

!"#$%&'"()
!"##$%&'#"()*

+,*-"./0&102345

*+,-./%&'"()
6320#&'#"()*

7-"./0&102345

0'"()")%+,-./%&'"()
!"##$%&'#"()*
7-"./0&102345

(a) A shielded disk head, with side and trailing edges shielded. This protects tracks written on one side
of the head.

Increased Data Density
Overlapped "Narrower" Tracks

"Wide" Write
Destructive for Preceding Tracks

(b) Increased track and disk density thanks to Shingled Magnetic Recording. Such an SMR disk gains
storage density by overlapping successively written tracks, leaving “narrower” tracks in its wake.

Figure 3.3: Shingled magnetic recording, increasing data density through the use of
overlapping tracks, written through the use of a shielded disk head.

Specifically, a magnetic shield is added to the trailing sides of the head, as shown in

Figure 3.3(a). In this manner, as a track is written for the first time, it will be written

as a “wide” track. However, such width would only impact the current track and not

the entirety of the preceding track as it would be protected by the trailing shield. This

would allow us to not only bring tracks closer, but to effectively overlap them. Resulting

in a shingled track arrangement, where all that is left of a track is what it needed to read

the data, not the greater width necessary to initially write the track. In this manner, we

get increased disk density primarily through the increase of track density, as illustrated

in Figure 3.3(b). However this increased density comes at the expense of rendering any

subsequent attempt to update these narrower preceding tracks destructive.

9

3.2 Organizing Tracks into Bands

Our prior work, as well as that of other researchers has explored techniques to alleviate

the effects of this restriction, typically through some form of log-structuring of writes

to defer the need to update data in-place [2, 5, 11]. Casutto et al. [5] offered one

of the first practical solutions to managing a log-structured layout in the presence of

limited metadata storage capacity, while Amer et al. [2] explored a spectrum of design

parameters for SMR disks, including alternative interfaces such as object-based stores,

or file system-based approaches to addressing the new disk behavior.

A disk for which all the tracks are overlapped would be impractical for use as a

random-access block storage device, and so a suitable layout scheme for the written

blocks and tracks is essential to maintain existing functionality of magnetic hard drives.

If a SMR disk were to write all its tracks in a shingled manner, then from one edge of

the platter to the other, all tracks would be overlapped. Attempting to overwrite a block

in the last track could be accomplished without harm, but attempting to update any

previously written track would result in the overwriting of an adjacent track for which

no update request has been made (and the contents of which we may have not recently

read). Updating any previously written track would necessitate pre-reading all adjacent

tracks that would be affected, so as to write them back to the disk after updating the

desired track. Unfortunately, this would not be limited to a handful of tracks adjacent

to the track being updated, but as each track would itself have to be written back to

disk, this would result in the need to read further tracks as the neighboring tracks are

restored (as restoring each of the neighboring tracks would itself be equivalent to the

original request to update the first track). In this manner, any update of an earlier track

in its existing location would necessitate re-writing the entire disk if it were completely

shingled.

When log-structuring is not possible, but we still want to avoid the need to update

10

Band i-2Band i -1Band iBand i+1

Shingled tracks of Band i
Final track of band i + inter-band gap

Figure 3.4: Logical view of a SMR disk divided into bands, allowing the in-place update
of a band, athough at the expense of a destructive track write within an individual
band.

a complete disk to accommodate the update of a previously written track, and to ef-

fectively localize updates to smaller discrete portions of the disk, a SMR disk can be

arranged into distinct bands [22, 11, 2, 5]. We illustrate the logical view of such bands

in Figure 3.4. By limiting the number of overlapping tracks in a band, we create a

disk that allows the random update of the last track in a band, and at worst requires

only the rewriting of all the tracks within a band if there is an update to one of the

overlapped tracks within the band. Thus, we want to use larger bands to increase the

storage density of the drive, but we also want to limit the size of the bands to avoid

the penalties in extra activity and delays that would be caused by update and move

activity. The number of tracks assigned to a band does affect the performance of a

shingled disk, but a consideration that’s at least as important is the workload observed

and the manner in which it is handled by the data layout scheme.

3.3 Data layout for SMR

To use a SMR disk as a regular disk requires one of two basic strategies at the block

level: updating blocks in-place and performing all copies needed to make sure adjacent

tracks are preserved; or remapping a block or track number so as to relocate it physically

to the end of a band with free space. The former approach, implementing update in-

place, avoids block remapping, which might disturb any locality being attempted by

11

the overlying software. However, in-place updates have the disadvantage of requiring

additional operations, with the associated performance costs. Block remapping, on

the other hand, is in essence a copy-on-write strategy similar to that employed by

log-structured filesystems [43, 51, 50]. In fact, schemes based around mapping log-

structured file system data structures to shingled disks have been proposed as a strategy

for shingled disks [22, 5]. Prior efforts have shown how such data structures could be

used to implement file-systems on tape-based systems [23, 65, 48]. We show that the

success of this strategy for SMR disks is heavily dependent on the nature of the workload.

While it is tempting to think of a SMR disk as a sequential write device, similar

to tape, an important distinction is that a SMR disk remains as adept at random read

operations as a regular disk. This makes it very different from a sequential-write and

sequential-read tape system. When a workload results in a large number of random

reads, it might be important to preserve the locality expected by the overlying software;

in other words, to guarantee that adjacently numbered blocks are physically near each

other. While such an assurance could be offered by avoiding the remapping of blocks,

or by actively attempting to relocate blocks and tracks so as to restore their logical

adjacency, the success of any such activity (in fact its very necessity) is dependent on

the workload. While precise performance of any strategy on any future disk will depend

on the physical characteristics of the device, we aim to provide a model to objectively

evaluate logging and in-place update strategies. Examples of physical characteristics

that may dramatically impact final performance include whether or not a shingled disk

will employ TDMR recording [24, 25, 55, 63, 11] which would result in slower read

operations due to the need to await multiple rotations. To allow for a more objective

evaluation of the impact of workloads on potential layout strategies we introduce in the

System Model section a logical distance-based view of disk activity and four comparative

models for our evaluation purposes. These models are explained in section 4.

12

In a later section we will propose RAID 4SMR which is based on RAID 4 [47] the

industry standard solution for block-level (not chunk) striping with a dedicated parity

disk which allows parallel read/write.

13

Chapter 4

System Model

In this section, we introduce the model and metrics used to evaluate our proposed

method of handling SMR disks.

The most notable characteristic of an SMR disk will be its inability to perform an in-

place update of any tracks that have been previously over-written. To accommodate the

use of SMR disks as regular hard drives will require remapping or dynamic relocation of

data blocks that are need to be rewritten, and to this end we are faced with a spectrum

of solutions. At one end of this spectrum is a continuous logging model that employs

copy-on-write to relocate all written blocks, thereby never attempting to perform an

update-in-place. At the other end of the spectrum is attempting to perform an update

in-place, and avoiding the destruction of previously written data by re-writing any

affected tracks. Assuming no memory restrictions, it would be possible to achieve the

latter solution by reading and buffering all affected tracks (up until the end of the band)

and then writing back the newly updated track and those tracks we have just buffered.

Unfortunately, this is not particularly realistic, and so we would need to consider the

effects of limited buffer capacities on the system. We introduce four system models:

1. a standard disk, that is free of the destructive-write limitations of a shingled disk

2. a purely logging disk, that makes no attempt to update modified data, but employs

a pure copy-on-write approach writing new versions of updated blocks at the next

14

free location

3. a disk that attempts to update in-place, but preserves any adjacent tracks with

the benefit of unlimited buffering capacity

4. a disk that attempts to update in-place, but is restricted to a fixed buffer capacity

for use in preserving the remaining data in the band

None of these approaches are perfect representations of an ideal solution, but they

allow us to investigate the impact of basic elements of the various approaches. Com-

paring the effects of the purely logging model against the update-in-place models allows

us to gauge whether or not it would be important for a specific workload to avoid the

inevitable fragmentation of data, or whether it would be beneficial to optimize writes by

updating the disk as a log. Comparing both update-in-place schemes allows us to gauge

the importance of a large memory buffer, or more broadly, the impact (and necessity)

of employing substantial non-volatile random-access memory (NVRAM) buffers. Such

buffers might be useful to absorb the bulk of random updates, allowing an SMR disk to

deal with the more sequential and stable workload that would result. However, as we

will demonstrate, for some workloads, the negative impact of implementing an update-

in-place strategy for a shingled disk can be almost completely masked using relatively

small buffers.

Simulation Model

To evaluate the impact of varied workloads on an SMR drive, we attempted to build

flexible models, and to gather performance metrics that are as universal as possible.

We wanted to avoid metrics that depend heavily on physical characteristics of disks,

including those yet to be built. We focused on the functional nature of the drives,

the shingling of tracks within a band, and the resulting impact on data transfer tasks.

15

While we were investigating the use of logical block addressing (LBA) distances to

evaluate the performance of SMR drives, we found that LBA is unreliable as a metric

to analyze movements in SMR drives. For drive-managed SMR drives, to maintain the

consistency of data next to the written block and efficiently update data, independent

to which model the disk uses, LBA address may be dynamically mapped to another

physical block address (PBA). To this end, we used metrics such as the logical block

movements (block distance) instead of time to read/write a block of data. These

metric are related to time as well. More activities take more time and space. Blocks

activity is proportional to the time of operations, but it is not specific because time

very depends on a specific configuration, but this “block movements” gives us a metric

of universal. The number of block movements is the difference between the logical

address of the first block visited and the next block visited. We have also collected

other logical “movement” metrics, such as track movements (one movement of which

results from the need to move the disk head from one track to another) and band

movements (when the head moves from one band to another band). Another metric is

the number of direction changes (i.e., the number of times the order of access to blocks,

tracks, or bands changed). Such direction changes measure how often the disk head is

required to move in another direction or to skip a block/track/band on the move. For

example, if the head is reading track 0, and going to track 6 due to a read request,

we have 1 logical track direction change. We have collected all of these metrics and

found that aside from differences in scale, they are largely correlated. Therefore, our

experimental results presented in this paper use the block movements metric.

