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Maxwell J. Giammonab, Thorsteinn Adalsteinssonb, Brian J. McNelisb, and Richard P. Barber, 

Jr.a,*  
aDepartment of Physics, Santa Clara University, Santa Clara, CA 95053  
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Abstract  

Time-dependent measurements of both power conversion efficiency and ultraviolet-visible 

absorption spectroscopy have been observed for solar cell blends containing the polymer  poly(3-

hexylthiophene-2,5-diyl) (P3HT) with two different functionalized C60 electron acceptor 

molecules: commercially available [6,6]-phenyl C61 butyric acid methyl ester (PCBM) or [6,6]-

phenyl C61 butyric acid octadecyl ester (PCBOD) produced in this laboratory.  Efficiency was 

found to decay with an exponential time dependence, while spectroscopic features show 

saturating exponential behavior.  Time constants extracted from both types of measurements 

showed reasonable agreement for samples produced from the same blend.  In comparison to the 

PCBM samples, the stability of the PCBOD blends was significantly enhanced, while both 

absorption and power conversion efficiency were decreased.  
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1. Introduction 

Polymer photovoltaics offer the promise of an inexpensive and mechanically robust alternative to 

established solar cell technologies.  Recent progress has seen the establishment of manufacturing 

approaches [1] and improvement in both power conversion efficiency [2, 3] and stability [4, 5].  

Despite these gains there remain many unanswered questions regarding the composition and 

precise mechanisms that govern the performance of these devices [6].  To date the primary 

research focus has been on improving power conversion efficiency, with significantly less 

attention on characterizing stability and understanding the mechanisms that limit the lifetime of 

these materials [7].  Furthermore, the published work in this field typically does not present 

results from experiments which sample from the large parameter space of materials and device 

preparation.  Publication of the results and discussion of only the systems that simply follow 

empirical recipes for fullerene and polymer ratios and fabrication parameters is insufficient to 

determine the underlying mechanisms that influence device performance.  In order to develop a 

more robust methodology and process for evaluating solar cell composition and fabrication 

parameters as they affect device performance, we present coordinated results from transport and 

optical measurements of samples based on the electron donor Poly(3-hexylthiophene-2,5-diyl) 

(P3HT).  To elucidate the mechanisms that control efficiency and lifetime, we repeat these 

measurements on each sample over time scales of a few hours to weeks while changing only one 

parameter at a time.  This effort is intended to produce a broader and more systematic data set.     

 



Our previous results established a clear link between the time dependence of power conversion 

efficiency from transport measurements and spectral changes from absorption spectroscopy for 

devices based on Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) as 

the electron donor [8].  That work did not examine the actual spectral changes in detail; it 

focused only on the time evolution.  A more recent work validates this coordinated approach in 

order to study the lifetime of organic small-molecule solar cells with the addition of spectral 

analysis and morphological characterization [9].  Our earlier work also corroborated the 

conclusion that the addition of functionalized fullerenes enhances device lifetime [10] and 

indicated an additional improvement by varying the structure of the fullerene.  Specifically, we 

found significant lifetime improvements by using [6,6]-Phenyl C61 butyric acid octadecyl ester 

(PCBOD) in place of the commercially available electron acceptor PCBM.  Fig. 1 compares the 

structure of PCBOD and the commonly used [6,6]-Phenyl C61 butyric acid methyl ester (PCBM).  

However, coupled with this increase in device lifetime is a reduction in power conversion 

efficiency.  In this current study we have extended our coordinated transport and spectroscopic 

approach to the more commonly studied P3HT system.  In addition we discuss the meaning of 

the spectroscopic changes for this system as well as putting our previous MEH-PPV results into 

the same context. 

