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ABSTRACT The dimension reduction of large scale high-dimensional data is a challenging task, especially
the dimension reduction of face data and the accuracy increment of face recognition in the large scale face
recognition system, whichmay cause large storage space and long recognition time. In order to further reduce
the recognition time and the storage space in the large scale face recognition systems, on the basis of the
general non-negative matrix factorization based on left semi-tensor (GNMFL) without dimension matching
constraints proposed in our previous work, we propose a sparse GNMFL/L (SGNMFL/L) to decompose
a large number of face data sets in the large scale face recognition systems, which makes the decomposed
base matrix sparser and suppresses the decomposed coefficient matrix. Therefore, the dimension of the basis
matrix and the coefficient matrix can be further reduced. Two sets of experiments are conducted to show the
effectiveness of the proposed SGNMFL/L on two databases. The experiments are mainly designed to verify
the effects of two hyper-parameters on the sparseness of basis matrix factorized by SGNMFL/L, compare
the performance of the conventional NMF, sparse NMF (SNMF), GNMFL, and the proposed SGNMFL/L
in terms of storage space and time efficiency, and compare their face recognition accuracies with different
noises. Both the theoretical derivation and the experimental results show that the proposed SGNMF/L can
effectively save the storage space and reduce the computation timewhile achieving high recognition accuracy
and has strong robustness.

INDEX TERMS Machine learning, unsupervised learning, semi-tensor product (STP), sparse general
non-negative matrix factorization (SGNMF).

I. INTRODUCTION
Face recognition is an important research problem in com-
puter vision, and it is widely used in banking, security,
human-computer interaction and smart device apps. A face
recognition system is a computer application capable of iden-
tifying or verifying a person from a digital image or a video
frame. Given a face image, one of the most popular ways
to recognize the face is using machine learning methods
to identify similar images in a face database based on the
selected face features.

The associate editor coordinating the review of this manuscript and
approving it for publication was Quan Zou.

‘‘The trouble with facial recognition technology (in the real
world)’’ on The Conversation onDecember 14, 2016 between
Robin Kramer and Kay Ritchie states that, as of 2016,
face recognition is still not effective for most applications
even though the accuracy has been substantially improved.
Although the systems are often advertised as having accuracy
close to 100%, they usually use much smaller sample sizes
than what would be necessary for large scale applications [1].

Large scale face recognition systems are still facing many
challenges. One of the challenges is to achieve a certain
level of recognition accuracy, the large scale face data
often requires very high dimensional face features, causing
large storage space and long recognition time. In addition,
continuous improvements of image resolution provide even
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more information in images, resulting in further increment
of high dimensional features. Therefore, the dimensionality
reduction becomes very important for face data processing.

Non-negative matrix factorization (NMF) [2], [3] is widely
accepted and proven to be effective to handle the dimen-
sionality reduction, and can also be used to structure low-
dimensional latent factor (LF) model/space [4]–[9] to build
a low-rank approximation to the target matrix. It factorizes
an input non-negative matrix into the product of two non-
negative matrices with lower ranks, so that the major parts of
the face can be learned more efficiently. When NMF is used
for face recognition, themassive amounts of face training data
are represented by a non-negative matrix X ∈ Rs×t+ , where
s represents the number of the selected features from one face
image, and t is the number of the persons. NMF factorizes
X ∈ Rs×t+ into a non-negative basis matrix W ∈ Rm×n+ and a
coefficient matrix H ∈ Rp×q+ , so that X ≈ WH . Specifically,
NMF requires the dimension matching constraints to be hold
on the matrix multiplications, indicating that m = s, n = p,
and q = t . Each column vector of H denotes the weights
when approximating the corresponding column of X by using
the bases from W . The coefficient matrix H then substitutes
the original matrix X , and it can be used by machine learning
schemes for face recognition. When p � s, we can achieve
the face feature dimensional reduction.

The face recognition methods based on NMF [2], [10],
incremental NMF (INMF) [11], [12] and Sparse NMF
(SNMF) [13]–[18] are helpful to improve the speed or the
accuracy of face recognition. However, none of them could
further reduce the dimensionality of the basis matrix W and
the coefficient matrix H , which plays an important role in
influencing the recognition time (computation time) and the
storage space.

In our previous work, we proposed a general non-negative
matrix factorization (GNMF) [19], [20] which removed the
dimension matching constraints on matrix multiplications,
so that the dimensionality of the basis matrix and the coef-
ficient matrix could be further reduced. Specifically, given a
matrix X s×t , the proposed GNMF allowed flexible selections
of the values of n and p, so that the number of columns in
W did not need to match the number of rows in H . Then the
values of m (i.e. the row number ofW ) and q (i.e. the column
number of H ) were further determined based on the value
of the least common multiple l of n and p as m = s · n/l
and q = t · p/l. Through this process, we got m � s and
(or) q � t , which could effectively save the storage space
of W or H .

