
Santa Clara University
Scholar Commons

Computer Engineering Master's Theses Engineering Master's Theses

6-6-2019

Overhead Management Strategies for Internet of
Things Devices
Kavin Kamaraj

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_mstr

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

This Thesis is brought to you for free and open access by the Engineering Master's Theses at Scholar Commons. It has been accepted for inclusion in
Computer Engineering Master's Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Kamaraj, Kavin, "Overhead Management Strategies for Internet of Things Devices" (2019). Computer Engineering Master's Theses. 11.
https://scholarcommons.scu.edu/cseng_mstr/11

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_mstr?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_master_theses?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_mstr?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_mstr/11?utm_source=scholarcommons.scu.edu%2Fcseng_mstr%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Santa Clara University

Department of Computer Engineering

Date: June 6, 2019

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY

SUPERVISION BY

Kavin Kamaraj

ENTITLED

Overhead Management Strategies for

Internet of Things Devices

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF

MASTER OF SCIENCE IN COMPUTER SCIENCE

AND ENGINEERING

JVA0'^ 1\^
r"

Thesis Advisor Thesis Reader
Dr. Behnam Dezfouli Dr. Yuhong Liu

-i4^'-
Chairman of Department
Dr. Nam Ling

Overhead Management Strategies for

Internet of Things Devices

Kavin Kamaraj

Dissertation

Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Engineering
in the School of Engineering at
Santa Clara University, 2019

Santa Clara, California

Acknowledgments

I would like to thank Dr. Behnam Dezfouli and Dr. Yuhong Liu for their guidance,

help, and support throughout my masters program at SCU. You have truly instilled

in me life long skills that will enable me to be successful in the future.

I would also like to thank Alejandro Hernandez and Ramzi Nofal for their

collaborative efforts and support all throughout my time at SCU. Working with

you both was a great learning experience, and I am proud of what we were able

to accomplish together the past couple of years.

I would also like to thank my mother Hemalatha and my father Kamaraj for

their unconditional support throughout my time at SCU. None of this is possible

without you.

Last but not least, thank you God always.

iii

Overhead Management Strategies for
Internet of Things Devices

Kavin Kamaraj

Department of Computer Engineering
Santa Clara University
Santa Clara, California

2019

ABSTRACT

Overhead (time and energy) management is paramount for IoT edge devices
considering their typically resource-constrained nature. In this thesis we present
two contributions for lowering resource consumption of IoT devices. The first
contribution is minimizing the overhead of the Transport Layer Security (TLS)
authentication protocol in the context of IoT networks by selecting a lightweight
cipher suite configuration. TLS is the de facto authentication protocol for secure
communication in Internet of Things (IoT) applications. However, the processing
and energy demands of this protocol are the two essential parameters that must be
taken into account with respect to the resource-constraint nature of IoT devices.
For the first contribution, we study these parameters using a testbed in which
an IoT board (Cypress CYW43907) communicates with a server over an 802.11
wireless link. Although TLS supports a wide-array of cipher suites, in this paper
we focus on DHE RSA, ECDHE RSA, and ECDHE ECDSA, which are among the
most popular ciphers used due to their robustness. Our studies show that ciphers
using Elliptic Curve Diffie Hellman (ECDHE) key exchange are considerably more
efficient than ciphers using Diffie Hellman (DHE). Furthermore, ECDSA signature
verification consumes more time and energy than RSA signature verification for
ECDHE key exchange. This study helps IoT designers choose an appropriate TLS
cipher suite based on application demands, computational capabilities, and energy
resources available.

The second contribution of this thesis is deploying supervised machine learn-
ing anomaly detection algorithms on an IoT edge device to reduce data trans-
mission overhead and cloud storage requirements. With continuous monitoring
and sensing, millions of Internet of Things sensors all over the world generate
tremendous amounts of data every minute. As a result, recent studies start to
raise the question as whether to send all the sensing data directly to the cloud
(i.e., direct transmission), or to preprocess such data at the network edge and only
send necessary data to the cloud (i.e., preprocessing at the edge). Anomaly detec-
tion is particularly useful as an edge mining technique to reduce the transmission

iv

overhead in such a context when the frequently monitored activities contain only
a sparse set of anomalies. This paper analyzes the potential overhead-savings of
machine learning based anomaly detection models on the edge in three different
IoT scenarios. Our experimental results prove that by choosing the appropriate
anomaly detection models, we are able to effectively reduce the total amount of
transmission energy as well as minimize required cloud storage. We prove that
Random Forest, Multilayer Perceptron, and Discriminant Analysis models can vi-
ably save time and energy on the edge device during data transmission. K-Nearest
Neighbors, although reliable in terms of prediction accuracy, demands exorbitant
overhead and results in net time and energy loss on the edge device. In addition
to presenting our model results for the different IoT scenarios, we provide guide-
lines for potential model selections through analysis of involved tradeoffs such as
training overhead, prediction overhead, and classification accuracy.

v

Contents

1 Introduction . 1

1.1 Transport Layer Security Protocol Overhead Management 2

1.2 Data Transmission Overhead Reduction using Anomaly Detection
Edge Mining . 4

2 Related Work . 6

2.1 Energy and Processing Demand Analysis of TLS Protocol in Inter-
net of Things Applications . 6

2.2 Edge Mining on IoT Devices using Anomaly Detection 8

3 Energy and Processing Demand Analysis of TLS Protocol in In-
ternet of Things Applications 10

3.1 Transport Layer Security (TLS) . 11

3.2 Experimental Procedure . 15

4 Edge Mining on IoT Devices using Anomaly Detection 23

4.1 Anomaly Detection Models and Datasets Used 23

4.1.1 Random Forests . 24

4.1.2 Multilayer Perceptron . 25

4.1.3 K-Nearest Neighbors . 26

4.1.4 Discriminant Analysis . 26

4.1.5 Datasets Used . 27

4.2 Experimentation and Analysis . 28

4.2.1 Methodology . 29

4.2.2 Results and Analysis . 32

5 Conclusion . 41

vi

List of Figures

3.1 The components and interconnection of the testbed used. 17

3.2 The flow diagram of measurement methodology. 18

3.3 Processing time of various steps. This figure confirms that client
verification of an ECDSA certificate requires about 5200% longer
processing compared to RSA. In addition, signature verification us-
ing ECDSA is around 2000% longer than RSA. Furthermore, key
exchange using DHE shows 300% longer processing time than us-
ing ECDHE. In general, the processing overhead of C1 and C3 are
300% and 150% higher than C2, respectively. 21

