. In this

section, we investigate the impact of σ2
e on the NSPR models and vary it from the default

values specified in Section 4.3.3. We vary σ2
e by ±5 of our default values followed by more

extrenous values. Table 4.9 demonstrates the effect of σ2
e on the citeulike-a dataset. As

we can see, NSPR’s performance is relatively robust over a broad range of values and

generally, shows relatively subtle changes with the exception when σ2
e is small i.e. 0.1.

In contrast, the Yahoo! Movies dataset shows more sensitivity to σ2
e in performance as

shown in Table 4.10. When σ2
e is small, the DNN strongly influencing the item latent

factor overfitting to item content. As the value of σ2
e increases, the DNN item content

integration starts to diverge from the item latent factor and as σ2
e goes to infinity the

Chapter 4: Neural Semantic Personalized Ranking 104

σ2
e 0.1 495 500 505 1000

NSPR-P 0.0875 0.6794 0.6862 0.6812 0.6626
NSPR-L 0.0802 0.6763 0.6859 0.6474 0.6410

Table 4.9: Recall@300 for different values of σ2
e on the citeulike-a dataset

σ2
e 0.1 195 200 205 250

NSPR-P 0.2619 0.4211 0.5179 0.4475 0.4696
σ2
e 0.1 4 9 13 100

NSPR-L 0.2889 0.4125 0.5266 0.4833 0.4873

Table 4.10: Recall@300 for different values of σ2
e on the Yahoo! Movies dataset

model degenerates to the BPR criterion. These results demonstrate the importance of

keeping a balance between pairwise probability and latent semantic learning of DNN.

4.3.8 Qualitative Evaluation

To further investigate the effectiveness of NSPR, we compare the interpretability of the

top 5 recommended items against baselines for a given user. Table 4.11 lists the recom-

mended articles for citeulike-a by NSPR-L, CDL, and CTR. We might hypothesize that

this user is interested in library and information sciences. CTR correctly recommends

only two articles while four out of the five article titles recommended contain the root

word ‘science.’ The remaining article is ‘In a paperless world a new role for academic

libraries: providing open access’ which we can also expect the terms ‘academic’ and

‘library’ to co-occur with ‘science’ leading CTR astray. Similarly, CDL identified words

‘technology’ and ‘publication’ while correctly recommending one item. CDL incorrectly

recommends the article ‘The Molecular Biology Database Collection: 2005 update’.

Upon inspecting the training data, the user does not have any interests in biology. CDL

Chapter 4: Neural Semantic Personalized Ranking 105

NSPR-L
1. Ten-Year Cross-Disciplinary Comparison of the Growth of Open Access

and How it Increases Research Citation Impact
2. Peer Review in the Google Age: Is technology changing the way science

is done and evaluated?
3. Defrosting the digital library: bibliographic tools for the next generation web.
4. What are digital libraries? Competing visions
5. A New Era in Citation and Bibliometric Analyses: Web of Science,

Scopus, and Google Scholar
CTR
1. Do pressures to publish increase scientists’ bias? An empirical support from

US states data
2. Unavailability of online supplementary scientific information from

articles published in major journals
3. Strategic reading, ontologies, and the future of scientific publishing.
4. In a paperless world a new role for academic libraries: providing open

access
5. Universality of citation distributions: Toward an objective measure of scientific

impact
CDL
1. Where do educational technologists really publish? An examination of successful

emerging scholars’ publication outlets
2. The Molecular Biology Database Collection: 2005 update
3. Strategic reading, ontologies, and the future of scientific publishing.
4. Peer Review in the Google Age: Is technology changing the way science

is done and evaluated?
5. Déjà vu–a study of duplicate citations in Medline.

Table 4.11: Top-5 recommended articles by NSPR-L, CDL and CTR. The positive
items are highlighted.

may have identified ‘database’ as a term co-occurring with ‘digital’, ‘libraries’ and ‘pub-

lications.’ NSPR-L captures more semantics related to the users primary interests such

as digital library and citation metrics.

The top 5 recommended movies from the Yahoo! Movies dataset is listed in Table 4.12.

Analyzing the genres of each movie recommended we may speculate the user has diverse

tastes in movies from a variety of genres spanning comedy, action, and adventure. CTR

and CDL do not identify the action and adventure genre which comprises a significant

Chapter 4: Neural Semantic Personalized Ranking 106

NSPR-L
1. American Wedding (2003)
2. Tarzan and the Lost City (1998)
3. Indiana Jones and the Last Crusade (1989)
4. Bloody Murder (1999)
5. Bloody Murder 2 (2003)
CDL
1. Virus (1980)
2. Take This Job and Shove It (1981)
3. Going Greek (2001)
4. Shine (1997)
5. Bless the Beasts and Children (1972)
CTR
1. Ricochet River (2001)
2. Buffalo Soldiers (1988)
3. Tempest (1982)
4. Two Hands (1999)
5. JFK (1991)

Table 4.12: Top-5 recommended movies by NSPR-L, CDL and CTR. The positive
items are highlighted.

portion of the user’s preferences while NSPR-L discovered the association, particularly

in recommending ‘Indiana Jones and the Last Crusade.’ It may seem odd that NSPR-L

recommended the horror films ‘Bloody Murder’, however, inspecting the users library

revealed additional horror movies such as ‘Texas Chainsaw Massacre.’

4.4 Summary

Item cold-start and implicit user feedback present two of the greatest challenges to the

real-world recommender systems. In this paper, we tackle the challenges by proposing

a novel probabilistic generative modeling approach to integrate deep neural network

(DNN) with three pairwise ranking variants. With the modeling power of deep learning,

we can extract semantic representation of items and couple it with the latent factors

Chapter 4: Neural Semantic Personalized Ranking 107

learned from implicit feedback. The experiments show that the proposed approach

significantly outperforms the competitive baselines on two real-world public datasets.

This work is just an initial step towards a promising new direction. In future work, we

plan to incorporate other types of deep learning architectures such as Convolutional neu-

ral network (CNN) [67], Deep belief network (DBN) [44], and Recurrent neural network

(RNN) [5]. Further performance boost may be possible when using such deep learning

models since these models can explicitly take the context and ordering of words into

account. Moreover, we plan to explore deeper architectures by applying data normaliza-

tion techniques [50, 1] to help model stability and a better local optimum. Last but not

the least, the proposed NSPR framework can be readily extended to handle the listwise

preferences if ranked lists of items are given as ground truth for recommendations. The

listwise learning to rank likelihood functions such as ListMLE and ListNet [76] can be

directly plugged into the proposed generative framework. The listwise approach may be

able to handle more complex user feedback than pairwise preferences.

Chapter 5

Attentive Contextual Denoising

Autoencoder

5.1 Introduction

Personalized recommendation has become increasingly pervasive nowadays. Users re-

ceive recommendations on products, movies, point-of-interests and other online services.

Traditional collaborative filtering techniques have demonstrated effectiveness in a wide

range of recommendation tasks, but they are unable to capture complex relationships

between users and items. There is a surge of interest in applying deep learning to rec-

ommender systems due to its nonlinear modeling capacity and recent success in other

domains such as computer vision and speech recognition. However, prior work does not

108

Chapter 5: Attentive Contextual Denoising Autoencoder 109

incorporate contexual information, which is usually largely available in many recom-

mendation tasks. In this paper, we propose a deep learning based model for contexual

recommendation. Specifically, the model consists of a denoising autoencoder neural

network architecture augmented with a context-driven attention mechanism, referred to

as Attentive Contextual Denoising Autoencoder (ACDA). The attention mechanism is

utilized to encode the contextual attributes into the hidden representation of the user’s

preference, which associates personalized context with each user’s preference to provide

recommendation targeted to that specific user. Experiments conducted on multiple

real-world datasets from Meetup and Movielens on event and movie recommendations

demonstrate the effectiveness of the proposed model over the state-of-the-art recom-

menders.

The information overload caused by the deluge of data has resulted in the need for

recommender systems. The goal of a recommender system is to predict the unknown

preferences of a user based on the known preferences of that user on certain items. Clas-

sic methods for recommender systems, such as content-based and collaborative filtering,

have been effective in the past and they have offered a reasonable level of performance.

However, these methods lack the ability to model complex nonlinear relationships that

usually accompany the user-item interaction. With the recent success of deep learning

in computer vision and speech recognition [34], there has been a surge of interest in

applying deep learning methods to recommendation tasks [128]. The existing work in

this domain is still quite limited, and furthermore, it does not utilize contextual infor-

mation that is largely present in the real-world scenarios. Context provides additional

Chapter 5: Attentive Contextual Denoising Autoencoder 110

information to the user-item interaction, which in turn improves the quality of the rec-

ommendation [22]. The attention mechanism [2] provides an intuitive way to incorporate

context into the user-item interaction. Motivated by these factors, we propose a novel

model for personalized recommendation based on the denoising autoencoder augmented

with a context-driven attention mechanism. We call this model the Attentive Contextual

Denoising Autoencoder (ACDA).

Autoencoders [34] are feed-forward neural networks capable of learning a representation

of the input data, also known as codings. The codings typically learnt by an autoen-

coder are of much lower dimensionality than the original input. Denoising autoencoders

[34] are a variant of the basic autoencoder that add noise to the input and train the

network to recover the original input at the output layer. This forces the network to

discover robust features in the data representation, and prevents the model from learn-

ing the trivial identity function. The autoencoder architecture makes it suitable for

use in recommender systems as the hidden layer captures the latent representation of

the data, allowing the model to learn the latent factors associated with the user-item

interaction. It has been shown [121] that the denoising autoencoder architecture is a

nonlinear generalization of latent factor models [64, 83], which have been widely used in

recommender systems. Therefore, we utilize denoising autoencoder as the main building

block for the proposed ACDA model.

Context provides an added dimension to real-world applications. Recommender systems

for movies, products, point-of-interests and services utilize context to provide a mean-

ingful personalized recommendation [22]. For example, genre such as horror, drama,

Chapter 5: Attentive Contextual Denoising Autoencoder 111

thriller, comedy etc., is an important context for movie recommendation as people gen-

erally like the same type of movies. Location and time-of-day are useful context to

consider while recommending point-of-interests. There is existing work in the literature

that provides contextual recommendations [129, 94, 57]. The ACDA model incorporates

contextual information via the attention mechanism for personalized recommendation.

We apply the ACDA model to two real-world problems of event recommendation [52]

and movie recommendation. For the event recommendation task, we use the user group

and event venue as the contextual attributes, whereas the movie genre is used as the

contextual attribute for the movie recommendation task.

The attention mechanism has been instrumental in dealing with structured problems,

such as machine translation and caption generation [113, 2, 41]. The objective of the

mechanism is to highlight, or focus attention on, a certain subset of the data. The

attention mechanism accepts a certain input and a context that accompanies the input.

The output of the attention mechanism is considered as a summary of the input focusing

on the information linked to the provided context. The attention mechanism is generally

applied for two reasons–first, to provide for efficient processing of a high-dimensional

input by processing only subsets of the input, and second, to focus on specific parts of the

input in terms of its relevance. A classical example of the use of the attention mechanism

is image captioning, where the mechanism focuses on certain subsets of the image to

generate the suitable caption. The ACDA model utilizes the attention mechanism to

apply the contextual attributes to the hidden representation of the user’s preference.

This helps the model to associate personalized context with each user’s preference to

Chapter 5: Attentive Contextual Denoising Autoencoder 112

provide recommendation targeted to that specific user.

The ADCAmodel accepts the user’s preference on existing items as input, which includes

both positive and negative instances. The input is partially corrupted to learn a robust

representation of the data. The input is mapped to an internal representation of lower

dimensionality by the hidden layer, where the contextual parameters are applied via

the attention mechanism to focus on the user-specific relevant context. The output of

the model is the reconstructed user input, which is the predicted preference of the user.

The model is trained to minimize the loss between the original corrupted input and the

reconstructed input generated at the output layer. We use multiple real-world datasets

to conduct comprehensive experiments for the proposed ACDA model. The datasets

for the event recommendation task are obtained from Meetup1, a popular Event-Based

Social Network (EBSN). We use the publicly available Movielens 100K dataset for the

movie recommendation task. The experimental results show that the proposed model

performs better than current state-of-the-art baselines. The main contributions of this

paper can be summarized as follows.

• We propose a novel Attentive Contextual Denoising Autoencoder (ACDA) model

for recommendation. To the best of our knowledge, this is the first study that

attempts to utilize the contextual information via attention mechanism in the

deep architectures.
1http://www.meetup.com

Chapter 5: Attentive Contextual Denoising Autoencoder 113

Figure 5.1: Attentive Contextual Denoising Autoencoder Architecture

• We thoroughly evaluate our proposed approach on real-world datasets fromMeetup

and Movielens on two different tasks: event recommendation and movie recom-

mendation. The results demonstrate the effectiveness of the proposed model com-

pared to the other state-of-the-art models. The code and data are available at

https://github.com/yjhamb/acda.git.