In order to further reduce the recognition time and the
storage space, inspired by the idea of SNMF, we propose the
sparse GNMF to further reduce the computation time and
improve the accuracy of face recognition in the large scale
face recognition systems.

The major contributions of this work are given as follows:
1) We propose a sparse GNMF based on left STP

(SGNMFL) to factorize a matrix X ∈ Rs×t+ into a
sparse basis matrixW ∈ Rm×n+ and a coefficient matrix

H ∈ Rp×q+ , which removes the dimension matching
constraints on the two factor matrices.

2) Our SGNMFL can help in saving the storage space
and reducing the computation time by increasing the
sparseness of the basis matrix. We perform lots of
experiments on the JAFFE database and ORL database,
so as to verify the effects of two hyper-parameters
on the sparseness of the basis matrix factorized
by SGNMFL/L, compare the performance of the con-
ventional NMF, SNMFL, GNMFL and the proposed
SGNMFL/L in terms of storage space and time effi-
ciency, and compare their accuracies with different
noises. Experimental results show that when achiev-
ing similar face recognition accuracy, the proposed
SGNMFL/L can further save more storage space and
more reduce the computation time.

The rest of this paper is organized as follows. Section II
introduces the related works. Section III presents the pro-
posed SGNMFL. Section IV presents the face recognition
process based on GNMF and SGNMFL, followed by experi-
ment results in Section V. Section VI concludes this paper.

II. RELATED WORKS
NMF decomposes the input non-negative matrix into two
low-order non-negative matrices, both of which can learn
part of the face. Since NMF was proposed, the non-negative
matrix factorization algorithm has been applied to face fea-
ture dimensionality reduction and face recognition [2].
NMF factorizes the massive amounts of face training

data X into two non-negative matrices W and H , so that
X ≈ WH . Given a target face image, the selected features
of this image are represented by a 1-D column vector x with
s elements. Then the dimensionality of this image can be
reduced as (W TW )−1W T x = h, where h has p elements.
Then machine learning schemes can be applied to recognize
the most similar images from the database. For example,
by computing the Euclid norm between h and each column
of the corresponding coefficient matrixH , we can retrieve the
image with the minimal Euclid norm. The we can identify the
corresponding object in the training image.
The performance of NMF is reduced when NMF is used

to deal with nonlinear data in complex environments, such
as face images with changes in pose, illumination and face
expression during face recognition. In order to overcome
the limitations of the above-mentioned non-negative matrix
decomposition algorithm, Chen et al. [10] proposed a super-
vised non-linear method to improve the classification ability
of non-negative matrix decomposition in face recognition.
However, the conventional NMF is not designed to reduce

storage space or computational complexity. Dynamic updat-
ing data sets will greatly increase the time and space overhead
of NMF, which becomes a challenge issue in dynamically
updating new samples through online training. The dynamic
learning method based on incremental NMF (INMF) could
solve this problem and be applied to the face recognition sys-
tem. Yu et al. [11] proposed a subspace incremental method
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called incremental graph regularized nonnegative matrix fac-
torization which imposed the manifold into INMF, so as to
keep the geometric structure unchanged in spatial domain,
save the running time and improve the face recognition rate.
Chen et al. [12] provided a NMF face recognition method and
system based on kernel machine learning in order to improve
the accuracy of face recognition.

Later, the sparse NMF (SNMF) was presented and used
to improve the accuracy of face recognition. To explicitly
impose sparseness on the matrix W and H , Hoyer [14] pro-
posed a formula to measure the sparseness of the vector x as
shown in the following Equation (1).

sparseness(x) =
√
r − ‖x‖1/‖x‖2
√
r − 1

, (1)

where r is the dimensionality of x, ‖x‖1 and ‖x‖2 are the
L1-norm and the L2-norm of the vector x, respectively, and
0 ≤ sparseness(x) ≤ 1. Equation (1) evaluates to one if and
only if x contains only a single non-zero component, and it
takes a value of zero if and only if all components are non-
zero and equal (up to signs).

NMF with sparse constraints is to add more constraints on
the original objective function to obtain the decomposition
information as sparse as possible. Pauca et al. [15] proposed
a constrained NMF (CNMF). The objective function with the
above constraints is given as follows:

min LCNMF (W ,H ) =
m∑
i=1

q∑
j=1

([Xij − (WH )ij]2)

+ α

m∑
i=1

n∑
k=1

W 2
ik + β

n∑
k=1

q∑
j=1

H2
kj,

s.t. W ,H ≥ 0,
m∑
i=1

Wik = 1, (2)

where 1 ≤ k ≤ n. α and β in Equation (2) are regularization
non-negative parameters to be determined. The sum of the
elements of each vector in the non-negative matrix W is
required to be one during the iterations.