3.4 This figure confirms that client verification of an ECDSA certificate
requires about 3900% more energy compared to RSA. In addition,
signature verification using ECDSA requires around 1700% more
energy verus RSA. Furthermore, key exchange using DHE shows
300% more energy compared with ECDHE. In general, the process-
ing overhead of C1 and C3 are 300% and 150% higher than C2,
respectively. 22

4.1 The testbed used for our experiment inclusive of three RPi3s and
the EMPIOT energy measurement platform. The RPi3 hosting EM-
PIOT captures energy measurements of the edge RPi3 transmitting
data to the cloud RPi3. 30

4.2 All models are viable for the datasets chosen. All models perform
best for the KDDCup dataset, containing the lowest number of
features, and post precision and recall values of 98.9% and 97.96%
respectively. RF and QDA offer the best prediction accuracy for
Gestures while RF and KNN offer the best prediction accuracy for
Digits. 31

4.3 MLP features the most expensive training phase with RF, QDA,
LDA, and KNN generally following in this order as shown in (a)
and (b). MLP costs approximately 500% more time and 500% more
energy than the next best performing model across all datasets. . . 32

vii

4.4 LDA offers the most cost-effective prediction phase for both Digits
as well as KDDCup datasets as shown in (a) and (b). MLP offers
the most cost-effective prediction phase for the 64 feature Gestures
dataset. KNN costs nearly 600% more energy and 650% more time
than the next best performing model across all datasets. 33

4.5 RF, MLP, and LDA all demonstrate overhead savings when applied
to data before transmission; most notably, RF applied to the Digits
dataset saves 45.119 J and 16.37 seconds per 2000 image buffer.
KNN is a poor choice for real-time anomaly detection scenarios
given that it causes net time and energy loss across all datasets. . . 36

4.6 From (a) we observe that the models reduce approximately 90% of
the observations sent from Digits’ buffers, 76% of the observations
sent from Gestures’ buffers, and 99.5% of the observations sent from
KDDCup’s buffers. The resulting saved cloud storage shown in (b)
is substantial, especially for Digits dataset where we saved nearly
12 MB of data sent per 2000 image buffer. 37

viii

List of Tables

4.1 Mathematical notations and symbols. 24

4.2 Training and prediction time complexity of anomaly detection models. 24

4.3 Overview of the datasets. 25

4.4 Training and prediction data dimensions. 27

4.5 Sample use cases for different models. 40

ix

Chapter 1

Introduction

The Internet of Things (IoT) refers to a network of billions of interconnected de-

vices that have the ability to communicate and exchange data over the Internet.

Such IoT devices range from sensors, smart phones, computers, vehicles, building

appliances, and health devices. The extension of Internet connectivity to physical

devices and everyday objects has substantially increased worldwide real-time data

collection and transmission. As of 2019, there are approximately 9 billion IoT

devices across the world and by 2020 this number will surge to over 25 billion

[1]. As IoT devices and networks grow in number, the tremendous amount of

data transfer leads to concerns over both device authentication overhead as well

as data transmission overhead. In the first section, we detail our motivation and

contribution with regard to managing TLS protocol overhead during client-host

authentication in IoT networks. In the second section, we detail our motivation

and contribution with regard to deploying machine learning based anomaly detec-

tion algorithms for lowering data transmission overhead as well as cloud storage

requirements.

1

1.1 Transport Layer Security Protocol Overhead

Management

Transport Layer Security (TLS) protocol is designed to provide encryption, au-

thentication and data integrity for communicating information over the Internet.

The TLS protocol is composed of two main phases [2]: The first phase is the

handshake, which allows a client and a server to agree on TLS version and a set of

cryptographic algorithms (ciphers). This enables the two communicating parties

to ultimately establish a shared session key. The client and server also have the op-

tion to authenticate each other using certificates provided by a trusted third-party

[3]. The second phase of the protocol is the record layer, in which the shared ses-

sion key is used to send encrypted messages between two nodes. As of today, TLS

is the most widely used protocol for securing communication between IoT devices

[4, 5]. This protocol is considered to be highly effective because of its use of public

key exchange and symmetric key (session key) encryption. Unfortunately, these

advantages come at the cost of high computational and energy demands [6, 7].

Reducing the overhead of TLS protocol is critical for multiple reasons [8, 7, 9].

First, as IoT devices are increasing by the billions, a few milli-joules saved from

each run of TLS can save millions of dollars in the big picture. Second, all networks

are vulnerable to interference, timeouts and loss of connectivity; therefore, the

overhead of the TLS protocol should not deter users from re-establishing lost

connections between nodes. Third, understanding the overhead of TLS enables

IoT designers to configure this protocol based on application requirements. For

instance, a user may intend to establish a very short-lived connection for brief

information transfer between two nodes. In this case, the user may decide to use a

lighter cipher (possibly compromising some aspects of security) in the interest of

2

quickly transmitting the data. Furthermore, the use of a light cipher suite might be

justified based on the limited resources of IoT devices and to minimize the impact

of security on energy consumption. Although there are several studies on the

implementation and adoption of TLS on general purpose processing platforms and

mobile devices [10, 4, 9, 11, 12, 13], unfortunately, analyzing the computation and

energy cost of TLS on resource-constrained IoT devices has not received enough

attention from the research community.