5.2 Attentive Contextual Denoising Autoencoder

First, we present the Attentive Contextual Denoising Autoencoder (ACDA) model, which

is a generic framework for contextual recommendation. Later we explain how this flexible

framework is applied to the event recommendation and movie recommendation tasks.

https://github.com/yjhamb/acda.git

Chapter 5: Attentive Contextual Denoising Autoencoder 114

5.2.1 The Architecture

The proposed model, as illustrated in Figure 5.1, is based on the denoising autoencoder

neural network architecture. The model takes as input a vector indicating the preference

of a user u on all the items i in the dataset. Assuming that there are m users and n

items, the autoencoder takes as input a vector x ∈ Rn, which is the known preference

of the user u on the n items. We corrupt the input vector x using mask-out/drop-

out corruption to obtain x̃. The corruption method randomly overwrites some of the

dimensions of x with 0 using the probability ρ. To offset the effect of the corruption

of certain dimensions, we scale the remaining dimensions by applying a factor δ to the

original value: P (x̃θ = 0) = ρ; P (x̃θ̄ = δx̃) = 1− ρ, where δ = 1/(1− ρ). The symbol

θ denotes the dimensions that are set to 0, whereas θ̄ denotes the dimensions that are

scaled. This corruption method is similar to the one used in [121]

The corrupted vector x̃ is fed into the model to generate the latent hidden representation

h ∈ Rk using the encoding function e(·). The dimensionality of the hidden representation

is represented by k � n, which is the number of hidden units in the model. The

input user preference is corrupted only while training the model, and not during cross-

validation and test.

h(x̃) = e
(
W · x̃ + b

)
(5.1)

where W ∈ Rk×n is the weight matrix and b ∈ Rk is a bias vector. The encoding

function e(·) is set to the ReLU function [85] as it performs well due to its suitability

for sparse data (ReLU(x) = max(0, x)).

Chapter 5: Attentive Contextual Denoising Autoencoder 115

The hidden representation h(x̃) is input into the attention mechanism layer, where

the contextual attributes are applied. The objective of the attention mechanism is to

summarize the input representation based on the provided context. The context may

be associated with the user or item. Our model is flexible enough to accommodate

as many contextual attributes as desired. However, we have specified two contextual

attributes (p and q) in our model for ease of presentation. The attention mechanism

applies a weighted user-context cp and item-based context cq for any given contextual

parameters p and q to the output of the hidden layer with a nonlinear activation function

f(·). Mathematically, this is denoted as:

t(x̃) = f
(
Wh · h(x̃) + Wp · cp + Wq · cq

)
(5.2)

where Wh is a Rk×k weight matrix, where k is the number of units in the attention

layer, which is the same as the number of units in the hidden layer. Wp and Wq are

weight matrices of dimensions Rk×|p| and Rk×|q| respectively, with |p| and |q| being the

number of contextual parameters. h(x̃) is the output of the hidden layer. We selected

tanh as the attention mechanism activation function (f(·)) as it gave us the best results

(tanh(x) = (exp(x)− exp(−x)) / (exp(x) + exp(−x))).

The output of the attention activation function, t(x̃), is then fed into a softmax layer.

Finally, the softmax output is combined with the hidden layer output via element-wise

multiplication (⊗) to generate the final output of the attention mechanism, which is

Chapter 5: Attentive Contextual Denoising Autoencoder 116

denoted as a(x̃).

a(x̃) = softmax
(
t(x̃)

)
⊗ h(x̃) (5.3)

where t(x̃) is the output of the attention activation function, and h(˜̃x) is the hidden layer

output. The softmax function is defined as: softmax(x1, x2, ..., xn) = exp(xi) /
∑n

j=1 exp(xj).

Essentially, the attention mechanism serves to apply a weighted arithmetic mean to the

hidden layer representation, with the weight representing the relevance based on the

provided context.

The internal latent representation of the input with the applied context is reconstructed

back to the original form using a decoding function d(·).

x̂ = d
(
W′ · a(x̃) + b′

)
(5.4)

where the dimension of W′ and b′ is the same as W and b. We would like to point out

that the reconstruction of the original input, or the reverse mapping, may be constrained

by sharing parameters W′ = WT . However, we did not do so as we got better results

by having different W′ and b′ parameters at the decoding step.

We selected the sigmoid function (σ(x) = 1 / 1+exp(−x)) as the decoding function d(·)

as it constraints an input to the 0− 1 output range. This gives us the probability asso-

ciated with each item at the output, and we use this value for ranking in personalized

Chapter 5: Attentive Contextual Denoising Autoencoder 117

recommendation. The ADCA model is generic and it can be applied to a rating pre-

diction task by simply selecting any other nonlinear function as the decoding function

d(·).

The parameters of the model are trained by minimizing the mean squared error between

the original input vector x and the reconstructed vector x̂.

min
W,W′,Wh,Wp,Wq ,b,b′

1

m

∑
u∈U

‖xu − x̂u‖2 (5.5)

The parameters are updated using the stochastic gradient descent variant ADAM op-

timizer [60]. We also used dropout [34] for regularization to prevent overfitting and

improve generalization capacity. We set the dropout rate to be 0.2, which means that

20% of the hidden units are dropped at random at each training step to prevent co-

adaptation.

5.2.2 Top-n Recommendation

The proposed ACDA model can be applied to both rating prediction and top-n recom-

mendation by simply changing the decoding function d(·). We set the decoding function

d(·) to the sigmoid function for top-n recommendation, and apply the generic ACDA

model to the event recommendation and movie recommendation tasks.

The event recommendation task utilizes the RSVP 2 data from Meetup. Users indicate

their preference to an event by providing an RSVP, which is used to recommend future
2RSVP is a French expression, which means “please respond"

Chapter 5: Attentive Contextual Denoising Autoencoder 118

events to the user. For the event recommendation task, we utilize the user group and

event venue as the contextual attributes. Users typically organize themselves into groups

in an Event Based Social Network (EBSN) such as Meetup, and each event is hosted at

a physical venue. The user’s preference on existing events in the training set is input

into the model as a binary k-hot encoded vector with a true value for the positive

event preferences and false for the negative or unknown event preferences. The input

preference is corrupted as discussed earlier in section 5.2.1. In addition to corrupting the

input, we also include a fixed number of negative samples by encoding them as positive

in the input vector. The negative samples are selected randomly from the training set

and negative sample inclusion is only performed during training, not during evaluation

on the cross-validation and test sets. The output of the model is the personalized top-n

event recommendation for the user.

For the event recommendation task, the contextual attributes of the model are set as:

cp = ug and cq = iv, where ug ∈ R|p| denotes the groups that the user belongs to. The

parameter iv ∈ R|q| denotes the venues associated with the events. The parameters |p|

and |q| are the number of groups and venues respectively.

We also apply the ACDA model to movie recommendation, which is also treated as a

top-n recommendation task. The Movielens dataset contains the movie ratings on a

scale of 1 − 5, which we convert to a binary scale. The movie binary scale indicates

a user’s preference on existing movies, which is used to recommend other movies to

the user. We select the movie genre as a contextual attribute for our model. The

genre is associated with each movie, and certain movies have multiple genres associated

Chapter 5: Attentive Contextual Denoising Autoencoder 119

with them. Similar to the event recommendation task, the user’s preference is partially

corrupted and input into the model as a binary k-hot encoded vector. We also used

negative samples during training. The output of the model is the personalized top-n

movie recommendation for the user.

Since we have only one item-related contextual attribute for the movie recommendation

task, we update the model as: cq = ir where ir ∈ R|q| denotes the genres associated with

the movies preferred by the user. The parameter |q| is the number of genres.

5.3 Experimental Results

5.3.1 Datasets

We evaluate the proposed Attentive Contextual Denoising Autoencoder (ACDA) model

on real-world datasets from Meetup and Movielens. The Meetup dataset is for events

from New York, San Francisco, Washington DC and Chicago. These cities were selected

as they are the major metropolitan areas in the United States and they have a vibrant

Meetup community. The event data was collected by using the Meetup API3 between

January 2016 and May 2016. We also analyzed our model against the publicly available

Movielens (100K) dataset. The Movielens dataset consists of movie ratings provided

by the user on the 1−5 scale. We converted the numeric rating score to a binary rating

for the purpose of top-n recommendation. A score of 5 is converted to a binary rating
3http://www.meetup.com/meetup_api/

http://www.meetup.com/meetup_api/

Chapter 5: Attentive Contextual Denoising Autoencoder 120

Table 5.1: Data Statistics

Dataset Observations Sparsity Positive Negative Users Items
Meetup-NYC 73,816 0.9998 70,170 3,646 19,122 36,054
Meetup-SFO 48,972 0.9998 43,637 5,335 18,957 14,445
Meetup-DC 36,451 0.9998 33,541 2,901 10,384 12,359
Meetup-Chicago 22,915 0.9996 20,826 2,089 8,118 9,133
Movielens 100,004 0.9835 15,095 84,909 671 9,066

of 1, and anything less than a 5 is converted to 0. The statistics of the datasets used

for the experiments are given in Table 5.1.

5.3.2 Experimental Setup

We split the datasets to use 60% as the training set, 20% as the cross-validation set,

and 20% as the test set. The evaluation metrics include P@5, P@10, R@5, R@10,

NDCG@5, NDCG@10, MAP@5 and MAP@10 [79]. These are common metrics for

top-n recommendations. We consider baselines methods from each of the following cat-

egories for comparison against the proposed ACDA model: Neighborhood-based Meth-

ods (UserKNN, ItemKNN), Model-based Methods (BiasedMF, BPR-MF, SVD++), and

Deep Learning Methods (CDAE, U-AutoRec). The results are presented in this section

and we discuss our findings in detail.

We use Librec4, a recommender library, to obtain results for the neighborhood and

model-based methods. We use our own implementation of the deep learning baseline

models. The parameter values for the existing methods are similar to the proposed

method (to the extent possible).
4http://www.librec.net

http://www.librec.net

Chapter 5: Attentive Contextual Denoising Autoencoder 121

Figure 5.2: Hidden Unit Count Selection

Figure 5.3: Corruption Ratio Selection

• User-KNN : User k-nearest neighborhood collaborative filtering method that pre-

dicts the user preference based on the similarity with the k nearest users. We

selected k = 10 as it gave the best results.

• Item-KNN : Item k-nearest neighborhood collaborative filtering method that pre-

dicts the user preference based on the similarity with the k nearest items. We set

the value of k = 10 to be consistent with User-KNN.

• BPR-MF : Bayesian personalized ranking method that utilizes pairwise loss to

provide top-n item recommendation using matrix factorization (MF). The latent

factor count is set to l = 50 as it offered the best performance.

• Biased-MF : Basic matrix factorization that includes global mean, user bias and

item bias. We set the latent factor count l = 50 to be consistent with the BPR-MF

Chapter 5: Attentive Contextual Denoising Autoencoder 122

method.

• SVD++: State-of-the-art matrix factorization method that incorporates implicit

feedback from the user into the baseline SVD model for better accuracy. We set

the latent factor count l = 50 to be consistent with the BPR-MF method.

• CDAE : Collaborative filtering technique based on denoising autoencoders that

incorporates the user latent factor as additional input [121].

• U-AutoRec: Collaborative filtering technique based on denoising autoencoders

[103] that has two variants: I-AutoRec, which accepts the k-hot encoded item

preference vector consisting of users as input, and U-AutoRec that accepts the k-

hot encoded user preference vector of items. We compared against the U-AutoRec

variant as it is similar to our proposed ACDA model in terms of the user preference

on items being provided as input.

We evaluate the proposed models to incorporate the influence of the different contextual

attributes for the event and movie recommendation tasks.

• ACDA-V : This is the variant of the proposed generic ACDA model that incorpo-

rates only the event venue as a contextual attribute for the event recommendation

task.

• ACDA-G : A variant of the proposed generic ACDA model that just incorporates

the user group as a contextual attribute for the event recommendation task.

Chapter 5: Attentive Contextual Denoising Autoencoder 123

• ACDA-GV : This model includes both the user group and event venue as contex-

tual attributes of the ACDA model for the event recommendation task.

• ACDA-R: This model includes the movie genre as a contextual attribute of the

ACDA model for the movie recommendation task.

We did not include the basic ACDA model (without the contextual attributes) into

the comparison as that is basically the U-AutoRec model, which we have considered

as a baseline method. The proposed ACDA models are trained on training set and

then evaluated on the cross-validation set for selecting the appropriate values for the

hyper-parameters. Finally, the model is evaluated on the test set, the results of which

are published for comparison with the baselines. The proposed models are developed

and trained using Google’s tensorflow library5. We conducted additional experiments

to determine the optimal value for the hidden unit size and corruption ratio hyper-

parameters. The results of the additional experiments are provided in Section 5.3.3.

We selected the epoch = 200 during training as we found the model to converge at this

point. We experimented with different learning rates (0.1, 0.01, 0.05, 0.001, 0.005) and

found the learning rate α = 0.001 to work best. To prevent the model from just training

on positive samples, we paired the positive samples of a user with a configurable number

of negative or unknown samples for the user.
5http://www.tensorflow.org

Chapter 5: Attentive Contextual Denoising Autoencoder 124

T
a
bl

e
5.