To impose sparseness constraints onW , Kim and Park [16]
proposed SNMF/L, where L denotes the sparseness imposed
on the left factor. The sparse NMF formulation imposes the
sparseness on a factor of NMF by utilizing L1-norm mini-
mization based on non-negativity constrained least squares.
The detailed process is given as follows:

min LSNMF/L(W ,H ) =
m∑
i=1

q∑
j=1

([Xij − (WH )ij]2)

+ α

m∑
i=1

(
n∑

k=1

|W (i, k)|)2

+ β

n∑
k=1

q∑
j=1

H2
kj,

s.t. W , H ≥ 0, 1 ≤ k ≤ n, (3)

where α > 0 is a regularization parameter to balance the
trade-off between the accuracy of the approximation and the
sparseness ofW , and β > 0 is a parameter to suppress ‖H‖2F .
The SNMF/L begins with the initialization of H with non-
negative values.
Since the existing studies on NMF showed that when the

constraints were added [13]–[17], the sparser factor matrices
would lead to better decomposition quality. Liu et al. [13]
combined sparse coding and NMF into SNMF, which could
learn both parts-based representation and much sparser rep-
resentation. Hoyer [14] combined NMF and sparse coding
into Non-Negative Sparse Coding (NNSC), which made the
decomposed coefficients much sparser. One drawback of the
NNSC algorithm is that the basis vector is additively updated,
which cannot keep non-negative characteristics well.
Pauca et al. [15] proposed a sparse NMF algorithm by
using the least square. Kim and Park [16] proposed
SNMF/L and SNMF/R (where L and R denoted the sparse-
ness imposed on the left and right factors, respectively).
Shastri and Levine [18] used NNSC in the learning of face
features for face recognition. Mairal et al. [21] focused on the
large scale matrix factorization problem that includes learn-
ing the basics set in order to adapt to specific data based on
sparse codingmethod. Liu et al. [22] proposed a group SNMF
(GSNMF) algorithm to learn multiple linear manifolds for
face recognition. An ensemble SNMF process was proposed
in [23] to represent data instances in parts and partition the
data space into localities, and then the individual classifiers
in each locality were coordinated for final classification in
videos concept detection. A face aging simulation method
based on sparse-constrainedmethodwas proposed in [24] and
then applied in the age-across face recognition.
With the successful application of NMF and SNMF, more

advanced schemes were developed based on them, and were
combined with other algorithms for face recognition, such
as two-dimensional nonnegative principal component anal-
ysis [25], Supervised kernel NMF [10], discriminant non-
negative graph embedding [26], Incremental NMF [27],
NMF with bounded total variational regularization [28],
large margin based NMF and partial least squares regres-
sion [29], fishers linear discriminant (FLD) and support
vector machine (SVM) in NMF residual space [30], noise
modeling and representation based NMF classification meth-
ods [31], convergent projective NMF with Kullback-Leibler
Divergence [32], learning latent features by NMF combin-
ing similarity judgments [33], etc. Based on the clustering
method, Xue et al. [34] discussed a structured NMF initializa-
tion scheme which achieved faster convergence while main-
taining the data structure and also obtained good result for
the face recognition task. Hu et al. [35] proposed a Newton-
based algorithm for the conventional NMF in face image
processing.
These methods based on NMF, INMF and SNMF are

helpful to improve the speed or the accuracy of face recog-
nition in face recognition systems. However, these methods
cannot further reduce the dimension of the basis matrix / the
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coefficient matrix, which directly affects the recognition time
(computation time) and the storage space of large scale face
recognition system.

III. SPARSE GENERAL NON-NEGATIVE MATRIX
FACTORIZATION
A. GENERAL NON-NEGATIVE MATRIX FACTORIZATION
BASED ON LEFT SEMI-TENSOR
In this section, we give some necessary preliminaries on
the semi-tensor product (STP) [36], [37] of matrices and
the STP-based GNMF without dimensional matching
constraints [19], [20] in our previous works.
Definition 1: Given two matrices W ∈ Rm×n and H ∈

Rp×q, the variable l is the least common multiple of n and p.
The left STP of matricesW and H is defined as

W n H = (W ⊗ Il/n)(H ⊗ Il/p) ∈ R(m·l/n)×(l/p·q), (4)

where ⊗ represents the right Kronecker product [38].
Refs [36], [37] and Equation (4) show that the left STP can

be applied to perform the conventional matrix product. That
is, when n = p, W n H = W · H .
Definition 2: Given a non-negative matrix X ∈ Rs×t+ ,

the GNMF based on left STP (GNMFL) can find non-
negative matricesW ∈ Rm×n+ and H ∈ Rp×q+ , such that:

X s×t+ ≈ Wm×n
+ n Hp×q

+

= Wm×n
+ n Hp×q

+ + Es×t , (5)

where E ∈ Rs×t is a noise matrix, and it is part of the
approximate linear mixture model for GNMFL [39].

As [36], [37] and Equation (4) show that the left
STP is a general form of the conventional matrix product,
GNMFL can also be considered as a general form of the
conventional NMF.