The direction changes of track and band depend on how big the track and band

size are. In the simulation, we assume the track and band size are from 200 to 1400

(increment 600 for each step). That means the smallest band size is 200 (blocks per

track) x 200 (tracks per band) x 4 KB (4 KB = size of disk block, current standard) =

16

160,000 KB = 160 MB, the biggest band size is 1,400 x 1,400 x 4 KB = 7,840,000 KB

= 8 GB.

We created a simulator to model the behavior of an SMR disk with four specific

schemes, matching the four models. They are as follows:

1. Scheme 0: Standard disk (baseline)

This represents a standard disk with the ability to perform random in-place writes

without risk of destroying any adjacent tracks. We included this scheme in our

simulation as a baseline representative of current disk technology.

2. Scheme 1: SMR disk as logging disk

This is also a baseline scheme of sorts, as it avoids the impact of shingling by

assuming that the disk has enough capacity to absorb all writes in the form of a

continuous log, always creating a new copy of any data that needs to be updated

at the end of the disk. Such a model is effectively write-optimized.

3. Scheme 2: SMR disk with the ability to update in-place, with unlimited mem-

ory (buffer) to hold data being relocated (existing data blocks in the band)

This is one of the smart schemes with unlimited (or ideal) buffer memory capacity

available. In this scheme, whenever we want to update a block, the rest of the

band needs to be rewritten to preserve the data. Thanks to the guaranteed ample

buffering (unlimited buffer), this approach can complete an update of a track in

one read-update-write sequence.

4. Scheme 3: SMR disk with the ability to update in-place, with limited memory

(buffer) to hold data being relocated

For this scheme, we assume a limited transfer buffer available to support attempts

to update data in-place. The smallest buffer size is 64 MB based on the realistic

17

sizes of current buffers in commercial disks available today, and the largest buffer

size we evaluated was 8 GB. We have found the memory size to have great impact

on the logical performance of write operations, but the memory capacity needed

to effect such a great impact varies dramatically based on the observed workload.

Since an SMR disk cannot update-in-place (write-in-place) because the data next

to the block is affected, whenever we want to update a block, the rest of the band

needs to move to a safe place before moving back to the original band. In case

buffer capacity is less than band size, we will fill up the buffer with data from the

blocks next to the updating block, empty it to the next available block at the end

of the disk, fill up the buffer again, empty it again, etc., until the last block of the

band is moved. The same set of operations is done again when we have finished

updating the block and moving the rest of the band back to the original band.

18

Chapter 5

Workload Evaluation

An initial evaluation of the impact of shingled writing under varying workloads and

for different device parameters (band size and buffer capacity) was done in [31]. To

evaluate the impact of shingled writing under varying workloads and for different device

parameters (band size and buffer capacity), we conducted simulations of the behavior of

our four system models against a wide variety of workloads. While it might be tempting

to simply classify workloads according to their ratios of read-to-write operations, it is

actually more important to consider the nature of the writes, and to that end we start

by characterizing the different workloads to distinguish repeated updates from one-time

writes.

5.1 Workload Characterization

We have evaluated the Shingled Magnetic Recording, SMR, models against a variety

of workloads. The workload types collected are Block I/O level traces [41] drawn from

a variety of system types, block traces reconstructed from web server HTTP request

logs [42], and new block-level traces which we have collected from general file system

usage. From both the reconstructed web traces and our own traces, we have been

able to generate workloads representative of specialized applications. The web traces

demonstrate the behavior of a block storage device used to host web pages, while one

19

of our file system traces was drawn from a file system being used to host the image files

of a local VMWARE installation. These workloads were collected from a wide pool of

systems, which varied greatly in the total number of operations observed, and in the

mix of reads, writes and updates. We define an update as an operation attempting

to write to a block that was previously written during the observation period. The

update percent is the percentage of total blocks that were updated. The number on

the x-axis is the number of write operations in the case of the write percent and the

number of update operations for the update percent. Workloads showed a variation of

the percentage of updates across and within workload types. Percentages of observed

read operations varied from 0.02 to 99.78%, while writes varied from 0.22% to 99.98%

and updates were seen to range from 0.001% to 99.49% of the total number of blocks

accessed.

A total of 35 different workloads were evaluated and tested against our shingled

disk models, and of particular note was the impact of varying percentages of write and

update operations. We highlight four examples of such varied mixtures in Figure 5.1.

Specifically, a workload with very low writes (0.03%) and very low updates (0.02%)

as shown in Figure 5.1(a), one with medium writes (71.04%) and low updates (0.25%)

as shown in Figure 5.1(b), one with high writes (98.96%) and low updates (9.55%) as

shown in Figure 5.1(c) and finally one with very high writes (99.98%) and low updates

(4.57%) as shown in Figure 5.1(d).

As an SMR disk cannot simply perform an update in-place, we paid particular

attention to block update operations. It is these operations which, unless they happen

to fall at the last track of a band, would require us to address the update-in-place

restriction. Our analysis differs from prior art [2] in that we do not track updates as

simply blocks that were written more than twice as a percentage of the write operations

experienced by the device. For example, in Figure 5.1 we plot the percentage of blocks

20

1 2 3 4 5 6 7 8 9 10
of operations

0.01%

0.10%

1.00%

10.00%

100.00%

Blocks Written
Blocks Updated

(a) NASA: 0.03% Writes, 0.02% Updates

1 2 3 4 5 6 7 8 9 10
of operations

1.00%

10.00%

100.00%

Blocks Written
Blocks Updated

(b) WEB3: 71.04% Writes, 0.25% Updates

1 2 3 4 5 6 7 8 9 10
of operations

10.00%

100.00%

Blocks Written
Blocks Updated

(c) FS-VMWARE: 98.96% Writes, 9.55% Updates

1 2 3 4 5 6 7 8 9 10
of operations

1.00%

10.00%

100.00%

Blocks Written
Blocks Updated

(d) RSRCH1: 99.98% Writes, 4.57% Updates

Figure 5.1: Four example workloads highlighting the extreme variability of write op-
erations, and also illustrating the variety in update percent (and its lack of necessary
correlation with the percentage of writes)

that were observed to be writes or updates. At each data point, we plot the percentage

of all blocks that were written at most x times, where x is given on the x-axis as a

percentage of all blocks. Similarly we also plot the percentage of all blocks that were

updated at most x times as a percentage of all blocks. These quantities are related,

but while the percentage of blocks updated at most x times might appear to be the

same as the percentage of blocks written at most x+ 1 times, that is not necessarily the

case. For example, the WEB3 and RSRCH1 workloads (in Figures 5.1(b) and 5.1(d))

demonstrate how these values can diverge. For the RSRCH1 workload, we see that

almost all blocks written were written at most once, with hardly any written more than

once. For the WEB3 workload, we see similar behavior, but with a smaller percentage

of blocks experiencing multiple writes. In both workloads, the percentage of updates

was much lower. The reason for the disparity lies in the fact that blocks written once

contribute to the large disparity between the two series. When results varied, the

variation tended to be increasingly dramatic at scale, and so most of our results are

21

presented on a log-scale.

As we can see from Figure 5.1, there is a tremendous variation among traces in both

the percentage of writes and the percentage of blocks that are updated infrequently as

well as frequently. Results that show a marked increase in block percentages (the y-

axis) as the maximum number of operations is raised (increasing values along the x-axis)

are indicative of a workload that experiences frequent operations to the same blocks,

whereas largely flat series indicate that the majority of blocks experience the indicated

operation at most once. We have found the percent of writes and updates to be highly

indicative of the relative performance of the system models we have evaluated.

5.2 System Model Performance Results

The choice of band size, i.e. the number of shingled tracks between each inter-band

gap that allows us to avoid impacting neighboring tracks, has a direct influence on the

performance of an SMR disk relative to a standard disk. A normal disk is logically

equivalent to an SMR disk with a band size of one track. And so we compare the

performance of the four models for a range of band sizes, starting with a modest 160 MB

band size, and reaching up to just under 8 GB (7.84 GB). But we have found that the

update behavior observed in the workload has the greatest impact on the shingled write

models. The greater the update percent, the greater the positive impact of logging

(block relocation to the end of a running log) and the greater the negative impact of

attempting to restore updated data to original locations (by effectively implementing

an update in-place atop an SMR disk).

Figure 5.2 shows the write and update behavior of WDEV2 [41], the workload ob-

served to have the highest update percent, while the lowest update percent was observed

with the NASA [42] workload described in Figure 5.1(a). In Figure 5.3, we show the

number of logical block movements that result under the four system models: a standard

22

1 2 3 4 5 6 7 8 9 10
of operations

0.10%

1.00%

10.00%

100.00%

Blocks Written
Blocks Updated

Figure 5.2: The WDEV2 workload, demonstrating the highest percentage of updates,
which were also particularly notable in that updates to individual blocks tended to be
frequently repeated

Figure 5.3: Comparing the logical block movements resulting from all four disk models,
between the NASA (lowest write and update percents) and WDEV2 (highest update
percent) workloads

disk, a logging disk, an in-place update implementation with unrestricted buffer space,

and the average behavior of the corresponding schemes with limited buffer capacities.