2:
E
xp

er
im

en
ta
lR

es
ul
ts

-
N
ew

Y
or
k

M
et
ho

d
P
@
5

P
@
10

R
@
5

R
@
10

N
D
C
G
@
5

N
D
C
G
@
10

M
A
P
@
5

M
A
P
@
10

U
se
rK

N
N

0.
00

69
0.
00

34
0.
02

20
0.
02

37
0.
02

23
0.
02

32
0.
01

86
0.
01

81
It
em

K
N
N

0.
00

76
0.
00

38
0.
02

41
0.
02

54
0.
02

13
0.
02
22

0.
01
94

0.
01
91

B
ia
se
d-
M
F

0.
00

03
0.
00

02
0.
00

01
0.
00

02
0.
00

02
0.
00
03

0.
00
08

0.
00
07

B
P
R
-M

F
0.
05

01
0.
03

42
0.
12

66
0.
15

24
0.
07

66
0.
08

25
0.
10

61
0.
10

89
SV

D
+
+

0.
00

05
0.
00

04
0.
00

03
0.
00

06
0.
00

04
0.
00

06
0.
00

01
0.
00

01
C
D
A
E

0.
10

35
0.
14

77
0.
11

23
0.
16

57
0.
07

07
0.
07

91
0.
07

88
0.
09

94
U
-A

ut
oR

ec
0.
05

27
0.
08

04
0.
05

08
0.
07

90
0.
02

72
0.
03

05
0.
03

34
0.
05

17
A
C
D
A
-V

0.
10

86
0.
18

44
0.
10

66
0.
18

34
0.
05
23

0.
05

41
0.
07

39
0.
11

51
A
C
D
A
-G

0.
17

81
0.
23

20
0.
17

60
0.
23

09
0.
08

60
0.
08

71
0.
13

37
0.
17

38
A
C
D
A
-G

V
0.
22
95

0.
29
05

0.
22
55

0.
29
90

0.
09
87

0.
09
94

0.
15
74

0.
21
16

T
a
bl

e
5.

3:
E
xp

er
im

en
ta
lr
es
ul
ts

-
Sa

n
Fr
an

ci
sc
o

M
et
ho

d
P
@
5

P
@
10

R
@
5

R
@
10

N
D
C
G
@
5

N
D
C
G
@
10

M
A
P
@
5

M
A
P
@
10

U
se
rK

N
N

0.
01
66

0.
01
27

0.
04

01
0.
06

15
0.
03

17
0.
03

90
0.
02

32
0.
02

55
It
em

K
N
N

0.
01

55
0.
01

31
0.
03

94
0.
05

91
0.
03
03

0.
03

81
0.
02

29
0.
02
45

B
ia
se
d-
M
F

0.
00

04
0.
00

04
0.
00

01
0.
00

03
0.
00
05

0.
00

04
0.
00

02
0.
00
01

B
P
R
-M

F
0.
05

52
0.
03

76
0.
14

86
0.
18

09
0.
08

60
0.
09

77
0.
12

17
0.
12

54
SV

D
+
+

0.
00

14
0.
00

09
0.
00

11
0.
00

17
0.
00

17
0.
00

16
0.
00

09
0.
00

07
C
D
A
E

0.
11
09

0.
18
77

0.
10
98

0.
19

09
0.
05

19
0.
05

64
0.
08

04
0.
11

29
U
-A

ut
oR

ec
0.
10

45
0.
15
25

0.
10

20
0.
15

13
0.
06

34
0.
06

86
0.
07

30
0.
10

84
A
C
D
A
-V

0.
17

93
0.
26

23
0.
17

73
0.
26

16
0.
07

65
0.
07

89
0.
12

26
0.
17

70
A
C
D
A
-G

0.
18

79
0.
30
61

0.
16

49
0.
30

49
0.
06

02
0.
06

22
0.
10

04
0.
18

25
A
C
D
A
-G

V
0.
28
64

0.
37
08

0.
28
30

0.
36
92

0.
12
11

0.
12
66

0.
20
65

0.
27
43

Chapter 5: Attentive Contextual Denoising Autoencoder 125

T
a
bl

e
5.

4:
E
xp

er
im

en
ta
lr
es
ul
ts

-
W
as
hi
ng

to
n
D
C

M
et
ho

d
P
@
5

P
@
10

R
@
5

R
@
10

N
D
C
G
@
5

N
D
C
G
@
10

M
A
P
@
5

M
A
P
@
10

U
se
rK

N
N

0.
00

13
0.
00

06
0.
00

39
0.
00

45
0.
00

23
0.
00

25
0.
00

16
0.
00

17
It
em

K
N
N

0.
00

11
0.
00

05
0.
00

42
0.
00

42
0.
00

27
0.
00
27

0.
00
18

0.
00
19

B
ia
se
d-
M
F

0.
00

03
0.
00

01
0.
00

03
0.
00

22
0.
00

02
0.
00
10

0.
00
07

0.
00
03

B
P
R
-M

F
0.
05

88
0.
04

66
0.
11

88
0.
15

09
0.
06

88
0.
07

53
0.
10

68
0.
10

98
SV

D
+
+

0.
00

07
0.
00

07
0.
00

01
0.
00

06
0.
00

12
0.
00

11
0.
00

07
0.
00

04
C
D
A
E

0.
09

83
0.
18

60
0.
09

14
0.
18

12
0.
04

59
0.
05

15
0.
06

63
0.
10

89
U
-A

ut
oR

ec
0.
09

05
0.
11

36
0.
08

47
0.
10

83
0.
05

60
0.
06

06
0.
07

31
0.
08

85
A
C
D
A
-V

0.
17

37
0.
24

98
0.
16

76
0.
24

55
0.
08
36

0.
08

63
0.
11

77
0.
17

13
A
C
D
A
-G

0.
19

56
0.
28

33
0.
18

86
0.
27

92
0.
07

77
0.
07

94
0.
11

98
0.
18

86
A
C
D
A
-G

V
0.
26
00

0.
34
72

0.
25
36

0.
34
30

0.
10
49

0.
10
92

0.
18
16

0.
24
76

T
a
bl

e
5.

5:
E
xp

er
im

en
ta
lr
es
ul
ts

-
C
hi
ca
go

M
et
ho

d
P
@
5

P
@
10

R
@
5

R
@
10

N
D
C
G
@
5

N
D
C
G
@
10

M
A
P
@
5

M
A
P
@
10

U
se
rK

N
N

0.
00
65

0.
00
41

0.
02

04
0.
02

13
0.
01

60
0.
01

70
0.
01

22
0.
01

25
It
em

K
N
N

0.
00

62
0.
00

37
0.
01

93
0.
02

02
0.
01
57

0.
01

66
0.
01

18
0.
01
20

B
ia
se
d-
M
F

0.
00

04
0.
00

03
0.
00

02
0.
00

06
0.
00
02

0.
00

05
0.
00

08
0.
00
01

B
P
R
-M

F
0.
04

98
0.
03

11
0.
16

40
0.
19

25
0.
09

52
0.
10

59
0.
12

77
0.
13

22
SV

D
+
+

0.
00

20
0.
00

14
0.
00

05
0.
00

12
0.
00

20
0.
00

20
0.
00

10
0.
00

08
C
D
A
E

0.
12
71

0.
20
97

0.
12
60

0.
20

95
0.
04

28
0.
04

38
0.
07

24
0.
12

97
U
-A

ut
oR

ec
0.
08

79
0.
12
09

0.
08

78
0.
12

09
0.
04

76
0.
04

79
0.
06

21
0.
08

55
A
C
D
A
-V

0.
23

54
0.
33

56
0.
23

39
0.
33

53
0.
08

05
0.
07

96
0.
14

93
0.
22

61
A
C
D
A
-G

0.
28
66

0.
39
94

0.
28
49

0.
39
88

0.
13
75

0.
13
95

0.
20
52

0.
28
35

A
C
D
A
-G

V
0.
27

71
0.
38

56
0.
27

52
0.
38

49
0.
08

21
0.
08

47
0.
18

19
0.
26

55

Chapter 5: Attentive Contextual Denoising Autoencoder 126

T
a
bl

e
5.

6:
E
xp

er
im

en
ta
lr
es
ul
ts

-
M
ov
ie
le
ns

10
0K

M
et
ho

d
P
@
5

P
@
10

R
@
5

R
@
10

N
D
C
G
@
5

N
D
C
G
@
10

M
A
P
@
5

M
A
P
@
10

U
se
rK

N
N

0.
02
00

0.
01
85

0.
00

52
0.
00

82
0.
02

00
0.
02

04
0.
01

09
0.
00

89
It
em

K
N
N

0.
01

95
0.
01

64
0.
00

55
0.
00

79
0.
02
05

0.
01

94
0.
00

97
0.
00
81

B
ia
se
d-
M
F

0.
00

08
0.
00

08
0.
00

02
0.
00

04
0.
00
07

0.
00

08
0.
00

02
0.
00
02

B
P
R
-M

F
0.
07

61
0.
06

03
0.
10
22

0.
14
77

0.
09

07
0.
09

97
0.
06

11
0.
06

91
SV

D
+
+

0.
00

17
0.
00

11
0.
00

01
0.
00

01
0.
00

16
0.
00

13
0.
00

10
0.
00

06
C
D
A
E

0.
05
95

0.
08
87

0.
05
33

0.
08

69
0.
06

64
0.
07

82
0.
04

28
0.
06

13
U
-A

ut
oR

ec
0.
06

91
0.
09
86

0.
06

09
0.
09

62
0.
09

32
0.
10

17
0.
06

31
0.
07

18
A
C
D
A
-R

0.
08
27

0.
11
06

0.
07

23
0.
10

70
0.
10
94

0.
11
89

0.
06
94

0.
08
35

Chapter 5: Attentive Contextual Denoising Autoencoder 127

5.3.3 The Effect of Hidden Units and Corruption Ratio

To investigate the effect of the number of hidden units on the performance, we experi-

mented with different values of k, ranging from 100 to 1000 in increments of 100. The

results are provided in Figure 5.2. As observed from the plots, we found that the per-

formance of the model plateaus after k = 500, with higher values offering no significant

gain in performance at a cost of increased training time. While there are certain metrics,

such as the NDCG@5, that perform slightly better at higher values k, we set k = 500

as a default choice.

We also experimented with different values of the corruption ratio ranging from 0.1 to 0.9

in increments of 0.1. The results, depicted in Figure 5.3, indicate that the performance

degrades with higher values of the corruption ratio. The only exception to this is the

Meetup-Chicago dataset, which does not have a observable degradation in performance

at higher values of the corruption ratio. Therefore, we default the value of the corruption

ratio ρ = 0.2.

5.3.4 Baseline Comparisons

Tables 5.2, 5.3, 5.4, 5.5, 5.6 contains the results of the different methods, with the

best results highlighted in boldface. A general observation is that, other than a few

exceptions, the results on the precision, recall, NDCG and MAP metrics were consistent

across all the datasets. The proposed model performed well on theMeetup andMovielens

datasets, which demonstrates its effectiveness on top-n recommendation tasks.

Chapter 5: Attentive Contextual Denoising Autoencoder 128

First, we discuss the performance of the baseline methods. We considered three different

categories of the baseline methods:

neighborhood-based, model-based and deep learning based methods. Among these cat-

egories, we found the deep learning based baseline methods to perform better than the

others. In general, across the baseline methods, the CDAE deep learning based method

performs better on the precision and recall metrics. The BPR-MF is better on the

NDCG metric. The CDAE method is based on the denoising autoencoder, and the

results signify its importance to recommender systems. The good performance of the

BPR-MF method may be attributed to the use of the pairwise loss function. We also

observe good results for the BPR-MF method against the Movielens dataset. However,

we found U-AutoRec to perform better than CDAE against the Movielens dataset. This

suggests that the user latent factor included in the CDAE model does not help to im-

prove the performance against the Movielens dataset, but it does so against the Meetup

dataset. When considering the neighborhood methods, we found both (UserKNN and

ItemKNN) to be similar in performance.

Comparing the baseline methods to the proposed models for the event recommendation

task, we observed that all three variants of the proposed ACDA model perform better

than the baselines. While a variant of the ACDA model with some of the contextual

attributes may perform better, in general the model with more contextual attributes

offers the better performance. As we can see for the Meetup datasets, the ACDA-GV

model offers a better performance in three of the four cities. We also observe that the

significance of the contextual attributes is not equal. The influence of the user group

Chapter 5: Attentive Contextual Denoising Autoencoder 129

contextual attribute is higher than the event venue attribute, and the model ACDA-

G performs better than the ACDA-V model. This implies that additional contextual

parameters may improve the performance further in some cases, however, this may not

be always true. With regard to the movie recommendation task, we utilize the movie

genre as a contextual attribute. The model ACDA-R performs better on all metrics

except the recall. The BPR-MF method is better on the recall metric, perhaps due to

the fact that it uses a pairwise loss function. We intend to evaluate the performance of

the proposed models using pairwise loss in the future. The results, which are consistent

across all datasets, reinforce our assertion that the proposed ACDA model performs well

on recommendation tasks.