Using the conventional gradient method, where i =
1, 2, · · · , s, j = 1, 2, · · · , t , k = 1, 2, · · · , l, we get the
following multiplicative update rules

W (τ+1)
b(i−1)/(l/n)c+1,b(k−1)/(l/n)c+1

← W (τ )
b(i−1)/(l/n)c+1,b(k−1)/(l/n)c+1

·
(X n HT )ik

((W (τ ) n H )n HT )ik
H (τ+1)
b(k−1)/(l/p)c+1,b(j−1)/(l/p)c+1

← H (τ )
b(k−1)/(l/p)c+1,b(j−1)/(l/p)c+1

·
(W T n X )kj

(W T n (W n H (τ )))kj
.

(6)

Equation (6) not only shows that the left STP can be
applied to perform the general matrix product, but also
shows that GNMFL also can be applied to perform the
conventional NMF.

According to Equation (6), when l/n > 1, the result of
each iteration is W ⊗ Il/n ∈ Rm·l/n×l in the multiplicative
update rules. Then an element from each l/n× l/n sub-block
matrix in W ⊗ Il/n ∈ Rm·l/n×l is extracted as an element of
the matrix W . When l/p > 1, the result of each iteration is

H⊗Il/p ∈ Rl×q·l/p in the multiplicative update rules. Then an
element from each l/p× l/p sub-block matrix in H ⊗ Il/p ∈
Rl×q·l/p is extracted as an element of the matrix H .

B. SPARSE GENERAL NON-NEGATIVE MATRIX
FACTORIZATION BASED ON LEFT STP
In order to further reduce recognition time and storage space
in face recognition, inspired by the idea of SNMF, we discuss
the sparse GNMFL in this section.

Referring to Equation (3), we propose SGNMFL/L, where
L denotes that the sparseness is imposed on the left factor, and
the sparseNMF formulation imposes sparseness on a factor of
NMF by utilizing L1-normminimization based on alternating
non-negativity constrained least squares. The detailed process
is given as follows:

min LSGNMFL/L(W ,H ) =
m∑
i=1

q∑
j=1

([Xij − (W n H )ij]2)

+ α

m∑
i=1

(
n∑

k1=1

|W (i, k1)|)2

+ β

p∑
k2=1

q∑
j=1

H2
k2j,

s.t. W ,H ≥ 0, 1 ≤ k ≤ n. (7)

where α > 0 is a regularization parameter to balance the
trade-off between the accuracy of the approximation and the
sparseness ofW , and β > 0 is a parameter to suppress ‖H‖2F .
The SGNMFL/L begins with the initialization of H with

non-negative values. Then, it iterates the following alternat-
ing non-negativity constrained least squares until the conver-
gence is reached:

min
H

∥∥∥∥( W
√
βIn

)
n H −

(
X
0l×t

)∥∥∥∥2
F
, s.t. H ≥ 0, (8)

where In is an identity matrix with size n × n, 0l×t is a zero
matrix with size l × t .

The SGNMFL/L begins with the initialization of W with
non-negative values. Then, it iterates the following alternat-
ing non-negativity constrained least squares until the conver-
gence is reached:

min
W

∥∥∥∥( HT
√
αe1×p

)
nW T

−

(
XT

01×s

)∥∥∥∥2
F
, s.t. W ≥ 0, (9)

where e1×p ∈ R1×p is a row vector whose components all
equal to one, 01×s ∈ R1×s is a zero vector, and Equation (9)
minimizes L1-norm of rows of W ∈ Rm×n, which imposes
sparseness onW .
Using the conventional gradient method, where i =

1, 2, · · · , s, j = 1, 2, · · · , t , k = 1, 2, · · · , l, we get the
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multiplicative update rules as follows

W (τ+1)
b(i−1)/(l/n)c+1,b(k−1)/(l/n)c+1

← W (τ )
b(i−1)/(l/n)c+1,b(k−1)/(l/n)c+1

·
(X n HT )ik

((W (τ ) n H )n HT + α × (W (τ ) n (eT1×p)))ik
H (τ+1)
b(k−1)/(l/p)c+1,b(j−1)/(l/p)c+1

← H (τ )
b(k−1)/(l/p)c+1,b(j−1)/(l/p)c+1

·
(W T n X )kj

(W T n (W n H (τ ))+ β × (In n H (τ )))kj
,

(10)

where e1×p ∈ R1×p is a row vector whose components all
equal to one, In is an identity matrix with size n× n, and the
variable l is the least common multiple of n and p. According
to Equation (10), when l/n > 1, the result of each iteration is
W⊗Il/n ∈ Rm·l/n×l in themultiplicative update rules. Then an
element from each l/n× l/n sub-block matrix inW ⊗ Il/n ∈
Rm·l/n×l is extracted as an element of the matrix W . When
l/p > 1, the result of each iteration is H ⊗ Il/p ∈ Rl×q·l/p

in the multiplicative update rules. Then an element from each
l/p× l/p sub-block matrix in H ⊗ Il/p ∈ Rl×q·l/p is extracted
as an element of the matrix H .

Based on the above derivation, we design the iterative
updating algorithm for SGNMFL/L in ALGORITHM 1.