 

In order to compare both the PCBOD and PCBM systems, we have adopted the molar fraction x 

to describe the relative content of our polymer fullerene blends.   
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with MW denoting the molecular weight of each species and m denoting its mass. Given that the 

degree of polymerization can vary, we use the molar mass of the P3HT monomer.  In this 

description, a mole fraction of x=0.5 would represent a blend which has one C60 molecule per 

P3HT monomer.  The standard widely used in the literature is equal weight concentrations of 

PCBM:P3HT, which corresponds to x = 0.16.  While the equal-weight ratio might serve as a 

simple starting point for initial experiments using new materials, it is at best cumbersome and 

perhaps even nonsensical when we compare fullerene-polymer blends using different fullerenes 

with different molecular weights.  It is well-established that the functionalized fullerene is the 

active component in these additives, and the functionalization increases solubility to improve 

device processing [11].  In previous work [2, 8, 12-16] additional structural changes have been 

made which dramatically change molecular weight.  Our strong opinion is that we should be 

using mole fraction to clearly establish the ratio of fundamental units: fullerene-to-monomer 

units in the polymer.  For our work, we want a direct comparison between the PCBM- and 

PCBOD-based devices that have some systematic link and make sense chemically; therefore we 

use molar fraction.

Important gains in efficiency have been observed using C70-substituted PCBM [2]. However this 

molecule is more than 10% heavier than PCBM.  Although weight ratios can be converted, direct 

comparison would be more straightforward if mole fraction were adopted.   An example of the 



beneficial use of mole fraction appears in models for the crystal structure of these blends that 

clearly depict one fullerene to one monomer [17].  This ratio represents a mole fraction of x=0.5 

within the domains and not the macroscopic value x=0.16 equivalent to the equal-weight recipe.  

The use of mole fraction in that work significantly enhances the clarity of the results.  The 

difference in these values can be understood within the context of recent energy-filtered 

transmission electron microscopy images which have revealed the P3HT-rich and PCBM-rich 

domains within the active layers [18].  This result can accommodate both the crystalline model 

(x=0.5  locally) [17, 19] and other studies of the morphology and diffusion within these samples 

(x=0.16 globally) [6, 20, 21].     

2. Experimental  

Solution processed samples were prepared inside an inert-atmosphere glove box. Indium-tin-

oxide (ITO) pre-coated glass substrates were patterned, cleaned and then spin-coated with 

poly[3,4-ethylenedioxythiophene]:poly[styrenesulfonate] (PEDOT:PSS) and baked at 200 ºC for 

two hours.  The active layer blend of P3HT with either PCBM or PCBOD was then spin cast at 

roughly 1000 rpm from chlorobenzene solutions.  Active-layer solution weight fractions were 

roughly 1.5% for both fullerenes.  We observed that PCBOD-based samples at the same weight 

percent produce optically thinner layers than those with PCBM.  The result is perhaps expected 

given the higher solubility of PCBOD in chlorobenzene.  Using a Varian 980-4020 film 

thickness interferometer, we measured active layer thicknesses of 100-200 nm for the PCBOD 

solutions and 500-1000 nm for the PCBM samples.  These values are consistent with both our 

visual observations and previous experience [22].  PCBM is the electron acceptor widely used in 



polymer photovoltaic measurements and was acquired commercially [23].  PCBOD was 

synthesized in our laboratories from coupling [6,6]-phenyl C61 butyric acid with octadecanol as 

discussed previously [8].  After spin casting, samples were annealed on a hot plate inside the 

glove box for one hour at temperatures between 40 and 340 ºC.  In some cases, samples were not 

annealed prior to further processing.  During our initial experiments it was determined that the 

actual sample temperature during annealing was lower than that of the hot plate surface.  In order 

to correct for this difference, we have calibrated the hot plate/sample system using a 0.25 mm 

type-E thermocouple placed on the sample surface (top surface of the glass) during heating.  We 

found that sample temperatures were roughly 20 ºC lower when the hotplate temperature was 

about 150 ºC and nearly 40 ºC lower at 250 ºC.   Samples that were used for UV-vis 

