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Abstract 

 

Anomaly management—the detection, diagnosis, and resolution of anomalies in a system—

is traditionally performed using experiential techniques which are quickly computed, but 

poorly structured. Newer model-based approaches are more systematic and higher 

performing but are computationally expensive, which is a particular challenge for execution 

in an operational environment. This paper builds on a novel system to pre-compute model-

based anomaly symptoms to enable quick retrieval and diagnosis in operational settings. 

New additions to this system include a simplified model interface, anomaly likelihoods 

associated with each component, and easier interpretation of results. The implemented 

system has been used successfully to detect and diagnose anomalies in a baseline test circuit 

as well as in an operational satellite monitoring network. Results show that this approach is 

promising; with a thorough model, the diagnosis and resolution processes of anomaly 

management could be greatly improved for more complex remote systems such as 

university-operated nanosatellites and field robotic vehicles.  
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1. Introduction 

Modern engineering systems are incredibly complex entities and often require very 

experienced engineers and technicians to build and maintain them. When things go wrong, 

it can be time-consuming and costly to find and fix the issue. If, instead, there were 

intelligent and automated processes in place to detect and resolve problems, significant 

savings could be achieved related to maintenance and downtime costs. However, building 

such a system to monitor another system is not a trivial task; it is expensive and takes very 

knowledgeable engineers a significant amount of time to develop and validate such a 

challenging process. It is also very computationally expensive to systematically detect and 

diagnose anomalies in a given system due to its complexity.  

1.1. Impact of Anomalies 

The cost spent on monitoring remote systems, especially in the aerospace industry, is 

extremely high. NASA employs dozens of people to monitor the health of the International 

Space Station (ISS) 24 hours a day, 365 days a year [1]. In the case that something goes 

wrong, response time is critical; any delay could cost the lives of the astronauts on board. 

While there are undoubtedly many automated systems to assist in the detection of errors, 

this is often where the automation stops – even NASA is still reliant on engineers to 

generate possible solutions to resolve the problem. Taking the detection process a step 

further, an automated process to suggest possible resolutions before the engineers even 

knew there was a problem would greatly accelerate the time needed to diagnose the 

anomaly.  

Anomalies are also a constant source of disasters. In 1996, an Ariane 5 rocket self-

destructed 30 seconds after launch, destroying its satellite payload. Despite numerous 

safeguards and checks that were in place, the flight control software systems failed to 

account for certain changes in the trajectory. This resulted in the rocket veering off-course 

causing an anomaly detection mechanism to trigger the self-destruct sequence. This was 

one of the most costly software bugs in history, but it could have been easily detected prior 

to the disaster if the systems onboard the rocket had been designed with more robust 
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error detection. The disaster resulted in a loss of more than $320 million after $7 billion 

was spent on its development, and it was an embarrassment for the European Space 

Agency [2].  

Despite 18 years of progress, the space industry is still fighting error conditions in 

rockets. In 2014, a commercial rocket exploded just after launch, costing millions of dollars 

in damage and lost scientific experiments [3]. There are many, many other cases of 

anomalous conditions causing rocket or spacecraft failure; these two were chosen to 

emphasize the importance of having robust anomaly management systems onboard.  

1.2. Anomaly Management 

As discussed above, millions of dollars are spent diagnosing and resolving anomalies in 

engineering systems. This emphasizes the importance of utilizing a reliable and efficient 

technique to assist human operators in the event of an anomaly. Anomaly management 

systems attempt to do this by creating structured methods for detecting and potentially 

resolving anomalies.  

Formally, an anomaly is defined as an unexpected condition that occurs in a functional 

engineering system. Current theory recognizes three classes of anomalies: faults, hazards, 

and misconfigurations [4]. A fault is defined as a condition within a component that 

prevents it from performing as expected (such as an integrated-circuit with an internal 

structural disconnect); a hazard occurs when a component is utilized outside its defined 

operating range (such as the ambient temperature being too high given the component’s 

specifications); and a misconfiguration occurs as a result of the settings to a component 

being incorrectly given (such as the radio frequency being wrong). These explicit definitions 

enable an anomaly management system to be more precise when identifying possible 

reasons that a system is behaving abnormally.  

When things go wrong in a functional engineering system, it is absolutely critical that 

the problem is detected and fixed within a reasonable amount of time. In high pressure 

situations, sometimes the only approach is the natural one: let the engineers who know 

the system best diagnose and attempt to resolve the issue. This is both time-consuming 

and expensive; companies that could be inventing and innovating are instead spending 
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valuable time maintaining and fixing prior projects. An anomaly management system 

attempts to streamline this process by automating the tasks as much as possible [5].  

Anomaly management systems typically implement three distinct steps of analysis. 

First, a symptom is detected, indicating that an anomalous condition exists. Next, possible 

reasons to explain the anomalies are generated in the diagnosis phase [6]. Finally, possible 

solutions are tested to attempt to resolve the problem. This last step may be automated if 

possible, or may necessitate technician intervention after the anomaly management 

system reports its findings. These processes are the same that are followed whether the 

anomaly management system is automated or implemented by a human team. An ideal 

anomaly management system eliminates the need for human intervention entirely; the 

next best approach is to assist the humans so that they can do their jobs more efficiently, 

utilizing fewer resources and therefore minimizing financial and time costs.  

1.3. Reasoning Approaches 

The two main approaches to anomaly management are “experiential” and “model-

based.” The experiential approach relies on the experience and knowledge of the experts 

who built the system; if an anomaly is detected, the experts analyze the problem and 

possible solutions are proposed. The model-based reasoning approach involves 

constructing a model or simulation of the system-under-test in order to detect possible 

anomalies and will be discussed in great detail throughout this paper. 

For example, almost all modern cars contain a network of sensors that report their 

states to the main computer. When an anomaly is detected, the car notifies its operator in 

the form of a status light on the dashboard. A mechanic can then further diagnose the 

issue by communicating with the computer directly and reading the error codes. This is a 

form of the experiential approach, and depending on the experience of the mechanic, the 

anomaly will be fixed much more quickly than without an accurate error code. The 

mechanic follows the basic approach of experiential reasoning: he or she will attempt to 

diagnose and resolve the problem by using his or her own experience as a knowledgebase 

of problems and solutions; in some cases, the diagnostic system may also propose 

potential steps based on a database of prior experience. 
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For aerospace systems, the experiential process may be far more involved and time-

consuming. For satellite operations centers, the process of diagnosing a symptom can take 

days or weeks since experts may have to be brought in from around the world to 

collaboratively evaluate the system. Furthermore, potential resolutions must often be 

exhaustively checked, simulated, and verified on hardware test platforms prior to being 

implemented (Kitts, personal communication). 

1.3.1. Experiential systems 

In an effort to streamline the experiential process, an automated “expert system” can 

be developed. This process attempts to consolidate all the knowledge and experience 

possessed by the experts and compiles it into a database. This knowledgebase is essentially 

a series of production rules in the form of “if-then” statements which the expert system 

uses to automatically implement or suggest solutions when problems occur [7]. While this 

method is very fast in the lookup phase, it is very time-consuming and error-prone to 

develop a robust database of all the knowledge possessed by the engineers. Furthermore, 

since this information is derived from their expertise, it is often the case that the true root 

cause is lost when the system diagnoses the issue. In addition, the knowledgebase is only 

applicable to situations that have been experienced; new situations and causes are 

typically unaddressed.  

 

Figure 1.1: Check engine lights on a car only give a clue to the underlying anomaly [13]. 
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A high-level representation of the experiential approach is shown in Figure 1.2, which 

illustrates how the state of the system is processed along with the compiled 

knowledgebase of information to create a list of proposed actions. To expand on the car 

mechanic example, an expert system would consist of a compiled list of all known 

anomalies, their symptoms, and their solutions as experienced by the mechanic. When 

analyzing a car, the symptoms of the anomaly (error code) would be provided to the expert 

reasoning system and a list of possible causes and solutions would be generated. Again, 

consulting the knowledgebase is efficient because it is simply a lookup table, but is limited 

to previously experienced – and accurately captured – scenarios.  

1.3.2. Model-based reasoning systems 

The more sophisticated approach, model-based reasoning (MBR), uses a functional 

model of the operational system to simulate its nominal and deduce its off-nominal 

behavior. The model is simulated alongside the real system, then the outputs are 

compared; if the results are inconsistent, an anomaly exists and must be diagnosed and 

resolved. Figure 1.3 shows an overview of this method.  

When an anomaly is detected in the real system in the form of a symptom, the 

constraints on the model are relaxed until the output of the model matches the output of 

the system, which indicates a possible cause for the anomaly. In other words, anomalies 

are introduced into the simulation until its output matches the real system’s anomalous 

Figure 1.2: Experiential anomaly management approach. The inference engine compares the 
provided state data with possible scenarios in the knowledge-base to generate a list of potential 
resolutions [12]. 
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Figure 1.3: Anomaly Management process steps. The model is simulated alongside the real system; outputs are 
compared and sent on to the subsequent processes. [4] 

output. This is essentially a brute-force solution – all possible errors that could cause the 

observed symptoms are generated during the simulation phase. With a sufficiently detailed 

model, the simulation engine is able to generate every situation in which the anomaly 

occurs. Furthermore, with this approach it is fairly straightforward to change the model 

and re-run the simulation if something is changed in the real system. While a variety of 

extensions exist to avoid a true brute-force analysis, these techniques were not used as 

part of this thesis.  

The simulation portion of the MBR process essentially generates the knowledgebase of 

the experiential approach – the simulation model embodies how the system is designed 
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and therefore can predict what the outputs look like when things go wrong. Instead of 

relying on expert engineers to create every possible condition which produces anomalous 

output, the simulation engine uses a model of the system to generate possible anomaly 

states systematically. The primary disadvantage of the MBR approach is that simulating a 

complex system in order to discover all potential anomalies is very computationally 

expensive and therefore slow, which may make it impractical to utilize in a time-critical 

operational setting.  

1.3.3. Reasoning summary 

To review, there are two broad categories of anomaly management: the experiential 

approach, and the model-based reasoning (MBR) technique. The experiential approach is 

often disorganized and cumbersome to use, although it generally is very fast at diagnosing 

issues. The MBR approach attempts to solve some of the drawbacks of the experiential 

approach by organizing the system into a working model which can be simulated alongside 

the real system. The primary advantage this brings is that all possible outputs can be 

generated when necessary instead of relying on a narrow subset of captured, experienced 

cases that are hard-coded into the expert-reasoning system. Because the model-based 

process is deliberative, it can be very time-consuming to diagnose an anomaly compared to 

an expert system that has prior information on the same anomaly. Ultimately, a hybrid 

approach combining the benefits of these two approaches is of potential interest.  

1.4. Project Goals  

The goal of this project is to enhance the typical model-based reasoning approach to 

anomaly management. In the first phase of the project, completed by a previous student, a 

hybrid approach was established which generated a catalog of anomalies and their 

potential causes. The system uses a model-based reasoning approach to pre-compute an 

exhaustive catalog of anomalies and associated symptoms prior to operation. Next, in the 

operational setting, improper behavior observed in the real system is used to search the 

catalog for consistent diagnoses, thereby dramatically improving response time when 

anomalies are detected.  
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The work reported in this thesis expands on the previous work in several ways. First, 

confidences were added in order to rank the confidence of each calculated anomaly. 

Second, the computation time was greatly reduced by better leveraging Matlab and 

Simulink’s built-in functionality. Third, the augmented system was evaluated using both a 

baseline verification system as well as a real-world satellite monitoring network. Though 

the concepts explored in this paper are preliminary, the results are promising. We hope 

that the techniques presented can be extended and applied by future students to other, 

more elaborate systems to aid in the operation of their engineering projects.  
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2. System Architecture  

In this chapter, the details of MBR are illustrated using several examples starting with 

basic Boolean logic gates. Next, the enhanced MBR approach is introduced and applied to a 

full-adder system as a proof-of-concept. Finally, implementation details of the novel 

system are examined and the benefits of using such a system are demonstrated.  