5.4 Summary

We propose a deep learning architecture for contextual recommendation based on de-

noising autoencoder augmented with a context-driven attention mechanism. We also

perform comprehensive experiments demonstrating that the proposed ACDA model

outperforms the state-of-the-art baselines on event recommendation and movie recom-

mendation tasks.

We understand that this preliminary study can be extended in many directions and we

plan to do so in future work. First of all, we will investigate other types of loss functions

including pairwise and listwise losses which demonstrate good performance for ranking

Chapter 5: Attentive Contextual Denoising Autoencoder 130

tasks especially with implicit user feedback [76]. Secondly, we will explore deeper archi-

tectures by adding more layers and experimenting with different activation functions.

Last, we will conduct experiments in other domains of contextual recommendation.

Chapter 6

Neural Citation Network

6.1 Introduction

Authors establish credibility, honesty, and authority by providing accurate and rele-

vant citations. The vast plethora of scientific literature makes searching for relevant

work time consuming and highly keyword dependent. On the other hand, following the

proceedings of well-known conferences restricts the scope of related work. Ideally, we

desire a personalized, curated list of high-quality recommendations. We focus on the

task of context-aware citation recommendation, where given a citation context (query),

we recommend a list of high-quality candidate papers to fill the citation placeholder. A

citation context comprises a small window of words surrounding a placeholder denoting

where the citation should appear [49, 47, 78, 36, 4], see Figure 6.1 for an example. We

131

Chapter 6: Neural Citation Network 132

assume the surrounding text of a placeholder provides a short and concise summary of

the paper’s content.

Traditional information retrieval techniques rely heavily on keyword overlap, but iden-

tifying the critical structures in abstract ideas requires additional levels of semantic

relations. For example, “deep learning" was previously known as “cybernetics" in its

infancy and “connectionism" in its second resurgence [34]. As language evolves over

time, new terms emerge while others become less frequently used. Similarly, the deno-

tative meaning of words are generally fixed, perhaps more importantly, the connotative

meaning changes throughout time. The words “deep" and “learning" treated indepen-

dently as a bag-of-words lacks conceptual interpretation but modeling the conditional

probability of the words together produces a clear concept. The word usage between

the content in the citation context and corresponding cited document lead to a vocabu-

lary gap [78, 47, 49] causing a mismatch between keywords leading to poor performance

with standard information retrieval (IR) methods. In addition, existing methods cannot

easily incorporate metadata without additional feature engineering or explicitly linked

data [4].

We propose Neural Citation Network (NCN)1 an encoder-decoder framework inspired

by the success of neural machine translation (NMT) [16, 2, 124] which can learn rela-

tions between parallel pairs of variable-length text. Consequently, NCN is capable of

characterizing the semantic composition of citation contexts and corresponding cited
1Source code: https://github.com/tebesu/NeuralCitationNetwork.

https://github.com/tebesu/NeuralCitationNetwork

Chapter 6: Neural Citation Network 133

Citation Context
. . . the original language modeling approach proposed in [•]; that is, we first
estimate a document language model and then compute . . .
Cited Paper
Jay M. Ponte and W. Bruce Croft. 1998. A Language Modeling
Approach to Information Retrieval. (SIGIR ’98).

Figure 6.1: Example citation context with a placeholder denoted by [•] indicating
where the corresponding cited paper would appear.

documents title by exploiting author relations. The encoder capitalizes on the compu-

tational advantages of a max time delay neural network [17] while the decoder leverages

the capacity of recurrent neural networks (RNN) influenced by both the author net-

works and attention mechanism. As each composer of literature has her own writing

style, grammatical structure, word usage and citation preference. NCN leverages these

associated attributes with each author by utilizing only their name, producing signifi-

cant performance gains. Furthermore, NCN can generalize to new papers not present

in the training set. To the best of our knowledge, no prior work has addressed citation

recommendation with the encoder-decoder framework. Experimental results on the

CiteSeer dataset demonstrate NCN produces a significant improvement Recall, Mean

Average Precision (MAP), Mean Reciprocal Rank (MRR) and Normalized Discounted

Cumulative Gain (NDCG) over baseline methods. Qualitative results demonstrate the

effectiveness of the proposed end-to-end neural network.

Chapter 6: Neural Citation Network 134

G
R
U

E
n
c
o

d
e
r

D
e
c
o

d
e
r

A
tt

e
n
ti
o

n

F
e
a
tu

re
 M

a
p

s
M

a
x
 P

o
o
lin

g

Citation Context

Citing Author

Cited Author

A
u
th

o
r

N
e
tw

o
rk

s

C
it
e
d

 P
a
p

e
r’
s

T
it
le

F
ig

u
r
e

6.
2:

T
he

pr
op

os
ed

ar
ch
it
ec
tu
re

of
N
eu

ra
lC

it
at
io
n
N
et
w
or
k
(N

C
N
)
w
it
h
th
e
at
te
nt
io
n
m
ec
ha

ni
sm

an
d
au

th
or

ne
tw

or
ks
.

T
he

da
sh
ed

ar
ro
w
s
re
pr
es
en
t
re
cu

rr
en
t
de

pe
nd

en
ci
es
.

Chapter 6: Neural Citation Network 135

6.2 Neural Citation Network

We introduce Neural Citation Network (NCN) an architecture unifying the strengths

of TDNN and RNNs under the encoder-decoder framework. The fused architecture

is capable of capturing the semantic representations of the citation context and au-

thors’ conditioned on the corresponding cited paper’s title in an end-to-end fashion.

The proposed model is based on the encoder-decoder architecture with the attention

mechanism [2] to integrate complementary author information and learn rich feature

representations. An illustration of the proposed architecture is presented in Figure 6.2.

We would like to note that this Chapter’s notations slightly deviates from those used in

earlier parts of this thesis.

6.2.1 Encoder

In our encoder we leverage the TDNN [17] a CNN variant designed to capture long-

term dependencies with a 1-dimension convolution over all possible word windows for a

given context. A non-linear projection coupled with max-pooling extracts rich feature

representations from each convolved word window. Specifically, given a citation context

of length n, let xqt be a g dimensional word embedding corresponding to the tth word in

the citation context and xq1:n = xq1⊕. . .⊕xqn denote the concatenation of the embeddings

from 1 to n. A convolutional filter w ∈ Rl·g slides over l words or regions at a time

over all possible window lengths {xq1:l,x
q
2:l+1, . . . ,x

q
n−l+1:n}, see Figure 6.2. We define

Chapter 6: Neural Citation Network 136

the convolutional layer as:

ok = ReLU(wTxqk:k+l−1 + bk) (6.1)

ô = max{o1, . . . , on−l+1} (6.2)

where ReLU is the nonlinear activation function max(0, x) and ok is the kth feature

map, o ∈ Rn−l+1. The max-pooling over time yields a scalar representing the relevant

feature ô detected for the given set of feature maps subsequently converting the variable

length sequence to a fixed one. In order to capture more complex relations the process is

repeated p times with different filter weights yielding ôj ∈ Rp. Finally, a fully connected

layer allow interactions between the various phrase level feature maps extracted from

the max-pooling layer, leading to:

sj = tanh(Usj ôj + bsj) (6.3)

where the TDNN aims to project the raw citation context Xq, to a fixed summary

representation sj over feature maps of the jth sliding region size of lj. The final trans-

formation f(Xq) applies a set of variable region size filters L = {l1, . . . , l|L|} to capture

different granularity of phrases e.g. bigrams, trigrams. The TDNN exploits the prop-

erty of parallelism allowing all feature maps to be computed in parallel yet obtaining

competitive performance with an RNN encoder (Section 6.3.2). The phrase level repre-

sentation obtained by the TDNN provides a trade-off between capturing semantics and

Chapter 6: Neural Citation Network 137

computational time.

6.2.2 Decoder

Since the title of a manuscript is short but more concise, we require a finer grain rep-

resentation than the phrase level of the TDNN. We adopt an RNN to represent the

decoder with its large capacity to condition each word on all previous words in the se-

quence while considering its internal state and the encoder’s representation. Let xdi be

a e dimensional embedding corresponding to the ith word of the cited document’s title

of length m. The RNN conditions the input sequence over the entire encoder represen-

tation and all previous recurrent hidden states. We utilize the Gated Recurrent Unit

(GRU) [16] to help prevent the vanishing or exploding gradient problem, formally:

zi = σ(Wzx
d
i + Vzci + Uzhi−1)

ri = σ(Wrx
d
i + Vrci + Urhi−1)

h̃i = tanh(Wox
d
i + Voci + ri ◦Uohi−1)

hi = (1− zi) ◦ h̃i + zi ◦ hi−1

(6.4)

where W[z,r,o],V[z,r,o],U[z,r,o] are weight matrices to be learned, h̃i is the new updated

hidden state, zi is the update gate, ri is the reset gate, σ(·) is the sigmoid function and

◦ is the element wise product.

Chapter 6: Neural Citation Network 138

Although the max pooling layer obtains the most relevant features present for a given

filter, it treats each feature map with uniform importance and words on the margins of

the sequence are neglected. The attention mechanism learns a weighted interpolation ci

dependent on all of the encoder’s representation conditioned on previous decoder states

obtaining a richer representation with:

ci =
∑
j

αijsj (6.5)

αij = softmax(vT tanh(Wahi−1 + Uasj)) (6.6)

where αij is the alignment between the ith word and the jth output from the encoder

parametrized as a feedforward neural network followed by a softmax function [34]. Fig-

ure 6.2 illustrates these recurrent dependencies with dashed arrows.

6.2.3 Author Networks

The author(s) of a manuscript may have a large impact on the audience, popularity,

and citations. Frequently, one may follow specific researchers or groups with similar

interests. The lead author of a paper may hold the most authority. On the other hand,

the most influential author may not necessarily be the first author. To capture the most

prominent author, we consider both the citing (context) and cited (title) manuscript

authors with a shared embedding space, but learn two separate TDNNs. Intuitively,

the author’s characteristics may remain static hence the shared embedding space but

Chapter 6: Neural Citation Network 139

the author has no direct control over if she will be cited or not (with the exception

of self-citation). For example, a popular author may be frequently cited yet citations

may not be reciprocated leading to distinct roles. We treat each author as a token by

denoting Aq and Ad as the embeddings of the citation context (query) and cited paper’s

(document) author(s), respectively. Similar to the encoder representation presented in

Section 6.2.1, we exploit the TDNN to learn higher level joint author interactions with:

sj = [f(Xq)⊕ f(Aq)⊕ f(Ad)]j (6.7)

By concatenating the citation context summary with the author’s representation, the

attention mechanism conditions on the author networks in addition to the encoder’s

output. Hence an interaction between the composition of the context and author takes

place over the course of the decoding process. The final output from the RNN decoder

is projected into a softmax layer producing a probability over the vocabulary:

P (yi|y≤i, s) = softmax(Vhi) (6.8)

where P (yi|y≤i, s) denotes the conditional probability of all previous words in the cited

papers title prior to i. Since the entire architecture is differentiable, we jointly training

the encoder-decoder via stochastic gradient descent (SGD) [34] maximizing the follow-

ing:

logP (y|Xq,Xd,Aq,Ad) =
m∑
i

logP (yi|y≤i, s) (6.9)

Chapter 6: Neural Citation Network 140

Recall MAP MRR NDCG
BM-25 0.1007 0.0556 0.0606 0.0676
CTM 0.1288 0.0726 0.0777 0.0875
RNN-to-RNN 0.1590 0.0958 0.1054 0.1134
TDNN-to-RNN 0.1579 0.0935 0.1032 0.1114
Neural Citation Network 0.2910 0.2418 0.2667 0.2592

Table 6.1: Performance comparison of the top 10 recommendations on Recall, MAP,
MRR, and NDCG. (NCN is statistically significant from all baselines on a paired t-test

p < 0.001)

Once the network is fully trained we can score a cited document y given a citation

context Xq and author information Aq,Ad with Equation 6.9.

6.3 Experimental Results

6.3.1 Setup

We evaluate NCN on the RefSeer dataset 2 [49]. After preprocessing invalid entries, we

obtain 4,549,267 context pairs with 855,735 papers in a citation-cited relation. Similar

to [49], we divide the data by year, where papers before, after, and equal to 2013 yield

4,258,383 training; 148,927 testing; and 141,957 validation citation contexts respectively.

For text preprocessing, we perform tokenization, lemmatization and take the top 20K

most frequent terms on the encoder and decoder sides, where words not on this list are

replaced with a special <UNK> token. We also take top 20K most frequently cited

authors by name and consider the first 5 authors per paper for simplicity. Authors not

on the short list are replaced with a with a special <UNK>Author.
2http://refseer.ist.psu.edu/data/

http://refseer.ist.psu.edu/data/

Chapter 6: Neural Citation Network 141

All hyperparameters are determined according to the validation set. For clarity, we set

all embedding sizes, batch sizes, RNN memory cell sizes and feature maps to 64. We

apply gradient clipping at 5, dropout probability to 0.2 and the number of recurrent

layers to two for both the encoder (when applicable) and decoder. For the NCN encoder,

convolutional filters use region sizes: 4, 4, 5 and author networks use region sizes: 1, 2.