spectroscopy studies were prepared by the same method, but microscope slides replaced the 

patterned ITO substrates and the samples were ready for measurement after spin-casting the 

active layer and annealing.  Samples to be used for electrical transport characterization were 

transferred to a standard bell-jar evaporator system equipped with a quartz crystal thickness 

monitor where they were finished by evaporating ~1 nm of LiF followed by 100 nm of Al to 

form the top electrodes.  As the evaporator is not integrated into the glove box, samples were 

transferred between the two using a vacuum tight vessel carrying dry nitrogen atmosphere. The 

elapsed time that samples were exposed to ambient air was typically under 5 minutes.  A 

schematic of the transport sample structure is shown in Fig. 1. 

 

Both electrical transport and spectroscopic measurements were conducted in ambient atmosphere 

immediately after completing the sample preparation.  Current-voltage (I-V) transport 

characteristics of the devices were measured alternately in darkness and illuminated by a PV 



Measurements, Inc. Small-Area Class-B Solar Simulator.  Automated transport data collection 

utilized a MATLAB controlled routine via an IEEE 488 Bus interfaced Keithley 2400 

SourceMeter.  UV-vis measurements were performed using a Varian Cary 50 spectrometer.  

Samples were measured over periods of hours or days for both spectroscopic and transport 

experiments.  Illumination was used only during the actual measurements; otherwise the device 

remained in ambient but low light conditions.  The laboratory temperature was controlled at 23-

26 ºC with a relative humidity range of 50-70% (not directly controlled).    

 

3.  Results and Discussion 

Fig 2 shows a typical set of transport curves.  I-V measurements are normally recorded in 10-30 

minute intervals depending on the apparent rate of change, and many interleaving curves were 

removed from this figure for clarity.  This particular sample was a PCBM blend, however 

PCBOD samples yielded similar results, albeit at lower current scales.  The inset of this figure 

shows the calculated power conversion efficiency as a function of time (t).  As (t) appears 

linear in a semilog plot,  it is apparent that it follows an exponential decay  

( ) (0)exp( / )t t , 

where a characteristic (1/e) lifetime  can be derived from the slope (-1/ ) [8].  Such a slope is 

shown in the Fig. 2 inset.  In cases that (t) does not strictly follow an exponential decay, we 

have chosen to simply find the time at which  drops to 1/e of its initial value.  This approach 

allows us to derive a figure of merit with which to compare the lifetime of various sample 

preparations.  Specifically, we occasionally observe samples that first improve in efficiency 



before the onset of degradation.  In some cases these samples then decay exponentially and we 

report both and 1/e time. 

 

Fig. 3 presents results for PCBM:P3HT samples for two different blends x=0.16 (standard equal 

weight blend) and x=0.40 (the optimum result for the PCBOD samples to be discussed).  The top 

frame shows the initial power conversion efficiency as a function of anneal temperature.  The 

lower frame displays the degradation times for the corresponding samples.  values as discussed 

above are shown as open symbols and filled symbols denote 1/e times.  These results do not 

appear to favor the x=0.16 samples with respect to power conversion efficiency, however the 

device lifetimes are clearly better for these samples when produced at the higher anneal 

temperatures.  It is also important to note that we have focused on systematic sample preparation 

for these studies.  We have not focused on optimizing PCBM:P3HT devices and as such we do 

not obtain (or expect) state-of-the-art efficiencies.  

    

Since PCBOD:P3HT blend devices have not been previously reported in the literature and the 

structure and molecular weight of PCBOD is significantly different than PCBM, it was necessary 

to determine reasonable blend and annealing parameters for making devices.  Fig. 4 shows 

results on unannealed samples using a range of stoichiometry.  The same molar fraction blend as 

PCBM (x=0.16) showed rather poor results.  By far the best efficiencies (roughly 0.1%) for as-

spun devices were produced by molar fractions near 0.4.  Without more comprehensive testing, it 

is impossible to know whether this blend is also optimum for annealed samples, but that 

endeavor presents a dramatically larger parameter space. 