The greater the value of “block movement,” the more logical distances that would need

to be traversed (hence “movement”). While this graph shows logical block movements,

the results appear correlated with track movements, which are directly related to the

amount of physical activity (and corresponding latencies) incurred by the disk head. As

we mentioned earlier, this “block movements” related to total activities done, therefore

it is proportional to time but independent to a specific disk.

The first data bar in each cluster in Figure 5.3 shows the logical movements of the

standard disk model. The differences between the two workloads are a result of their

different lengths and behavior. The second data bar for each set represents the purely

logging append-only SMR disk model, and as we can see, this shows increased movement

23

(poorer performance) for the NASA workload, which was predominantly a read-heavy

workload, while the write (and update) heavy WDEV2 workload experiences a dramatic

improvement in performance. This is the result of the block-relocation allowed by

logging and its subsequent write-optimized behavior. When attempting to deal with

updates in-place by updating the band in which the updates need to occur, we see the

penalty of increased movement in the third and fourth data bars. This degradation is not

notable for the NASA workload, arguably a best-case scenario for SMR disks attempting

to mimic regular disk behavior (without the benefit of the intensive block remapping

required for a logging scheme). The relative impact on the update-heavy WDEV2

workload is dramatically worse. As would be expected, operating with a limited buffer

for band updates leads to increased activity in order to perform the update in multiple

steps. How many steps, and the degree of this impact depends on the size of each band.

5.3 Impact of SMR parameter on behavior of SMR

To illustrate the impact of band size, we consider the impact of the four workloads

discussed in Section 5.1 across varying band sizes and under the four system models.

As we saw in Figure 5.3, the predominantly read-heavy NASA workload exhibits the

least degradation from utilizing shingled writing. Nonetheless, we see an increasing

negative impact correlated with an increase in the band size, most consistent when

moving from a limited to an unlimited buffer capacity. This is to be expected, as the

size of a band is an upper limit on the amount of data that is affected by an update

in-place. A bigger band size would demand a bigger buffer be utilized when a band

needs to be updated, to avoid moving other blocks to a temporary or new location.

This increasing impact of band size is consistent throughout all traces evaluated, but

its impact is surprisingly muted when compared to the impact of the update and write

rates of the workload.

24

The NASA workload, while having the lowest update and write rates among all

35 workloads considered, suffers considerably when a purely logging disk model is em-

ployed. In fact, WEB3 and NASA, both workloads drawn from systems that run web

workloads with their tendency to be reference-heavy and update-infrequent, show a

penalty for attempting to remap blocks (even with an idealized model such as ours). It

is important to note that the WEB3 workload had a majority of its operations manifest

as write operations (typical when the majority of read operations are absorbed by ef-

fective caching strategies). This highlights the importance of considering update rates,

and not simply read and write ratios, as an SMR disk suffers no adverse effects when

data is written only once. The negative impact of the logging disk model (the second

model) upon the NASA and WEB3 workloads is contrasted with its positive impact on

the FS-VMWARE and RSRCH1 workloads. In these workloads we see the vast major-

ity of operations are writes, and a significant (but still a minority) of operations are

updates. For both these workloads, we see a reduction in movement on the order of

50× to 150×. Similarly, the positive impact of the logging disk model on the WDEV2

workload is because of an extremely high percentage of updates and writes. The head

in this case must almost move to the beginning of the available blocks and add up data

without moving back and forth to move data. This illustrates the tremendous potential

for block remapping strategies on SMR disks in the presence of heavy write and update

workloads. The greatest improvement was observed for the RSRCH1 workload, which

also featured the largest percentage of writes. The negative impact of attempting to

perform updates in-place is also clearly demonstrated.

To absorb the impact of a write-in-place policy (which can be beneficial for heavily

read-biased workloads), it is important to select an adequate buffer capacity. This is

particularly true when we are dealing with volumes of data on the order of several GBs,

as it will require a memory buffer that is both fast and non-volatile. Flash or alternative

25

(a) NASA varied band capacities

(b) WEB3 varied band capacities

(c) FS-VMWARE varied band capacities

(d) RSRCH1 varied band capacities

Figure 5.4: The impact of band size on logical movements for the four disk management
models

26

storage-class memories could be employed to this end. Our workload evaluation has

shown that the necessary memory sizes to mask any negative performance impact due

to insufficient buffer capacity can vary considerably. Surprisingly enough, we found that

the amount of memory buffering needed appears to converge rapidly to a consistent value

across multiple band sizes. To this end, we expand the fourth system model results (64

MB buffer capicity) presented in Figure 5.4 to illustrate the block movement behavior

under different memory capacity limits. As before, higher values are indicative of poorer

performance, but we dispense with the logarithmic scales in these graphs.

In Figure 5.5 we see that for all three band sizes, providing a buffer anywhere from

128 MB to 8 GB is sufficient to counteract the negative impact of larger band sizes. The

fact that this capacity can be as low as 128 MB for one of the most problematic workloads

(RSRCH1) is particularly noteworthy, as this is practically an all-write workload, and yet

it appears to do all right when approached with logging strategies or minimal additional

buffer capacity.

5.4 SMR in Server Environments

In chapter 6 “Building SMR-Aware Disk Array”, we propose one possible approach

to building an SMR aware disk array suitable for use in a server environment. We,

therefore, first evaluate the impact of data placement and benefits or lack of them

from interleaving workloads that involve writes originating from multiple sources on

these disk arrays. Whether an array of SMR disks is arranged as a simple spanning

arrangement, or a striped arrangement (aimed at increasing effective bandwidth), can

dramatically affect the amount of data relocation and re-writing required to maintain

an SMR drive. We found that a workload that originates from a heavily interleaved mix

of sources is detrimental to an SMR disk performance. We reached these preliminary

conclusions through the replay of recorded workload traces. To evaluate the impact

27

(a) NASA (b) WEB3

(c) FS-VMWARE (d) RSRCH1

Figure 5.5: The impact of buffer size on logical movements for the fourth (memory-
restricted replacement) disk management model.

28

A1 A2 A3

A4

B1 B2 B3

B4

C1 C2 C3

C4

D1 D2 D3

D4

Disk A Disk B Disk C Disk D

Figure 5.6: Logical view of a simple array of disks. In the striped arrangement, blocks
0, 1, and 2 are arranged as A1, B1, and C1. In pure arrangements, blocks 0, 1, and 2
are arranged as A1, A2, and A3.

of shingled writing when employed on disks arranged in array, we evaluated several

recorded workloads and replayed them against a simulated drive to measure the number

of track-to-track movements that would be incurred under different conditions. We do

not consider disk parallelism in this case to simplify the results.

In section 5.2 “System Model Performance Results”, we have evaluated the perfor-

mance of a single SMR disk against a variety of workloads. The workload types collected

were Block I/O level traces [41] drawn from a variety of system types, block traces re-

constructed from web server HTTP request logs [42], and new block-level traces which

we collected from general file system usage over several months. From workload traces,

we have also been able to generate workloads representative of specialized applications.

For example, one of our traces was drawn from a filesystem being used to host the

image files of a local VMWARE installation, while others were reconstructed web server

workloads. These workloads were part of a larger collection we compiled from a pool of

35 different real-world workloads. These workloads varied greatly in the total number

of operations observed, and in the mix of reads, writes and updates, and from them we

extracted four disparate workloads as representatives for use in the current experiments.

Figure 5.6 shows the logical arrangement of blocks we evaluated, while Figure 5.7

shows a sample of the preliminary results we observed for the amount of inter-track

movement resulting from a total of eight different configurations of block arrangement

and workload interleaving. All the results in Figure 5.7 were based on an SMR disk

29

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000
To

ta
l T

ra
ck

 S
w

itc
he

s
(m

illi
on

s)

Workload Burst Size

striped
pure

dedicated

Figure 5.7: Disk activity when replaying multi-source traces against a simulated array
of SMR disks.

utilizing a log-structured write scheme to minimize the need to copy overlapped blocks

when an in-band update was required. The pure workload shows the total amount of

disk activity across four disks arranged in sequence, with workloads replayed sequentially

and including no interleaving. In other words, four consecutive traces were each replayed

in their entirety, and consecutively, against a disk array employing a spanning layout.

This effectively simulated the behavior of a workload that varied over time, but which at

no point included requests interleaved with others of a different workload. The striped

workload combines four different workloads, and replays the composite workload against

a striped organization of disk blocks across four disks. The workload was generated by

randomly interleaving the operations from each of the four workloads in limited bursts.

The x-axis of the figure represents each burst size, increasing from a minimum of one

(where the interleaving is maximized) up to bursts of a thousand operations. Finally, the

dedicated results represent the behavior of the SMR disks when each disk is dedicated

to an individual source workload.

Figure 5.7 shows that as the degree of interleaving in the composite workload traces

is reduced (and the burst sizes increase) for the array, we see a reduction in the amount

of disk activity that approaches that of the pure configuration. This is predictable and

expected, as replaying a sequence of traces without any interleaving is exactly what is

30

done by that configuration, and is the ultimate destination of extending burst sizes until

they encompass an individual workload trace in its entirety. The surprising observations

are just how much more activity results when unrelated operations are finely merged

into a composite trace, and how further improvement can be achieved by separating

workloads from different sources to individual dedicated disks. For a workload created

from interleaving operations from multiple sources into small bursts, the amount of

movement caused by relocating disk bands rises dramatically (up to forty times in this

instance, though quickly dropping as the burst size increases to the level of 50 and 250

operations per burst). We attribute this behavior to the increased likelihood of unrelated

data being written in adjacent positions increasing the likelihood of an update being

required that is unrelated to much of the data on the same band. This problem is

alleviated as the burst sizes increase, and eliminated entirely when individual dedicated

disks are used. The difference in the dedicated configuration is that, unlike the pure

configuration, it will never result in the writing of data from different data sources to

the same device. Because the dedicated configuration avoids this risk entirely, we see

a further drop in disk activity of around 25%. Based on these observations, in section 6,

“Building SMR-Aware Disk Arrays”, we will propose RAID 4SMR which is a disk array

system based on RAID 4 [47] using SMR disks.