2.1. Overview of Model-Based Reasoning 

Model-based reasoning systematically detects, diagnoses, and resolves anomalies that 

occur in a functional engineering system. Broadly defined, a system is a collection of 

interconnected components. Inputs to the system result in signals that propagate through 

the system, ultimately producing output data or telemetry. The input configuration and the 

idealized model determine the correctness of the telemetry returned. The MBR framework 

used in this thesis is based on work by Dr. Kitts as seen in [4], which provides a formal 

review of its theory. This research simplifies the former implementation by utilizing 

Matlab’s Simulink software as the MBR simulation engine among other modifications. The 

applicable theory will be defined in this chapter utilizing basic logic gates as the base 

components.  

A component consists of several elements: inputs and outputs, a behavior constraint 

that specifies the value of an output as a function of inputs, and operating conditions that 

must be satisfied for the behavior statement to hold. For example, a typical logical AND 

gate, as shown in Figure 2.1, is defined as having two or more inputs and exactly one 

output; its behavior statement dictates that its nominal output, F, is the logical AND of its 

 

Figure 2.1: A logical AND gate functioning as expected. 
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input ports, A and B. This is expressed as F = A AND B. However, this behavior may only 

be prescribed when all operating constraints are met. One such constraint may require the 

component’s temperature to be within a specified operating range. All possible inputs and 

outputs for the AND gate can be represented in a truth table as seen in Table 2.1. 

2.1.1. Types of anomalies 

Any component in a system can experience an anomaly. Extended MBR theory defines 

three such cases: faults, hazards, and misconfigurations. Each of these manifests itself in a 

slightly different way as will be demonstrated in the following examples.  

A fault is defined as the output of a given component being observed as incorrect for a 

given set of known inputs with the assumption that all operational conditions are satisfied. 

In the case of an AND gate, a fault would be detected if the inputs to the gate were both 

‘1’s but a ‘0’ was observed on the output as shown in Figure 2.2(a). In essence, the 

component has failed and the output cannot be relied on until the fault is resolved; this 

may mean replacing the component with a new, working one. Furthermore, a fault may 

not be observed directly; in a multi-component system, only the overall inputs and outputs 

are known. The challenge is to narrow down the possibly anomalies through a reasoning 

process given this constraint.   

A hazard anomaly is less intuitive: it occurs if a state violates one of the component’s 

nominal operating conditions. For example, if the component’s specification states that its 

operating range is 0 °C to 50 °C and the observed temperature is outside this range, a 

hazard anomaly would be reported even if the output was correct according to our 

observations. Note that another component (e.g. a temperature sensor) may be needed to 

Table 2.1: The truth table for a logical AND gate. 

A B F 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
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collect the data to determine this state. Although the output may still be correct, the 

system would still be in an anomalous state thus requiring further action to diagnose and 

resolve the anomaly.  

The third type of anomaly, a misconfiguration, occurs if the inputs to the component or 

system are inconsistent with what has been specified. For example, in the case where a ‘0’ 

is observed on the output, it could be that the gate has a fault (Figure 2.2(a)), or it could be 

that one of the inputs was configured with a ‘0’ instead of the expected ‘1’ as seen in 

Figure 2.2(c). This is an example of two distinct anomalies causing identical symptoms; the 

Commanded 
inputs 

Simulink model of an AND gate 

Actual inputs Observed Outputs 
 

Anomaly type 

A = 1 
 

B = 1 
 

(a) 

 

Fault 

A = 1 

B = 1 
 

(b) 

 

Hazard 

A = 1 

B = 1 
 

(c) 

 

Misconfiguration 

Figure 2.2: The three types of anomalies using a logical AND gate as an example.(a) A fault in the component 
caused the output to read ‘0’ when it should be ‘1’; (b) a hazard condition is present in the component (50°C 
temperature constraint violated); (c) a misconfiguration causes the output to read ‘0’ when it should be ‘1’. 
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Figure 2.3: The basic full-adder circuit implemented in Simulink. 

inclusion of anomaly likelihoods is largely motivated by the fact that multiple anomalies 

may result in identical symptoms. The enhanced MBR approach presented in this research 

differentiates between the two cases and can report each diagnosis with a different 

ranking.  

2.1.2. Full-adder system 

In order to demonstrate the application of MBR to a system, the full-adder circuit will 

be used as an example of a fully-functional engineering system. As can be seen in Figure 

2.3, the full-adder consists of three system-level inputs, five interconnected components, 

and two system-level outputs. The first XOR gate’s output is connected to the inputs of the 

second XOR gate as well as the first AND gate; similar connections are made for the other 

gates. In the next sections, the full-adder will be further explored in the context of applying 

MBR to a system, and will be used as the prototypical engineering system to which the 

enhanced MBR approach will be applied as a proof-of-concept.  

2.2. Applying Model-Based Reasoning 

Before applying MBR to a complex system, the research herein began with a simplified 

model that serves as a proof-of-concept for the anomaly management system. For this, the 

binary full-adder was chosen. Matlab’s Simulink software was used to model the circuit as 

seen in Figure 2.4. Logically identical to Figure 2.3, this is the basic computational system 

that was enhanced with confidence-based model-based reasoning. The model shown 

represents a real full-adder circuit that may be created in hardware using individual logic 
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Figure 2.4: The full-adder circuit, implemented in Simulink using Matlab function blocks. 
 

gates, each of which has its own characteristics, behaviors, and possible defects. The 

behavior functions, which map the block inputs to each gate’s output, are contained inside 

each block and are implemented using the powerful Matlab scripting language. In this way, 

the system is very flexible, and the block definitions can be as simples or complex as 

desired, supplementing the standard logic-gate behavior.  

2.2.1. Full-adder details 

The full-adder contains three system-level inputs, each of which can take a binary 

value. Applying a logical ‘1’ value to both the A and B inputs and a ‘0’ to the Cin input, the 

expected result will yield a ‘0’ on the Sum output and a ‘1’ on the Cout output. For 

simplicity, the input is described as an array of three values: [1, 1, 0] corresponding to the 

three inputs, [A, B, Cin]. The nominal output associated with this particular input can then 

be written as [0, 1] corresponding to [S, Cout]. Since there are three binary inputs, there are 

a total of 23 = 8 unique input vectors which map to 22 = 4 unique output states. These can 

be concisely written in a truth table as seen in Table 2.2. When applying MBR to the full-

adder, the nominal state is represented by this table; thus we can compare the output of 

the simulation to the corresponding output in the table to determine if an anomaly has 

occurred. This is the first step of anomaly management, detection.  
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2.2.2. Anomaly example 

In order to determine if an anomaly has occurred, an observer must compare the 

expected output of a system to the suspected anomalous output. For example, if we notice 

that our real full-adder circuit is outputting the values [S, Cout] = [1, 1] for the inputs 

[A, B, Cin] = [1, 1, 0], then we can conclude that an anomaly has occurred somewhere in 

the system since the nominal output for this input is [0, 1], as seen in the seventh row of 

inputs in Table 2.2. We can then proceed with the diagnosis processes from Figure 1.3 by 

simulating the model with different component constraints relaxed in order to discover the 

possible components that could have caused this failure. In this case, by examining Figure 

2.3, we are able to determine that either XOR1 or XOR2 has likely faulted or is in a hazard 

condition, causing the incorrect ‘S’ output. Another possibility is that the input from Cin is 

misconfigured, and is using the value ‘1’ instead of the expected ’0’. In a classic MBR 

approach, all three of these possibilities would be presented as equally likely. Also note 

that for this case, we are only considering single anomalies, that is, only one anomaly 

existing in the system at any given time. Multiple simultaneous anomalies can occur and 

are examined in Section 2.8. The enhanced approach presented in this paper attempts to 

rank the anomalies in a useful order based on the individual likelihoods of each potential 

anomaly. This example demonstrates the principles of model-based reasoning; the 

specifics will be examined in the subsequent sections.  

Table 2.2: The truth table for the full-
adder circuit. 

Input Output 

A B Cin S Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 
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2.3. Hybrid Reasoning System 

As discussed in Chapter 1, MBR simulation is typically slow due to its computational 

complexity, while using a rule-based expert system is very fast for looking up previously-

encountered anomalous conditions. In an effort to leverage both the speed of the expert-

reasoning system and the systematic nature of the model-based approach, the enhanced 

system presented pre-computes possible anomalous states and saves them to a catalog. 

This catalog then acts as a lookup table that the anomaly management engine uses in time-

sensitive scenarios when anomalies must be diagnosed and resolved as quickly as possible. 

This two-phase process is shown in Figure 2.5. Phase 1 is pre-realtime operations during 

which the model is created/verified and then executed for every possible combination of 

 

Figure 2.5: The two phases of the anomaly management process to diagnose and resolve anomalies. 
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input configuration and anomaly case (or at least as many as can be simulated in the time 

available), with the results of each scenario stored in the Anomaly Catalog. Then, during 

realtime operations when timing is critical, a symptom identified by the operator along 

with the current system configuration is used to search the catalog and identify all 

consistent anomaly scenarios.1 A sample result set is shown and discussed in greater detail 

in the following sections.  

2.3.1. Full-adder with anomalies 

Expanding on the full-adder example from the previous section, we can add 

information about possible anomalies to the system. By computing the output of the 

system for each anomalous case, we generate a database2 (the anomaly catalog) of system 

states and outputs to be used in the diagnosis phase of the process. For example, one such 

case may be that the XOR1 gate has faulted. Simulating this scenario for the input 

[A, B, Cin] = [1, 1, 0] results in the output [S, Cout] = [0, 1] in the nominal case, but with 

the additional knowledge that XOR1 is in a faulted state, we can determine that the output 

of XOR2 and AND1 may also be affected by this fault thus potentially changing the value of 

the ‘S’ output. In the simulation engine, an anomalous state is represented as NaN, to 

indicate that the output value has been affected by an anomaly and thus can take on any 

possible value. When building the catalog, all possible scenarios can potentially be 

generated, although the computational time may be extreme for very complex systems. 

For modest systems, there will likely be more than enough time to evaluate all 1-, 2-, and 

3-anomaly cases given that there will be weeks, months, or even years to prepare the 

catalog before a field mission. In the diagnosis phase, the catalog will be consulted to 

determine which anomalous condition(s) contributed to the observed output.  

                                                      
1
 In follow-on work, there is no longer the need for the operator to identify a symptom. The configuration and 

observed data is used to identify consistent state scenarios, anomalous or not. 
2
 In this case the term “database” is used loosely. The catalog is currently left as a Matlab matrix variable 

inside the Matlab workspace; this variable can be saved to and loaded from a file using Matlab’s user 
interface. Integrating an RDBMS such as MySQL has been left as future work.  
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2.3.2. Anomaly representations 

During the simulation of a model, flags are set to indicate the current state of each 

component, either a fault, hazard, or valid state. If a given block is in an anomalous state, 

its output will be a special value representing the type of anomaly being simulated. The 

special value indicating a fault has occurred is ‘Inf’; the hazard case is indicated by ‘NaN’. 

Both values are built-in Matlab numerals representing infinity and not-a-number 

respectively. These values should not occur otherwise during normal use of the system.  

In the fault anomaly scenario, the Inf value represents an invalid value on the output 

of the component. In other words, the component is known to have failed in a way such 

that its output is not correct, or there is no output at all. Conversely, in a hazard anomaly 

(NaN), the output is not known to be invalid – just that the component is in a state which 

might produce incorrect data. In both cases, the output continues to the next components’ 

inputs. This gives the subsequent components the capability to act on known anomalous 

inputs; however in most cases this value will simply pass through each component and 

eventually be observed on the system output(s). The output of the system is then used as 

part of the anomaly catalog as discussed in detail in subsequent sections.  