 

In Fig 5 we show the effect of annealing on PCBOD:P3HT samples with x=0.4 as a function of 

anneal temperature.  Again we show initial power conversion efficiency (0) in the upper frame 

and the lifetime in the lower one.  In comparing these results with those for PCBM:P3HT blends 

at x=0.16 in Fig. 3, we note that these latter samples have much higher efficiencies, but the 

PCBOD system still shows better lifetimes.  In general, we see that the rate of degradation is 

lower for PCBOD samples while the PCBM devices show a higher efficiency.  It is also worth 

noting that for both fullerenes the degradation is typically exponential.  This result is in contrast 

to earlier work using phenylenevinylene-based devices [8].    

 

An important component of our research is the coordinated measurement of both transport and 

spectroscopic data for samples produced from the same blend solutions.  Furthermore these 

experiments extend to time dependences for both measurements as we focus on characterizing 

device degradation and investigating its mechanisms.  Despite the large differences in power 

conversion efficiency and lifetime, previous studies show that UV-vis absorbance spectra vary 

little between annealed and unannealed samples [24]. However, spectral changes were not 

studied over an extended length of time where differential measurements show significant 

changes in our spectroscopic studies. We show that as samples degrade, the characteristic 

absorbance spectra for unannealed and annealed samples evolve.  In general we observe different 

characteristic times for different spectral peaks with unique signatures that distinguish the 

behavior of the PCBM:P3HT and PCBOD:P3HT samples.  PCBM:P3HT samples show 

decreasing absorbance over time in the range of regioregular P3HT’s maximum absorbance, 

approximately 450 to 600 nm [25].  A much smaller but opposite effect is true for the 



PCBOD:P3HT blend.  It is perhaps noteworthy that these trends were reversed in the MEH-PPV 

system studied previously [8].  

  

The lower frames of Figs. 6 and 7 show examples of differential spectra for PCBM and PCBOD 

samples respectively with vertical arrows showing the direction of change as time increases.  

Each line on the figures represents the difference between a measurement at specified time (t) 

and the initial measurement. Positive absorbance values indicate an increase in absorbance and 

negative values indicate a decrease. The upper frames depict the initial and final raw spectra for 

these samples.       

 

Thin films composed of regioregular P3HT and PCBM absorb the most UV and visible light 

between 450 and 600 nm, a range which includes the maximum absorbance peaks of pure P3HT 

thin films [26]. Our UV-vis results for PCBM:P3HT samples are consistent with these literature 

values. PCBOD:P3HT thin films do not absorb most strongly in this range, but exhibit 

significant spectral changes within it. The time-dependent changes within this range suggest that 

the polymer is changing absorptivity over time, likely due to some molecular reorganization. The 

following results focus solely on changes within the 450 to 600 nm range. 

 

PCBM:P3HT samples (x=0.16, both unannealed and annealed) demonstrate time-dependent 

changes in absorbance levels, but no red- or blue-shifts (Fig. 6). The absorbance at 550 nm 

decreased, with the largest changes in samples annealed at temperatures up to 195 ºC. Above 195 



ºC, the trend was less significant. This same trend was apparent, yet larger, in samples with 

greater PCBM content (x=0.4). 

 

PCBOD:P3HT samples (x=0.4, annealed at 195 ºC) showed red-shifts and an increase in 

absorbance (Fig. 7). The spectra initially displayed a shoulder at 515 nm, but then a shoulder at 

550 nm developed and grew much larger than the 515 nm shoulder. This growth saturated after 

about one week. All other PCBOD:P3HT samples (x=0.4) gave the same general trend, and the 

increase in absorbance at 550 nm was more significant in unannealed samples. Negligible 

changes occurred when samples were annealed past 218 ºC, P3HT’s melting point [27].   