5.5 Offering a Modified Object/File Interface

Using shingled disks with applications that do not require any data updates is simple,

and requires no modification of device firmware or drivers to accommodate the shingled

nature of the disks. A continuous video recording application, for example, recording

on a continuous loop, would be able to write to an underlying storage system composed

of shingled disks. Those disks could write the video stream data to consecutive tracks,

never overwriting the preceding tracks, but simply looping to the first written track on

31

the first disk. At this point, the tracks that will be destroyed by an overwrite would

be the tracks holding the oldest video data that is due for erasure. In such a scenario,

simply using the SMR disks as-is would be the most efficient approach to construct such

a system.

With a file system or object store, the system selects specific blocks to hold the data

that is contained within individual objects or files. Because of this, such an implemen-

tation has considerable freedom regarding how the data is placed. Since it need only

guarantee that it will provide the same contents in response to requests for a specific

object or file, such a system may freely relocate and reassign individual portions of such

objects to new blocks as needed. Simultaneously such a system would not need more

information than the metadata it is already maintaining for the purposes of its allo-

cation policy. When general storage systems implement copy-on-write or log-structure

layout policies, such as that employed by write-anywhere file layout (WAFL) [18] or

ext3-COW [49], then write-in-place updates are largely unnecessary. In the case of

WAFL, this allowed the system to utilize an inexpensive and simple RAID4 arrange-

ment of data on its underlying disk, thereby offering a tremendous cost advantage over

competing technologies. This sort of arrangement would also be amenable to shingled

disk applications.

It is possible to use SMR disks without modifying their interface by requiring the

file or object system to be aware of the destructive nature of updates to tracks within a

band and to ensure than any data at risk of being overwritten has been moved prior to

writing. This can be achieved by writing data updates to new locations, in a copy-on-

write (COW) fashion, thereby invalidating the older versions of the data (allowing them

to be safely overwritten in their original locations). Such an interface can be provided

by the device itself (as in the case of the Seagate Kinetic drives which act as network-

attached key-value stores), or by a layer of the software stack, such as that utilized

32

by filesystems like CEPH or the SWIFT/Openstack architectures, or by a complete

overlying fiesystem adapted for the shingled nature of the underlying disks.

Adapting an overlying filesystem to allow for the freedom to write “anywhere” was

demonstrated in the WAFL filesystem developed by NetApp, and which formed the

basis of their first products [18]. By using a copy-on-write scheme for both the files’

data blocks, and for the metadata that described those files, the system essentially

rendered the underlying storage system into a target for streaming block writes that

could be grouped together into convenient chunks of data that coincided with the size

of a RAID [47] stripe. This meant that all underlying block write operations could

be guaranteed to require no updates to the parity disk (as a complete stripe is being

written, this means that the data being written includes a completely new value for

the parity of that stripe, and the blocks could overwrite the existing RAID stripe in

one efficient parallel write operation). An interesting side effect of this approach is that

NetApp was able to utilize relatively inexpensive RAID 4 device arrays (as opposed

to RAID 5 systems that attempted to alleviate parity update load by automatically

varying the device assigned to hold the parity block). This contributed significantly to

the competitiveness of NetApps early storage offerings, as it meant that the modified file

system had allowed improved system performance and reduced the cost of the hardware

required to realize that improved performance.

In order for such a scheme to be feasible, it was necessary to hold newly written

data in a non-volatile memory until it could be guaranteed that an entire stripe could

be written out to the disk devices. A similar approach is possible for SMR systems,

but the overhead of this strategy (simply using nonvolatile memory to hold a large

pending write buffer) may be unnecessary for individual devices, and considerably more

expensive for disk arrays. The problem of cost with disk arrays is that we would need

to buffer more than a simple parity stripe (a number of blocks no larger than the total

33

number of devices in an array), but would in fact need to buffer a stripe composed of

entire bands in a stripe. So instead of a collection of x blocks, it would be a collection

of x × y × z blocks, where x is the number of devices, y is the number of blocks in a

track, and z is the number of tracks in a band. This is necessary to guarantee that data

updates do not destroy data when used with a straightforward RAID implementation,

which we will now review. We will present one possible, yet novel, alternative approach

to offering a block interface for disk arrays based around SMR disks.

34

Chapter 6

Building SMR-Aware Disk Arrays

In computer storage, there are several different standard and non-standard redundant

array of independent disks (RAID) configurations such as RAID 0, 1, 2, 3, 4, 5, 6, 10, etc.

These configurations help to build a large reliable storage system from more than two

common hard drives. This can be done by using one or more of the techniques of striping,

mirroring, or parity. In this manuscript, we chose to focus our study around RAID 4,

instead of RAID 5 (distributed parity blocks) or RAID 6 (extra parity blocks), because

it is the simplest and lowest overhead version of parity-based RAID, and therefore allows

us to evaluate the impact of SMR integration most cleanly (i.e., without introducing

additional variables that are tangential to the question of SMR's impact). When we

structure data appropriately in the log fashion, there is no advantage of RAID 5 over

RAID 4. RAID 6 deals with multi-disk failure which create more overhead compared

to RAID 4.

Shingled write disk with SMR technology can help us triple data density in the

future [61], but it comes with a price of update in-place. The degradation of performance

gets worse if we just switch regular HDDs to SMRs in RAID arrays [30]. We now propose

RAID 4SMR in Figure 6.1 as an approach to utilizing SMR devices in a disk array

arrangement which is a hybrid system of three SMRs and two HDDs for a redundant

array. We have chosen a scheme that maintains a traditional block interface so that

35

a SMR device will integrate easily into existing storage architectures. On the SMR

disks we eliminate the update-in-place operation due to the high cost of updating. The

regular HDD has the advantage of in-place update efficiency; but as we are not limited

to traditional hard drives, we can use traditional HDDs or recently popular SSDs. The

mapping table can be easily stored in battery-backed memory (called NVRAM).

When dealing with garbage collection, only actively updated blocks are tracked in

a hash table along with a location of the actual block in Data HDD. If a band with a

block number is in the mapping table, it will be considered an invalid or dirty block.

In addition to the mapping table, a simple lookup table for a number of invalid blocks

in a band is maintained to quickly identify when the garbage collection procedure will

be triggered (which reduces the number of active re-mappings that need to be tracked).

Together, only modest mapping and lookup tables are necessary to retrieve the correct

data.

Since the SMR is most suitable for archival storage or a write one read many

(WORM) disk, we have designed our SMR RAID to be a solution for reliable data

storage arrays. The reason we chose RAID 4 instead of other RAIDs is that RAID 4

stores frequently updated parity blocks on a dedicated disk, left alone 3 data disks can

be all replaced by SMR disks.

One of the advantages of the proposed RAID 4SMR design is that we can chain many

RAID 4SMR systems together with one large Data HDD (or SSD to avoid performance

bottleneck) as shown in Figure 6.3. The Data HDD does not need to be the same size as

other SMRs and the Parity HDD. This scheme is suitable for the enterprise level where

a lot of the data is archival. All the data in the system is protected by one or more

parity disks in chaining systems.

We anticipate a volume size for this simple standalone RAID 4SMR would be around

30-40 TB. This could be accomplished with an array of 3 x 10 TB SMR disks and 2 x

36

Data
SMR 1

Data
HDD

XOR

SMR-Eliminate update In-place update

RAID 4SMR

D1

Data
SMR 2

D2

Data
SMR 3

D3

Parity
HDD

P

Figure 6.1: When the data first write to the array, parity disk will store P = XOR(D1,
D2, D3, DataHDD). Data HDD blocks are expected to be zero-initialized.

10 TB regular HDD disks (for both parity and data disks).

In Figure 6.1 we illustrate our approach to maintaining a block interface for a disk

array built around SMR devices. In this example, data is held primarily on disks D1

through D3, which are all SMR devices, while parity is held on disk P, which is not an

SMR disk, but may be composed of one or more traditional magnetic disks, or a device

built around a storage class memory technology or flash-based SSDs (recommended).

The system is augmented with an additional mass storage device (labeled Data HDD

in the figure). This last device can be a traditional magnetic disk with update-in-

place efficiency. Its purpose is to serve as a collection of updated data blocks. With this

design, Data SMR disks (D1 to D3) only updated whole bands during garbage collection.

However, this last device need not be a different storage technology but could utilize

shingled writing if it serves as a journal to hold each block update.

With an updating intensive workload, all the updates will be redirected to the Data

HDD so that the Data HDD now become the potential performance bottleneck as well

as the Parity HDD disk. We recommend a high-performance disk be used in this case.

Since the Data HDD can be updated in an update in-place fashion, and will only

37

Data
SMR 1

Data
HDD

XOR

SMR-Eliminate update In-place update

RAID 4SMR

D1

Data
SMR 2

D2

Data
SMR 3

D3

Parity
HDD

P' D2'

update D2 to D2'

Figure 6.2: When one of the blocks in shingled array is updated, the data on SMR disks
will be left unchanged, but the updated block will be written into Data HDD and the
corresponding parity block is recalculated.

serve to hold updated data blocks that could not be updated in-place on Data SMR

disks, it will hold a very small fraction of the data in the entire array. But as it needs

to be protected against single-device failures, it requires that the parity disk be capable

of efficient updates in-place. The parity will need to be updated with every write to

the Data SMR disks, or any write that is redirected to this Data HDD (as illustrated

in Figure 6.2). This is why we require the parity disk to be capable of efficient in-place

updates. In prior work, we have found that utilizing a hybrid arrangement of data

and parity disks, with the parity disk employing a different storage technology, offers

performance and reliability benefits for the overall system [6].