2.4. New Contributions 

In an operational system, not all anomalies have the same likelihood of occurrence. For 

example, a car’s brakes may have a higher chance of failure than the car’s engine. In the 

full-adder, the AND gates may have different observed failure rates than the OR gates 

because of the manufacturing process or proximity to hot components, among other 

possibilities. Most MBR anomaly management approaches do not incorporate these 

likelihoods into the model; there are usually only two states, nominal and faulted. This 

enhancement is implemented in the model by adding a confidence property to each 

modeling constraint to represent the likelihood of each specific anomaly occurring for that 

component. This information is then used to rank possible diagnoses in order of likelihood 

of occurrence.  
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2.4.1. Adding anomaly confidence data 

Again using the full-adder circuit, we introduce anomaly inputs that will serve to model 

anomalous conditions when testing the simulation against the faulted system. These 

appear in Figure 2.6 as Matlab ‘Constant’ blocks3. Each pair of numbers indicates the state 

of the failure mode and the confidence of this component not experiencing the given 

anomaly. For example, examining the anomaly input to ’XOR1’ (highlighted in green), we 

see that ‘XOR1_H’ (highlighted in blue) is set to [0, 0.97]. This signifies that a hazard 

condition is being simulated (indicated by the ‘0’) in the component with a 97% chance 

that it will not occur in the actual system, e.g. a 97% confidence the output will be valid (or 

a 3% chance that an anomaly will occur). The data contained in the anomaly blocks are 

passed onto the next component until it arrives at the system-level output4. The 

information (anomaly state, inputs and outputs) for each step of the simulation is then 

saved to generate the catalog of conditions which lead to each possible anomalous state.  

At the output of the model in Figure 2.6, the ‘S’ and ‘C’ full-adder bits can be seen with 

their respective Data and Confidence displays. In this case, the ‘NaN’ value on the S output 

indicates that an anomaly has occurred somewhere along the data path causing the output 

constraints to be relaxed. Again, we can see from the anomaly blocks that ‘XOR1_H’ has 

been set to a hazard state with the associated confidence of 97%. This influences the 

‘XOR1’ block which passes its relaxed value to ‘XOR2’ and ‘AND1’. The subsequent results 

depend on each component’s behavior along with the values of their other inputs; 

however in most cases the anomalous condition will be passed through the ‘XOR2’ gate, 

along with its 97% confidence rating. The other possible anomaly value, ‘Inf’ can also be a 

result caused by a hazard anomaly and will be seen in subsequent sections.  

                                                      
3
 In subsequent sections, these will be hidden behind custom ‘AnomalyGenerator’ blocks. 

4
 If the simulation is running a multi-anomaly case and a subsequent component detects an anomaly on one 

of its inputs, the anomaly likelihood values are multiplied together. More detail is provided in section 2.8.  
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2.4.2. Hiding anomalies for some behaviors 

Certain components may hide simulated anomalies despite the anomaly appearing on 

one of its input ports. This may seem like an error since a known anomaly is not being 

observed on the system output despite it being set in the simulation. However, this can be 

the correct behavior for components like the logical AND gate, whose behavior dictates 

that the output will be ‘1’ if and only if all inputs are ‘1’, and will output ‘0’ otherwise. This 

implies that if any input is ‘0’, the output will also be ‘0’ even if there is an anomaly seen 

on another of its inputs. Therefore, we can ignore all other inputs to the AND gate, and the 

output becomes a valid logical ‘0’ when one of its inputs is ‘0’. In the example shown in 

Figure 2.6, the output from ‘XOR1’ is carrying an anomalous condition on the ‘B’ input of 

‘AND1’. However, since the input (from Cin) on the ‘A’ input is ‘0’, the output of ‘AND1’ 

becomes a valid logical ‘0’ and moves on to the ‘OR1’ gate. In Matlab, this becomes a 

special case that must be specifically accounted for due to the use of Simulink’s double and 

“bus” datatypes in this project. The behavior is shown programmatically in Figure 2.7. 

 

Figure 2.6: The enhanced full-adder circuit. Anomaly inputs are included in the logic gate blocks in order to assist with 
the diagnosis process of the simulation.  
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Furthermore, the inverse is true (although not demonstrated in this example) for logical OR 

gates: if any input to an OR gate is ‘1’, the output will be a valid ‘1’ as well. These behaviors 

are built into the function of the logic gates and are dependent on the behavior of the 

components being modeled; other real-life components may behave similarly and hide 

anomalies that do not affect the output of the system.  

2.5. The Anomaly Management Engine 

The previous section introduced the high-level architecture of the enhanced model-

based reasoning system with the example of the full-adder circuit. This and subsequent 

sections will go into more detail about how the reasoning system is implemented in order 

to compute a result-set for every permutation and combination of anomalous components. 

While Simulink is used as the “simulation engine,” there is some setup work done in the 

background in order to optimize the computation time of the model.  

2.5.1. Generating anomaly permutations 

In a typical scenario, one would like to simulate all combinations of anomalies in the 

system: i.e. the case when only the ‘XOR1’ gate has a fault, or only the ‘AND2’ gate has a 

hazard but the other gates are working nominally, or the case when ‘XOR1’ is valid but 

‘AND1’ is faulted; etc. As part of the setup process, all possible states of every component 

is combined to form a vector of Boolean values describing each component’s anomalous 

condition for the current iteration of the simulation. All of these state vectors are 

% AND gate nominal behavior.  
function f = defaultAction(aIn,bIn)  
    dataIn = [aIn.data, bIn.data]; 
    % If any of the inputs are 0, the output will be 0.  
    if any( dataIn == 0 ) 
        f = 0; 
    elseif any(isnan(dataIn)) || any(isinf(dataIn)) 
        f = NaN; 
    else 
        f = double(and(aIn.data,bIn.data)); 
    end 
end 

Figure 2.7: Matlab code showing the nominal behavior of a logical AND gate. This snippet demonstrates the 
case when an input is ‘0’: if any of the inputs are ‘0’, the output is also valid ‘0’. 
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combined into one matrix (table) of values, with each column representing an anomaly for 

a different component. A sample of this matrix for the full-adder is shown in Table 2.3.  

After the model is created, the simulation is executed for each set of anomalous 

conditions corresponding to each row in the matrix5. With two possible anomalous states 

for each block, and five gates in the model, the anomaly input matrix has ten columns, two 

for each component. For example, the last row of the anomaly permutations shown in 

Table 2.3 is as follows: [1, 0, 1, 1, 1, 1, 1, 1, 1, 1]. Referring back to Figure 2.6, it can be seen 

how each pair of values corresponds to a different component. In this case, this row is 

interpreted as ‘XOR1’ being in a hazard state while the rest of the gates are valid. Similarly, 

the row [0, 1, 1, 1, 1, 1, 1, 1, 1, 1] indicates that ‘XOR1’ is in a faulted state, while the rest 

of the gates are valid. This table of anomaly states is then used by the anomaly 

management system to determine which component(s) is experiencing an anomaly during 

the current iteration of the simulation. These state values are presented along with the 

system outputs as part of the catalog as described in subsequent sections.  

As can be expected, the set of anomaly-state vectors quickly grows in size with the 

number of components in order to cover all possible cases. In the case of the full-adder, 

the circuit has five logic gates with two anomaly inputs each. Using combinatorial math, we 

can calculate how many anomalous states can exist given a quantity of simultaneous 

                                                      
5
 For demonstration purposes, misconfigurations have been excluded from the set of possible anomalies; 

only faults and hazards are shown. 

Table 2.3: Four rows of the anomaloy permutations for the full-adder. The ‘0’ values represent 
anomalies that are active for the current iteration of the simulation, while the ‘1’s symbolize the anomaly 
being dormant.  

Anomaly Permutation Matrix 

XOR1-
fault 

XOR1-
hazard 

XOR2-
fault 

XOR2-
hazard 

AND1-
fault 

AND1-
hazard 

AND2-
fault 

AND2-
hazard 

OR1-
fault 

OR1-
hazard 

1 1 0 1 1 1 1 1 1 1 

1 1 1 0 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 

1 0 1 1 1 1 1 1 1 1 
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anomalies6. For example, if we allow up to two simultaneous anomalies to occur in the 

simulation the number of permutations is given as (10 C 2) + (10 C 1) + (10 C 0) = 56 

permutations. Including each possible input yields 2  56  44  possible combinations. 

This is generalized in equation (1).  

 

 

  2 ∑(
2 

 
)

 

   

 (1) 
 

 

In (1), m is the number of independent components in the model, n is the number of binary 

system-level inputs, b is the number of simultaneous anomalies that are allowed to occur 

in any given iteration, and k is an index iterating from 0 to b. The result, s, is the total 

number of anomalous states the system can assume. In the case of the full-adder being 

discussed,   2,   3  and   5 which, as above, yields   44 . Note that this 

equation holds for binary system inputs; while the general architecture of the simulation 

can support it, adapting the system for non-binary data inputs has been left as future work.  

The matrix of permutations described above is only a part of the simulation process – 

all permutations are generated prior to running the simulation to form the full matrix. 

During the simulation, each row is used to set the state of the possibly-anomalous 

components. Fortunately, the generation of the matrix does not contribute significantly to 

the overall simulation time.  

2.5.2. Efficiency improvements 

In previously existing work involving a similar anomaly management system, the 

computation was implemented in a less-efficient manner. Instead of calculating 

permutations upfront, the system generated each permutation “on-the-fly” and re-ran the 

simulation for each step. While the end result should be the same, this method ran much 

                                                      
6
 Multiple simultaneous anomalies will be addressed in Section 2.8.  
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more slowly due to the need to restart the simulation for every permutation instead of 

running the simulation once with the permutation matrix as a parameter. This is illustrated 

in Figure 2.8.  

For example, in a complex system containing 200 components (  200) with one or 

two possible simultaneous anomalies (  2) there are more than 80,000 possible 

anomalous states that must be simulated. Since the simulation must iterate through each 

state, it is desirable to minimize the execution time required. The previous work executed 

Simulink’s model solver once per iteration. However, a drawback of using Simulink is that 

there is approximately 1.5 to 2.0 seconds of compilation time each time the simulation 

  

(a) (b) 

Figure 2.8: Two approaches to simulation. Approach (a) incurs a significant delay at the 
start of each simulation iteration; approach (b) does away with this delay by generating 
all permutations upfront and running the simulation just once.  
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starts, with an actual execution time of a small fraction of a second. This adds up very 

quickly when there are many thousands of permutations to simulate.  

The novel solution developed creates a matrix of system-state permutations (as seen 

above in Table 2.3) so that the simulation executes only once, using the next row of pre-

calculated inputs at each time-step. This makes much better use of Simulink’s capabilities 

and made the overall simulation much more efficient. Modifying the model used in the 

previous work, which contained 260 components, reduced the runtime of the simulation 

from 8 minutes to less than 10 seconds. This order of magnitude reduction in simulation 

time will allow more complex design models to be used and will allow deeper anomaly 

catalogs to be generated in a given amount of time.  

2.6. The Anomaly Catalog 

When the model is simulated in Simulink, a matrix of all possible permutations of 

anomalies for the system is generated prior to evaluating the model7. The output of the 

simulation is each of these permutations concatenated with the associated input and 

output of the system; in other words, the system-level output for each state is reported 

alongside its corresponding input and anomaly configuration. This creates a catalog of 

possible states that serves as a lookup table in the detection and diagnosis processes: for 

any observed output, the set of input and anomaly states that are consistent with the 

output are looked up in the catalog. The catalog of possible states could potentially be 

hundreds of thousands of rows for a sufficiently complex system, but the time spent 

looking up rows in the table is trivial compared to the simulation computation time.  

2.6.1. Anomaly detection 

The MBR system presented in this paper was designed under the assumption that there 

would be a separate process – whether human or computer – to detect anomalies, after 

which the MBR system would be used to filter the Catalog in order to determine the likely 

anomalies that could have occurred. However, towards the end of the project it was 

                                                      
7
 For readers with Simulink experience, this was implemented using the Simulink callback function 

‘InitFcn’. 
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realized that detection could be handled automatically by simply inputting the real system 

outputs into a Matlab script which would search the Catalog for matching cases. Then, the 

Catalog would automatically be queried to return the most likely anomalies that could 

cause the observed output. This feature was not implemented as part of this thesis work 

but has since been implemented by other researchers on the team.  