In this study, we analyze the performance of TLS protocol using three popular

and robust ciphers:

– C1: DHE_RSA_WITH_AES_256_CBC_SHA256

– C2: ECDHE_RSA_WITH_AES_256_CBC_SHA384

– C3: ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

To this end, an IoT device communicates with a server through establishing TLS

connection over an 802.11 link. We have modified the TLS code of the IoT device

to measure the processing time and energy consumption of each step of the TLS

handshake using a logic analyzer and an energy measurement tool. Our results

show that ECDHE ciphers are considerably more efficient than DHE ciphers. We

also conclude that an ECDHE cipher has lower resource consumption when using

RSA encryption as opposed to ECDSA encryption. This is attributed to the fact

that ECDSA certificate verification is a longer process. The results reported in this

work help IoT designers choose TLS cipher suite based on application demands as

well as the computational capabilities and energy resources of IoT devices.

3

1.2 Data Transmission Overhead Reduction us-

ing Anomaly Detection Edge Mining

As IoT devices grow in number, the tremendous amount of sensing data col-

lected has raised great challenges for data transmission overhead (time and en-

ergy) and cloud storage. Applications of cost-cutting edge mining techniques to

reduce packet transmission and remote storage requirements are rapidly growing

throughout IoT networks [14], [15]. One of the most basic edge mining techniques

is random sampling to reduce the number of observations sent to the cloud. More

sophisticated methods, such as anomaly detection, isolate and transmit only the

contextually relevant observations [16]. The guiding principle behind anomaly de-

tection is that only unexpected behavior needs to be notified to the centralized

cloud. Contemporary works specify different anomaly detection methods ranging

from basic thresholding to machine learning algorithms [17], [18]. However, as

the resources available at each IoT edge device can be rather limited in terms of

power, memory, connectivity, bandwidth, and computation, it is critical to choose

appropriate anomaly detection algorithms that can not only effectively identify

abnormal behaviors but also consume limited resources at the edge devices.

In this work we present supervised machine learning based anomaly detection

that can substantially reduce energy consumption and transmission overhead on

the edge and storage requirements on the cloud. We conduct our experiments on a

custom testbed inclusive of an edge device, the cloud, and an energy measurement

platform. Four classes of machine learning algorithms, Random Forest Classi-

fier (RF), Multilayer Perceptron Classifier (MLP), K-Nearest Neighbor Classifier

(KNN), and Discriminant Analysis Classifier (DA) are benchmarked on a Rasp-

berry Pi 3 (RPi3) edge device for different anomaly detection scenarios. We use

4

both Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis

(QDA) variants of DA for this study. Our work makes several novel contributions

to anomaly detection used in the context of edge mining. First, we benchmark

training and prediction phase overhead (i.e., time and energy consumption) at the

edge device for each model on multiple datasets. Second, real data rather than

synthetic data have been adopted for experiments. Third, we demonstrate tangi-

ble transmission cost-savings using machine learning based anomaly detection for

multiple datasets.

We demonstrate significant overhead-savings achieved using MLP, RF, and

DA anomaly detection model classes during the data processing and transmission

period. Furthermore, we identify the best anomaly detection model for different

application scenarios. For example, MLP features one of the shortest prediction

phases, which is recommended for time-sensitive scenarios. However, it also has

one of the most costly training phases which is undesirable if there are resource

constraints for training. By analyzing these tradeoffs, we better understand why

the models achieve different levels of performance in different scenarios.

5

Chapter 2

Related Work

This chapter is organized as follows. In the first section, we present related work

for our first contribution pertaining to TLS overhead management in IoT sce-

narios. These works generally present varying benchmarking procedures for the

TLS protocol (i.e., different hardware platforms and/or different protocol phases

measured). In the second section, we present related work for our second contri-

bution pertaining to anomaly detection edge mining. These works focus primarily

on different applications of anomaly detection in IoT scenarios. Generally, each

work uses a different anomaly detection algorithm(s), different dataset(s), and/or

different testbed architecture(s).

2.1 Energy and Processing Demand Analysis of

TLS Protocol in Internet of Things Applica-

tions

In [19] and [9], the overhead of the TLS protocol is measured for hand-held mobile

devices. The authors in [19] examine the overhead of TLS for 1 MB file transfer on

a handheld HP (Compaq) iPAQ H3630 device with a 206 MHz StrongARM pro-

cessor and 32MB RAM (16MB ROM) over a Wi-Fi access point communication

link. The authors use Microsoft cyrptographic library’s implementation of TLS

6

opposed to our mbedTLS implementation. This study benchmarks the protocol

using 1024 and 2048 bit RSA keys and shows time consumption of signature veri-

fication. However, it does not present any quantitative energy consumption values

nor considers individual steps of the TLS handshake. Another study examines

the overhead of TLS during a data transfer scenario between a Symbian Nokia 95

and several popular web services over both WLAN and 3G [9]. Miranda et. al [9]

present energy consumption results of this protocol with different data buffer size

configurations and indicate that the handshake phase is generally more expensive

over 3G. Furthermore, they conduct their analysis using 4 different ciphers which

is greater than most other related works.

Potlapally et al. [10] conduct a very comprehensive study on the overhead

of cryptographic algorithms both in and out of the context of the TLS protocol.

Potlapally’s study benchmarks the the energy cost of digital signature algorithms

(RSA, DSA, ECDSA) and key exchange algorithms (DH, ECDH) with various key

sizes. Furthermore, the study concludes that when there is no client authentica-

tion, an RSA handshake is more efficient than an ECC handshake and vice-versa.

Akshay et al. [20] benchmark the TLS protocol using two 2012 Nexus 7 Android

tablets with an Nvidia Tegra 3 SoC, 1 GB of RAM, and 4326 mAh batteries. The

study presents charts showing how the TLS depletes battery life by nearly 15% for

just a 1 MB download over HTTPS. In this way, the work demonstrates a clear

connection to a resource constrained IoT scenario.