C. THE COMPUTATIONAL COMPLEXITY
Next, the computational complexity of the proposed
SGNMFL/L is theoretically analyzed. The computational
complexity of the algorithm is represented by the number
of three arithmetic operations, including addition, multipli-
cation, and division on floating-point numbers.

According to Eqs. (7) and (10), SGNMFL/L decomposes
the matrix X s×t into two non-negative matrices Wm×n and
Hp×q, such that X s×t ≈ Wm×n nHp×q, where s = m× l/n,
t = q×l/p, and the variable l is the least commonmultiple of
n and p. The three arithmetic operations of SGNMFL/L are
as follows:
i) W T n X needs n × s × t floating-point additions and

n× m× t floating-point multiplications;
ii) W T n (W nH ) needs n× s× t+p× s× t floating-point

additions. if n ≤ p,W T n (W nH ) needs n×m× t+s×n× t
floating-point multiplications. if n > p,W T n(W nH ) needs
n×m× t+ s×p× t floating-point multiplications. α× (W n
eT1×p) needs min{m × n,m × p} floating-point additions and
min{m×n,m×p} floating-point multiplications. In addition,
W Tn(WnH )+α×(WneT1×p) also needs s×l floating-point
additions;
iii) XnHT

WnHnHT+α×(Wn(eT1×p))
needs s × l floating-point

divisions;
iv) X n HT needs p × s × t floating-point additions and

s× q× p floating-point multiplications;
v) (W nH )nHT needs n× s× t+p× s× t floating-point

additions. if n ≤ p, (W nH )nHT needs s×q×p+ s×n× t
floating-point multiplications. if n > p, (W n H ) n HT

needs s × q × p + s × p × t floating-point multiplications.

Algorithm 1 The Iterative Updating Algorithm for
SGNMFL/L
Input: X , n, p, τ , α, and β.
/∗ X is the input data. ∗/
/∗ n is the column number of W , and p is the row number of
H . ∗/
/∗ τ is an appropriate number of iterations, such as 300. ∗/
/∗ α is a regularization parameter to balance the trade-off
between the accuracy of the approximation and the sparseness
of W , and α ∈ [0, 1]. ∗/
/∗ β is a parameter to suppress ‖H‖2F , and β ∈ [0, 1]. ∗/
Initialize: E ← 1e − 9 /∗ According to Equation (5).∗/
Output: The optimal matrices ofW and H .

1) l ← lcm(n, p)
/∗ l is the least common multiple of n and p. ∗/

2) (s, t)← size(X )
/∗ s and t are the row number and the column number
of X respectively. ∗/

3) m← s× n/l /∗ m is the row number ofW . ∗/

4) q← t × p/l /∗ q is the column number of H . ∗/

5) W ← abs(rand(m, n))
/∗ Random initialization ofW . ∗/

6) H ← abs(rand(p, q))
/∗ Random initialization of H . ∗/

7) e1×p← (1, 1, · · · , 1)
/∗ e1×p is a row vector whose components all equal to
one. ∗/

8) for i = 1 : τ

9) W ← W · XnHT

(WnH )nHT+α×(Wn(eT1×p))+E
/∗ According to Equation (10).∗/

10) H ← H · W TnX
W Tn(WnH )+β×(InnH )+E

/∗ According to Equation (10).∗/

11) for j = 1 : m

12) W (j, :)← W (j, :)./(sum(W (j, :)+ E))
/∗ Normalizing each row of the basis matrix. ∗/

13) end

14) end

β × (In n H ) needs p × q floating-point multiplications.
In addition, (W nH )nHT

+ β × (In nH ) also needs l × t
floating-point additions;
vi) W TnX

W Tn(WnH )+β×(InnH ) needs l × t floating-point
divisions.

IV. FACE RECOGNITION PROCESS BASED ON GNMFL
AND SGNMFL/L
In order to understand the face recognition process based on
GNMFL and SGNMFL/L better, we need to first recapitulate
the face recognition process based on NMF and SNMF/L.
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Let

X = WH , (11)

then we can get

(W TW )−1W TX = (W TW )−1W TWH = H . (12)

A face image to be tested is represented by a 1-D column
vector x. Face recognition process based on conventional
NMF and SNMF/L is given as follows. According to
Equation (12), we can first obtain the coefficient vector h of
the testing image as h = (W TW )−1W T x. Then by computing
the Euclid norm between h and each column of the corre-
sponding coefficient matrix H , we can identify the column
in H with the minimum Euclid norm, representing the most
similar image to the testing image.