In the automatic detection process, the outputs of the actual system are compared to 

the simulated outputs in the catalog database. In the nominal case, the system will return 

exactly one row matching the specified inputs and valid outputs. In the anomalous case, no 

rows will be returned since the anomalous output does not match any of the simulated 

outputs for the given input. In this case the anomaly management system would iteratively 

relax the constraints on each non-matching system output to generate a subset of the 

catalog in which the rows correspond with anomalies that could cause the anomalous 

output.  

For example, consider the full-adder configured with the input [1, 1, 1]. If the output 

was observed to be [S, C] = [0, 1] (while [S, C] = [1, 1] is the expected output), this would 

indicate an anomaly on the Sum bit because this is the actual output that does not match 

the simulated output. Since in this case there is only one anomalous result, the Catalog 

would be queried automatically for all rows in which the carry bit is equal to ‘1’ while 

relaxing the constraints on the Sum bit output: e.g. searching for [S, C] =  [X, 1] (where X is 

“don’t care”). The catalog would then return results indicating XOR1 or XOR2 is 

experiencing an anomalous condition, or that one of the inputs is misconfigured such that 

it is set to ‘0’ instead of the expected ‘1’. After the anomaly is detected and all possible 

anomalies are found, the possible diagnoses are returned in a sorted tabular format for use 

by the operators of the system.  

2.6.2. Anomaly diagnosis 

When an anomaly is detected by the anomaly detection process (this could be a human 

operator or a future implementation of the enhanced MBR system), an operator uses a 

standalone Matlab script to search the previously generated Catalog for potential causes of 

the observed anomaly. This script searches for the provided observations and returns a 
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sorted table containing only the Catalog rows that match the system output. Each row 

contains a different permutation of anomalies that could occur, depending on whether the 

catalog was generated to simulate multiple possible anomalies. The table is ranked by the 

confidence value of the anomalies as shown in Table 2.4. In the center columns (anomaly 

states), a ‘1’ indicates nominal operation for the corresponding component, while a ‘0’ 

indicates a fault, hazard, or misconfiguration has occurred. Since the table is ranked and 

ordered, the most likely scenarios can be evaluated by the operator first. This process is 

similar to the “expert reasoning” approach discussed in Chapter 1 – the lookup table 

(Catalog) is consulted in order to determine possible resolutions. However, since the table 

is enhanced with the addition of likelihood values, the process of determining probable 

diagnoses will be accelerated. This enhanced MBR approach can be viewed as combining 

the best parts from the experiential and model-based reasoning systems – the accuracy 

and structure of the model-based approach is combined with the rapid lookup of the 

experiential expert reasoning method in order to be as efficient as possible when and 

where it counts.  

2.7. Implementing Enhanced MBR 

This section will discuss the specific implementation details of how the afore-

mentioned features are applied to a basic Simulink model. The addition of anomaly 

confidence data has already been presented in section 2.4.1; in this section the details of 

the “anomaly generator” block will be shown, as well as the “input permutations” block. 

Table 2.4: A sample of the catalog generated by the anomaly management system showing four rows of the 448 
unique permutations. Several of the anomaly states have been hidden for simplicity as they do not affect the output. 
The system-level inputs are shown in the leftmost columns, while the outputs are shown on the right. The “_conf” 
columns represent the confidences associated with each system output.  

System 
Inputs Anomaly Inputs Outputs 

A B Cin 
XOR1-
fault 

XOR1-
hazard 

XOR2-
fault 

XOR2-
hazard 

…  

OR-
hazard S Cout S_conf Cout_conf 

1 1 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 0 1 1 1 

1 1 1 0 1 1 1 1 Inf 1 0.99 0.99 

1 1 1 1 0 1 1 1 NaN 1 0.985 0.985 
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Together, these blocks enable the execution time improvements discussed in section 2.5.2. 

In addition to these two blocks, the Simulink model file must also contain callback 

functions8 which create the anomaly permutation matrix and provides some additional 

functionality. For example code, see Appendix B .  

2.7.1. Modification of existing components 

Starting from a Simulink model representing a given system, changes to each functional 

block are necessary. The MBR system provides a standard template to implement each 

functional behavior component: after an auxiliary input for the anomaly confidence data is 

added to the block, the template function checks the data inputs to detect the presence of 

anomalies both on component inputs as well as the anomaly likelihood input. If no 

anomalies are detected for the current iteration of the simulation, the Matlab function 

representing the component’s nominal behavior is executed. The component’s output is 

then its expected output for nominal behavior.  

When an anomaly is present on the anomaly likelihood input, this indicates that the 

component is “experiencing” an anomaly (for the current iteration of the simulation). The 

component’s output will then take the value of ‘NaN’ or ‘Inf’ depending on the type of 

anomaly present. For example, if an AND gate is being simulated with a fault anomaly, its 

output will be ‘Inf’. This indicates that the output could be anything, including nothing (a 

“flatline”). In the case of a hazard anomaly, the value ‘Inf’ will be the output, which will be 

sent to any connected downstream components. For both cases, the nominal behavior 

function will not be executed.  

2.7.2. Passing data between blocks 

In order to keep track of the anomaly confidence of previous components, Simulink’s 

bus datatype was used to pass data and confidence values between components. This is 

essentially a structure datatype that can encapsulate various other types of data and allows 

                                                      
8
 These callback functions are generic and should work for any model as long as the correct blocks are 

included.  
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the confidence value to be tracked alongside the data propagating through the model9. If a 

previous component has experienced an anomaly, the data input to the current 

component will have a confidence value associated with it. This confidence is then used to 

calculate the overall confidence value if the current component also experiences an 

anomaly. Usually this will be a simple product of the two confidence values.  

2.7.3. The Anomaly Generator block 

Once each functional block has been modified to include the capability for simulating 

anomalies, several blocks must be added. First is the AnomalyGenerator block. This block 

is an interface to set the anomaly confidence parameters of its corresponding system block 

and is shown in Figure 2.9(a). During a simulation, the simulation engine will activate the 

corresponding anomalies based on the current permutation being simulated. The 

AnomalyGenerator block’s output is connected to the supplementary input of each 

component that could experience an anomaly. The component is then responsible for 

computing its output state in the case of an anomaly.  

                                                      
9
 In the implementation presented, the structure simply contains the Boolean data along with the confidence 

value. The structure could be modified to contain more data to be used by the components, but this has been 
left as future work. 

 
 

(a) (b) 

Figure 2.9: The anomaly-generator block injecting an anomaly into the XOR2 component.The 
AnomalyGenerator block in (a) is a mask which hides the components shown in (b). The component XOR2 then 
implements the behavior of the anomaly when applicable.  
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The generator block output consists of a Boolean flag and a decimal confidence value 

for both hazard and fault anomalies. The two values are combined into a single output 

using Simulink’s Multiplexer and Bus Creator blocks (as shown in Figure 2.9(b)). This data 

then is processed by the component itself; usually, the data will simply be forwarded to the 

next connected component as NaN or Inf indicating the presence of an anomaly. 

2.7.4. Anomaly input permutations block 

The next addition that must be included in the Simulink model is the InputGenerator 

block detailed in Figure 2.10. This block simply reads each line of the anomaly permutation 

matrix (as described in section 2.5.1) and sends each Boolean value to its corresponding 

AnomalyGenerator block to set the state of each anomaly. Simulink’s modeling engine 

 

Figure 2.10: Detail of the InputGenerator subsystem block. The input generator block iterates through all possible 
anomaly permutations and passes the state to the AnomalyGenerator blocks using Goto blocks.  
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takes care of the rest: each component’s behavioral script is executed to determine its 

output given the inputs and anomalous state until the final system output is computed. 

The inputs and outputs, along with the corresponding anomaly permutations, are then 

saved as a new row in the Anomaly Catalog.  

When the simulation runs, an initialization function is executed to setup several 

parameters that will be used by the model. Given that the model has been constructed 

correctly using the anomaly generator blocks, the initialization function will create the 

table of all anomaly permutations based on the number of anomaly generator blocks in the 

model. It then automatically generates the Goto blocks shown in Figure 2.10. These Goto 

blocks simply send the anomaly states to each AnomalyGenerator block. Figure 2.10 shows 

the block as seen for the full-adder example. More complex models will have many more 

blocks to send each state to the corresponding component in the system.  

2.7.5. Analyzing the anomaly catalog 

After the Catalog has been generated by the simulation, the anomaly diagnosis process 

can begin. In a system that does not utilize any kind of anomaly management engine, this 

would typically be done by experienced operators of the system such as engineers or 

trained technicians. It would involve a tedious process of identifying any and all anomalies 

that occurred, then examining each possible configuration of the system in order to 

determine what may have caused the observed anomaly. This could take hours, days, or 

even weeks. The focus of this research is ultimately to accelerate this timeline. By 

simulating the system then comparing the observed output to the simulated output, the 

simulation engine will report the possible faults, hazards, and misconfigurations that could 

cause the observed outputs. This is implemented as a Matlab script, 

findAnoms(inputs, catalog, symptoms)10, which returns rows corresponding to the 

generated anomaly catalog, and the system’s inputs and outputs. Given these items, the 

script will find the rows (anomaly states) that are consistent with the observed output.  

                                                      
10

 The full function definition is [results, anoms] = findanoms(sysInput, catalog, symptoms, 
fname), indicating two outputs will be returned. This script is described in more detail in Section 3.1.2. 
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In a future form of this work, the findAnoms script could be enhanced with an 

automatic detection feature. This feature would determine if an anomaly was present 

given a set of system outputs, and then proceed with the diagnosis phase automatically. 

The results returned would be identical, however it would save the step of manually 

querying the Catalog.  

Manual Detection 

This project assumes that the anomaly detection process occurs prior to the diagnosis 

procedure, usually by a human operator. In this case, the findAnoms script can be run by 

specifying exact outputs for which the operator would like to search, including a flag to 

indicate the suspected anomalous output. Using the full-adder catalog as an example, one 

might want to search for all cases where the ‘S’ output is anomalous, but the ‘Cout’ output 

is a valid ‘0’. To do this, the operator would run the findAnoms script as so: 

findAnoms([0,1,0], yout, [inf, 0]). This function takes as input a set of system level 

inputs (in this case [0,1,0]; optionally the empty set [] as a wildcard), the Catalog 

generated previously by the simulation engine (yout), and a vector corresponding to the 

observed outputs ([Inf, 0]). The output [Inf,0] indicates that an anomaly has been 

detected on the Sum bit of the full-adder, and therefore can take on any value in its 

domain. The function returns a subset of catalog entries, ranked by the calculated total 

confidence output as shown in Table 2.511. With these results, the operator or technician 

                                                      
11

 While these results demonstrate possible points of failure in the full-adder model, in this case the 
confidence values associated with each gate shown are arbitrary–they were simply chosen to demonstrate 
the concept. 

Table 2.5: The filtered output of the Catalog after searching for observed output. The data has been sorted by 
‘Overall Likelihood’, with the most likely case on top. As can be seen, XOR1 and XOR2 are the most likely candidates 
to cause the anomalous output [S, Cout] = [Inf, 0] given the input [0, 1, 0]. 

'A' 'B' 'Cin' 
'AND1 
Fault' 

 
'XOR1 
Fault' 

'XOR1 
Haz' 

'XOR2 
Fault' 

'XOR2 
Haz' 

'S' 'Cout' 'S_conf' 
'Cout_
conf' 

Overall 
Confidence 

0 1 0 1 

… 

1 1 0 1 Inf 0 0.975 1 0.975 

0 1 0 1 0 1 1 1 Inf 0 1 1 0.985 

0 1 0 1 0 1 0 1 Inf 0 0.99963 1 0.9999 

0 1 0 1 1 0 0 1 Inf 0 0.99975 1 0.9999 
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can examine the real system, starting at XOR1 and XOR2, since these are the components 

at the top of the list of failures, having both experienced faults. In fact, in this case they are 

the only two components of the full-adder system that can fail in a way to generate the 

output [Inf, 0] from the input [0,1,0]. If we were to run the script specifying the 

wildcard input ([]) and a different output (for example, [Inf, 1]), different results would 

be returned, again with the most likely scenarios at the top of the list.  