 

In order to derive values for characteristic times from the spectroscopic data, we use our previous 

approach [8].  Typically we see peaks in the time-dependent spectra which grow and saturate.  

Such temporal behavior is often consistent with a saturating exponential.  As such we can model 

this behavior as  

( ) ( )[1 exp( / )]abs t abs t  

where ( )abs  denotes the differential absorbance after long times (the saturated value).  As 

before, in cases when the exponential saturation is not as easily fitted, we look for the [1-1/e] 

saturation time to yield a characteristic time scale.  Such a fit is shown in the inset of Fig. 7 for 

the 551 nm peak.  That peak grows with time and its value fits well to a saturating exponential 

with final value 0.018 and time constant of 1.69 days (roughly 2400 minutes).  Time constants 

gathered from various annealing temperatures and stoichiometries are shown in Fig. 8. The top 



figure demonstrates that  for PCBM:P3HT decreased with annealing temperature. In contrast, in 

the bottom figure, PCBOD:P3HT samples yielded a maximum time constant at 195 ºC.  

 

From these data, we have developed a model to explain device performance and spectral trends 

and the correlation of their time dependences.  Increasing the ratio of fullerene (C60 or PCBM) 

additives has been shown to decrease the film absorption between 450 and 600 nm [26].  This 

range relates to absorption maximum for P3HT and corresponds to a highly ordered, crystalline 

P3HT film which is required for efficient devices [25, 28]. Therefore, the weak absorbance in 

this region of our PCBOD:P3HT films is a clear indication that these samples will have lower 

efficiency, as reflected in our device studies. This result suggests that the C18 chain on the 

PCBOD interferes with the crystallization of the P3HT.  Although the relatively slow spectral 

red-shifts observed in PCBOD:P3HT might indicate some increase in polymer order [26], this 

change is likely small compared to the disruption in the ordering caused by the chains.  In other 

words, we suggest a link between the overall absorption and the efficiency and therefore the 

crystalline ordering.  However, even though there is a clear connection between the time 

dependence of the efficiency and the absorption spectra, we do not yet have a detailed 

explanation to connect the direction of that spectral change to reduced efficiency.    

 

We observe clear processing differences between the PCBM and PCBOD blends at the same 

weight concentration of solution.  We find that PCBOD’s dramatically increased solubility 

makes the spin-cast films much thinner (roughly a factor of five as discussed previously). In fact, 

samples which can barely be seen as coating the substrate with the naked eye produce 0.1% 

efficient devices. The C18 seems to make the fullerene more miscible with P3HT lowering its 



ability to organize in crystalline domains and it surfactant-like structure decreases the viscosity 

of the solution resulting in thinner devices.   

 

This model also appears consistent with our previous results on PCBM:MEH-PPV and 

PCBOD:MEH-PPV samples [8].  In those measurements we also observed reduced optical 

absorption with PCBOD compared to PCBM.  PCBOD:MEH-PPV devices showed dramatic 

increases in lifetime and equally dramatic reductions in efficiency.    

 

The annealing and performance experiments also follow an understandable and consistent trend. 

As spun devices adopt a kinetically-frozen organization in the film and the two components 

separate into phases and self-organize into local minima when the film is produced. [29] 

Annealing allows for reordering of the components of the film and the predominant change is the 

increase in the organization of the P3HT.  PCBM has been shown to have significant mobility in 

P3HT films on annealing, [6] and it reasonable to predict that PCBOD would not have similar 

mobility. In fact, this was our working model to increase stability of devices: that the rate of 

PCBM-based device degradation was consistent with reorganization and both our current study 

and previous work [8] support this assertion.  However, our current results show that at about the 

same annealing temperature, PCBM devices are 10-fold more efficient, suggesting that fullerene 

mobility facilitates the P3HT reorganization to prepare a higher efficiency device. Therefore, in 

the extreme cases as it relates to fullerene ester substitution (methyl vs. octadecyl), stability and 

efficiency constitute a trade-off in these device performance characteristics. Fortunately for our 

future work, there is great variability in the structure of the alkyl substituent still to be explored 

that could enhance both performance and lifetime. Preliminary results from samples made with 



[6,6]-Phenyl C61 butyric acid octyl ester (PCBO) exhibit efficiencies that are improved by a 

factor of four over the PCBOD results.  We are exploring other fullerene esters that will be 

compatible with or enhance the crystallization of P3HT and reinforce the required fullerene 

domains to prepare efficient, robust devices. 