Authors Koschuch et al. [21] present the overhead of different operations

within TLS using processing cycle count rather than energy metrics. They com-

pare the cycle counts for digital signature algorithm, RSA, and key exchange

algorithm, ECDSA, between a one-way authentication context and two-way au-

thentication context. They conclude that Elliptic Curve Cryptography (ECC)

7

is considerably more efficient than its RSA/DSA counterparts for resource con-

strained devices because of smaller memory requirements.

2.2 Edge Mining on IoT Devices using Anomaly

Detection

Anomaly detection is one of the the most popular edge mining techniques explored

in IoT scenarios [22], [23]. In [24], [25], [26], and [27] anomaly detection is used

as a method to implement an Intrusion Detection System (IDS) for Wireless Sen-

sor Networks (WSN). Sommer et al. [26] propose the use of LDA to reduce the

dimensionality of network intrusion datasets and applies both Naive Bayes and

KNN algorithms for anomaly classification. In [27], the authors benchmark the

performance of anomaly detection (i.e., false positive rates) using an unsupervised

outlier detection technique based on the RF algorithm. Furthermore, [28] demon-

strates the effectiveness of autoencoders for an unsupervised IDS and proposes a

novel splitting and learning mechanism to lower false positive detection. Although

these works explore novel applications of anomaly detection on the IoT edge, they

do not focus on resource constrained scenarios and therefore do not delve into the

time and energy consumption of these methods.

In [29], [30], and [31] anomaly detection is investigated in healthcare applica-

tions. Arijit et. al [30] propose cardiac anomaly detection with low false negative

counts and stress the importance of capturing outliers in healthcare applications.

Similar to the IDS studies, this work focuses extensively on anomaly detection

implementation but does not consider the factor of resource consumption. Sev-

eral works also tackle anomaly detection in IoT applications outside of IDS and

8

healthcare. In [32] non-machine learning anomaly detection algorithms are pro-

posed for a set of heterogenous sensors in an IoT WSN. In [33] an autoencoder

neural network is used for determining anomaly readings from a testbed of eight

temperature and humidity sensors. These works also, however, do not consider

overhead nor consider pros and cons using different anomaly detection methods.

Few works consider resource constrained IoT scenarios. For example, Sedjel-

maci et. al [34] test a reputation model based on game theory to predict attack

signatures on a resource constrained IoT device. In addition to this, the work

of Lyu et. al [35] is one of the few works which presents cost-savings poten-

tial of anomaly detection using both real and synthetic datasets on a resource

constrained IoT platform. However, this work only evaluates unsupervised hyper-

ellipsoidal clustering and does not include supervised machine learning algorithms.

Unsupervised methods are useful in the absence of ground-truth information but

are generally not as accurate as supervised methods for classification tasks.

9

Chapter 3

Energy and Processing Demand
Analysis of TLS Protocol in
Internet of Things Applications

Transport Layer Security (TLS) protocol provides encryption, authentication and

data integrity between two communicating parties over the Internet. The TLS

protocol consists of two phases. The handshake phase allows a client and a server

to agree on TLS version and a set of cryptographic algorithms (ciphers). This

enables the two communicating parties to ultimately establish a shared session

key. The record phase follows in which the shared session key is used to send

encrypted messages between two nodes. In this study we focus on choosing a

lightweight cipher suite for the handshake phase to minimize the overhead of the

TLS protocol as a whole. Reducing the overhead of TLS protocol is paramount

for many IoT devices given that they may be resource constrained and battery-

powered. Ironically, overhead management of the TLS protocol has not been very

thoroughly examined given that TLS is the de facto authentication protocol for

IoT devices. In this study, we analyze the performance of TLS protocol using C1,

C2, and C3. We hope that these results help IoT specialists who are seeking to

speed up device authentication within their IoT networks.

10

3.1 Transport Layer Security (TLS)

The TLS protocol specifies a well-defined handshake that consists of 15 steps.

Before delving into the details of each step, we provide a high level overview of

the protocol first. In the beginning of the handshake phase, hello messages are

exchanged between client and server to agree on an encryption algorithm and to

exchange random values. Then, depending upon the cipher chosen, the client and

server exchange the corresponding cryptographic parameters to agree on a pre-

master secret. Afterwards, the client authenticates the server using a pre-installed

certificate from a trusted third-party; the server may optionally authenticate the

client as well. Finally, a master secret is generated from the pre-master secret and

the random values. The session (symmetric) key is derived from the master secret

and is used to encrypt subsequent data exchange between the client and server in

the record layer phase [36]. We present each step in detail as follows:

1. client_hello. The client sends this message to the server to establish an

initial contact. This message, in particular, contains: (i) the TLS version

that the client intends to use, (ii) a list of cipher suites supported by the

client, (iii) a random number, (iv) compression method, and (v) a session id.

The server then checks its compatibility with the specified version of TLS

and the list of ciphers specified in the message.

2. server_hello. If the server’s TLS version and supported cipher suites are

compatible with that of the client, this message is sent by the server in

response to the client’s hello message. This marks the completion of a suc-

cessful negotiation.

3. server_certificate. The server sends to the client a certificate contain-

11

ing its public key. The client can authenticate the server by comparing the

certificate it receives from the server to its pre-installed certificate. An au-

thentication failure is raised in the case that the server’s certificate does not

match any of the certificates pre-installed in the client.

4. server_key_exchange. In this message, the server exchanges Diffie-Hellman

cryptographic parameters (modulus, generator, newly-generated public key)

with the client so that it can convey a pre-master secret. The resource con-

sumption of this step can be attributed to the client verifying the signature

of these parameters.

5. certificate_request. This message is sent by the server to request a

certificate from the client in the case that the user has configured the server

to require client authentication. In our study, the server sends a request to

the client to adhere to the protocol, however, the server does not functionally

verify the client.