Automatic detection  

As discussed in Section 2.6.1, the system could have the capability to automatically 

detect anomalies as well as diagnose them. In this case, the real system output would be 

sent to the findAnoms script as the symptoms parameter in much the same way as for 

manual detection. However, when the empty-set is found, this indicates that for no input 

in the catalog will the given output be valid. In other words, no nominal system input maps 

to the provided system output. Since the simulated output does not match the provided 

real-system output, this indicates an anomaly is present. Furthermore, it can be reasoned 

that the system output which does not match the simulated result for the given input is 

anomalous. In this case, the script would continue execution using this detected anomaly 

as a symptom and report results as described above and shown in Table 2.5. Further 

interpretation of the results will be discussed in Chapter 3.  

2.8. Multiple Anomalies 

In any engineering system, there is a chance that more than one component could 

experience an anomaly simultaneously. Fortunately in the general case we can assume that 

all components fail independently [7], so the total likelihood of the scenario is a simple 

product of the two (or more) anomaly likelihoods. However, there are two separate cases 

that the MBR system considers: the case of two (or more) anomalies occurring along one 

datapath, which only affects a single system output; and two (or more) anomalies 

occurring in distinct, independent parts of the system (overall likelihood). In the first case, 

when two or more anomalies occur on the same path to the output, the corresponding 

confidences are simply multiplied together to calculate the anomaly likelihood associated 
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with that output. For example, if both XOR gates in the full-adder (Figure 2.6) experience 

an anomaly, the two likelihoods are combined and the likelihood output associated with 

the ‘S’ bit will assume the product of likelihoods for each gate.  

The second scenario occurs when two anomalous components are not on the same 

datapath. For example, if XOR2 and AND2 are both faulted the likelihoods will not be 

multiplied together since they are not on the same path to the output. Instead, each 

output whose value is influenced by the anomalous component will report a faulted state 

with its associated likelihood. Then, the anomalous component likelihoods are multiplied 

together to give an overall likelihood for the current state. This overall likelihood is 

calculated for both the inline and independent multiple anomaly scenarios. However, in 

the first case the overall likelihood value will match the system output’s likelihood while in 

the second case it will be different.  

This is a subtle difference: the former scenario will calculate the product of the 

likelihoods if the failed components are in series along the datapath; the latter likelihood 

accounts for all anomalies everywhere in the system and reports the overall likelihood for 

the given anomalous state. In other words, the anomaly management system will generate 

and categorize the overall likelihood of a given state as well as the likelihood that each 

system output is valid.  

If a system contains components whose anomaly likelihoods are dependent on each 

other, the behavior of the simulation would have to be modified to account for the more 

complex calculations. This scenario, however, is beyond the scope of this research and has 

been left as future work.  

2.9. Meaning of likelihoods 

Thus far, the meaning of the likelihoods or confidences associated with each anomaly 

has been deliberately left abstract. It is tempting to refer to these numbers as 

“probabilities,” but doing so implies that there exists experimental knowledge in order to 

precisely calculate these numbers. In the case of this research, “likelihood” is the 

“probability” of an anomaly occurring; “confidence” is the “probability” of the component 
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behaving nominally (it is not experiencing an anomaly). The two terms are inverses of each 

other: the likelihood is just one minus the confidence value.  

Although the anomaly management system does not disallow using them as such, it has 

been developed with an alternative approach in mind. Instead of necessitating the use of 

precise numbers for the chance of an anomaly occurring, the designer can assign relative 

“ranks” to each anomaly and assign likelihood numbers based on the ranking. This relies on 

the designer to have some prior experience with the system and its components, but does 

not require extensive, time-consuming experiments to calculate the actual rates of failure.  

For example, if there is a simple system that has three components which can be 

affected by anomalies A, B, and C, we can assign values based on the system designers’ 

experience. Based their observations, they may observe that Anomaly A occurs much more 

frequently than Anomaly B, but Anomaly C occurs just a little less frequently than Anomaly 

B. Then, the confidences could be assigned as follows (on an interval from 0.0 to 1.0):  

 Anomaly A: 0.60 

 Anomaly B: 0.80 

 Anomaly C: 0.85 

Recall from section 2.4 that a confidence closer to 0 means that the output has a lower 

chance of being valid; therefore Anomaly A is the most likely to occur. As described above, 

these anomaly confidences are interpreted as a relative number, and should not be 

interpreted as “Component A does not fail 6 out of 10 times the system is executed.” It 

should be read as “Anomaly A has been observed much more frequently than Anomaly B; 

Anomaly C occurs the least frequently, and only slightly less often than Anomaly B.” In this 

way, experienced users can build in more meaning than precise probabilities would have 

without the need to derive these probabilities for each individual component. The same 

methodology would then be applied to the other anomaly components in the system.  

When using the confidences as described, the calculation for multiple anomalies 

changes slightly. In classical probability theory, the probability of two independent events 

occurring simultaneously is the product of the two events occurring separately. However, 
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since the system uses confidence values associated with anomalies (closer to 0 is more 

likely) rather than probabilistic likelihood values (closer to 0 is less likely to occur), the 

formula is inverted. For example, using the above confidence values the anomalies A and B 

multiplied together give 0.48. This would imply that the likelihood of two anomalies 

occurring would be much more likely than either one occurring independently which is 

intuitively incorrect: a single anomaly should always have a higher likelihood than multiple 

anomalies occurring simultaneously. Therefore, when we combine the confidence values 

we must multiply their inverses together to give a final answer. The equation in this case 

becomes:  

 

  1  (1   )(1   )  

  1   0 4  0 2  

  0  2 

(2) 

 

Thus, the likelihood of both A and B occurring at the same time is much less likely than any 

of the three example anomalies occurring independently. In other words, we are 92% 

confident that the output will be valid; there is an 8% likelihood that two anomalies will 

occur.   

2.10. Chapter Summary 

The new enhanced MBR system demonstrated in this chapter is a logical extension of 

previously created model-based reasoning systems and can be easily be added to 

supplement existing system models. Confidence values have been added to each anomaly 

in each component in order to generate a catalog of ranked anomalies to aid in the 

diagnosis phase when anomalies are detected. The MBR system has been designed to 

generate the Anomaly Catalog (a potentially time-consuming process) prior to the 

operational phase of an engineering system. The Catalog then serves as a lookup table to 

be utilized by operators and technicians after an anomaly has been detected. The anomaly 

ranking system allows more likely scenarios to be examined first, thus accelerating the 

diagnosis and resolution process to correct the anomaly in a timely manner. The model-



36 
 

based simulation and the resulting catalog can be seen as a hybrid MBR-experiential 

approach meant to leverage the best parts of each methodology: the structured approach 

of MBR, combined with the rapid execution of an experiential rule-based system.  
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3. Applications and Results 

This chapter describes the application of this research starting with the full-adder 

circuit, then demonstrating the system applied a more complex system utilized by Santa 

Clara University’s Robotics Systems Lab (RSL) in its satellite operations program. First, the 

results of validation testing the full-adder system will be presented. Next, the design and 

implementation of the enhanced MBR system as applied to the Beacon Network system 

will be introduced, followed by the results of experimental tests on the system. 

3.1. Full-Adder Results 

As detailed in the previous chapter, the full-adder circuit was used to initially validate 

the new model-based reasoning system. Each logic gate of the circuit was supplemented 

with an anomaly input which determined the anomalous condition of the component and 

its apparent likelihood of occurring. When the simulation completes, the output is the 

Anomaly Catalog as described in the previous chapter. A sample of the Catalog generated 

by the full-adder simulation has been reproduced in Table 3.1, while a more verbose 

version appears in Appendix A .  

In addition to an anomaly confidence value for each output, each state in the Catalog 

also has an associated “overall confidence” value which numerically represents the 

likelihood of the given state occurring in the system based on all of the anomaly confidence 

values in the model. As before, the confidence is on the interval [0, 1] and conveys how 

Table 3.1: A small section of the catalog generated by the anomaly management system. The catalog shows the 
configuration of each anomaly in the system, with each row corresponding to a unique permutation. A more 
extensive excerpt can be found in Appendix A  

System 
Inputs 

Anomaly Inputs  
(0 indicates anomaly present) 

Outputs 
(NaN/Inf indicates anomaly 

detected) 

A B Cin 
XOR1-
fault 

XOR1-
hazard 

XOR2-
fault 

XOR2-
hazard 

… 

OR1-
hazard S Cout S conf Cout conf 

Overall 
Conf 

1 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 0 1 1 1 1 

1 1 1 0 1 1 1 1 NaN 1 0.99 0.99 0.99 

1 1 1 1 0 1 1 1 Inf 1 0.985 0.985 0.985 
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likely the component’s behavior will be valid. That is, a number closer to 1.0 means that 

the anomaly is less likely to occur and should be considered the least likely candidate when 

moving on to the resolution phase. A confidence value of exactly 1.0 represents the 

nominal output for states where no anomalies are present.  

3.1.1. Improving simulation time 

As mentioned in the previous chapter, a novel technique of simulation was utilized 

which decreased simulation time by a factor of nearly 50 from the previous iteration of this 

research, reducing the execution time of a simulation involving 200 components from 

approximately eight minutes to less than ten seconds. In the case of the full-adder system 

with just five components, the entire simulation process for two simultaneous anomalies 

finishes in less than five seconds. Simulating three simultaneous anomalies takes less than 

ten seconds. The catalog generated for each of these scenarios is 448 and 1408 rows, 

respectively. The lookup time to analyze the catalog to determine which components could 

have caused the observed output is less than a second, where the previous technique 

needs several minutes to evaluate the same system with two anomalies. This accelerated 

simulation speed allows for more frequent and deeper analysis of a given system.  

The more complicated system with 200 components modeled generates 30,000 

permutations, and the simulation time for two anomalies is close to 10 minutes. Simulating 

three simultaneous anomalies yields almost 3 million permutations which required 

approximately 83 minutes. Searching and filtering the catalog is again inconsequential – 

looking up values in a table is several orders of magnitude faster than executing the full 

simulation. For comparison, the previous iteration of this research required multiple days 

to simulate three anomalies for a similar system.  

3.1.2. Analysis results 

After running the simulation, there are several results that are output as variables in 

the Matlab workspace for later analysis. The primary computational output is the catalog 

described previously. It is created as both a raw Matlab matrix variable (for use in 

scripting/analysis operations), as well as an operator-friendly version which includes 
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column headers and component names. Once the catalog is generated, the findAnoms 

script can be executed using the catalog as a parameter. As described in Section 2.7.5, the 

script will return a sorted subset of data from the catalog, and also print human-readable 

information (shown in Figure 3.1) to inform the user of the most likely anomalies that 

created the observed output. The technician or operator can then utilize this list as part of 

the resolution phase in order to bring the faulted system back to a nominal state. 