4.  Conclusions 

Using time dependent measurements of device efficiency and differential UV-vis spectroscopy, 

we have demonstrated that varying the chain on the fullerene ester can affect the lifetime and 

efficiency of P3HT:fullerene based solar cells. Substituting octadecyl for methyl in the fullerene 

yielded 3-fold improved lifetimes, however the PCBOD devices were much thinner than PCBM 

devices and 10-fold less efficient. Although the device thickness could be contributing to the 

lower efficiencies, is it clear from spectroscopic and device measurements that the C18 chain 

affects the crystallinity of the P3HT thereby lowering the transport properties of the devices. 

Preliminary studies have shown that a shorter octyl chain is only 5-fold less efficient, however 

this system has not yet been optimized.  Future work will continue to focus on wide ranging 

possibilities in ester chain variations that could lead to improved device lifetime and 

performance characteristics. These simple changes in fullerene structure provide fundamental 

understanding of the device dynamics and if successful, the synthetic targets are amenable to 

commercial applications.   
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6. Figure Captions 

Fig. 1.  Electron acceptor molecules and sample layout used in this study: a) [6,6]-phenyl C61 

butyric acid methyl ester (PCBM), b) [6,6]-phenyl C61 butyric acid octadecyl ester (PCBOD), 

and c) schematic of solar cell layers.   

 

Fig. 2.  Typical current-voltage (I-V) curves showing the degradation of a PCBM:P3HT device in 

ambient conditions.  The arrow indicates the progression of time.  Inset: a semilog plot of the 

power conversion efficiency of this device as a function of time  in ambient conditions.  The 

solid line fit shows the slope used to extract the characteristic time . 

 

Fig. 3.  Data for two series of PCBM:P3HT devices (molar fraction 0.16 and 0.40).  We plot a) 

the initial power conversion efficiency  and b) the decay time constant  as a function of anneal 

temperature.  The gray-filled symbols indicate samples for which we calculated 1/e times (see 

manuscript). 

 

Fig. 4.  Initial power conversion efficiency  for PCBOD:P3HT devices as a function of 

PCBOD molar fraction. Note the maximum near 0.4 molar fraction. 

 

 

Fig. 5.  Data for five series of PCBOD:P3HT devices (all approximately 0.4 molar fraction).  We 

plot a) the initial power conversion efficiency  and b) the decay time constant  as a function of 



anneal temperature.  The gray-filled symbols indicate samples for which we calculated 1/e times 

(see manuscript). 

 

Fig. 6. a) Initial and final UV-vis absorption spectrum for an x = 0.16 PCBM:P3HT device.  b) 

Differential UV-vis absorption spectrum ( abs ) for this same device evolving with time 

(denoted by the arrow).   

 

Fig. 7. a) Initial and final UV-vis absorption spectrum for an x = 0.4 PCBOD:P3HT device.  b) 

Differential UV-vis absorption spectrum ( abs )  for this same device evolving with time 

(denoted by the arrow).   

 

Fig. 8.  Saturation time constants  as derived from various spectral peaks in the UV-vis 

absorption data.  a) PCBM:P3HT results for four different molar fractions. b) PCBOD:P3HT  

results for x = 0.4.  Note that the longest time constants for PCBOD-based devices occur for the 

195 ºC annealed samples, consistent with the transport results shown in Fig. 5.  
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