6. server_hello_done. This message is sent by the server to indicate the end

of the hello message exchange sequence. While this message is prepared and

sent, the client is verifying the validity of server’s certificate.

7. client_certificate. This message is sent by the client if the server has

requested the client to send its certificate. Even if the client does not have

a suitable certificate, it must send a certificate message that does not con-

tain any certificate. In this paper, since the client sends a blank certificate

message, this step is one of the fastest to execute.

8. client_key_exchange. In this step, the client sends its Diffie-Hellman pub-

lic key to the server.

12

9. certificate_verify. This message is sent by the server to indicate that it

has successfully verified the client’s certificate. A digitally signed structure

of all the handshake messages sent or received is included in this message.

10. client_change_cipher_spec. This message is sent by client to inform the

server that subsequent data transfer will be protected by the newly negoti-

ated ciphers.

11. client_finished. This message verifies that the client has successfully

completed the authentication processes and key exchange.

12. server_change_cipher_spec. The server sends this message to notify the

client that subsequent data transfer will be protected by the newly negotiated

cipher and keys. The client then reacts by setting the session key parameters

accordingly.

13. server_finished. This message verifies that the server has successfully

completed the authentication processes and the key exchange.

14. flush_buffers. In this step, the temporary data that is a byproduct of the

handshake process is deleted on both the client and server nodes.

15. handshake_over. This message marks the completion of the handshake

phase and the start of the record layer phase.

The Internet Assigned Numbers Authority (IANA) has named over 300 cipher

suites compatible with TLS in early 2016. BSI, a federal IT security agency

in Germany, recommends using only 16 of those ciphers for TLS [3]. Based on

recommendation, in this paper, we study the performance of the TLS protocol

using three of these ciphers. All ciphers share the following naming convention:

13

KeyExchange, CryptographicAlgorithm, ”WITH”, SessionKey and SignatureType

(each section separated by an underscore), as follows:

– C1: DHE_RSA_WITH_AES_256_CBC_SHA256. This cipher uses DHE key ex-

change and RSA encryption with an AES256 session key and SHA256 hash

function. SHA256 is the highest bit hash function compatible with DHE RSA

for mbed TLS [37].

– C2: ECDHE_RSA_WITH_AES_256_CBC_SHA384. This cipher uses ECDHE key

exchange and RSA encryption with an AES256 session key and SHA384 hash

function.

– C3: ECDHE_ECDSA_WITH_AES_256_CBC_SHA384. This cipher uses ECDHE

key exchange and ECDSA encryption with an AES256 session key and

SHA384 hash function.

Note that all three ciphers use the same session key, AES 256 CBC. AES is

a symmetric key block cipher algorithm that is used to protect information [38].

It is proven to be a highly reliable cipher and consists of three block ciphers:

AES-128, AES-192 and AES-256. Using CBC (Cipher Block Chaining) with AES

ensures that each block decryption is contingent upon the previous one. This

measure improves the security of AES block ciphers larger than 256 bits. In

our study, AES-256 is used to encrypt and decrypt all information transfer in

the record layer phase of the protocol. Hash functions SHA256 and SHA384 are

used to create digital signatures of the data. As a one-way function, SHA easily

authenticates messages while securing their content. There are other variations

for SHA (i.e., SHA224 and SHA512), but they are not available for use in mbed

TLS because they do not offer added security or efficiency.

14

We have kept the session key and hash function consistent among all the

ciphers so that differences in resource consumption can be conclusively attributed

to either the key exchange method or choice of encryption algorithm. The two

key exchange methods used in this list of ciphers are DHE and ECDHE. DHE

uses modular arithmetic to compute the shared secret. In contrast, ECDHE uses

elliptic curves to generate the secret, thereby, ECDHE is considerably more effi-

cient than DHE. It is clear that the key exchange method selected significantly

impacts the resource consumption of Step 8 of the handshake, which takes care of

pre-master secret generation. Aside from the key exchange method, our ciphers

make use of two public key encryption schemes, i.e., RSA and ECDSA. ECDSA

signatures tend to be much smaller than RSA signatures given the same method

of exchange. However, RSA signature verification tends to be much faster than

ECDSA verification [10].

3.2 Experimental Procedure

We run the TLS protocol using a Cypress CYW43907 IoT device as a client and

a Raspberry Pi as a server. CYW43907 is an embedded wireless system-on-a-chip

(SoC) that features an ARM Cortex-R4 32-bit RISC processor [39, 40]. The Cy-

press IoT device supports the WICED Development Platform which offers SDKs

for system development. The TLS code used on the client and server is derived

from the mbed TLS implementation [37]. Note that we measure TLS resource

consumption on the client side.

For measuring the energy consumption of the TLS protocol we use EMPIOT

(Energy Measurement Platform for IoT Devices) [41], that is connected to the

client. The EMPIOT platform is composed of a shield installed on top of a Rasp-

15

berry Pi. We measure processing time using a logic analyzer. Figure 3.1 shows our

experimental setup for time and power measurement. The client connects with

the access point through an 802.11 link. When performing TLS handshaking,

message exchange intervals can be relatively large and are heavily influenced by

network conditions. In order to ignore the overhead of message exchange, we have

modified the mbed TLS code to toggle pins on the client right before and after

the processing duration of each step. A logic analyzer that is connected to these

pins is used to measure the computation duration of each step.

The energy measurement platform, EMPIOT, is connected to the client as

follows. First, the EMPIOT powers the client via a USB connection and measures

the bus voltage and current drawn by the client. Second, the tool detects the start

and finish of each step of the handshake by connecting to four pins toggled by

the client. In other words, the EMPIOT software performs energy measurement

based on the triggers received from the client. We measure the computation and

energy demand of TLS’s step 3, 4, 8, and 9, which are all longer than 1ms. We

have observed that the processing time and energy consumption of the remaining

steps are negligible and therefore these steps will not factor into our study.