The results shown in Figure 3.1 were created by the findAnoms script after the catalog 

was generated by the full-adder model simulation, which was configured to simulate two 

simultaneous anomalies. The simulation and script took less than a second to execute. In 

this case, the script is looking for all anomalies in the system which could have caused the 

output [1, NaN]: i.e. the sum bit is a valid ‘1’ while the observed carry-out bit is 

inconsistent with the simulation’s output for the given input. The results are further 

filtered by the parameter specifying the system input as [1, 0, 0], which refers to the A, 

B, and C inputs taking on the respective values. The full command is 

findAnoms([1, 0, 0], yout, [1, nan]). Looking at the results, we see that the ‘OR1’ gate 

0.9500: 'full_adder/OR1Haz' 

0.9500: 'full_adder/OR1Fault', 'full_adder/OR1Haz' 

0.9550: 'full_adder/AND2Fault' 

0.9600: 'full_adder/AND2Haz' 

0.9600: 'full_adder/AND2Fault', 'full_adder/AND2Haz' 

0.9650: 'full_adder/AND1Fault' 

0.9700: 'full_adder/AND1Haz' 

0.9700: 'full_adder/AND1Fault', 'full_adder/AND1Haz' 

0.9984: 'full_adder/AND1Fault', 'full_adder/AND2Fault' 

0.9986: 'full_adder/AND1Fault', 'full_adder/AND2Haz' 

0.9987: 'full_adder/AND1Haz', 'full_adder/AND2Fault' 

0.9988: 'full_adder/AND1Haz', 'full_adder/AND2Haz' 

0.9999: 'full_adder/AND2Fault', 'full_adder/OR1Haz' 

0.9999: 'full_adder/AND2Haz', 'full_adder/OR1Haz' 

0.9999: 'full_adder/AND1Fault', 'full_adder/OR1Haz' 

1.0000: 'full_adder/AND1Haz', 'full_adder/OR1Haz' 

Figure 3.1: Sample output after running the anomaly diagnosis script for the full-adder circuit. The output after 
running findAnoms([1 0 0], yout, [1, nan]); which is showing all anomalies that, when active, 
produced the output *1, NaN+. This output reflects the observation of the Sum output having a valid output of ‘1’, 
while the Carry output is faulted. The results show each anomalous component with its full model path. The full-
adder is a flat model, so every block is on the top level in this case. More complex models would show the full path 
of the component in order to easily locate it within the system. The confidence values are sorted in order to assist 
the operator in diagnosis/resolution. Note that the value of ‘1.000’ is a result of Matlab rounding 0.99999 to 1.0. 
Safe to say, these scenarios are very unlikely to occur according to the model. 
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with a hazardous condition is reported first as the most likely candidate to have failed. The 

next row implies that ‘OR1’ with both a hazard and simultaneous fault condition is the next 

most likely candidate. However, this is intuitively much less likely to occur and therefore 

should have a confidence value closer to 1.0. In this case, this row can safely be ignored – 

the system does not currently account for simultaneous anomalies within the same 

component. In cases where this occurs, the hazard confidence value overwrites the fault 

value and this propagates through the system. This behavior could be changed in future 

iterations of this research. Note that this also occurs for the AND1 and AND2 gates.  

3.1.3. Querying with wildcards 

In many cases, the operator may wish to identify all components that could have 

caused any anomalous output using any system input. For example, if the symptoms 

observed are that the Sum bit was ‘1’, and the Carry bit was anomalous, this can be 

specified using ‘-1’ as in [1, -1]. This has the advantage of finding both hazards and faults 

in the output. The specified input can also be specified as a wildcard by specifying an 

empty-set as []. Providing these parameters to the findAnoms script, the command 

becomes findAnoms([], yout, [1 -1]). However, specifying a wildcard input 

parameter has the disadvantage that many more results are returned, some of which are 

duplicate scenarios where only the system inputs (configurations) are different12. The 

                                                      
12

 These duplicates have been left as-is to allow for future flexibility in interpretation and analysis of the 
results. 

>> [res anom] = findAnoms([], yout, [1,-1]); 

0.9450: [1,1,1] 'full_adder/OR1Fault 

0.9500: [1,1,1] 'full_adder/OR1Haz 

0.9550: [1,1,1] 'full_adder/AND2Fault 

0.9600: [1,1,1] 'full_adder/AND2Haz 

0.9650: [0,0,1] 'full_adder/AND1Fault 

0.9700: [0,0,1] 'full_adder/AND1Haz 

Elapsed time: 0.042242 

Figure 3.2: Sample output with wildcards. The output after running findAnoms([], yout, [1, -1]); 
which is showing all anomalies that, when active, produced an anomaly on the carry-bit output. This list has had 
duplicates removed; the full list would show every input that would produce the output with a sum-bit of ‘1’ and an 
anomlous carry-bit.  
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results are shown in Figure 3.2. It can be seen that the anomalous components in this list 

match the results shown in the previous figure, as they should: the components that could 

have caused an anomaly on the carry-bit output are AND1, AND2, and OR1. Note that 

although XOR1 does influence the carry-bit output, if it was anomalous the sum-bit would 

also show a symptom. Since the sum-bit was specified as being a valid ‘1’, the system has 

correctly diagnosed that XOR1 and XOR2 cannot be in an anomalous condition. Therefore, 

any of the three components could have been in a faulted or hazardous state to cause the 

observed symptoms. 

These initial results for simulating the full-adder proved that the system was effective 

at a small-system scale. The next step was to apply the enhanced MBR techniques to a 

larger, more complex system to test the validity and ease-of-use of the anomaly 

management engine in a real system.  

3.2. The Beacon Network  

Until this section, we have been discussing the theoretical application of model-based 

reasoning to the ideal full-adder system as a proof-of-concept. That is, we haven’t applied 

MBR to a real engineering system. For demonstration purposes, we will look at how this 

anomaly management system can be applied to SCU’s satellite beacon monitoring network 

operated by the RSL. This and subsequent sections will introduce the architecture of the 

beacon network and show its Matlab/Simulink implementation. Next, a simulated-anomaly 

experiment will be presented. Finally, the results of applying the anomaly management 

system to the beacon network and using it to diagnose anomalous behavior will be 

 

Figure 3.3: Beacon monitoring concept diagram. The satellite orbiting the earth broadcasts its 
health status to one of several groundstations, which forwards the data to mission control [14]. 
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discussed.  

3.2.1. Network architecture 

The beacon network exists in order to assist with the operation and maintenance of 

small satellites orbiting the Earth by providing a periodic summary of the satellite’s health. 

The network is a set of computers distributed around the country, each of which is 

connected to an antenna and radio along with several other supporting components. Each 

beacon node is a receive-only station which receives the radio packet that is transmitted by 

the satellite being observed. This message follows the AX.25 packet protocol (detailed in 

[8]) and is decoded by a TNC (terminal node controller) which sends the short message via 

serial cable to the computer. The protocol represents binary data as ASCII-encoded text so 

it can be parsed and translated by a human operator viewing the terminal if necessary. An 

example of the message from the O/OREOS nanosatellite is as follows [9]:  

 

 OOREOS.org    6307260093011D021F6A0219029992B4010D5F094300204B46  

 

After the computer receives the data from the radio, it then forwards the message over 

a secure Internet connection to the central beacon monitoring system, physically located at 

SCU [9]. This dataflow is shown for a single node in Figure 3.4. While there are several 

other software components that must be running on the associated computers, the details 

of the software operation are out of the scope of this research.  

3.2.2. Motivations 

The beacon network automates many of the mundane but necessary tasks that are 

crucial to maintaining nominal operation of satellite. The network monitors data such as 

temperature, battery voltage, and solar panel currents and has the ability to send 

automated emails if any of these parameters are out of range as described in [9].While this 

is a very useful tool during the operational phase of a satellite, the network is not without 

its issues. Each computer station currently requires manual setup and a constant and stable 

connection to the central computer located at SCU. This secure internet connection (SSH 
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tunnel) is terminated if any part of the network’s route is compromised. Furthermore, the 

computers require monitoring software to run constantly in the background in order to 

receive, log, and forward data packets. Unfortunately, this means that there are many 

points of failure at each beacon node. One of the primary motivations for this research is to 

develop a tool which can assist in the diagnosis of the beacon network system to maintain 

a functional system semi-autonomously.  

A major factor in determining the status of a particular station is the state of the 

satellite being monitored since many things could influence the successful reception of a 

data packet. For example, the radio may have been automatically turned off to conserve 

power, the vehicle may be spinning in such a way that its antenna is not pointed towards 

the earth, or a more serious anomaly may have occurred causing the entire system to fail. 

Although there may be no anomalies in the groundstation itself, the state of the satellite 

plays an important role in detecting faults in the system and is therefore included in the 

model. A simple block diagram of a satellite is shown in Figure 3.5.  

 

Figure 3.4: A simplified block diagram of the beacon network.This diagram shows the network from 
the perspective of an individual node. The satellite data is forwarded from the station to the central 
monitoring computer via a secure internet channel.  
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The other components of the system include the station’s computer waiting to receive 

the transmission, the radio which is tuned by the computer to the satellite’s Doppler-

shifted frequency, and the Internet networks connecting the remote system to the SCU 

operations computer. All of these pieces must be operational in order to receive data 

packets from the satellite and determine its health. When any component fails or a 

program crashes, the station has entered an anomalous state and will no longer be able to 

relay received packets to the operations computer. Without this data, the health of the 

satellite is unknown and the mission is at risk. Thus the beacon stations play a crucial role 

in monitoring the satellite and must be revived as soon as possible after an anomaly is 

detected.  

3.2.3. Modeling the Beacon Network 

The Simulink model of the beacon network system is shown in Figure 3.6. It consists of 

a block for each high-level component, each of which contains several more internal 

components. The model illustrates the dataflow previously presented: the satellite block 

creates a data packet which is received by the beacon station at SCU or one of the stations 

at collaborating universities around the country (Baylor University, Worcester Polytechnic 

Institute [WPI], and St. Luis University [SLU]). When the data is received by one or more 

stations, it is forwarded via the Internet to the primary operations console at SCU. In 

nominal operation, this console is running software which parses the packet and inserts it 

into a database of all received packets. The Matlab scripts which parse the packet also do 

rudimentary bounds checking of important parameters such as battery voltage and 

 
Figure 3.5: A very simple block diagram of a satellite.  
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temperature [9]. This is an example of an expert system as described in Chapter 1 – there is 

a set of rules that the script checks in order to determine if the satellite is in an anomalous 

or dangerous state, which has been determined by expert operators and/or designers of 

the system. While this is a very helpful diagnostic tool during operations, it only can 

accommodate a limited set of rules, and only diagnoses potential issues with the 

spacecraft. The advantage of using a model-based approach is that previously unseen 

anomalies could be detected and presented as possibilities in order to diagnose observed 

output.  

At a system level, the beacon network model has a single input and a single output 

representing the packet received by the each station. Each block in the diagram is a 

different subsystem and contains its own components, each of which must be working and 

configured correctly for the system to be operational. Inside each ‘Bcn…’ block (seen in 

Figure 3.7), there is an antenna (which must be pointed correctly), a radio pre-amp (which 

must be enabled), the radio itself (which must be powered and tracking the satellite’s 

frequency), the TNC (which must be configured correctly), and the computer (which must 

be running the correct software). Of course, all of this equipment must also be connected 

to a reliable power source. In order for the station to be fully operational, each of these 

must be configured and functional.  

3.2.4. Subsystems 

Each subsystem of the beacon network has several configuration options. The radio, for 

example, must be tuned to the correct frequency in order to receive the signal. The target 

frequency is constantly changing due to the Doppler shift effect from the satellite, and so 

must be calculated on-the-fly by the connected computer. However, since the calculation is 

dependent on time, if the computer’s clock has drifted by a few seconds the radio might 

receive an attenuated signal (or no signal at all) because it has been set to an incorrect 

frequency. All of these configurations are accounted for by the model, and each is a 

potential point of failure to consider.  

One of the strengths of using model-based reasoning is that each component has its 

own behavior functions built-in. That is, each component handles its own functionality and 
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determines what happens for each anomalous case. Using the model of the satellite as an 

example, if the satellite’s battery is under-charged it may lead to a known anomalous 

behavior that can be integrated into the components’ behavior for more accurate 

predictions regarding its state. This is also a major advantage of using a graphical 

environment such as Simulink: while representing a basic overview of the model at the 

highest level, it allows the user to make the model as intricate as he or she wants in order 

to make the model as accurate as possible by modifying only the relevant parts while the 

rest remains unchanged.  

3.3. Testing the Model 

Once the model for the beacon network was constructed it needed to be validated 

against the actual beacon network. In order to do this, an experiment was performed in 

which an anomaly was deliberately injected into the system in order to observe its real-life 

behavior. Prior to this, the anomaly management simulation was executed in order to 

generate a table of possible results with predicted confidences. In this case, the model was 

configured to generate results for a single anomaly. After the simulation completed, the 

catalog of anomalous states was consulted to determine the most likely scenario which 

caused the observed output. These results were then used to diagnose the actual system in 

order to resolve the injected anomaly.  

3.3.1. The O/OREOS experiment  

The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite was 

launched in 2010 after being designed at the NASA Ames research center located in 

Mountain View, California. Day-to-day operation of the satellite was performed by SCU 

graduate students interested in the project. The groundstation itself, consisting of 

redundant 3-meter (10 feet) diameter satellite dishes on pan/tilt units and a dual Yagi 

UHF/VHF receiving antenna, is located on the roof of SCU’s engineering building. In order 

to test and validate associated receiving components of the groundstation, a benchtop unit 

was developed alongside the satellite. This unit is an identical copy of the orbiting satellite 

with only its experimental payload omitted. Thus it could be utilized to test and verify that 



48 
 

the SCU segment of the beacon network was fully functional even when the satellite is not 

overhead. It also provides a convenient means to realistically test this anomaly 

management system. 