While such an architecture might seem to impose a heavy burden on storage capacity,

as it appears to require an additional device for every RAID-like storage array, this is

not the case in practice. If we estimate that fewer than 5% of all disk blocks are ever

updated in most mass storage scenarios, then we can see that the capacity of Data HDD

disks will go largely unused. It is therefore possible to utilize the same Data HDD device

with multiple RAID 4SMR arrays, as illustrated in Figure 6.3. This will have a slightly

38

negative impact on overall system reliability, as it creates an interdependency among

up to 20 different arrays (estimate 5% updates) that could potentially be linked in this

manner. However, it is important to point out that this is a very minor impact, as each

and every array would still be capable of surviving the loss of an individual disk device

(including the shared device, for which different portions of its data are necessary for,

and dependent on, different arrays).

When chaining several RAID 4SMR systems together, we need a scheduling policy to

choose which RAID 4SMR disk groups to write. Choosing the right algorithm will also

affect the performance when data is retrieved later. In general cases, we can implement

a simple round-robin (RR) algorithm to more evenly distribute the burden across disk

groups. If one decided to deploy RAID 4SMR disk groups over a complex network

fabric, a shortest path algorithm might be a way to improve load as well.

Assuming a read is randomly distributed over the range of all blocks and we antici-

pate 5% of write-operations are rewritten blocks. In the worst case, all updated blocks

are in Data HDD (without garbage collection). That means the Data HDD will only

be read 5/100 (or 1/20) of the time. In the case of 20 chained RAID 4SMR subsys-

tems, randomly distributed read is going to put the whole system at its highest read

performance. It will demand the highest read performance from the Data HDD to avoid

performance bottleneck. Because the Data HDD will only be read 1/20 of the time, the

read speed of the Data HDD should be greater the read performance of a standalone

RAID 4SMR. Typical read speed for a currently available SMR disk is around 150 MB/s

(Seagate 8TB SMR drive [58]). Since RAID 4SMR data is distributed over 3 Data SMR

disks, the expected read speed of a RAID 4SMR subsystem is 3 x 150 MB/s or 450

MB/s. With a latest SSD disk (the read speed is around 500 MB/s - Samsung SSD

850 EVO [54]) used in place of the Data HDD disk (which we recommended), the Data

HDD should not be a performance bottleneck.

39

In Figure 6.4 we show how RAID 4SMR works when operation requests arrived. If

the operation is read (R), we just look up the mapping table and retrieve data from

the appropriate disk and block. The read operation can read from any Data SMR[1-3]

or Data HDD disk. If the operation is write (W), we need to figure out whether the

write operation is first write to a unique block or update data of a block. If it is the

first time we write to the block, we can simply write data to the next available block

in one of the Data SMRs[1-3] (the SMR disk only appends a block to a band to avoid

destroying data blocks next to it). The controller can write a single block instead of

stripe-distributed blocks across all data disks. Because of this, RAID 4SMR can be

deployed in a fabric over the network if needed. If the operation is intended to update

a block of a Data SMR[1-3] disk, we now redirect the write to the Data HDD and mark

the stale block invalid in the mapping table. In case the total number of invalid blocks

in the band across 3 data SMR disks is more than pre-defined variable threshold i, the

garbage collection process is triggered. The garbage collection process will read valid

data blocks in bands from across 3 data SMRs[1-3] and the Data HDD disks and rewrite

the bands with valid blocks, new block, and updated blocks in the Data HDD. Also, the

mapping table will be updated.

6.1 RAID 4SMR Fault Tolerance

Every hard drive fails eventually. Both RAID 4SMR and RAID 4 have a fault tolerance

of one drive. RAID 4SMR can survive one drive failure in any drive. This is guaranteed

to work since RAID 4SMR does not distribute blocks in a stripe across all data disks.

Instead, it will rely on the controller to only deal with a single block. The controller

with mapping table will be able to collect all required blocks to get data back. This

mechanism even works when we update more blocks in the same stripe which are even-

tually written to the Data HDD. At any time, all blocks can be retrieved to get data

40

Data
SMR 1

Data
HDD

XOR

SMR-Eliminate update In-place update

RAID 4SMR Chaining

D1

Data
SMR 2

D2

Data
SMR 3

D3

Parity
HDD

P

Data
SMR 1

XOR

D1

Data
SMR 2

D2

Data
SMR 3

D3

Parity
HDD

P

……………………………………..

Figure 6.3: RAID 4SMR can be chained together to form a bigger array.

Data
SMR[1-3]

Write to
Data SMR[1-3]

R/W?

Start

Update?

R

W

Data
HDD

Read from
Any

Garbage
collection

#Invalid > i?

No

Yes

No

Yes

1. Read data

2. Re-write band

Write to
Data HDD

Write to
Any

Figure 6.4: Flowchart of how RAID 4SMR works.

41

back, and any block in a RAID 4SMR system will be protected with a parity block.

When one of the disks fails, the array is in degraded mode and the failed drive needs to

be replaced. The repair procedure is much the same as that for RAID 4.

Parity bit in RAID 4SMR is calculated as P = D1 ⊕ D2 ⊕ D3 ⊕ DataHDD. If

the failed drive is one of the Data disks, we can calculate the lost value based on the

parity disk and the other three online disks. If the failed drive is the parity disk, we

just recalculate the parity value again. If the failed drive is the Data HDD, we can also

calculate the lost value as we have the parity disk and other online disks.

In the design of RAID 4SMR, we maintain the reliability of RAID 4, in which the

array can tolerate one drive failure (any drive, including the crucial Data HDD). In

case of updated blocks, data are redirected to Data HDD first before being written

back to a Data SMR in the garbage collection process. When a block is written to

Data HDD, the related parity block is also updated with the new parity value P =

D1 ⊕ D2 ⊕ D3 ⊕ DataHDD. The new parity value ensures the new block written to

the Data HDD is still protected. These new parity values also guarantee all the blocks

in the Data HDD are protected with other SMR disks and the parity disk. Should the

crucial Data HDD fail, data in it can be restored from the other three Data SMRs and

the parity HDD.

6.2 RAID 4SMR Space Efficiency

Space efficiency is the fraction of the total drives’ capacity that is available to use for

data (as opposed to parity) blocks. The expression has a value between zero and one.

The higher value is the better.

Unlike standard RAIDs, RAID 4SMR space efficiency varies widely depending on

the number of its updated blocks. Archival data which is never rewritten is actually not

taking advantage of the dedicated Data HDD. In this worst case, the data blocks can

42

all be stored on 3 SMR disks (without update) in an array of 5 disks. The best case is

when all the data SMRs are filled up and the Data HDD is also filled up with updated

blocks. In this case, data is stored on 4 disks (all 3 SMRs and the Data HDD) and only

the parity disk counts against the space efficiency. The space efficiency for RAID 4SMR

is in this range:

1− 1 + c

n
≤ space efficiency ≤ 1− c

n
(6.1)

Where n is the number of disks, and c is the number of chaining systems in RAID 4SMR

array. With n = 5 and c = 1 (simple standalone RAID 4SMR array), the efficiency has

a range from 60% to 80%.

Let u represent the percent of updated blocks. Before the garbage collection, the

space efficiency is supposed to be lower at u percent as we do not have to reclaim those

invalid blocks.

When chaining multiple sub RAID 4SMR systems to take advantage of Data HDD

and form a massive storage system (Figure 6.3), we anticipate the efficiency is in line

with RAID 4. Let us say we are chaining 20 RAID 4SMR systems, n will be 81 (4 disks

for each RAID 4SMR system and only 1 Data HDD is needed), c will be 20, and the

efficiency has a range from 74% to 75%.

6.3 RAID 4SMR Reliability

In this section we evaluate the long-term reliability of a simple standalone RAID 4SMR

disk array consisting of four data disks and a parity disk. The reliability of RAID 4SMR

is different than standard RAID 4. The most popular way to estimate the reliability

of a redundant disk array is using mean time to data loss (MTTDL). When a disk

fails, the repair process is triggered immediately. Let us assume that disk failures are

independent events, exponentially distributed, denoted by λ as failure rate. The repair

43

Figure 6.5: State transition probability diagram - Markov Chain for RAID 4SMR.

is exponentially distributed with rate µ.

To simplify the calculation, we analyze a simple RAID 4SMR array with 5 disks. The

Markov Chain diagram in Figure 6.5 displays the simplified state transition probability

for a RAID 4SMR array without chaining. State< 0 > is the ideal state which represents

the normal state of the array when all 5 disks are operational as expected. The starting

state is state < 0 > (safe), from which we transition to state < 1 > (degraded) at rate

5λ whenever one of the five disks fails. As we know, RAID 4SMR can recover from one

disk failure, a failure of a second disk would bring the array to data loss state.