The TLS handshake may occasionally fail due to network timeout caused by

packet loss over the wireless link. To ensure the accuracy of our measurements

is not affected by these error cases, we configure the client to notify EMPIOT if

the handshake is failed. In this way, we can discard measurements collected from

incomplete runs. The detail of the power measurement process is shown in Figure

3.2. Our data collection procedure is as follows: We perform 1000 iterations of

successful TLS handshakes for each cipher, i.e., C1, C2, C3. We measure the

computation time and energy of the steps mentioned earlier for each iteration.

Figure 3.3 shows the processing time of each TLS step for the three cipher

16

Power Measurement Board

WICED
 CYW943907AEVAL1F

Logic Analyzer

Input Power
(USB Connection)

Start Measurement

Stop Measurement

Stop Handshake

Handshake Error

Raspberry Pi
(Controlling and Collecting Power

Measurements)

Start/Stop
TLS Step

WiFi Access Point Raspberry Pi
(TLS Server)

Ethernet
Connection

Wireless
Connection

Figure 3.1: The components and interconnection of the testbed used.

suites. Figure 3.4 shows the power consumption in Joules per TLS step for each

cipher. Each marker is the median of 1000 iterations, and error bars show the

higher and lower quartiles. The value on top of each error bar is the median of

the result.

Analyzing Step 3. In Step 3 the server sends to the client a certificate with

its public key and the client verifies this certificate. The results obtained from this

step indicate that C3 has considerably higher values for both processing time and

energy consumption compared to both C1 and C2. Specifically, client verification

of an ECDSA certificate is heavier than client verification of an RSA certificate.

This is a trend that has been generally identified and our results corroborate this

trend.

Analyzing Step 4. Similar to Step 3, C3 has considerably higher values

for resource consumption than both C1 and C2. This indicates that signature

17

Handshake
Start

Measure
Step

Execute
Step

Start Power
Measurement

Execute Step

Stop Power
Measurement

Last
Step

Error
Indicate Stop
Handshake

Indicate Stop
Handshake

Error

Indicate
Handshake ErrorIndicate

Handshake Error

Handshake
End

Yes

Yes

Yes

No

No

No

No Yes

Figure 3.2: The flow diagram of measurement methodology.

18

verification is more demanding when using ECDHE ECDSA compared to the other

ciphers.

Analyzing Step 8. C1 has considerably higher values for both processing

time and energy consumption compared to both C2 and C3. We know that DHE

key exchange is generally much heavier than ECDHE and this trend is quantita-

tively proven. Compared to all other steps, Step 8 is clearly the heaviest, which

confirms that key generation factors into most of the handshake’s computational

cost.

Analyzing Step 9. Note that our testbed does not functionally perform

client authentication. In Step 7, the client sends a blank certificate that our server

is configured to always accept. The client processes the server’s default verification

very quickly; the results indicate that C1 has the shortest processing time, while

C2 and C3 also show relatively low values.

With the exception of Step 4 for C1, the upper and lower limit of all the error

bars are very close to the median value. This indicates that the processing time

and energy consumption measurements for each cipher are consistent throughout

all the iterations. Because there are no major outlier values, the median value

accurately represents the energy consumption for each step. The cumulative time

and energy measurements show that C1 is the heaviest cipher, and C3 is heavier

than C2.

We conclude that the order of the ciphers from least to greatest energy effi-

ciency is the following: C1, C3, C2. Specifically, C1 consumes 55% more energy

than C3, and C3 consumes 150% more than C2. Clearly, the most efficient cipher

based on the results is C2 (i.e., ECDHE using RSA). However, when choosing be-

tween RSA and ECDSA encryption, there are two considerations: RSA generally

19

has heavier signatures than ECDSA, however, ECDSA requires more computa-

tion for certificate verification. Our study proves that the energy consumption of

ECDSA certificate verification considerably outweighs RSA’s energy consumption

for heavier signature generation. We plan on expanding this study by extending

our pool of ciphers, ranking the ciphers based on level of security, and including

network overhead, using various types of IoT devices.

20

C1 C2 C3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Cipher

T
im

e
(s

)

0.0061673 s 0.0061265 s

0.33093 s

(a) Step 3

C1 C2 C3
0

0.05

0.1

0.15

0.2

0.25

Cipher

T
im

e
(s

)

0.009715 s 0.0093874 s

0.20026 s

(b) Step 4

C1 C2 C3
0.2

0.4

0.6

0.8

1

1.2

1.4

Cipher

T
im

e
(s

)

1.3262 s

0.31944 s 0.32057 s

(c) Step 8

C1 C2 C3
0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

Cipher

T
im

e
(s

)

0.0010953 s

0.0043373 s 0.0043319 s

(d) Step 9

C1 C2 C3
0.2

0.4

0.6

0.8

1

1.2

1.4

Cipher

T
im

e
(s

)

1.3431 s

0.33929 s

0.85609 s

(e) Total

Figure 3.3: Processing time of various steps. This figure confirms that client verifi-
cation of an ECDSA certificate requires about 5200% longer processing compared
to RSA. In addition, signature verification using ECDSA is around 2000% longer
than RSA. Furthermore, key exchange using DHE shows 300% longer processing
time than using ECDHE. In general, the processing overhead of C1 and C3 are
300% and 150% higher than C2, respectively.21

C1 C2 C3
0

0.1

0.2

0.3

0.4

Cipher

P
ow

er
 (

J)

0.0091165 J 0.0085986 J

0.36374 J

(a) Step 3

C1 C2 C3
Cipher

0

0.05

0.1

0.15

0.2

0.25

P
ow

er
 (

J)

0.012298 J 0.012038 J

0.2211 J

(b) Step 4

C1 C2 C3
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Cipher

P
ow

er
 (

J)

1.435 J

0.35259 J 0.35288 J

(c) Step 8

C1 C2 C3
0.001

0.002

0.003

0.004

0.005

0.006

0.007

Cipher

P
ow

er
 (

J)

0.0013817 J

0.0046638 J 0.0051538 J

(d) Step 9

C1 C2 C3
Cipher

0

0.5

1

1.5

P
ow

er
 (

J)

1.4578 J

0.37789 J

0.94288 J

(e) Total

Figure 3.4: This figure confirms that client verification of an ECDSA certificate
requires about 3900% more energy compared to RSA. In addition, signature verifi-
cation using ECDSA requires around 1700% more energy verus RSA. Furthermore,
key exchange using DHE shows 300% more energy compared with ECDHE. In gen-
eral, the processing overhead of C1 and C3 are 300% and 150% higher than C2,
respectively.