3.3.2. Experiment results 

The validation experiment setup consisted of the aforementioned benchtop satellite 

system operating alongside the Beacon Network node at SCU. Before running the 

experiment, it was first established that the beacon network system was correctly receiving 

packets and observed the correct output in the form of the beacon data being displayed 

and parsed on the central receiving computer at 30-second intervals. This established that 

the entire node system from the antenna to the radio to the computer network was 

functioning correctly. In Figure 3.6, this corresponds with the topmost segment containing 

the ‘BcnSCU’ block. The other stations were assumed to be operational for this experiment, 

 

Figure 3.7: The Simulink model of a single beacon node.This model shows how the beacon data flows from 
reception by the antenna to output from the computer to the central network.  
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as they were too far away to receive a packet from the benchtop satellite unit. However, 

they were assumed to be operational in the diagnosis phase of the experiment. 

To test the system, the Ethernet cable connecting the beacon node computer to the 

Internet was unplugged, simulating a network failure anomaly at the station location. As 

expected, the groundstation did not receive any packets for the duration of the 

experiment. This corresponds with the simulation outputting no data from the SCU node, 

symbolized by ‘NaN’ output. The system output in the case of this model is a numeral 

representing the satellites data packet flowing through the components in the network. 

For simplicity, in these tests the number 761 was arbitrarily chosen to represent the 

packet. The output of the system is this number in the nominal case, and either ‘NaN’ or 

‘Inf’ in the off-nominal case. Since each station transmits the message back to the central 

computer station, the outputs of the system can be represented by a vector containing the 

data13 from the four stations: [SCU, Baylor, WPI, SLU]. Given this definition, the 

observed output of the system when the SCU station is not receiving packets is given as 

[Nan, 761, 761, 761].  

In the diagnosis phase we can provide these observed symptoms as the input to the 

findAnoms script (introduced in Section 2.6). The script returns the filtered data from the 

Catalog shown in Figure 3.8. As can be seen, all components that could have failed are 

associated with the SCU branch of the beacon network model (Figure 3.6). Intuitively this 

makes sense: we know that data is being received correctly from the other stations so we 

can conclude that the satellite is operating nominally. Based on the results returned in 

Figure 3.8, we can conclude that the most likely scenario is that an anomaly has occurred in 

the radio component in the SCU Beacon Station. As part of the resolution phase the 

operator would then check each of the possibilities listed in order. The first anomaly to 

check, DopplerMC refers to the configuration of the Doppler-shift calculation component in 

the beacon-station radio subsystem. The fact that it is listed first (and has the lowest 

confidence value) implies that it is the most likely to fail, and therefore should be the first 

                                                      
13

 This data usually is gathered over multiple orbits. In this case, the parameter can represent the latest data 
from each station.  
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thing checked. In this case, the configuration is verified by logging onto the station 

computer via Microsoft’s Remote Desktop client, which connects over the network to the 

station’s computer. However, when the operator tried to connect as part of the 

experiment, the connection failed due to the network anomaly that disconnected the 

station from the internet. Since no remote connection was possible, the diagnosis of a 

network failure became the leading failure candidate needing resolution. Upon physical 

examination of the components in the station, the unplugged network cable was noticed 

and plugged back in. Thus, the anomaly was correctly diagnosed and resolved, even though 

the system initially reported a configuration anomaly regarding the Doppler-shift 

calculation was the most likely candidate. After the station was brought back online, it was 

verified that the central receiving station was now receiving packets from the SCU station, 

effectively resolving the anomaly.  

3.3.3. Observation points 

In previous research presented in [9], the notion of “Observation Points” was used in 

order to narrow down the results further. These meta-components could be inserted at 

strategic points in the model to indicate where data was valid based on human 

observation. For example, an observation point could be enabled at the output of the radio 

>> [res anom] = findAnoms([], yout, [-1, 761 761 761]); 

0.6550: 'beacon_new/BcnSCU/DopplerMC/FlagMC 

0.7330: 'beacon_new/BcnSCU/PowerMC/FlagMC 

0.9430: 'beacon_new/BcnSCU/AnomGeneratorRadio/FlagHaz 

0.9500: 'beacon_new/BcnSCU/AnomGeneratorPreamp/FlagHaz 

0.9560: 'beacon_new/BcnSCU/AnomGeneratorRadio/FlagFault 

0.9800: 'beacon_new/BcnSCU/AnomGeneratorPreamp/FlagFault 

0.9850: 'beacon_new/SCUNetwork/FlagFaultNet 

0.9893: 'beacon_new/BcnSCU/AnomGeneratorComputer/FlagHaz 

0.9920: 'beacon_new/BcnSCU/AnomGeneratorComputer/FlagFault 

0.9930: 'beacon_new/SCUNetwork/FlagHazNet 

0.9975: 'beacon_new/BcnSCU/AnomGeneratorAntenna/FlagHaz 

0.9996: 'beacon_new/BcnSCU/AnomGeneratorAntenna/FlagFault 

1.0000: 'beacon_new/BcnSCU/AnomGeneratorTNC/FlagFault 

1.0000: 'beacon_new/BcnSCU/AnomGeneratorTNC/FlagHaz 

Elapsed time: 0.007237 

Figure 3.8: Results of filtering the Beacon Network anomaly catalog.This figure shows the results of 
running the findAnoms() script on the output of the Beacon Network simulation.  
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to indicate that the data packet was received correctly from the satellite, ground antenna, 

and radio, but was interrupted between the computer and central receiving station. This 

narrows the scope of where anomalies could occur to the station network component 

between the station computer and the SCU network (see Figure 3.6). In the current 

iteration of this research, observation points could be implemented easily by adding 

system outputs at the points to be observed, and then the filtering script findAnoms would 

be called specifying the state of the data at each observation point. However, these points 

are really just system outputs in disguise. If an operator or technician deems it necessary to 

observe the data along the way, this can be implemented as intermediate system outputs. 

Thus it can be easier to determine the state of the system at a given point rather than just 

looking at the final output data.  

3.4. Modeling limitations 

During the development of the models for this research, several minor drawbacks of 

using Simulink/Matlab were discovered. This brief section explains two of the issues found 

and their workarounds.  

3.4.1. Feedback loops in certain simulation modes 

The first constraint of using Simulink to build the model-based system is seen when one 

component provides inputs or feedback to a previous (upstream) component. While this 

situation is very common for simulating motion control systems that rely on feedback, 

Simulink does not allow feedback for certain simulation solvers, including the “fixed-step 

discrete” mode being utilized for the anomaly management system. This means that if the 

system in question contains a component with an output port that provides the input to an 

upstream component, the simulation will not run, and an error will be thrown. This kind of 

loop occurs in each node of the beacon network at the point where the computer provides 

the radio with the Doppler-shifted frequency to receive data as indicated by the red dashed 

line in Figure 3.9. However, the computer also receives data from the radio via the TNC. 

This creates a loop in the model which is unsolvable without knowing information about 

the previous state. Since each state is discrete and independent, each block must be 
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executed before proceeding to evaluate the next block. Although initially this seems like a 

severe limitation, the solution is relatively simple: the computer can be logically separated 

in the model into two components (behaviors). The first component represents the 

handling of the data from the TNC/radio, while the second handles the configuration of any 

upstream components (i.e. the radio).  

The model shown in Figure 3.9 demonstrates this logical separation of behaviors. The 

configuration component of the computer has been separated from the operational 

behavior logic and is symbolized by a configuration anomaly block (labeled DopplerMC) 

indicating whether the component’s configuration is in a valid or invalid state. In a more 

detailed model, these configuration blocks could become entire components with more 

complex behavior to determine the desired configuration, such as the time-dependent 

Doppler-shifted frequency, or the component might represent the software that is 

calculating the frequency. Even though they are part of the same physical component, the 

logical separation would still hold because ultimately the goal is to model the behavior of 

the system, not necessarily its physical layout and connections.  

3.4.2. Performance inconsistencies 

Another limitation of using Simulink/Matlab as a simulation platform is due to its 

nature as an interpreted language. The Simulink modeling software was chosen because it 

 

Figure 3.9: Solving the loopback issue in each beacon station.The problematic loop is shown as a red dashed line. 
Instead of the computer controlling the frequency input to the radio as in the actual system, the frequency configuration 
is logically split from the computer. This solves the problem by splitting the configuration and operational logic into two 
discrete blocks. The careful reader will also observe the same technique has been utilized for the connection of the 
Radio [PreampEn] and the Preamp components.  
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is intuitive and easy to use for new users of the anomaly management framework who 

would likely have previous Matlab experience. However, since the simulation is executed 

inside the Matlab environment, there are a lot of behind the scenes processes that the user 

does not have control over and can lead to the simulation time varying unpredictably. For 

example, simply having the “Variable Editor” window open to observe Matlab variables as 

the simulation executes can lead to an order of magnitude increase in computation time. 

One simulation ran in approximately 30 seconds normally, but increased 2000% to 

approximately 10 minutes with the variable window open. Performance issues like this can 

be hard to track down and eliminate, especially when they involve features that are 

sometimes seen as fundamental to the operation of the application. Furthermore, since 

Simulink runs in a virtual machine environment on top of the Windows operating system, 

there are restrictions that may not be obvious regarding allocated RAM and CPU resources. 

However, the benefits of using an easy-to-understand graphical interface outweigh most 

performance disadvantages. Furthermore, the system has been structured in such a way as 

to eliminate the necessity of very fast simulation speed. 

3.5. Chapter summary 

This chapter first discussed the application of the enhanced anomaly management 

system to the full-adder and showed how to interpret the simulation results in order to 

provide meaningful information to the operators of the system. Next, the Beacon Network 

was introduced as a demonstration of how to apply the MBR system to a more complex, 

real-life system. An experiment was then performed on the beacon network in order to 

validate the results of the simulation. Finally, several limitations of the system imposed by 

the Matlab environment were discussed.  



54 
 

4. Conclusion 

In this research program we have explored an enhancement to classic model-based 

reasoning diagnosis systems. The primary enhancement is to use a model to systematically 

generate a complete anomaly catalog computed prior to system operation, thereby 

reducing the operation-time analysis to simply querying the catalog for anomaly scenarios 

consistent with the system’s configuration and identified symptoms. Contributions to this 

effort include re-architecting the manner in which anomaly permutations are executed as 

well as the manner in which models are established and integrated. Another enhancement 

involves the introduction of a confidence rating capability that can be used to sort 

diagnosis conjectures in order to focus operator attention on the most probable anomaly 

scenarios once troubleshooting commences. The technique was demonstrated using a full-

adder model as a simple proof-of-concept and then applied to the more complex SCU 

beacon network. The system was designed to be easy to use, easily extensible, and flexible 

enough to be applied to other complex systems in the future without extensive knowledge 

of how model-based reasoning systems are implemented. Furthermore, the enhanced 

system provides the benefits of both model-based reasoning and expert systems in order 

to effectively diagnose anomalous behaviors.  

In addition to providing a framework to integrate anomaly likelihoods into a system 

model, the proposed reasoning system enhances the computation time necessary to 

analyze a system model. This allows for a much more thorough understanding of how 

anomalies influence the output since much less time is needed between simulations. The 

building blocks are provided to build an anomaly reasoning system which is easily 

maintainable and delivers results quickly to help keep complex systems operating 

nominally. The utilization of Simulink’s graphical interface allows faster design and iteration 

than would be possible with a purely code-based system, yet is flexible enough to allow for 

complex behavioral processes to be modeled. In this way, a more complete model can be 

developed in order to resolve anomalies in a systematic manner, especially in remote 
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engineering systems. Furthermore, the ranking of anomalies has been shown to make the 

anomaly resolution phase much easier and faster.  