Similar to the above NMF and SNMF/L processes, we dis-
cuss the face recognition process based on the proposed
GNMFL and SGNMFL/L as follows. First, let

X (m·l/n)×(q·l/p)
= Wm×n n Hp×q, (13)

where, the variable l is the least common multiple of n and p.
Based on [36], [37] and Equation (4), we get

X (m·l/n)×(q·l/p)
= (Wm×n

⊗ I l/n)(Hp×q
⊗ I l/p). (14)

According to basic properties of Kronecker product and
Equation (4), Equation (14) is converted to the following
equation,

(((Wm×n)TWm×n)−1(Wm×n)T )n X (m·l/n)×(q·l/p)

= Hp×q
⊗ I l/p. (15)

When n = p, the GNMFL becomes the same as the
conventional NMF, and Equation (15) becomes the same as
Equation (12).

In order to further reduce recognition time and storage
space in face recognition, n (i.e. the column number of W )
should be less than p (i.e. the row number of H ) and
mod(p, n) = 0, then l = p, thus Equation (15) becomes

(((Wm×n)TWm×n)−1(Wm×n)T )nX (m·l/n)×q
= Hp×q. (16)

A face image to be tested is represented by a 1-D column
vector x.
According to Equation (16), we have

h = (((Wm×n)TWm×n)−1(Wm×n)T )n x. (17)

Then by computing the Euclid norm between h and each
column of the corresponding coefficient matrix H , we can
identify the column in H with the minimum Euclid norm,
representing the most similar image to the testing image. The
corresponding object in the testing image is then identified.

V. EXPERIMENTS AND ANALYSES
In order to reduce recognition time (computation time) and
save the storage space of the basis matrix in large scale face
recognition systems, we aim to reducem and n ofW by using
the proposed GNMFL and SGNMFL/L in the case that p and
q of H do not change.
In this section, two sets of experiments are conducted to

show the effectiveness of our SGNMFL/L on two databases.
Experiments are mainly designed to compare the perfor-
mance of the conventional NMF, SNMF/L, GNMFL and the
proposed SGNMFL/L in terms of storage space and time
efficiency. The JAFFE database and the ORL database are
used as testing data sets.

A. COMPARISON OF STORAGE SPACE AND TIME
EFFICIENCY ON JAFFE DATABASE
In this subsection, we conduct face recognition experiments
on JAFFE database based on NMF, SNMF/L, GNMFL and
SGNMFL/L, respectively, aiming to compare the storage
space and sparseness of the basis matrix in the training pro-
cess, and time efficiency in face recognition process.

Face major component (120× 120) is extracted from each
original 213 face images (256× 256) in the JAFFE database,
and it is represented by a 1-D column vector (14400 × 1).
Then we construct the training data X ∈ R14400×70+ through
extracting 70 face expression images posed by 10 female
models (Each person has 7 expressions).

The training data X ∈ R14400×70+ are factorized into two
factor matrices W ∈ R14400×60+ and H ∈ R60×70+ based
on the conventional NMF and SNMF/L, and the iteration
is set to be 300. These factorized 60 columns of matrix
W ∈ R14400×60+ are called basis images (i.e. basis matrix).
FIGUREs 1-2 show the experimental results based on the
conventional NMF and SNMF/L (where α = 1 and β = 1),
respectively. Each 1-D column vector (60×1) ofH ∈ R60×70

is the coefficient of the corresponding 1-D column vector
(14400×1) of X ∈ R14400×70+ based onW . FIGURE 2 shows
that the basis images factorized by SNMF/L are sparser.

Next, the training data matrix X ∈ R14400×70+ is factorized
into two non-negative matrices W ∈ R3600×15+ and H ∈
R60×70+ based on GNMFL and SGNMFL/L, and the iteration
is set to be 300. These factorized 15 columns of matrices
W ∈ R3600×15+ are called basis images (i.e. basis matrix).

In order to further verify the effect of two hyper-
parameters (i.e. α and β) on the sparseness of W factorized
by SGNMFL/L, these two parameters α (i.e. x axis
in FIGURE 3) and β (i.e. y axis in FIGURE 3) are adjusted
from 0 to 2, and the step size is 0.1. The corresponding exper-
imental results are shown in FIGURE 3, where sparseness
(i.e. z axis) represents the sparseness of W , which is calcu-
lated from Equation (1). FIGURE 3 shows that the sparseness
increases as α and β get bigger. However, when α > 1 or
β > 1, the simulation software matlab prompts the warning
‘‘the matrix has singular accuracy’’ in the face training pro-
cess. Therefore, 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.
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FIGURE 1. Basis images factorized by conventional NMF when W ∈ R14400×60
+

, and sparseness = 0.7929.

FIGURE 2. Basis images factorized by SNMF/L (α = 1 and β = 1) when W ∈ R14400×60
+

, and sparseness = 0.9732.

FIGUREs 4 and 5 show that the experimental results based
on GNMFL and SGNMFL/L (α = 1 and β = 1), respec-
tively. Each 1-D column vector (60 × 1) of H ∈ R60×70+

is the coefficient of the corresponding 1-D column vector
(14400×1) of X ∈ R14400×70+ based onW . FIGURE 5 shows
that the basis images factorized by SGNMFL/L are sparser.