We use the Adam optimizer [34] for a total of 5 training iterations, A learning rate of

0.001, using the Adam optimizer with β1 = 0.9, and β2 = 0.999. taking approximately

10 hours to train NCN on a NVIDIA Titan X.

We report the following metrics: Recall, Mean Average Precision (MAP), Mean Recip-

rocal Rank (MRR) and Normalized discounted cumulative gain (NDCG) on the test

set. For NCN, we rerank the top 2048 documents retrieved by BM-25 with Equation

6.9 and include the ground truth if it is not present.

6.3.2 Baselines

We validate the effectiveness of NCN against four baselines:

• BM-25 is a standard information retrieval baseline

• Citation Translation Model (CTM) [47]: learns a translation model between the

citation contexts and cited papers title using the GIZA++ toolkit3.

• TDNN-to-RNN: follows the NCN formulation excluding author networks.
3https://github.com/moses-smt/giza-pp

Chapter 6: Neural Citation Network 142

• RNN-to-RNN is identical to TDNN-to-RNN but utilizes a RNN as the encoder.

Table 6.1 demonstrates NCN outperforms all baselines on every metric by 13-16%.

BM-25 displays the poorest performance verifying the existence of the vocabulary gap

while CTM4 improves upon standard IR methods but the bag-of-words assumption lacks

sufficient capacity to capture complex relations. Since NCN without author content

degenerates to the TDNN-to-RNN model, we clearly see the advantages of incorporating

author information. RNN-to-RNN marginally outperforms the TDNN-to-RNN model,

however, the additional computational overhead may not justify the 0.3% increase in

performance taking 11 hours to train yet NCN produces superior performance in less

time. We observe smaller performance gains on position aware metrics in NCN when

varying the number of recommendations. An improvement of 1.6% on NDCG, 2.4%

on MAP and MRR when cutting off the number of recommendations at 10 versus 1 as

illustrated in Figure 6.3.

6.3.3 Qualitative Study

The top three recommendations by NCN, CTM and RNN-to-RNN for the context

(query) are listed in Table 6.2. Both baselines correctly recommend one item and NCN

provides two correct recommendations; however, the incorrect recommendation (2) ap-

pears to be a plausible citation. We noticed the recommendations produced by NCN all

have common authors5. Recommendations 1 and 3 contain M. Jordan as an author and
4Performance is less than reported in [49] due to significantly reduced vocabulary size.
5Authors omitted due to space constraints.

Chapter 6: Neural Citation Network 143

1 2 3 4 5 6 7 8 9 10

0.05

0.10

0.15

0.20

0.25

0.30

Re
ca
ll

1 2 3 4 5 6 7 8 9 10

0.05

0.10

0.15

0.20

0.25

ND
CG

1 2 3 4 5 6 7 8 9 10

0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250

M
AP

1 2 3 4 5 6 7 8 9 10

0.05

0.10

0.15

0.20

0.25
M
RR

TDNN-to-RNN CTM BM-25 RNN-to-RNN NCN

Figure 6.3: Recall, NDCG, MAP, and MRR as the number of recommendations vary
from 1 to 10.

recommendations 2 and 3 shares the author Z. Ghahramani further portraying NCNs

successful integration of author information to produce relevant recommendations.

6.4 Summary

We have introduced NCN, a flexible architecture capable of incorporating author meta-

data and highlight a promising new direction for context-aware citation recommenda-

tion. In future work, we plan to explore temporal aspects, and the large hyperparameters

Chapter 6: Neural Citation Network 144

Context: “find a distribution over the latent variables that is close to
the posterior of interest. Variational methods provide effective
approximations in topic models and nonparametric Bayesian models"
Neural Citation Network
1. Graphical models, exponential families, and variational
inference

2. Graphical models and variational methods
3. An introduction to variational methods for graphical models
CTM
1. Indexing by latent semantic analysis
2. An introduction to variational methods for graphical models
3. Bayesian data analysis
RNN-to-RNN
1. An introduction to variational methods for graphical models
2. The variational formulation of the Fokker–Planck equation
3. A Bayesian analysis of the multinomial probit model with fully

identified parameters

Table 6.2: Top 3 recommendations for NCN, CTM and RNN-to-RNN for the citation
context (query), correct recommendations are in bold.

space such as filter strides, wide convolutions, dynamic k-max pooling and multi-channel

convolutions.

Chapter 7

Conversational Recommendation

7.1 Introduction

Recently, virtual assistants such as Alexa, Google Home or Siri are becoming an in-

creasingly common part of many user’s daily routines. Natural language serves as a

convenient interface to computing systems and is a natural form to communicate our

preferences with others. Hence, conversations serve as an excellent interactive medium

to provide recommendations.

We consider the setting of conversational recommendations where two parties are inter-

acting with one another centered around movies. The first party expresses his/her movie

preferences and asks for relevant movie suggestions from the second party who acts as

145

Chapter 7: Conversational Recommendation 146

Seeker: Hi
Recommender: Hello
Seeker: How are you? I would like to watch an animated movie.

Maybe something like Monsters, Inc.
Recommender: Oh! I love animated movies. Have you seen Toy Story, That is

good, but equally as good in that series is Toy Story 3 I also
loved watching Ice Age Or Shrek

Seeker: Ice Age and Shrek are such funny movies!
Recommender: Those were really good movies. Have you seen Coco ? THat’s

a new movie you might like.
Seeker: No! I haven’t yet. I’ve heard about it but never got a chance

to watch it

Figure 7.1: Example dialogue between the Seeker asking for recommendations and
the Recommender providing suggestions from the ReDial dataset. The movies men-

tions are in bold.

the recommender. This recommender’s goal is to understand the user and provide per-

sonalized movie recommendations based on the conversation. An example dialogue is

shown in Figure 7.1.

Previous work on conversational recommendations used synthetic data [20, 108] or as-

sumed a entity tagger was present [72] which may not be available in practice. To the

best of our knowledge, this work is the first to address conversational recommendations

in a setting where no explicit feedback or tagged entities exist. We rely solely on extract-

ing user preferences from natural language text simultaneously addressing the cold-start

problem using transfer learning.

We tackle performing movie recommendations in a natural chit-chat conversational set-

ting and propose a novel framework to address the cold-start problem in the conversa-

tional setting through transfer learning [89]. Specifically, we transfer the learned item

preferences from a large dataset (e.g. MovieLens) to the smaller conversational domain

Chapter 7: Conversational Recommendation 147

dataset. For each conversation we learn a new user latent factor in an online fashion

which is updated throughout the conversation. To facilitate learning a new user latent

factor we extract user preferences directly from natural language text using transfer

learning and construct a mixture of item latent factors. Our approach does not rely on

a mapping between natural language text to unique movie identifiers. We focus solely

on improving the recommendation engine which can be easily integrated as a submodule

to existing dialogue system such as in Li et al. [72].

7.2 Recommendations through Conversational Trans-

fer

In this section, we describe a generic framework to perform movie recommendations in

a conversational chit-chat setting. We assume no entities are tagged in the conversation

(i.e. movies names are not mapped to items). While having this information would be

useful it poses its own set of challenges such as word sense and entity disambiguation,

hence we leave to future work. Our setting poses several challenges such as the cold

start problem where no past user interaction history exists, limited data, and extracting

user preferences from natural language.

We solve the aforementioned problems using two different transfer learning approaches

and learn a new user latent factor in an online setting by inferring user preference from

natural language conversations. The proposed framework consists of three components.

Chapter 7: Conversational Recommendation 148

The first is a pretrained interaction function which maps a user latent factor and item

latent factor to a shared space measuring the user’s affinity for a given item (e.g. matrix

factorization). The second component is a pretrained encoder function that maps vari-

able length sequences of text to a single fixed length representation in semantic space.

The final component instantiates a mixture of the existing pretrained item latent fac-

tors based on the natural language conversation allowing the optimization of the loss

function, hence propagating the gradient to update the user latent factor.

7.2.1 Interaction Function

First we require an interaction function to measure the user’s level of interest in a given

item. The objective is to estimate a user’s preferences given a ratings matrix R ∈ R|U|×|I|

where U denotes the entire set of users and similarly, I the entire set of items. Each

user u ∈ U and item i ∈ I are represented in a shared d dimensional space, denoted

as mu ∈ M and ei ∈ E, respectively where the entire set of all user latent factors is

M ∈ R|U|×d and all item latent factors as E ∈ R|I|×d. We require an interaction function

to measure the user’s level of interest or lack of to the given item. Formally, the ranking

score for a given user u and item i is

r̂ui = f(mu, ei) (7.1)

Chapter 7: Conversational Recommendation 149

The interaction function f(·) can be a simple linear function such as the inner product

yielding matrix factorization. More complex nonlinear functions may also be used in-

stead such as deep neural networks. We assume the interaction function to already be

trained on some large dataset (e.g. MovieLens). We defer the exact definition of f(·)

to Section 7.2.6.

7.2.2 Encoder

Each utterance in the conversation at a given turn t is denoted as Xt = {w1, . . . , w|Xt|},

where wl indexes the lth word in the utterance and the entire conversation is denoted

as Xt ∈ X . Similarly, the ith movie’s plot as Di = {w1, w2, . . . , w|Di|}. Next, we assume

an encoder Φ(·) which maps a variable length textual document (e.g. Xt, Di) to a v

dimensional semantic vector. The encoding function is typically a pretrained language

model and can be selected from any recent state of the art pretrained language models

such as BERT [19], ELMo [95], Universal Sentence Encoder [10] or simpler neural bag of

words methods such as Word2Vec [82] or Glove [93]. Note, once the encoder is pretrained

on a large corpus the parameters remain frozen during our training process.

Our goal is to identify movies the user may be interested in based on their past ut-

terances. This is done by computing the similarity of the given utterance and each

movie’s plot embedding. Specifically, each movie’s plot Di is embedded with the encod-

ing function ci = Φ(Di). The set of encoded movies plots as a |I| × v matrix ci ∈ C.

Chapter 7: Conversational Recommendation 150

Similarly, each utterance Xt at turn t is embedded to its corresponding semantic vec-

tor xt = Φ(Xt). Using the same encoder allows the movie’s plot and each utterance

to be mapped into the same space and hence semantically comparable. The similarity

between the utterance Xt and all movie embeddings are

qti = cixt ∀ i ∈ I (7.2)

where qti denotes the user’s level of interest in the ith movie based on the encoded movie’s

summary and utterance as measured by the inner product.

7.2.3 Mixture of Item Latent Factors

Previously, we discussed how to obtain the user’s interest vector qt. We now detail the

instantiation of the mixture of item latent factors based on the user interaction vector

extracted from the conversation. We construct this item latent factor as a weighted

combination or mixture of existing item latent factors (preferences) from the dialogue.

Thus the new user latent factors are learned directly from user feedback in the form of

natural language and updated in an online fashion.

To obtain the instantiated item latent factor we first normalize the similarity with the

softmax function

pt = softmax(qt) (7.3)

Chapter 7: Conversational Recommendation 151

where pt represents the current user’s preference distribution over each item from their

utterance at turn t and softmax(x)i = exp(xi)/
∑

j exp(xj). We can also interpret

this as an attention mechanism, where the attention places higher weight on the most

relevant movies. Finally, to obtain the mixture of item latent factors we perform a

weighted linear combination of the item latent factors

zt =
∑
j∈I

ptjej (7.4)

We now have our estimated item latent factor extracted from the user utterance Xt at

turn t and can instantiate our interaction function by substituting the item latent factor

e∗ with the estimated item latent factor zt leading to

r̂tu = f(m̃u, z
t) (7.5)

where m̃u is a new randomly initialized user latent factor for this conversation. In-

tuitively, we estimate the ranking score of user u’s utterance Xt at turn t as a latent

mixture of item preferences zt. In other words, we can view it as treating the user’s

utterance as an item where the plot consists of the user’s utterance. Since we lack a

corresponding item latent factor we extract a combination from the known item latent

factors based on their content similarity.

Chapter 7: Conversational Recommendation 152

7.2.4 Parameter Estimation

The nature of the data is similar to the implicit feedback setting therefore we take the

pairwise assumption that a given user u prefers the observed item i+ over the unobserved

item i−. In our case, we assume the user prefers to discuss movies they enjoy. The

intuition is as follows, user u prefers movies related to the topics they converse with

over topics they dislike where similarity is measured in the encoder’s low dimensional

embedding space. We opt for the commonly used Bayesian Personalized Ranking (BPR)

[99] as our loss function. However, to optimize the BPR criterion, positive observed items

and negative unobserved items are required. Hence with no interaction data we cannot

use standard techniques to perform the sampling. Instead, the positive item is inferred

from the conversation with the user as we detailed in the previous section instantiating

zt from utterance Xt. The interaction vector is truncated to the top-k most similar

movies according to Equation 7.2 thus qt becomes a k dimensional vector. Similarly, we

randomly sample the negative items from the least similar top-k movies with respect

to the current utterance (i.e. the movies with the lowest similarity score according to

Equation 7.2 are regarded as the negative items). Our training data consists of a tuple

for each user utterance Xt ∈ X and sampled negative items i− then we minimize the

following objective

L = −
T∑

(Xt, i−)

log σ(r̂tu − r̂ui−) (7.6)

Chapter 7: Conversational Recommendation 153

The only parameter learned is the new user’s latent factor m̃u while all other parameters

are held fixed. The loss function is optimized in an online fashion using stochastic

gradient descent (SGD) which allows updating the user latent factor throughout the

conversation. Note only the utterance requires the encoder function Φ(·) during the

online setting and the movie summaries can be encoded and cached ahead of time. See

Algorithm 1 for the procedure on performing conversational recommendations.