22

Chapter 4

Edge Mining on IoT Devices
using Anomaly Detection

In this chapter, we investigate the use of supervised machine learning based

anomaly detection to reduce data transmission overhead on the edge and storage

requirements on the cloud. We benchmark four classical machine learning algo-

rithm classifiers, RF, MLP, KNN, and DA (i.e. LDA/QDA) on a RPi3 edge device

for three different IoT scenarios (i.e., datasets). We show tangible data transmis-

sion overhead savings when using MLP, RF, LDA, and QDA models across all

scenarios. In addition to this we use real data as opposed to synthetic data to

corroborate the predictive accuracy of the models. Furthermore, we analyze the

tradeoffs involved in model selection for different use cases and provide expla-

nations for why the models achieve different levels of performance in different

scenarios.

4.1 Anomaly Detection Models and Datasets Used

In this section below, we provide an analysis of each machine learning method

benchmarked in our study and discuss their general use cases, time complexity,

and performance tradeoffs involved in their training and prediction phases. We

have chosen RF, MLP, KNN, LDA, and QDA (i.e., two variants of DA) for this

study because they are among the most popular machine learning classification

23

Table 4.1: Mathematical notations and symbols.

d Number of features
h Number of neurons per hidden layer
i Number of iterations
k Number of hidden layers
K Number of neighbors
M Number of testing samples
N Number of training samples
o Number of output neurons
P Distance-metric complexity
T Number of trees

Classifier Training Complexity Testing Complexity

RF O(N ∗
√
(d ∗ T)) O(Td)

MLP O(Ndhkoi) O(Nhk)
KNN O(1) O(NPMlogK)

LDA
if N >d: O(Nd2)
if d >N : O(d3)

O(M)

QDA O(d4) O(M logM)

Table 4.2: Training and prediction time complexity of anomaly detection models.

methods [42]. Furthermore, all chosen models have distinct underlying mathe-

matical mechanisms which account for varying model performance across different

scenarios. Table 4.1 denotes all mathematical notations. Table 4.2 provides each

model’s theoretical training and testing time complexity.

4.1.1 Random Forests

RF models are applicable to a wide range of classification problems [42]. In a

random forest, each node is split using a subset of features randomly chosen at

that node. This strategy is robust against overfitting and enables RF to perform

better than many other classifiers, including discriminant analysis, support vector

machines, and neural networks [42]. The only major downside of RF is that a large

number of trees can slow down the algorithm for real-time predictions. Suppose

there are T randomized trees, d features, and N training samples, RF’s training

24

Dataset Dimensionality % of Anomalies Anomaly Type IoT Scenario
KDDCup 567497x3 0.35% Attack Detected on Network Intrusion Detection
Digits 30000x784 11% Digit 0 Anomalous Image Detection

Gestures 11674x64 25.3% A Hand Contraction of Patient Health Monitoring

Table 4.3: Overview of the datasets.

time complexity is O(N2
√
dT) [43]. The computational complexity at test time

for a RF with T trees and d features is O(Td) [43].

4.1.2 Multilayer Perceptron

MLP is the most known and frequently used type of neural network using the

backpropagation training algorithm. In recent years, neural networks have been

extensively used for pattern recognition and optimization. MLP models contain

three types of layers: input layer, output layer, and hidden layer. Each node in

the input layer, from top to bottom, passes an input data point to each neuron in

the first hidden layer. Then, each hidden layer neuron multiplies each value with

a weight vector and computes the sum of the multiplied values. Subsequently

each hidden layer neuron applies its activation function to this sum, and sends

the resulting value to the next layer and eventually to the output layer. Suppose

there are N training samples, d features, k hidden layers each containing h neu-

rons, o output neurons, and i iterations. The time complexity of MLP training is

O(Ndhkoi) [44]. It is advisable to start with a small number of hidden layers and

nodes given the high time complexity of MLP’s backpropagation algorithm and

time-consuming grid search procedure [44]. One of the most notable advantages

of MLP, is its low prediction complexity, O(Nhk), which makes it suitable for

time-sensitive anomaly detection tasks.

25

4.1.3 K-Nearest Neighbors

K-Nearest Neighbor Classifier (KNN) is a relatively simple learning algorithm. It

is very commonly used in text mining, agricultural predictions, and stock market

forecasting [45]. Because KNN does not make any assumptions about the under-

lying data distribution, it is particularly suitable for applications with little or no

prior knowledge about the distribution of the dataset. Each data point injected

into the model is classified as part of the class containing the majority of its K

nearest neighbors. We may find the nearest neighbors using various metrics such

as Euclidian distance, k-d tree, ball tree, or other user defined metrics [46].

KNNs are generally reputed for high prediction accuracy with respect to

precision and recall. Furthermore, the training phase of KNN classifiers is very

efficient. The training time complexity of KNN is only O(1). Nevertheless, there

are several drawbacks of KNNs. First, the model has high space complexity as

it stores all training data instances. Second, finding the most optimal value for

K is not trivial [47]. KNN’s most significant drawback, however, is its exorbitant

prediction phase overhead, which is O(NPMlogK) with N training samples, M

test samples, K neighbors, and P distance metric time complexity. The high

overhead at the prediction phase may make it less suitable to be carried on by

resource constrained IoT edge devices.