Based on the conventional NMF, SNMF/L, GNMFL and
SGNMFL/L, the basis matrix and the elapsed times in face
training are shown in Table 1. From Table 1, we can see that
the elapsed time is greater based onGNMFL and SGNMFL/L
(α = 1 and β = 1) than based on NMF and SNMF/L (α = 1
and β = 1), but the basis images factorized by GNMFL and
SGNMFL/L are only 3600× 15� 14400× 60.

TABLE 1. Comparison of storage space and time efficiency in face
training on JAFFE database.

All of 213 face images are test samples. In Table 2,
the coefficient matrix H ∈ R60×70, and the elapsed time is
the average elapsed time of 213 times (W TW )−1W TXj =
Hj or (W TW )−1W T n Xj = Hj, where, Xj is j-th column
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FIGURE 3. The sparseness of the basis images factorized by SGNMFL/L
when W ∈ R3600×15

+
.

FIGURE 4. Basis images factorized by GNMFL when W ∈ R3600×15
+

, and
sparseness = 0.4266.

TABLE 2. Comparison of storage space and time efficiency in face
recognition on JAFFE database.

vector of X , Hj is j-th column vector of H , and j ∈ [1 213].
The accuracy and the elapsed time of several factorization
methods in face recognition are shown in Table 2. From
Table 2, we can see that compared with NMF, SNMF/L
(α = 1 and β = 1) and GNMFL, the proposed SGNMFL/L
(α = 1 and β = 1) achieves the highest computational
efficiency. Meanwhile, it also achieves a higher face recog-
nition accuracy than GNMFL. Besides, the simulation soft-
ware matlab prompts the warning ‘‘the matrix has singular
accuracy’’ in the face recognition process based on SNMF/L
(α = 1 and β = 1). As a result, the accuracy of face
recognition is very low.

In order to analyze the robustness of the proposed
SGNMFL/L (α = 1 and β = 1), we artificially add four
different noises (i.e. Gaussian white noise, Poisson noise, salt
& pepper noise, speckle noise) into face images in the pro-
cesses of face training and recognition. And the parameters of

FIGURE 5. Basis images factorized by SGNMFL/L (α = 1 and β = 1) when
W ∈ R3600×15

+
, and sparseness = 0.6810.

TABLE 3. Comparison of face recognition accuracy with different noises
on JAFFE database.

each kind of noise are default parameters. Comparison results
of face recognition accuracy with different noises on JAFFE
database are shown in Table 3. From Table 3, we can see that
the accuracies of face recognition with different noises are
close to that of face recognition without noise. That is to say,
the proposed SGNMFL/L is robust.

We also compare the minimum Euclid distance of conven-
tional NMF (W ∈ R14400×60+ ), SNMF/L (W ∈ R14400×60+ ),
GNMFL (W ∈ R3600×15+ ) and SGNMFL/L (W ∈ R3600×15+ ).
The results are shown in FIGURE 6. According to FIGURE 6,
we observe that minimum Euclid norms based on NMF and
GNMFL are relatively smaller, and minimum Euclid norms
based on SNMF/L and SGNMFL/L are greater. The latter is
easier to be recognized, which can effectively reduce the rate
of error recognition.

B. COMPARISON OF STORAGE SPACE AND TIME
EFFICIENCY ON ORL DATABASE
In this subsection, we conduct face recognition experiments
on ORL database by using NMF, SNMF/L, GNMFL and
SGNMFL/L respectively, aiming to compare the storage
space and the sparseness of the basis matrix in the training
process, and time efficiency in face recognition process.

Face major component (34 × 34) is extracted from each
original 400 face images in the ORL face database (40 indi-
viduals, each 10 images), and it is represented by a 1-D
column vector (1156 × 1). Then we construct the training
data X ∈ R1156×200+ through extracting 5 face images posed
by each one.

The training data X ∈ R1156×200+ is factorized into two
factor matricesW ∈ R1156×36 and H ∈ R36×200 based on the
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FIGURE 6. Comparison in minimum Euclid norms by using the conventional NMF, SNMF/L, GNMFL and SGNMFL/L on JAFFE database.

FIGURE 7. Basis images factorized by the conventional NMF when W ∈ R1156×36, and sparseness = 0.6857.

conventional NMF and SNMF/L (where α = 1 and β = 1),
and the iteration number is set to be 300. FIGUREs 7 and 8
show that the experimental results based on the conventional
NMF and SNMF/L, respectively. Each 1-D column vector
(36 × 1) of H is the coefficient of the corresponding 1-D
column vector (1156 × 1) of X based on W . FIGURE 8
shows that that the basis images factorized by SNMF/L are
sparser.

The training data X ∈ R1156×200+ is factorized into two non-
negative matrices W ∈ R289×9+ and H ∈ R36×200+ based on

GNMFL and SGNMFL/L, and the iteration number is set to
be 300.