7.2.5 Recommendation

The instantiated mixture of item latent factors do not directly correspond to a single

item therefore cannot recommend items. Equation 7.5 is only used during the estimation

of the new user u’s latent factor m̃u. The ranking score for the new user u and item i

r̂ui = f(m̃u, ei) (7.7)

Note that we use the newly learned user latent factor m̃u and the true item latent

factors ei not the estimated mixture. The top-n movies with the highest ranking scores

are presented to the user.

7.2.6 Choice of Interaction Function

In this section, we define multiple forms of the interaction function f(·) to demonstrate

the flexibility of our proposed framework. The first interaction function we define is a

Chapter 7: Conversational Recommendation 154

Algorithm 1: Conversational Recommendation
Input: Conversation X , Encoder Φ(·), interaction function f(·), learning rate α,

pretrained item latent factors E and content matrix C

Randomly initialize new user latent factor m̃u

for Xt ∈ X do
if Speaker==Recommender then

Recommend Movies (Equation 7.7)
else Speaker == Seeker

Encode utterance xt ← Φ(Xt)
Instantiate mixture of item latent factor zt (Equation 7.4)
Sample negative item i−

Update m̃u ← m̃u + α∇m̃uL(Xt, i
−)

end
end

linear version via the inner product yielding matrix factorization (MF).

f(mu, ei) = mT
uei =

d∑
j=1

mujeij (7.8)

However, a linear function may lack the flexibility to disentangle complex user prefer-

ences and generalize to another dataset. Thus we use a nonlinear variant generalized

matrix factorization (GMF) [39]

f(mu, ei) = vTφ(mu � ei) (7.9)

where � is the elementwise product; v ∈ Rd is an additional parameters to be learned

and φ(·) is a nonlinear activation function. We adopt the rectified linear unit (ReLU)

function φ(x) = max(0, x) as our nonlinear function due to its nonsaturating behavior

Chapter 7: Conversational Recommendation 155

Dataset Statistics
Conversations 11,348
Utterances 206,102
Average Dialogue Length 18.16
Items 6,925

Table 7.1: Statistics of the ReDial dataset

[84]. GMF can also degenerate to matrix factorization if we set the nonlinear activation

function φ(·) to the identity function and constrain the vector v to the 1 vector of all

ones.

7.3 Experimental Results

7.3.1 Dataset

We validate our proposed framework Recommendations through Conversational Trans-

fer using the recommendations through dialogue (ReDial)1 dataset [72] which consists

of 11,38 dialogues where two users conversing about movies, see Table 7.1 for statistics.

The dialogues are crowd sourced and collected from Amazon Mechanical Turk where two

users are paired up to converse around the topic of movies. Each user plays a specific

role. The first user known as the seeker tries to explain their movie preferences and asks

for appropriate movie suggestions. The second user known as the recommender tries to

understand the seeker and provide appropriate movie recommendations. When a movie

is mentioned the users are asked to tag it and select the corresponding movie from a list
1https://redialdata.github.io/website/

https://redialdata.github.io/website/

Chapter 7: Conversational Recommendation 156

sourced from DBPedia. This ensures the exact tagging of movies and disambiguation

of movies with same name but released in different years. Additional information was

collected from users separately from the discussion to validate the data such as who

suggested the movie (seeker or recommender) and if the seeker Liked the movie or not.

We only keep movie suggestions by the recommender which was not marked as dislike

by the seeker. We use the provided training and testing splits released by the authors

yielding 10,006 and 1,342 dialogues respectively. A separate held-out validation set of

1k examples from the training set is used for cross-validation.

Movie plots are collected from IMDB2 and we use the latest version of MovieLens3 con-

sisting of 27M ratings from 283k users over 53k items for pretraining our interaction

function. We split 90% of the ratings for training and 10% for testing purposes. Hy-

perparameters were not tuned for the pretrained interaction function. Following [72]

we match up the movies between the ReDial dataset and the MovieLens dataset with

simple text matching using the authors’ provided implementation4. After preprocessing

and removing invalid entries we obtain 5,053 movies.

7.3.2 Evaluation Metrics

We use standard recommendation system evaluation metrics for top-n ranking, Normal-

ized discounted cumulative gain (NDCG), Recall (R) and Mean reciprocal rank (MRR)

[79]. Users are generally interested in only a few top-ranked movies, NDCG@n and
2https://www.imdb.com
3https://grouplens.org/datasets/movielens/latest/
4https://github.com/RaymondLi0/conversational-recommendations/

https://www.imdb.com
https://grouplens.org/datasets/movielens/latest/
https://github.com/RaymondLi0/conversational-recommendations/

Chapter 7: Conversational Recommendation 157

MRR@n are used to compare the top-n recommendation performance. We use Recall

as the data resembles an implicit feedback setting and measures the level of user feed-

back extracted from the conversation. Rank aware metrics such as NDCG and MRR

alone may be insufficient since a negative entry could adversely impact the metric but

in reality the user may not be aware of the item’s existence. Specifically, we treat the

movies mentioned by the recommender in utterance Xt at turn t as the ground truth

where the seeker did not give the recommendation ‘dislike’. Note the recommendation

is performed prior to observing the utterance with the ground truth and the model has

only seen the utterances prior to turn t. The reported metrics are averaged over all

utterances in the test set.

7.3.3 Baselines and Settings

We validate the effectiveness of our model against two baseline methods.

• Random: Movies are uniformly at randomly presented to the user.

• Most Popular: The movies with the highest popularity that occur in the MovieLens

training set are presented to the user.

We first pretrain our interaction function on the MovieLens dataset. The hyperparam-

eters are as follows, we set the latent dimensions to be 16, apply an L2 penalty of 1e− 6

and optimize the BPR criterion [99] using the stochastic gradient descent variant Adam

Chapter 7: Conversational Recommendation 158

Random Most Popular MF GMF

R@25 0.0053 0.0219 0.0312 0.0497
R@50 0.0114 0.0503 0.0540 0.0862
R@100 0.0234 0.0663 0.0908 0.1319
NDCG@25 0.0016 0.0093 0.0114 0.0190
NDCG@50 0.0028 0.0151 0.0161 0.0264
NDCG@100 0.0048 0.0180 0.0223 0.0342
MRR@25 0.0007 0.0064 0.0068 0.0120
MRR@50 0.0009 0.0074 0.0076 0.0133
MRR@100 0.0011 0.0077 0.0082 0.0140

Table 7.2: Experimental results for different methods reporting Recall (R), normal-
ized discounted cumulative gain (NDCG) and mean reciprocal rank (MRR) at cut offs

at 25, 50 and 100.

[60] with a standard learning rate of 0.001. Once we obtain the pretrained model (inter-

action function) the parameters are held fixed with the exception of each new user latent

factor m̃u which is randomly initialized from a Gaussian distribution with mean and

variance computed from the existing pretrained user latent factors. This maintains the

relative scale with respect to other parameters during training. During the conversation

we use stochastic gradient descent with an initial learning rate of 0.1 and momentum of

0.9 to optimize the new user latent factor while all other parameters are held fixed. We

set k = 300, truncating qt to the top 300 most similar movies to the given utterance.

At each turn t we update the parameters m̃u and randomly sample 10 negative items

from the 300 least similar movies. For our encoder we use the Transformer [112] Uni-

versal Sentence Encoder [10] unless otherwise specified and in Section 7.3.5, we explore

different variants.

Chapter 7: Conversational Recommendation 159

R@25 R@50 R@100 NDCG@25 NDCG@50 NDCG@100

MF 0.0312 0.0540 0.0908 0.0114 0.0161 0.0223
MF-DAN 0.0314 0.0577 0.0916 0.0117 0.0171 0.0230
MF-ELMo 0.0188 0.0319 0.0532 0.0064 0.0091 0.0127
MF-BERT 0.0272 0.0544 0.0877 0.0105 0.0161 0.0219
GMF 0.0497 0.0862 0.1319 0.0190 0.0264 0.0342
GMF-DAN 0.0407 0.0634 0.1079 0.0146 0.0192 0.0269
GMF-ELMo 0.0371 0.0608 0.1035 0.0134 0.0181 0.0255
GMF-BERT 0.0269 0.0465 0.0799 0.0099 0.0139 0.0197

Table 7.3: Experimental results for different encoder functions reporting Recall (R),
normalized discounted cumulative gain (NDCG) at cut offs at 25, 50 and 100.

7.3.4 Baseline Comparison

Table 7.2 presents the results of the baseline methods against our proposed transfer

learning approach using the two different interaction functions. Unsurprisingly the ran-

dom baseline uniformly performs the worst. Matrix factorization (MF) narrowly out-

performs the most popular baseline method demonstrating our framework does indeed

provide some level of personalization. GMF performs the best overall which suggests

the presence of more complex nonlinear interactions may be required to disentangle user

preferences and transfer the knowledge to another dataset. Most notably the recall at

higher cut offs 50 and 100 show larger increases than the baseline methods indicating

the user preferences are being integrated but may have difficulty in ranking the relevant

items further up in the list due to limited interaction data.

Chapter 7: Conversational Recommendation 160

7.3.5 Effect of Encoder

To better understand the flexibility of the framework and its dependence on the en-

coder we compare several state of the art language models including the deep averaging

network (DAN) version of the universal sentence encoder [10], ELMo [95] and BERT

[19]. The results for matrix factorization (MF) and generalized matrix factorization

(GMF) are listed in Table 7.3 reporting Recall and NDCG at cut offs at 25, 50 and 100.

MF using the DAN universal sentence encoder slightly outperforms the transformer

variant, however, for GMF the opposite is true, the transformer version outperforms

the DAN variant. A similar phenomenon is seen between BERT and ELMo. Each

encoders appears to capture various semantic information in the conversation leading

to extracting different user feedback provided to the interaction function. Overall, the

universal sentence encoders produce better results regardless of its transformer or DAN

model architecture. Since BERT is also a transformer, the performance differences in

the encoders may be due to the differences in training methodology and datasets used

for pretraining.

7.4 Summary

In this work, we tackle the challenge of performing movie recommendations in the con-

versational setting with a generic framework using transfer learning. Specifically, we

transfer existing learned item preferences from the MovieLens dataset and apply it to

Chapter 7: Conversational Recommendation 161

the conversational domain. Since no user interaction history exists we infer user prefer-

ences from the natural language conversation and learn a new user latent factor in an

online fashion. Experimental results with two different interaction functions confirm the

benefits of our framework. In addition, we examine the effect between the two interac-

tion functions and multiple state of the art language model encoders. This work is just

an initial step towards a promising new direction. Additional performance may also be

achieved by using more complex interaction functions which explicitly integrate content

information or leverage fine-tuning existing encoder language models on a dataset sim-

ilar to the ReDial conversational dataset. We have also noticed users often request for

movies by names of famous directors or actors. Integrating this additional information

will help improve the quality of the recommendations. Additional challenges exist such

as resolving the user’s sentiment towards a suggested movie, understanding the intri-

cate relation between the encoder and interaction functions as well as dialogue tasks

like state tracking.

Chapter 8

Conclusion

8.1 Summary

In this thesis, we explored five different approaches to applying deep learning tech-

niques to recommender systems addressing top-n recommendation in the traditional

collaborative filtering (CF) setting; item-cold start CF scenario; CF with contextual

attributes; context-aware citation recommendation; and conversational movie recom-

mendation. The five approaches are summarized below.

The first approach leverages the latest advances in memory networks and neural at-

tention mechanisms to enhance traditional CF methods with implicit feedback. We

propose a novel hybrid architecture, Collaborative Memory Network (CMN), unifying

the two classes of CF models capitalizing on the strengths of the global structure of

162

Chapter 8: Conclusion 163

latent factor model and local neighborhood-based structure in a nonlinear fashion yield-

ing a unified nonlinear hybrid model. Comprehensive experiments on three different

public datasets demonstrate significant performance gains over seven competitive base-

lines. Qualitative visualization of the attention weights provide insight into the model’s

recommendation process and suggest the presence of higher order interactions. The

second model, Neural Semantic Personalized Ranking (NSPR), addresses the item cold-

start problem by tightly integrating a deep neural network to learn effective feature

representations from item content and the pairwise latent factor model. Comprehensive

experiments on two real-world datasets demonstrated the effectiveness of NSPR to ad-

dress unseen items leveraging the inferred item feature representations extracted from

the content information. We then proposed a generic top-n recommendation framework

called Attentive Contextual Denoising Autoencoder (ACDA) to leverage arbitrary user

and item contextual information via an attention mechanism. The context-driven at-

tention mechanism encodes the attributes into the user’s hidden representation produc-

ing user specific recommendations from the personalized context. ACDA demonstrates

outperforming competitive baselines on multiple datasets on event and movie recom-

mendation tasks. Next, we addressed context-aware citation recommendation with a

flexible encoder-decoder architecture called Neural Citation Network (NCN) embody-

ing a powerful max time delay neural network encoder and recurrent neural network

decoder, augmented with an attention mechanism and author networks. NCN is capa-

ble of characterizing the semantic composition of citation contexts and corresponding

cited documents by exploiting author relations capturing additional preferences such as

Chapter 8: Conclusion 164

writing style, grammatical structure, word usage and citation preference. Quantitative

results on the large-scale CiteSeer dataset reveal NCN cultivates a significant improve-

ment over competitive baselines. Lastly, we tackle the challenge of performing movie

recommendations in the conversational setting with a generic framework using transfer

learning. Specifically, we transfer existing learned item preferences from the MovieLens

dataset and apply it to the conversational domain. Since no user interaction history

exists we infer user preferences from the natural language conversation and learn a new

user latent factor in an online fashion. Experimental results with two different inter-

action functions confirm the benefits of our framework. In addition, we examine the

effect between the interaction functions and multiple state of the art language model

encoders.