The Kolmogorov system of differential equations describing the behavior of the

RAID 4SMR array has the form:

dp0(t)

dt
= −5λp0(t) + µp1(t) (6.2)

dp1(t)

dt
= 5λp0(t)− (4λ+ µ)p1(t) (6.3)

where pi(t) is the probability that the system is in state < i > at time t with the

initial conditions p0(0) = 1 and p1(0) = 0

The Laplace transforms of these equations are:

sp∗0(s) = −5λp∗0(s) + µp∗1(s) + 1 (6.4)

44

sp∗1(s) = 5λp∗0(s)− (4λ+ µ)p∗1(s) (6.5)

Observing that the mean time to data loss (MTTDL) of the array is given by:

MTTDL =
∑
i

p∗i (0) (6.6)

We solve the system of Laplace transforms for s = 0 and use this result to obtain

the MTTDL of the array:

MTTDL =
µ+ 9λ

20λ2
(6.7)

With mean time to failure (MTTF) and mean time to repair (MTTR) defined as:

MTTF =
1

λ
(6.8)

MTTR =
1

µ
(6.9)

6.4 RAID 4SMR with Garbage Collection Evalua-

tion

In previous sections, we showed how RAID 4SMR [28] works without garbage collection,

which is an ideal situation as we do not have to reclaim the freed blocks. In this section,

we evaluate the same RAID 4SMR with garbage collection in our simulation to determine

the trade-off of using an SMR disk in RAID 4SMR vs. a standard RAID 4 array. Below

is the simple pseudo code for the garbage collection algorithm:

if totalInvalidBlocksInBands() >pre-defined-i then
buf ← getData(DataSMR[1− 3], DataHDD);
deleteOldBlocksInDataHDD(); // blocks stored in buf ;
rewriteSMRBands(buf);

end

45

In order to perform garbage collection, we added the support for reclaiming freed

blocks in our simulation. This garbage collection process will be triggered when we have

enough i number of freed blocks, which is a pre-defined value. Value of i is in the range

of 0 < i < 3 ∗ band size. The highest value means all blocks in three bands across three

Data SMR disks are invalid. In the simulation, i is chosen as the number of blocks in a

band (or band size). It means that when the garbage collection is triggered, i blocks of

updated blocks are read from the Data HDD. These blocks will replace invalid blocks in

related bands across three SMR disks. After that, these all valid bands will be written

back to three SMR disks. The bands are now fully updated with valid blocks.

Using the collection of workloads we gathered, we mixed those workloads in the

same category together to form newly-merged workloads to simulate the multi-user

environments. Although these new workloads have the same name, they may not have

the same characteristics as standalone workloads.

We have plotted the new workload’s percentage of written and updated blocks in

Figure 6.6. We define an update as an operation attempting to write to a block that was

previously written during the observation period. The update percent is the percentage

of total blocks that were updated. The number on the x-axis is the number of write

operations in the case of the write percent and the number of update operations for the

update percent. Workloads showed a variation of the percentage of updates across and

within workload types.

As an SMR drive cannot simply perform an update in-place, we paid particular

attention to block update operations. It is these operations which, unless they happen

to fall at the last track of a band, would require us to address the update-in-place

restriction. Our analysis differs from prior art [2] in that we do not track updates as

simply blocks that were written more than twice as a percentage of the write operations

experienced by the device. We plot the percentage of blocks that were observed to be

46

1 2 3 4 5 6 7 8 9 10
of operations

0.01%

0.10%

1.00%

10.00%

100.00%

Blocks Written
Blocks Updated

(a) NASA: 0.031% Writes, 0.019% Updates.

1 2 3 4 5 6 7 8 9 10
of operations

0.01%

0.10%

1.00%

10.00%

100.00%

Blocks Written
Blocks Updated

(b) RSRCH: 0.016% Writes, 0.006% Updates.

1 2 3 4 5 6 7 8 9 10
of operations

1.00%

10.00%

100.00%

Blocks Written
Blocks Updated

(c) VMWare: 5.286% Writes, 1.382% Updates.

1 2 3 4 5 6 7 8 9 10
of operations

1.00%

10.00%

100.00%

Blocks Written
Blocks Updated

(d) WEB: 2.387% Writes, 1.016% Updates.

Figure 6.6: Four merged workloads from the same category.

writes or updates. At each data point, we plot the percentage of all blocks that were

written at most x times, where x is given on the x-axis as a percentage of all blocks.

Similarly we also plot the percentage of all blocks that were updated at most x times

as a percentage of all blocks. These quantities are related, but while the percentage of

blocks updated at most x times might appear to be the same as the percentage of blocks

written at most x + 1 times, that is not necessarily the case. The y-axis is presented

in log-scale. Same generated workloads (NASA, RSRCH, VMWare, WEB) will be used

for all RAID 4, RAID 4SMR, and RAID 4SMR with garbage collection. With that, we

can calculate the overhead of garbage collection in the same RAID 4SMR systems as

well as RAID 4 with SMR disks. In this section, we will evaluate the use of an SMR

disk in a RAID 4SMR array with garbage collection.

If a RAID 4SMR uses a parity bit to protect the array from a drive failure, it will

cost more for a write intensive system. In the best case scenario, we can expect blocks

are distributed all over the data disks, which means read/write performance max is

(n− c− 1)X.

47

If the array is in degraded mode, it will affect the system performance since all the

related disks (though not the replaced data disk) will need to be read in order to get

the data back. Since most of the data on the SMR disk is archival data, the overall

system performance will not be impacted as much as with regular RAID arrays where

data is accessed/updated frequently. The performance of the RAID arrays, in any case,

is only restored when a new SMR/HDD is replaced and data is re-synced. The process

to re-sync a 4 TB data disk nowadays can take more than 10 hours in a hardware RAID

system. This is even worse if the scheme is implemented in a software RAID array.

To evaluate the efficiency of RAID 4SMR over RAID 4, we calculate the ratio of

RAID 4SMR over RAID 4 (by the number of block movements as usual). To be fair,

the number of movements only count for the first 3 data disks in both RAID 4 and

RAID 4SMR (parity and Data HDD disks movement do not count) because the stan-

dard RAID 4 has only 4 disks. The result table’s (Table 6.1) last column shows that

RAID 4SMR always perform better than standard RAID 4 thanks to the deferring of

update operations to the Data HDD in RAID 4SMR. In the case of RSRCH mixed

workload with extremely low write and update percents, we can see a slight improve-

ment of 1.5%. This improvement can go up to 56% in our evaluation with WEB mixed

workload (high write and update percents).

When adding garbage collection to a RAID 4SMR scheme, we expect to see some

overhead for garbage collection operations. This overhead should not add a tremendous

amount of extra block movements. By calculating the ratio of RAID 4SMR with garbage

collection (RAID 4SMR gc) and RAID 4SMR (Table 6.1) in the first column, we are

confident that RAID 4SMR gc is usable in the real world with different type of workloads.

The max overhead of 2.11% in the case of a VMWare mixed workload (5.28% written

and 1.38% updated) is very low. RAID 4SMR with garbage collection is ideal for

archival workloads which have almost no overhead for garbage collection and less block

48

Workload RAID 4SMR gc/
RAID 4SMR

RAID 4SMR gc/RAID 4 RAID 4SMR/RAID 4

NASA 100.00% 97.72% 97.72%
RSRCH 100.00% 98.57% 98.57%
VMWare 102.11% 52.52% 51.44%

WEB 100.78% 44.66% 44.32%

Table 6.1: Ratio of number of block movements for RAID 4, RAID 4SMR, and
RAID 4SMR gc with SMR disk

movements compared to standard RAID 4. While deploying SMR disks in a chain of

RAID 4SMR, the benefits will be even more profounced since space efficiency can max

out at 80% compared with the 75% of a standard RAID 4. In general, RAID 4SMR

(with or without garbage collection) performs better than standard RAID 4 with fewer

number of block movements.

49

Chapter 7

Future Work

To adopt SMR disks with RAID arrays, we start with RAID 4 because it is the simplest

and lowest overhead version of parity-based RAID, and best allows us to focus on the

impacts of using SMR in generic RAID arrangements. Other standard RAID arrays

such as RAID 5 and RAID 6 come with some unique characteristics which require more

detailed and focused study to evaluate the impact of SMR in more specific contexts.

A kernel driver for this RAID 4SMR with garbage collection is needed to adapt the

design to the real world. Also, a possibility of a fabric interconnects to the individual

drives using erasure coding techniques is considered for a new development since disk

performance is quite unpredictable in large-scale data centers. Furthermore, one can

increase the reliability of RAID 4SMR by using extra parity disks in a two-dimensional

RAID array [44].

50

Chapter 8

Conclusion

We started out evaluating an SMR disk with our simulation with many different traces.

We found that without a proper scheme, SMR disks are almost unusable in an array

configuration. With SMR disks, it is easy to assume that any workload that is heavily

biased towards writes would be problematic. One might think that it leads to increased

activity to compensate for the inability to update most tracks in place. Our workload

analysis has shown otherwise. In fact, it would appear that considering the percentage

of blocks that experience updates is at least as important as the number that experience

writes. In other words, a single write not to be repeated at the same location is very

different from multiple writes to the same location at different times. While we used a

logical distance metric based on the number of block movements, which is independent

from request timings and changes in precise physical performance characteristics of

devices, we found this metric to be largely correlated when track or band movements

were considered instead. We therefore believe it to be a uniform metric across workloads

and the eventual form of the devices. Our workload analysis leads us to the following

conclusions:

1. Significant update workloads usually result in a greater penalty for attempts to

emulate update in-place.

2. Logging and remapping approaches, when implemented with minimal overhead,

51

can result in considerable performance improvements for SMR disks that employ

them when compared to traditional disks that do not.

3. Logging and remapping approaches can also result in tremendous performance

penalties when faced with a largely referential, read-dominated workload.