In order to further verify the effect of two hyper-parameters
(i.e. α and β) on the sparseness of the basis matrix decom-
posed by SGNMFL/L, these two parameters α (i.e. x axis in
FIGURE 9) and β (i.e. y axis in FIGURE 9) are adjusted from
0 to 2, and the step size is 0.1. The experimental results are
shown in FIGURE 9, where sparseness (i.e. z axis) represents
the sparseness of W , which is calculated by Equation (1).
FIGURE 9 shows that the sparseness increases as α and β get
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FIGURE 8. Basis images factorized by SNMF/L (α = 1 and β = 1) when W ∈ R1156×36, and sparseness = 0.8563.

FIGURE 9. The sparseness of the basis images factorized by SGNMFL/L
when W ∈ R289×9

+
.

FIGURE 10. Basis images factorized by GNMFL when W ∈ R289×9
+

, and
sparseness = 0.4730.

bigger. However, when α > 1 or β > 1, the simulation soft-
ware matlab prompts the warning ‘‘the matrix has singular
accuracy’’ in the face training process. Therefore, 0 ≤ α ≤ 1
and 0 ≤ β ≤ 1.

FIGURE 11. Basis images factorized by SGNMFL/L (α = 1 and β = 1)
when W ∈ R289×9

+
, and sparseness = 0.5868.

FIGUREs 10 and 11 show that the experimental results
based on GNMFL and SGNMFL/L (α = 1 and β = 1). Each
1-D column vector (36×1) ofH represents the coefficients of
the corresponding 1-D column vector (1156× 1) of X based
onW . FIGURE 11 shows that the basis images factorized by
SGNMFL/L are sparser.

Based on the conventional NMF, SNMF/L, GNMFL and
SGNMFL/L, the basis matrix and the elapsed times of several
factorization algorithms in face training are shown in Table 4.
Table 4 shows that the basis images factorized by GNMFL
and SGNMFL/L are only 289× 9� 1156× 36.
All of 400 face images are test samples. In Table 2,

the coefficient matrix H ∈ R36×200, the elapsed time is
the average elapsed time of 400 times (W TW )−1W TXj =
Hj or (W TW )−1W T n Xj = Hj, where, Xj is j-th column
vector of X , Hj is j-th column vector of H , and j ∈ [1, 400].
Table 5 shows the accuracy and the elapsed time of several
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FIGURE 12. Comparison in minimum Euclid norms by using the conventional NMF, SNMF/L, GNMFL and SGNMFL/L on ORL database.

TABLE 4. Comparison of storage space and time efficiency in face
training on ORL database.

TABLE 5. Comparison of storage space and time efficiency in face
recognition on ORL database.

factorization methods about NMF, SNMF/L (α = 1 and
β = 1), GNMFL and SGNMF/L (α = 1 and β = 1) in
face recognition. We can see from Table 5 that the proposed
SGNMFL/L (α = 1 and β = 1) achieves the highest compu-
tational efficiency. Meanwhile, it also achieves a higher face
recognition accuracy than GNMFL.

In order to further analyze the robustness of the proposed
SGNMFL/L (α = 1 and β = 1), we artificially add
four different noises into face images in the processes of
face training and recognition. The parameters of each kind
of noise are default parameters. Comparison results of face
recognition accuracy with different noises on ORL database
are shown in Table 6. We can observe from Table 6 that

TABLE 6. Comparison of face recognition accuracy with different noises
on ORL database.

the accuracies of face recognition with different noises are
close to that of face recognition without noise. That is to say,
the proposed SGNMFL/L is robust.

We also compare the minimum Euclid distance based
on the conventional NMF (W ∈ R1156×36+ ), SNMF/L
(W ∈ R1156×36+ ), GNMFL (W ∈ R289×9+ ) and SGNMFL/L
(W ∈ R289×9+ ). The results are shown in FIGURE 12. Accord-
ing to FIGURE 12, we observe that the minimum Euclid
norms based on NMF and GNMFL are relatively smaller, and
minimum Euclid norms based on SNMF/L and SGNMFL/L
are greater. The latter are easier to be recognized, which can
effectively reduce the rate of error recognition.

In conclusion, the proposed SGNMFL/L performs the best
in terms of saving storage space and reducing computation
time in face recognition.

VI. CONCLUSIONS
In this paper, the proposed SGNMFL/L is presented in
details and applied in face recognition. We perform two
sets of experiments on the JAFFE database and the ORL
database, respectively, so as to verify the effects of two hyper-
parameters on the sparseness of basis matrix factorized by
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SGNMFL/L, compare the performance of the conventional
NMF, SNMF/L, GNMFL and the proposed SGNMFL/L in
terms of storage space and time efficiency, and compare the
face recognition accuracy with different noises. Experimental
results show that the proposed SGNMF/L can significantly
save the storage space (3600 × 15 � 14400 × 60 and
289 × 9 � 1156 × 9), reduce the computation time in face
recognition, and it has strong robustness. In the near future,
we will add graph regularized constraint [40] to the proposed
methods to improve the accuracy.We expect that the proposed
SGNMFL/L will be improved for broad applications in sci-
ence and engineering fields in the future.
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