We describe a few key takeaways from this thesis. First, the integration of nonlinear

user-item interactions improves upon the representations captured over linear models.

These learned mapping from high-dimensional heterogeneous data into low-dimensional

dense feature representations automatically capture more complex user-item interactions

yielding better recommendation performance. In addition, selecting an appropriate deep

learning architecture for the task at hand and type of data available induces a prior which

can substantially reduce the amount of data or compute required. For instance, recurrent

neural networks are excellent at modeling fine grain temporal sequences, however in some

cases such granularity may not be desired. A more suitable architecture may be a max

time delay convolutional neural network which captures the sequential nature of the data

on a coarser level and significantly reduces the amount of computation time required

Chapter 8: Conclusion 165

due to parallelization. Finally, the attention mechanism demonstrates the ability to

incorporate personalized preferences into hidden representations. In this thesis, we have

demonstrated the flexibility and widespread applications of the attention mechanism to

integrate user personalization in neighborhood representations, contextual attributes,

and hidden state representations. Visualization of the attention weights provide some

level of interpretability into the model’s recommendation process.

8.2 Future Work

As countless extensions are possible to each of the five methodologies proposed in this

thesis. Instead, we discuss longer term future directions and challenges in the application

of deep learning to recommender systems. Each of these future directions may serve as

a guideline for extending any of the work proposed in this thesis.

The data hungry nature of deep learning increases its susceptibility to overfitting. The

high level of sparsity associated with user feedback further contributes to this problem.

Learning multiple related tasks in parallel demonstrate the ability to reduce overfitting

and increase generalization through inductive bias and shared representations known as

multitask learning [9]. For example, consider the setting where the first task is movie

recommendation and the secondary task is to classify the genre of the correspond movie.

This learning of joint tasks together provides additional supervisory signals and induc-

tive bias for the model to learn more robust and generalizable representation. Despite

its appeal, multitask learning typically requires careful hand tuned design decisions such

Chapter 8: Conclusion 166

as what should be shared among tasks and where to share them. It is still unclear how

to properly integrate appropriate deep learning architectures into multiple tasks with a

proper objective function that considers the complex interactions between tasks.

An area closely related to multitask learning is transfer learning. The key idea behind

transfer learning is to ‘transfer’ knowledge from a domain where large amounts of la-

beled data exists to a new target domain where less data may exist [89]. Humans are

particularly good at generalizing and transferring existing knowledge to a new prob-

lem. Computer vision and natural language processing communities extensively use

this technique to handle new domains with limited training data. Although such do-

main knowledge can be transferred about images and text, the transfer of existing user

and item preferences is much more unexplored. Consider the initialization of a model

with some level of prior knowledge (pretrained), this should yield a more suitable local

minima and better performance than a model from random initialization.

Explainability is a fundamental challenge in recommender systems and machine learning

in general. Governments, regulatory bodies and users want to know why a specific item

was recommended. Currently, deep learning models are treated as a black box with

limited insight into its decision making process. The ability to justify the model’s

recommendation process will instill confidence in both the users and businesses.

Finally, applying deep learning to recommender systems indeed improves performance

over traditional linear methods but often at a heavy computational cost. A large factor

in determining the computational requirements of the model depends upon the location

Chapter 8: Conclusion 167

of the user and item interactions. If the interaction occurs in the upper layers, the

computed item representations can be cached for all users substantially reducing the

computational requirements. On the other hand, if the interaction occurs in the lower

layers little to no computation may be reused across users. For deep learning-based rec-

ommendation algorithms to be successfully deployed in real-world scenarios researchers

must consider obtaining real-time inference and the ability to scale to millions of users

and items.

Bibliography

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450, 2016. URL https://arxiv.org/pdf/

1607.06450v1.pdf.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. In ICLR, 2015.

[3] Zeynep Batmaz, Ali Yurekli, Alper Bilge, and Cihan Kaleli. A review on deep

learning for recommender systems: challenges and remedies. Artificial Intelligence

Review, pages 1–37, 2018.

[4] Joeran Beel, Bela Gipp, Stefan Langer, and Corinna Breitinger. Research-paper

recommender systems: a literature survey. IJDL, 17(4):305–338, 2016. ISSN

1432-1300.

[5] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural

probabilistic language model. journal of machine learning research, 3(Feb):1137–

1155, 2003.

168

https://arxiv.org/pdf/1607.06450v1.pdf
https://arxiv.org/pdf/1607.06450v1.pdf

Bibliography 169

[6] James Bennett and Stan Lanning. The netflix prize. In SIGKDD Cup, volume

2007, page 35, 2007.

[7] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and

Ed Huai hsin Chi. Latent cross: Making use of context in recurrent recommender

systems. In WSDM, 2018.

[8] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In

COMPSTAT, pages 177–186. Springer, 2010.

[9] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[10] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St

John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al.

Universal sentence encoder. arXiv preprint arXiv:1803.11175, 2018.

[11] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-

Seng Chua. Attentive collaborative filtering: Multimedia recommendation with

feature-and item-level attention. In SIGIR, 2017.

[12] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong

Yu. Svdfeature: a toolkit for feature-based collaborative filtering. JMLR, 13(1):

3619–3622, 2012.

[13] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin,

and Hongyuan Zha. Sequential recommendation with user memory networks. In

WSDM, 2018.

Bibliography 170

[14] Chen Cheng, Haiqin Yang, Irwin King, and Michael R Lyu. Fused matrix factor-

ization with geographical and social influence in location-based social networks.

In AAAI, 2012.

[15] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.

Wide & deep learning for recommender systems. In RecSys, 2016.

[16] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase represen-

tations using rnn encoder-decoder for statistical machine translation. In EMNLP,

2014.

[17] Ronan Collobert and Jason Weston. A unified architecture for natural language

processing: Deep neural networks with multitask learning. In ICML, 2008.

[18] Li Deng and Dong Yu. Deep learning: methods and applications. Foundations

and Trends in Signal Processing, 7(3–4):197–387, 2014.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. CoRR,

abs/1810.04805, 2018.

[20] Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine Bordes, Sumit Chopra,

Alexander Miller, Arthur Szlam, and Jason Weston. Evaluating prerequisite qual-

ities for learning end-to-end dialog systems. In ICLR, 2016.

Bibliography 171

[21] Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. Sequential user-based recur-

rent neural network recommendations. In RecSys, 2017.

[22] Rong Du, Zhiwen Yu, Tao Mei, Zhitao Wang, Zhu Wang, and Bin Guo. Predicting

activity attendance in event-based social networks: Content, context and social

influence. In UbiComp, 2014.

[23] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. JMLR, 12:2121–2159, 2011.

[24] Gintare Karolina Dziugaite and Daniel M. Roy. Neural network matrix factoriza-

tion. CoRR, abs/1511.06443, 2015. URL http://arxiv.org/abs/1511.06443.

[25] Travis Ebesu and Yi Fang. Neural citation network for context-aware citation

recommendation. In SIGIR, 2017.

[26] Travis Ebesu and Yi Fang. Neural semantic personalized ranking for item cold-

start recommendation. In Information Retrieval Journal, pages 109–131. Springer,

2017.

[27] Travis Ebesu, Bin Shen, and Yi Fang. Collaborative memory network for recom-

mendation systems. In SIGIR, 2018.

[28] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, and Lars Schmidt-

Thieme. Bayesian personalized ranking for non-uniformly sampled items. JMLR,

18, 2012.

http://arxiv.org/abs/1511.06443

Bibliography 172

[29] Xue Geng, Hanwang Zhang, Jingwen Bian, and Tat-Seng Chua. Learning image

and user features for recommendation in social networks. In ICCV, 2015.

[30] Kostadin Georgiev and Preslav Nakov. A non-iid framework for collaborative

filtering with restricted boltzmann machines. In ICML, pages 1148–1156, 2013.

[31] Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Al-

gorithms, business value, and innovation. ACM Transactions on Management

Information Systems (TMIS), 6(4):13, 2016.

[32] Yuyun Gong and Qi Zhang. Hashtag recommendation using attention-based con-

volutional neural network. In IJCAI, 2016.

[33] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In NIPS, 2014.

[34] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[35] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Ag-

nieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette,

Tiago Ramalho, John Agapiou, et al. Hybrid computing using a neural network

with dynamic external memory. Nature, 538(7626):471–476, 2016.

[36] Jing He, Jian-Yun Nie, Yang Lu, and Wayne Xin Zhao. Position-aligned transla-

tion model for citation recommendation. In SPIRE, 2012.

http://www.deeplearningbook.org

Bibliography 173

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-

tifiers: Surpassing human-level performance on imagenet classification. In CVPR,

2015.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[39] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. Neural collaborative filtering. In WWW, 2017.

[40] Jon Herlocker, Joseph A Konstan, and John Riedl. An empirical analysis of design

choices in neighborhood-based collaborative filtering algorithms. In Information

Retrieval Journal, pages 287–310. Springer, 2002.

[41] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will

Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and com-

prehend. In NIPS, 2015.

[42] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

Session-based recommendations with recurrent neural networks. In ICLR, 2016.

[43] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. Deep neural networks for acoustic modeling in speech recognition:

The shared views of four research groups. IEEE Signal Processing Magazine, 29

(6):82–97, 2012.

Bibliography 174

[44] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm

for deep belief nets. Neural Computation, 18(7):1527–1554, 2006.

[45] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit

feedback datasets. In ICDM, pages 263–272. IEEE, 2008.

[46] Haoran Huang, Qi Zhang, Yeyun Gong, and Xuanjing Huang. Hashtag recom-

mendation using end-to-end memory networks with hierarchical attention. In

COLING, 2016.

[47] Wenyi Huang, Saurabh Kataria, Cornelia Caragea, Prasenjit Mitra, C. Lee Giles,

and Lior Rokach. Recommending citations: Translating papers into references. In

CIKM, 2012.

[48] Wenyi Huang, Zhaohui Wu, Prasenjit Mitra, and C. Lee Giles. Refseer: A citation

recommendation system. IEEE/ACM Joint Conference on Digital Libraries, pages

371–374, 2014.

[49] Wenyi Huang, Zhaohui Wu, Chen Liang, Prasenjit Mitra, and C. Lee Giles. A

neural probabilistic model for context based citation recommendation. In AAAI,

2015.

[50] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

Bibliography 175

[51] Dietmar Jannach and Malte Ludewig. When recurrent neural networks meet the

neighborhood for session-based recommendation. In RecSys, 2017.

[52] Yogesh Jhamb and Yi Fang. A dual-perspective latent factor model for group-

aware social event recommendation. Information Processing & Management, 53

(3), 2017.

[53] Yogesh Jhamb, Travis Ebesu, and Yi Fang. Attentive contextual denoising autoen-

coder for recommendation. In Proceedings of the 2018 ACM SIGIR International

Conference on Theory of Information Retrieval, 2018.

[54] How Jing and Alexander J. Smola. Neural survival recommender. In Proceedings

of the Tenth ACM International Conference on Web Search and Data Mining

(WSDM), pages 515–524, New York, NY, USA, 2017. ACM.

[55] Santosh Kabbur, Xia Ning, and George Karypis. Fism: factored item similarity

models for top-n recommender systems. In SIGKDD, 2013.

[56] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neu-

ral network for modelling sentences. In ACL, 2014.

[57] Houda Khrouf and Raphaël Troncy. Hybrid event recommendation using linked

data and user diversity. In RecSys, 2013.

[58] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.

Convolutional matrix factorization for document context-aware recommendation.

In RecSys, 2016.

Bibliography 176

[59] Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP,

2014.

[60] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In ICLR, 2015.

[61] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collabora-

tive filtering model. In SIGKDD, 2008.

[62] Yehuda Koren. Factor in the neighbors: Scalable and accurate collaborative fil-

tering. TKDD, 4(1):1, 2010.

[63] Yehuda Koren and Robert Bell. Advances in collaborative filtering. In Recom-

mender systems handbook, pages 77–118. Springer, 2015.