4. Enhancing a shingled-write disk with additional NVRAM storage to improve per-

formance can require very little memory to achieve dramatic improvements to the

performance of some of the most problematic workloads, but again, this appears

to be a workload-specific phenomenon.

Ultimately, it may be that the effective management and identification of I/O work-

loads becomes one of the most important challenges to effective deployment and adop-

tion of shingled-write disks and the continued growth of mass storage densities.

Later, we have offered our first experimental results evaluating the behavior of SMR

disks when used as part of an array, and the impact of increasingly interleaved workloads

from different sources. While our previous results in [31] show a negative impact when

dealing with heavily interleaved workloads, they also demonstrate the positive affect

of reducing such interleaving. This can be achieved either by rethinking a traditional

array layout and dedicating disks and bands, or by directing independent workloads to

different devices/bands. Directing different workloads to different devices can be aided

by existing efforts on workload differentiation and tagging [40], and would be a simple

way to avoid heavily interleaved workloads.

We proposed RAID 4SMR with SMR disks in places of data disks in a RAID 4

array. Contrary to popular belief that a SMR drive is only suitable for archival storage

and would perform worse in RAID arrays, our evaluation shows that with proper design

modifications, such as our proposed RAID 4SMR, SMR disks can be effectively em-

ployed in place of standard HDDs. With RAID 4SMR, SMR drives can greatly improve

52

not just data density, but also performance, while maintaining the same reliability. In

other words, an appropriately SMR-aware arrangement, like RAID 4SMR, allows the

SMR disk to be more effectively used for mass storage systems or over network fabrics.

In our experiments, we compared our proposed RAID 4SMR scheme, not just to a tra-

ditional update-in-place arrangement of devices, but also against an idealized form of

log-structuring which avoids the need to update in place. We have demonstrated im-

provement even upon this scheme, which is optimal in terms of log arrangements, but is

unlike our scheme in that it is not treating the individual devices as SMR disks [29]. By

using the same simulation, we show that RAID 4SMR with garbage collection scheme

clearly demonstrates the feasibility of using SMR disks in a RAID 4 array by outper-

forming the use of SMR disks in a standard RAID 4 with update in-place by 56%.

.

53

Bibliography

[1] A. Aghayev, M. Shafaei, and P. Desnoyers. Skylight—A Window on Shingled Disk

Operation. ACM Transactions on Storage (TOS), 11(4):16–28, Nov. 2015.

[2] A. Amer, D. D. E. Long, E. L. Miller, J.-F. Paris, and T. Schwarz. Design issues for

a shingled write disk system. In 26th IEEE Symposium on Mass Storage Systems

and Technology, pages 1–12, 2010.

[3] A. Amer, J. F. Paris, T. Schwarz, V. Ciotola, and J. Larkby-Lahet. Outshining

mirrors: Mttdl of fixed-order spiral layouts. In Fourth International Workshop on

Storage Network Architecture and Parallel I/Os (SNAPI 2007), pages 11–16, Sept

2007.

[4] BackBlaze. http://www.backblaze.com, Jan. 2019.

[5] Y. Casutto, M. Sanvido, C. Guyot, D. Hall, and Z. Bandic. Indirection systems for

shingled-recording disk drives. In 26th IEEE Symposium on Mass Storage Systems

and Technology, pages 1–14, May 2010.

[6] S. Chaarawi, J.-F. Paris, A. Amer, T. Schwarz, and D. Long. Using a shared storage

class memory device to improve the reliability of raid arrays. In Petascale Data

Storage Workshop (PDSW), 2010 5th, pages 1–5. IEEE, 2010.

[7] S. H. Charap, P.-L. Lu, and Y. He. Thermal stability of recorded information at

high densities. IEEE Transactions on Magnetics, 33(1):978–983, Jan. 1997.

54

http://www.backblaze.com

[8] H. Dai, M. Neufeld, and R. Han. Elf: An efficient log-structured flash file system for

micro sensor nodes. In ACM Conference on Embedded Networked Sensor Systems,

pages 176–187, 2004.

[9] DropBox. http://www.dropbox.com, Jan. 2019.

[10] R. Finlayson and D. Cheriton. Log files: an extended file service exploiting write-

once storage. In SOSP ’87: Proceedings of the eleventh ACM Symposium on Op-

erating systems principles, pages 139–148, 1987.

[11] G. Gibson and M. Polte. Directions for shingled-write and two-dimensional mag-

netic recording system architectures: Synergies with solid-state disks. Technical

report, Carnegie Mellon University Parallel Data Lab, May 2009. CMU-PDL-09-

014.

[12] Google Cloud Storage. https://cloud.google.com/storage, Jan. 2019.

[13] S. Greaves, Y. Kanai, and H. Muraoka. Shingled recording for 2–3 Tbit/in2. IEEE

Transactions on Magnetics, 45(10):3823–3829, Oct. 2009.

[14] K. M. Greenan, J. S. Plank, and J. J. Wylie. Mean Time to Meaningless: MTTDL,

Markov Models, and Storage System Reliability. HotStorage, 2010.

[15] D. Hall, J. H. Marcos, and J. D. Coker. Data Handling Algorithms For Autonomous

Shingled Magnetic Recording HDDs. IEEE Transactions on Magnetics, 48(5):1777–

1781, 2012.

[16] W. He and D. Du. Novel Address Mappings for Shingled Write Disks. HotStorage,

2014.

55

http://www.dropbox.com
https://cloud.google.com/storage

[17] W. He and D. H. Du. SMaRT: An approach to shingled magnetic recording trans-

lation. In 15th USENIX Conference on File and Storage Technologies (FAST 17),

pages 121–134, Santa Clara, CA, 2017. USENIX Association.

[18] D. Hitz, J. Lau, and M. Malcolm. File system design for an NFS file server appli-

ance. In Winter 1994 USENIX Conference, pages 19–19, 1994.

[19] C. Jin, W. Xi, Z. Ching, F. Huo, and C. Lim. Hismrfs: A high performance

file system for shingled storage array. In IEEE 30th Symposium on Mass Storage

Systems and Technologies, (MSST), pages 1–6, 2014.

[20] S. N. Jones, A. Amer, E. L. Miller, D. D. E. Long, R. Pitchumani, and C. R. Strong.

Classifying data to reduce long term data movement in shingled write disks. In 2015

31st Symposium on Mass Storage Systems and Technologies (MSST), pages 1–9.

IEEE.

[21] Kadekodi, Saurabh, Pimpale, Swapnil, and Gibson, Garth A. Caveat-Scriptor:

Write Anywhere Shingled Disks. 2015.

[22] P. Kasiraj, R. New, J. de Souza, and M. Williams. System and method for writing

data to dedicated bands of a hard disk drive. United States Patent 7490212, 2009.

[23] J. Kohl, C. Staelin, and M. Stonebraker. Highlight: Using a log-structured file

system for tertiary storage management. In Usenix Conference, pages 435–448,

1993.

[24] A. R. Krishnan, R. Radhakrishnan, and B. Vasic. LDPC decoding strategies for

two-dimensional magnetic recording. In IEEE Global Communications Conference,

pages 1–5, Nov 2009.

56

[25] A. R. Krishnan, R. Radhakrishnan, B. Vasic, A. Kavcik, W. Ryan, and F. Erden.

Two-dimensional magnetic recording: Read channel modeling and detection. In

IEEE International Magnetics Conference, volume 45, pages 3830–3836, Oct 2009.

[26] M. Kryder, E. Gage, T. McDaniel, W. Challener, R. Rottmayer, G. Ju, Y.-T.

Hsia, and M. Erden. Heat assisted magnetic recording. Proceedings of the IEEE,

96(11):1810–1835, Nov. 2008.

[27] M. H. Kryder and C. S. Kim. After hard drives – what comes next? IEEE

Transactions on Magnetics, 45(10):3406–3413, Oct. 2009.

[28] Q. M. Le, A. Amer, and J. Holliday. SMR Disks for Mass Storage Systems. In

MASCOTS 2015, IEEE 23rd International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems, Atlanta, GA, USA, Oc-

tober 5-7, 2015. IEEE, 2015.

[29] Q. M. Le, A. Amer, and J. Holliday. Smr disks for mass storage systems. In Proceed-

ings of the 2015 IEEE 23rd International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems, MASCOTS ’15, pages

228–231, Washington, DC, USA, 2015. IEEE Computer Society.

[30] Q. M. Le, J. Holliday, and A. Amer. FAST’12: The Peril and Promise of Shingled

Disk Arrays: how to avoid two disks being worse than one - WiP.

[31] Q. M. Le, K. SathyanarayanaRaju, A. Amer, and J. Holliday. Workload impact on

shingled write disks: all-writes can be alright. In MASCOTS, pages 444–446, 2011.

[32] D. Le Moal, Z. Bandic, and C. Guyot. Shingled file system host-side management

of Shingled Magnetic Recording disks. In 2012 IEEE International Conference on

Consumer Electronics (ICCE), pages 425–426. IEEE, 2012.

57

[33] S.-W. Lee and B. Moon. Design of flash-based dbms: an in-page logging approach.

In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international conference

on Management of data, pages 55–66, 2007.

[34] C. I. Lin, D. Park, W. He, and D. H. C. Du. H-SWD: Incorporating Hot Data

Identification into Shingled Write Disks. 2012 IEEE 20th International Symposium

on Modelling, Analysis & Simulation of Computer and Telecommunication Systems

(MASCOTS), pages 321–330, 2012.

[35] W. Liu, D. Feng, L. Zeng, and J. Chen. Understanding the SWD-based RAID

System. In 2014 International Conference on Cloud Computing and Big Data

(CCBD), pages 175–181. IEEE, 2014.