4.1. Future Work 

The MBR approach explored in this research lays the foundation and serves as a proof-

of-concept for future students to apply the technique to other engineering systems. The 

models presented serve as relatively simple examples of how to utilize the anomaly 

management engine, but its robustness and flexibility must be tested by applying the 

technique to other systems. While there may exist some optimizations and improvements, 

the framework that has been established can be utilized in the future with minimal effort 

to directly support complex systems.  

In addition to utilizing the system to model more complex systems, its scalability should 

be tested. While Matlab and Simulink handle models that generate several thousand 

permutations very well, in some cases it was noticed that the simulation time increases 

disproportionately when the number of anomaly permutations reaches around 100,000. 

While this is not a major drawback (the simulation results are ideally generated long before 

they are utilized anyway), it is currently unknown if this will be an issue for larger systems. 

There may be techniques to optimize the simulation speed in Simulink, but again, since the 

simulation is meant to be executed in the pre-operational phase, the simulation time 

should be of little concern. It has also been observed that simulation times can vary as 

much as 400%, even for simple systems such as the full-adder. This is likely due to 

background work done by Matlab and Simulink prior to the simulation running, or simply 

how the operating system assigns resources to the applications during execution. While 

this is not a major limitation, there may be some optimizations that can be done in order to 

reduce this variance. Furthermore, other tools like parallel computing systems or 

distributed computing platforms could be utilized to enhance the computations.  

Automatic anomaly detection 

This project was implemented with the assumption that there would be a separate 

detection process which would provide an operator with the information needed to query 
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the Catalog for possible diagnoses. Towards the end of the project, it was realized that the 

automatic detection of anomalies could be implemented as an extension to the findAnoms 

script by simply comparing provided system outputs to the simulated outputs stored in the 

Catalog. This would enable the system to be used to automatically detect then diagnose 

anomalies in realtime. Unfortunately, this feature has been left as future work due to time 

constraints.  

With the above enhancement and a few other features, the system could even send 

results outside the Matlab workspace, for example to a relational database such as MySQL. 

Then, coupled with a website frontend, the MBR system could run in the background and 

autonomously detect and report anomalies as they occur. This would enable fully 

autonomous anomaly management and would be the ultimate form of this work.  

Overcoming technique limitations 

An inherent drawback of the current approach is that the system is defined by only the 

component behaviors and connections between them. That is, we analyze possible issues 

that occur within defined behaviors, but not unforeseen outside influences or connections. 

For example, an electrical short-circuit is a common fault seen in the field that could be 

caused by moisture intrusion, corrosion, or simply a loose wire. A more subtle unforeseen 

connection could be extreme thermal characteristics of one component influencing 

another, causing the second to exceed its operating specifications and cause undefined 

behavior. In this model-based approach, these kinds of unforeseen connections are not 

able to be analyzed by the system unless explicitly defined in the model.  

Furthermore, by design, this approach focuses on enumerating the behavioral 

complexities defined in the model and systematically evaluating the outputs in a discrete 

variable domain. As future system behaviors are modeled with more complexity, there is 

the possibility of modeling non-linear or chaotic systems. However, analyzing these highly 

state-dependent systems can quickly become very difficult, if not computationally 

infeasible, to evaluate. Future iterations of this project could explore other modeling 

techniques to integrate very complex behaviors and predict unforeseen connections 

between components.  
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Hybrid systems 

Given that there are advantages and disadvantages to every formal reasoning 

approach, whether model-based, experiential, data-driven, or something entirely novel, 

the Robotics Systems Lab at SCU is interested in developing a hybrid system that can 

combine the best parts of each approach to analyze a system from multiple perspectives 

and reveal new insights into anomaly management. This project developed a model-based 

reasoning approach to prioritize possible anomaly categories with the intent of 

accelerating the diagnosis and repair of faulted systems. This approach, combined with 

other reasoning approaches, would make a very powerful comprehensive tool for the 

diagnosis and repair of complex mechatronic systems.  

4.2. Current Utilization 

At the time of this writing, the model-based reasoning system discussed in this paper is 

already being put to use by students in the RSL, using a remotely controlled vehicle built 

specifically for testing anomaly management approaches. The system consists of a three-

wheeled triangular robot with an onboard microcontroller, radio transceiver, and physical 

toggle switches to simulate anomalies. It is controlled by a joystick attached to a computer 

which then transmits commands to the robot via the radio transceiver pair. There is also a 

redundant motor driver that can be activated to resolve anomalies autonomously after one 

is manually simulated and automatically detected. Then, using the enhanced MBR system, 

the operator can consult the ranked list of possible anomalies to determine the point of 

failure in the robot. After an initial learning curve, the anomaly management framework 

was used to build the model of the robotic system. The entire system is still a work in 

progress, but the enhanced MBR framework seems to be functioning as expected. In the 

future, this could be expanded upon to include more automation features and learn how it 

can be best applied to other systems as well.  

4.3. Final Thoughts 

The techniques explored in this paper demonstrate the usefulness of model-based 

reasoning approaches enhanced with individual component failure likelihoods. While this 
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work provides the framework implementing this concept, there is still plenty of room for 

growth and expansion. Furthermore, there is a growing opportunity in many different 

industries for an easy-to-implement anomaly management system. While proprietary, one-

off anomaly management systems are often incorporated into engineering systems such as 

satellites, these systems are often exclusively designed to work with a single system [10]. A 

generalized, model-based approach similar to the work presented in this research would 

enable much more robust and rapid resolution of anomalies as they occur in a system. This 

research is just the starting point; there is still much to be done.  
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 – Supplementary Tables and Diagrams Appendix A 

  

Table A-1: An excerpt from the Catalog of the full-adder model.The first three columns are the typical inputs to the full adder, while the next ten are anomaly permuations 
associated with each anomaly block in the model. The next four columns are the full-adder outputs with associated confidences. Each confidence is on the interval [0,1], with a 
higher number corresponding to a less likely scenario. The last column is the overall confidence of the associated permutation of anomalies.  
 

System 
Inputs Anomaly Inputs Outputs 

A B Cin 
XOR1-
fault 

XOR1-
hazard 

XOR2-
fault 

XOR2-
hazard 

AND1-
fault 

AND1-
hazard 

AND2-
fault 

AND2-
hazard 

OR1-
fault 

OR2-
hazard S Cout S-conf 

Cout-
conf 

Overall-
conf 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

1 1 1 0 1 1 1 1 1 1 1 1 1 NaN 1 0.990 0.990 0.990 

1 1 1 1 0 1 1 1 1 1 1 1 1 Inf 1 0.985 0.985 0.985 

1 1 1 1 1 0 1 1 1 1 1 1 1 NaN 1 0.98 1 0.980 

1 1 1 1 1 1 0 1 1 1 1 1 1 Inf 1 0.975 1 0.975 

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0.970 0.970 

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0.965 0.965 

1 1 1 1 1 1 1 1 1 0 1 1 1 1 NaN 1 0.960 0.960 

1 1 1 1 1 1 1 1 1 1 0 1 1 1 NaN 1 0.955 0.955 

1 1 1 1 1 1 1 1 1 1 1 0 1 1 NaN 1 0.950 0.950 

1 1 1 1 1 1 1 1 1 1 1 1 0 1 Inf 1 0.945 0.945 
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Figure A-1: The full Simulink model of the full-adder circuit.The “From” blocks are used to receive the anomaly input permutations from the corresponding 
“Goto” blocks in the Input Generator block shown in Figure A-2. The likelihoods are set inside the AnomalyGenerator blocks. 
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Figure A-2: The “InputGenerator” subsystem.This block is used to send each permutation (row) of the anomaly input matrix to the corresponding “From” blocks 
attached to the anomaly input blocks. 
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Figure A-3: The Simulink model of the Beacon Network.This figure shows the system-level input and outputs as well as the auxillary components to 
implement the anomaly management system. 
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Figure A-4:The Simulink model representing the O/OREOS satellite as part of the Beacon Network model. 
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 – Code Samples Appendix B 

Snippet 1: The code for an AND gate. The function takes its standard inputs (a,b) and the anomaly structure input 
(anom), then calls doAnsis(), which determines if an anomaly has occurred. This line is common for all blocks; function 
handles to specific behavior are passed in and called by the doAnsis() function. The calcProb() and defaultAction() 
functions can implement any operation in order to make the model more accurate. For example, defaultAction() could 
implement different behaviors for a fault or a hazard coming from the previous components. 
 

  

function y = fcn(a,b,anom) 
%#codegen 

  
y = doAnsis(@defaultAction, @calcProb, anom, a,b); 
gate_name = 'AND'; 

  
end 

  
% Calculate the confidence based on the three values (2 inputs and the 
% fault/hazard value. 
function p = calcProb( anomProb, inputs)  
    p = inputs(1) * inputs(2) * anomProb; 
end 
  

% The nominal case function takes the inputs and returns a Boolean value.  
function f = defaultAction(aIn,bIn)  
    dataIn = [aIn.data, bIn.data]; 
    % Short-circuit if there's an anomaly previously down the line.  
    if any( dataIn == 0 ) 
        f = 0; 
    elseif any(isnan(dataIn)) || any(isinf(dataIn)) 
        f = NaN; 
    else 
        f = double(and(aIn.data,bIn.data)); 
    end 
end 
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function y = doAnsis( fcndefault, fcnprob, anom, varargin ) 
%#codegen 

  
if nargin <= 4  
    fprintf('Incorrect usage! Need 4 or more inputs. '); 
    y = varargin{1}; 
    return; 
end 

  
% preallocate to satisfy the compiler.  
y = varargin{1}; 

  
% An array to hold the index of the varargin that has an anomaly. 
inputAnomIndex = []; 
inputData = []; 
inputAnom = 0; % boolean for if the inputs have an anomaly.  

  
% An anomaly on the anomaly input.  
anomStatus = ~anom.hazard(1) || ~anom.fault(1); 

  
% Preallocate the probabilities array. The size is the size of the varargin 
% array.  
probabilities = ones(1,numel(varargin)); 
% Loop through the inputs and set the probabilities. Also detect if there 
% has been an anomaly on one of the inputs.  
for k = 1:numel(varargin) 
    probabilities(k) = varargin{k}.prob; 
    % append the anomaly index to the anomalies array.  
    if varargin{k}.prob ~= 1 
        inputAnomIndex = [inputAnomIndex k]; 
    end  
    inputData = varargin{k}.data; 
end 

  
% If the inputData array is empty, there is no anomaly on the data inputs.  
if ~isempty(inputAnomIndex)  
    inputAnom = 1; 
end 

Snippet 2: doAnsis.m.This function is called by each component with different function handles passed as arguments, 
centralizing the anomaly detection logic in one function. This enables each block to implement a common interface which 
assists development of the model.  
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[doAnsis.m continued] 

  
% Both anomaly inputs are valid and working correctly (no anomalies) and 
% there are no anomalies on the input lines.  
% Case 1: no anomalies anywhere.  
if ~anomStatus && ~inputAnom  

  
    % Call the "valid" action with all the inputs. 
    y.data = double(fcndefault(varargin{:})); 
    y.prob = 1; 

  
% Case 2: anomaly in block, none in inputs 
elseif anomStatus && ~inputAnom  
    if ~anom.hazard(1) 
        y.data = NaN; 
        y.prob = anom.hazard(2); 
    elseif ~anom.fault(1) 
        y.data = Inf; 
        y.prob = anom.fault(2); 
    end 

     
% Case 3: no anomaly in block, anomaly in inputs. 
elseif ~anomStatus && inputAnom 
    y.data = fcndefault(varargin{:}); 
    y.prob = fcnprob(1,probabilities); 

  
% Case 4: Anomaly in an input and current block.  
elseif anomStatus && inputAnom  
    if ~anom.hazard(1) 
        y.data = NaN; 
        y.prob = fcnprob(anom.hazard(2),probabilities); 
    elseif ~anom.fault(1) 
        y.data = Inf; 
        y.prob = fcnprob(anom.fault(2),probabilities); 
    end 

     
else % should never ever reach here.  
    y.data = 666; 
    y.prob = 123; 
end 

  
end 

 