[64] Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization tech-

niques for recommender systems. Computer, 42, 2009.

[65] Artus Krohn-Grimberghe, Lucas Drumond, Christoph Freudenthaler, and Lars

Schmidt-Thieme. Multi-relational matrix factorization using bayesian personal-

ized ranking for social network data. In WSDM, pages 173–182. ACM, 2012.

[66] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan

Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything:

Dynamic memory networks for natural language processing. In ICML, 2016.

Bibliography 177

[67] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[68] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521

(7553):436–444, 2015.

[69] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient

backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[70] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix fac-

torization. In NIPS, 2014.

[71] Cheng Li, Xiaoxiao Guo, and Qiaozhu Mei. Deep memory networks for attitude

identification. In WSDM, 2017.

[72] Raymond Li, Samira Ebrahimi Kahou, Hannes Schulz, Vincent Michalski, Lau-

rent Charlin, and Chris Pal. Towards deep conversational recommendations. In

Advances in Neural Information Processing Systems 31 (NIPS 2018), 2018.

[73] Sheng Li, Jaya Kawale, and Yun Fu. Deep Collaborative Filtering via Marginalized

Denoising Auto-encoder. In CIKM, pages 811–820. ACM, 2015. ISBN 978-1-4503-

3794-6.

Bibliography 178

[74] Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M Blei. Factoriza-

tion meets the item embedding: Regularizing matrix factorization with item co-

occurrence. In Proceedings of the 10th ACM Conference on Recommender Systems,

pages 59–66. ACM, 2016.

[75] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:

Item-to-item collaborative filtering. In IEEE Internet Computing, 2003.

[76] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends

in Information Retrieval, 3(3):225–331, 2009.

[77] Pasquale Lops, Marco Degemmis, and Giovanni Semeraro. Content-based recom-

mender systems: State of the art and trends. In Recommender Systems Handbook,

2011.

[78] Yang Lu, Jing He, Dongdong Shan, and Hongfei Yan. Recommending citations

with translation model. In CIKM, 2011.

[79] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduction

to information retrieval. Cambridge university press Cambridge, 2008.

[80] Paolo Massa and Paolo Avesani. Trust-aware recommender systems. In RecSys,

2007.

[81] Peter McCullagh and John A Nelder. Generalized linear models, volume 37. CRC

press, 1989.

Bibliography 179

[82] T Mikolov and J Dean. Distributed representations of words and phrases and

their compositionality. Advances in neural information processing systems, 2013.

[83] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization. In

NIPS, 2007.

[84] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted

boltzmann machines. In ICML, 2010.

[85] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-

mann machines. In ICML, 2010.

[86] Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recommender

systems. In ICDM, 2011.

[87] Xia Ning, Christian Desrosiers, and George Karypis. A comprehensive survey of

neighborhood-based recommendation methods. In Recommender Systems Hand-

book, 2015.

[88] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,

and Qiang Yang. One-class collaborative filtering. In ICDM, pages 502–511. IEEE,

2008.

[89] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. In IEEE Trans-

actions on knowledge and data engineering. IEEE, 2009.

Bibliography 180

[90] Weike Pan and Li Chen. Gbpr: Group preference based bayesian personalized

ranking for one-class collaborative filtering. In IJCAI, volume 13, pages 2691–

2697, 2013.

[91] Michael J Pazzani and Daniel Billsus. Content-based recommendation systems.

In The Adaptive Web, pages 325–341. Springer, 2007.

[92] Wenjie Pei, Jie Yang, Zhu Sun, Jie Zhang, Alessandro Bozzon, and David M. J.

Tax. Interacting attention-gated recurrent networks for recommendation. In

CIKM, 2017.

[93] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global

vectors for word representation. In EMNLP, 2014.

[94] Maria S Pera and Yiu-Kai Ng. A group recommender for movies based on content

similarity and popularity. IPM, 2013.

[95] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke S. Zettlemoyer. Deep contextualized word represen-

tations. In NAACL-HLT, 2018.

[96] Steffen Rendle. Factorization machines. In ICDM, 2010.

[97] Steffen Rendle and Christoph Freudenthaler. Improving pairwise learning for item

recommendation from implicit feedback. In WSDM, pages 273–282, New York,

New York, USA, feb 2014. ACM Press. ISBN 9781450323512.

Bibliography 181

[98] Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factorization

for personalized tag recommendation. In WSDM, pages 81–90. ACM, 2010.

[99] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-thieme.

BPR : Bayesian Personalized Ranking from Implicit Feedback. UAI, 2009.

[100] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender

systems handbook. Springer, 2011.

[101] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-

sentations by back-propagating errors. Cognitive Modeling, 5(3):1, 1988.

[102] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann

machines for collaborative filtering. In ICML, 2007.

[103] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec:

Autoencoders meet collaborative filtering. In WWW, 2015.

[104] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. Interpretable convolutional

neural networks with dual local and global attention for review rating prediction.

In RecSys, 2017.

[105] Ajit P Singh and Geoffrey J Gordon. Relational learning via collective matrix

factorization. In Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 650–658. ACM, 2008.

[106] Brent Smith and Greg Linden. Two decades of recommender systems at ama-

zon.com. Ieee internet computing, 21(3):12–18, 2017.

Bibliography 182

[107] Florian Strub and Mary Jeremie. Collaborative Filtering with Stacked Denoising

AutoEncoders and Sparse Inputs. In NIPS Workshop on Machine Learning for

eCommerce, Montreal, Canada, 2015.

[108] Alessandro Suglia, Claudio Greco, Pierpaolo Basile, Giovanni Semeraro, and An-

nalina Caputo. An automatic procedure for generating datasets for conversational

recommender systems. In CLEF (Working Notes), 2017.

[109] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end

memory networks. In NIPS, 2015.

[110] Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. Learning to recommend quotes for

writing. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[111] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-

based music recommendation. In NIPS, pages 2643–2651, 2013.

[112] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Advances in neural information processing systems, pages 5998–6008, 2017.

[113] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and

tell: A neural image caption generator. In CVPR, 2015.

[114] Maksims Volkovs, Guang Wei Yu, and Tomi Poutanen. Dropoutnet: Addressing

cold start in recommender systems. In NIPS, 2017.

Bibliography 183

[115] Chong Wang and David M Blei. Collaborative topic modeling for recommending

scientific articles. In SIGKDD, 2011.

[116] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for

recommender systems. In SIGKDD, 2015.

[117] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang,

Peng Zhang, and Dell Zhang. Irgan: A minimax game for unifying generative and

discriminative information retrieval models. In SIGIR, 2017.

[118] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In ICLR,

2015.

[119] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J. Smola, and How Jing.

Recurrent recommender networks. In Proceedings of the Tenth ACM International

Conference on Web Search and Data Mining (WSDM), pages 495–503, New York,

NY, USA, 2017. ACM. ISBN 978-1-4503-4675-7.

[120] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. Collaborative

denoising auto-encoders for top-n recommender systems. In WSDM, 2016.

[121] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. Collaborative

denoising auto-encoders for top-n recommender systems. In WSDM, 2016.

[122] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.

Attentional factorization machines: Learning the weight of feature interactions

via attention networks. In IJCAI, 2017.

Bibliography 184

[123] Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic memory networks

for visual and textual question answering. In ICML, 2016.

[124] Kelvin Xu, Jimmy Ba, Jamie Ryan Kiros, Kyunghyun Cho, Aaron C. Courville,

Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. Show, attend and

tell: Neural image caption generation with visual attention. In ICML, 2015.

[125] Haochao Ying, Liang Chen, Yuwen Xiong, and Jian Wu. Collaborative Deep

Ranking : a Hybrid Pair-wise Recommendation Algorithm with Implicit Feedback.

PAKDD, 2016.

[126] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.

Collaborative knowledge base embedding for recommender systems. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 353–362. ACM, 2016.

[127] Shuai Zhang, Lina Yao, and Xiwei Xu. Autosvd++: An efficient hybrid collabo-

rative filtering model via contractive auto-encoders. In SIGIR, 2017.

[128] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender

system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52

(1):5, 2019.

[129] Wei Zhang, Jianyong Wang, and Wei Feng. Combining latent factor model with

location features for event-based group recommendation. In Proceedings of the

19th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 910–918. ACM, 2013.

Bibliography 185

[130] Weinan Zhang, Tianming Du, and Jun Wang. Deep learning over multi-field

categorical data. In European Conference on Information Retrieval, pages 45–57.

Springer, 2016.

[131] Lei Zheng, Vahid Noroozi, and Philip S. Yu. Joint deep modeling of users and items

using reviews for recommendation. In Proceedings of the Tenth ACM International

Conference on Web Search and Data Mining, WSDM ’17, pages 425–434, New

York, NY, USA, 2017. ACM. ISBN 978-1-4503-4675-7. doi: 10.1145/3018661.

3018665. URL http://doi.acm.org/10.1145/3018661.3018665.

[132] Yin Zheng, Cailiang Liu, Bangsheng Tang, and Hanning Zhou. Neural autore-

gressive collaborative filtering for implicit feedback. In DLRS, 2016.

[133] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng

Cai. What to do next: Modeling user behaviors by time-lstm. In IJCAI, 2017.

http://doi.acm.org/10.1145/3018661.3018665

	Santa Clara University
	Scholar Commons
	6-2019

	Deep Learning for Recommender Systems
	Travis Akira Ebesu
	Recommended Citation

	Signature Page_Travis Ebesu
	Thesis_Deep Learning for Recommender Systems
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Overview
	1.3 Contributions
	1.4 Outline

	2 Related Work
	2.1 Recommendation Systems
	2.1.1 Implicit Feedback
	2.1.2 Cold-Start Problem
	2.1.3 Citation Recommendation

	2.2 Deep Learning
	2.2.1 CNN for NLP
	2.2.2 Neural Machine Translation
	2.2.3 Memory Augmented Neural Networks

	2.3 Deep Learning in Recommendation Systems

	3 Collaborative Memory Networks
	3.1 Introduction
	3.2 Collaborative Filtering
	3.2.1 Latent Factor Models
	3.2.2 Neighborhood-based Similarity Models
	3.2.3 Hybrid Models

	3.3 Collaborative Memory Network
	3.3.1 User Embedding
	3.3.2 Neighborhood Attention
	3.3.3 Output Module
	3.3.4 Multiple Hops
	3.3.5 Parameter Estimation
	3.3.6 Computational Complexity

	3.4 Relation to Existing Models
	3.4.1 Latent Factor Model
	3.4.2 Neighborhood-based Similarity Model
	3.4.3 Hybrid Model
	3.4.4 Memory Networks

	3.5 Experimental Results
	3.5.1 Datasets
	3.5.2 Evaluation
	3.5.3 Baselines and Settings
	3.5.4 Baseline Comparison
	3.5.5 Embedding Size
	3.5.6 Effects of Attention and Nonlinearity
	3.5.7 Negative Sampling
	3.5.8 Attention Visualization

	3.6 Summary

	4 Neural Semantic Personalized Ranking
	4.1 Introduction
	4.2 Neural Semantic Personalized Ranking
	4.2.1 Probabilistic Generative Modeling
	4.2.2 Parameter Estimation
	4.2.3 Pairwise Probability
	4.2.3.1 Logistic Probability
	4.2.3.2 Probit Probability

	4.2.4 Prediction for Cold-Start Items

	4.3 Experimental Results
	4.3.1 Datasets
	4.3.2 Evaluation Metrics
	4.3.3 Baselines and Settings
	4.3.4 Baseline Comparison
	4.3.5 Number of Latent Factors
	4.3.6 Architecture of NSPR
	4.3.7 Impact of Item Variance
	4.3.8 Qualitative Evaluation

	4.4 Summary

	5 Attentive Contextual Denoising Autoencoder
	5.1 Introduction
	5.2 Attentive Contextual Denoising Autoencoder
	5.2.1 The Architecture
	5.2.2 Top-n Recommendation

	5.3 Experimental Results
	5.3.1 Datasets
	5.3.2 Experimental Setup
	5.3.3 The Effect of Hidden Units and Corruption Ratio
	5.3.4 Baseline Comparisons

	5.4 Summary

	6 Neural Citation Network
	6.1 Introduction
	6.2 Neural Citation Network
	6.2.1 Encoder
	6.2.2 Decoder
	6.2.3 Author Networks

	6.3 Experimental Results
	6.3.1 Setup
	6.3.2 Baselines
	6.3.3 Qualitative Study

	6.4 Summary

	7 Conversational Recommendation
	7.1 Introduction
	7.2 Recommendations through Conversational Transfer
	7.2.1 Interaction Function
	7.2.2 Encoder
	7.2.3 Mixture of Item Latent Factors
	7.2.4 Parameter Estimation
	7.2.5 Recommendation
	7.2.6 Choice of Interaction Function

	7.3 Experimental Results
	7.3.1 Dataset
	7.3.2 Evaluation Metrics
	7.3.3 Baselines and Settings
	7.3.4 Baseline Comparison
	7.3.5 Effect of Encoder

	7.4 Summary

	8 Conclusion
	8.1 Summary
	8.2 Future Work

	Bibliography