[36] D. Lomet. The case for log structuring in database systems. In International

Workshop on High Performance Transaction Systems, 1995.

[37] Z.-W. Lu and G. Zhou. Design and Implementation of Hybrid Shingled Recording

RAID System. In 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure

Computing, pages 937–942. IEEE, 2016.

[38] K. Matsumoto, A. Inomata, and S. Hasegawa. Thermally assisted magnetic record-

ing. Fujitsu Scientific and Technical Journal, 42(1):158–167, Jan. 2006.

[39] J. Matthews, D. Roselli, A. Costello, R. Wang, and T. Anderson. Improving the

performance of log-structured file systems with adaptive methods. In ACM Sym-

posium on Operating Systems Principles, pages 238–251, 1997.

[40] M. Mesnier, F. Chen, T. Luo, and J. B. Akers. Differentiated storage services. In

Proceedings of ACM SOSP, 2011.

58

[41] D. Narayanan, A. Donnelly, and A. Rowstron. Write off-loading: Practical power

management for enterprise storage. In FAST’08: Proceedings of the 7th conference

on USENIX Conference on File and Storage Technologies, pages 10:1–10:23, 2008.

[42] NASA. http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html, Mar. 2011.

[43] J. Ousterhout and F. Douglis. Beating the I/O bottleneck: a case for log-structured

file systems. SIGOPS Operating Systems Review, 23(1):11–28, 1989.

[44] J. F. Paris, V. Estrada-Galinanes, A. Amer, and C. Rincon. Using entanglements

to increase the reliability of two-dimensional square raid arrays. In 2017 IEEE 36th

International Performance Computing and Communications Conference (IPCCC),

pages 1–8, Dec 2017.

[45] J.-F. Paris, T. Schwarz, A. Amer, and D. D. E. Long. Highly reliable two-

dimensional raid arrays for archival storage. In 31st IEEE International Perfor-

mance Computing and Communications Conference, Dec. 2012.

[46] J. F. Paris, T. Schwarz, and D. Long. When MTTDLs are not good enough: Pro-

viding better estimates of disk array reliability. Proceedings of the 7th International

Information and Telecommunication Technologies Symposium, 2008.

[47] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays of

inexpensive disks (raid). In Proceedings of the 1988 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’88, pages 109–116, New York, NY,

USA, 1988. ACM.

[48] D. Pease, A. Amir, L. V. Real, B. Biskeborn, and M. Richmond. Linear tape file

system. In 26th IEEE Symposium on Mass Storage Systems and Technology, pages

1–8, May 2010.

59

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

[49] Z. Peterson and R. Burns. Ext3cow: A time-shifting file system for regulatory

compliance. Trans. Storage, 1(2):190–212, May 2005.

[50] M. Rosenblum. The Design and Implementation of a Log-structured File System.

PhD thesis, UC Berkeley, 1992.

[51] M. Rosenblum and J. Ousterhout. The design and implementation of a log-

structured file system. Operating Systems Review, 25(5):1–15, Oct. 1991.

[52] J. B. Rosie Wacha, Scott A. Brandt and C. Maltzahn. FAST’10: RAID4S: Adding

SSDs to RAID Arrays - WiP.

[53] R. E. Rottmeyer, S. Batra, D. Buechel, W. A. Challener, J. Hohlfeld, Y. Kubota,

L. Li, B. Lu, C. Mihalcea, K. Mountfiled, K. Pelhos, P. Chubing, T. Rausch,

M. A. Seigler, D. Weller, and Y. Xiaomin. Heat-assisted magnetic recording. IEEE

Transactions on Magnetics, 42(10):2417–2421, Oct. 2006.

[54] Samsung Electronics Co., Ltd. SSD Samsung 850 EVO. https://www.samsung.

com/semiconductor/minisite/ssd/product/consumer/850evo, 2019. [Online;

accessed 02-Jan-2019].

[55] C. K. Sann, R. Radhakrishnan, K. Eason, R. M. Elidrissi, J. Miles, B. Vasic,

and A. R. Krishnan. Channel models and detectors for two-dimensional magnetic

recording (TDMR). volume 46, pages 804–811. IEEE, 2010.

[56] T. Schwarz, A. Amer, T. Kroeger, E. L. Miller, D. D. E. Long, and J.-F. Paris.

Resar: Reliable storage at exabyte scale.

[57] Seagate Technology LLC. Introducing Seagate SMR.

https://www.seagate.com/tech-insights/breaking-areal-density-barriers-with-

seagate-smr-master-ti, Jan. 2019. [Online; accessed Jan-2019].

60

https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/850evo
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/850evo

[58] Seagate Technology LLC. SMR Drive 8TB - ST8000AS0002.

https://www.seagate.com/www-content/product-content/hdd-fam/

seagate-archive-hdd/en-us/docs/archive-hdd-ds1834-5c-1508us.pdf,

2019. [Online; accessed 02-Jan-2019].

[59] M. Selzer, K. Bostic, M. McKusick, and C. Staelin. An implementation of a log-

structured file system for UNIX. In Winter Usenix Conference, pages 3–3, 1993.

[60] Y. Shiroishi, K. Fukuda, I. Tagawa, S. Takenoiri, H. Tanaka, and N. Yoshikawa.

Future options for HDD storage. IEEE Transactions on Magnetics, 45(10):3816–

3822, Oct. 2009.

[61] I. Tagawa and M. Williams. High density data-storage using shingle-write. In

Proceedings of the IEEE International Magnetics Conference, May. 2009.

[62] Western Digital. https://support.wdc.com/knowledgebase/answer.aspx?ID=26014,

Jan. 2019.

[63] Y. Wu, J. O’Sullivan, N. Singla, and R. Indeck. Iterative detection and decod-

ing for separable two-dimensional intersymbol interference. IEEE Transactions on

Magnetics, 39(4):2115–2120, July 2003.

[64] M. Yang, Y. Chang, F. Wu, T. Kuo, and D. H. C. Du. Virtual persistent cache:

Remedy the long latency behavior of host-aware shingled magnetic recording drives.

In 2017 IEEE/ACM International Conference on Computer-Aided Design (IC-

CAD), pages 17–24, Nov 2017.

[65] X. Zhang, D. Du, J. Hughes, and R. Kavuri. Hptfs: A high performance tape file

system. In 26th IEEE Symposium on Massive Storage Systems and Technology,

May. 2006.

61

https://www.seagate.com/www-content/product-content/hdd-fam/seagate-archive-hdd/en-us/docs/archive-hdd-ds1834-5c-1508us.pdf
https://www.seagate.com/www-content/product-content/hdd-fam/seagate-archive-hdd/en-us/docs/archive-hdd-ds1834-5c-1508us.pdf

[66] J.-G. Zhu, X. Zhu, and Y. Tang. Microwave assisted magnetic recording. IEEE

Transactions on Magnetics, 44(1):125–131, Jan. 2008.

62

Glossary of Terms1

HDD hard disk, hard drive, or fixed disk, is an electromechanical data storage device

that uses magnetic storage to store and retrieve digital information using one or

more rigid rapidly rotating disks (platters) coated with magnetic material. The

platters are paired with magnetic heads, usually arranged on a moving actuator

arm, which read and write data to the platter surfaces. Data is accessed in a

random-access manner, meaning that individual blocks of data can be stored or

retrieved in any order and not only sequentially. 35

log-structured file system is a file system in which data and metadata are written

sequentially to a circular buffer, called a log. The design was first proposed in

1988 by John K. Ousterhout and Fred Douglis and first implemented in 1992 by

John K. Ousterhout and Mendel Rosenblum. 4

parity a parity bit, or check bit, is a bit added to a string of binary code to ensure

that the total number of 1-bits in the string is even or odd. Parity bits are used

as the simplest form of error detecting code. 37

RAID (originally redundant array of inexpensive disks, now commonly redundant ar-

ray of independent disks) is a data storage virtualization technology that combines

multiple physical disk drive components into a single logical unit for the purposes

of data redundancy, performance improvement, or both. 35

RAID 4 consists of block-level striping with a dedicated parity disk. As a result of its

layout, RAID 4 provides good performance of random reads, while the performance

of random writes is low due to the need to write all parity data to a single disk.

35

1From wikipedia.org

63

RAID 5 consists of block-level striping with distributed parity. Unlike in RAID 4,

parity information is distributed among the drives. It requires that all drives but

one be present to operate. Upon failure of a single drive, subsequent reads can be

calculated from the distributed parity such that no data is lost. RAID 5 requires

at least three disks. 35

RAID 6 extends RAID 5 by adding another parity block; thus, it uses block-level

striping with two parity blocks distributed across all member disks. 35

SSD is a solid-state storage device that uses integrated circuit assemblies as memory

to store data persistently. It is also sometimes called a solid-state disk, although

SSDs do not have physical disks. 4

64

Acronyms

CMR Conventional Magnetic Recording. 3

COW Copy-On-Write. 32

HAMR Heat-Assisted Magnetic Recording. 7

HDD Hard Disk Drive. 3

I/O Input/Output. 1

LBA Logical Block Addressing. 16

MAMR Microwave-Assisted Magnetic Recording. 7

MTTDL Mean Time To Data Loss. 43

MTTF Mean Time To Failure. 45

MTTR Mean Time To Repair. 45

NVRAM Non-Volatile Random-Access Memory. 15

PBA Physical Block Address. 16

RAID Redundant Array of Independent Disks. 35

SMR Shingled Magnetic Recording. 1

SSD Solid-State Drive. 4

TDMR Two-Dimensional Magnetic Recording. 1

WAFL Write-Anywhere File Layout. 32

WORM Write One Read Many. 36

65