4.1.4 Discriminant Analysis

In this work, we use both LDA and QDA. LDA first projects a dataset onto lower-

dimensional space to prevent overfitting and to generate linear class-separability.

QDA also performs dimensionality reduction but generates a quadratic line to fit

the training data. [48]. Despite its potential for non-linear data patterns, the

26

Dataset Train Data Size Prediction Buffer Size
KDDCup 10000 50000
Digits 3000 2000

Gestures 3000 3000

Table 4.4: Training and prediction data dimensions.

number of the parameters needed by QDA scales quadratically with that of the

variables, making it slower for very high dimensional datasets. Both LDA and

QDA are extensively used for bankruptcy status classification and face classifica-

tion. LDA’s training complexity is O(d3) if d >N (i.e., more features than training

samples) and O(Nd2) if N <d (i.e., more training samples than features). QDA’s

training complexity is generally O(d4) [48]. LDA’s prediction complexity is O(N)

whereas QDA’s prediction complexity is O(N2).

4.1.5 Datasets Used

In this paper, we benchmark all four classes of classification algorithms on the fol-

lowing datasets: KDDCup 1999 (KDDCup) [49], Digits 0-9 (Digits) [50], and Hand

Gestures (Gestures) [51]. We have chosen these datasets for the following reasons.

First, they represent different application scenarios. Second, they represent differ-

ent percentages of anomalies at 0.35%, 10%, and 25.3% respectively. Third, they

represent different orders of dimensionality at 3, 784, and 64 respectively. Table

4.3 provides an overview of each dataset with regard to anomaly detection sce-

nario, percentage of anomalies, and dimensionality. The original KDDCup dataset

from UCI machine learning repository contains 41 attributes. ODDS Library from

Stonybrook University, New York has reduced the dataset to 3 attributes: duration

of communication, number of incoming bytes, and number of outgoing bytes. Each

training sample contains 3 features and an output value indicating whether the

network is in a secure or compromised state. The original data set has 3,925,651

27

attacks (80.1%) out of 4,898,431 records. ODDS has forged this dataset to contain

only 3,377 attacks (0.35%) out of 567,497 records. The end goal in this scenario

is to only notify the cloud of the sparsely occurring attacks on the network.

Digits is a dataset containing images (28×28) of digits between 0-9. There are

a total of 784 features with each feature corresponding to each constituent pixel of

a given image. Digit 0 is considered the anomalous class and constitutes roughly

10% of the dataset. We consider digit 0 to represent an unexpected entity or

intruder captured within a collection of image frames in a video stream. Anomaly

detection can substantially lower transmission overhead when filtration is applied

to high dimensional data such as images.

Hand Gestures is a dataset with 64 total attributes each representing sensor

measurements of a person’s hand while playing the game of rock-paper-scissors.

The original dataset classifies each observed motion as either rock (closed fist),

paper (open fist), scissors (two fingers pointed), and neutral (flat hand). For our

study, we designate rock as the anomalous gesture and group the other three

gestures into the norm class. We consider the rock symbol to be emblematic of a

patient’s hand contraction which requires medical assistance. In this process, we

introduce a scenario where 25.3% of the closed fist instances (i.e., anomalies) are

representative of a health condition requiring notification to the cloud.

4.2 Experimentation and Analysis

The organization of this section is as follows. First, we specify our testbed, model

creation process, and model benchmarking process. Then, we show how each

anomaly detection model performs on each dataset (i.e., scenario) with respect to

both overhead and anomaly detection accuracy. Furthermore, we show the best

28

model for each scenario and analyze tradeoffs involved in model selection such as

training overhead, prediction overhead, and prediction accuracy.

4.2.1 Methodology

The testbed includes three RPi3s, which are used as the edge device, the cloud, and

the interface to connect to our energy measurement platform, EMPIOT [52]. All

RPi3s feature a BCM2837 SoC, a 1.2 GHZ quad-core ARM Cortex A53 processor,

and 1 GB LPDDR2-900 SDRAM and run Debian OS [53]. Both the client and

cloud RPi3s connect to an access point (i.e., router) through an 802.11 link. We

run and benchmark all machine learning algorithms for anomaly detection on the

edge RPi3. Time measurements are captured by setting timestamps in the Python

code before and after algorithm execution. Energy measurements are captured by

EMPIOT. EMPIOT is composed of a shield and is installed on top of the host

RPi3. Figure 4.1 shows our experimental setup inclusive of edge, cloud, and

EMPIOT.

We use scikit-learn implementations of RF, MLP, KNN, LDA, and QDA for

our anomaly detection experiment. There is minimal data preprocessing for the

three datasets used in this experiment because they do not contain missing column

values nor incorrect formatting. All code related to anomaly detection such as data

aggregation and model training/validation is written in Python 3.6 making use of

bcrypt, pandas, numpy, and scikit-learn libraries. For each dataset, we first tune

and validate each model by running an offline grid search (i.e., hyperparameter

tuning). We configure the grid search to rank model configurations based on

precision and recall. Note that we consider grid search to be a purely offline

operation performed on the cloud and do not consider its overhead. We also

29

Procedure - Untitled

RPi3 Edge EMPIOT

RPi3
Collects Measurements

WiFi Access Point RPi3 Cloud

USB Power Connection

Start Power Measurement

End Power Measurement

Figure 4.1: The testbed used for our experiment inclusive of three RPi3s and the
EMPIOT energy measurement platform. The RPi3 hosting EMPIOT captures
energy measurements of the edge RPi3 transmitting data to the cloud RPi3.

note that grid search is not necessarily exhaustive in all scenarios because not

all models require extensive hyperparameter tuning. For example, RF generally

demonstrates high prediction accuracy on all datasets using default scikit-learn

parameters. MLP, on the other hand, requires extensive hyperparameter tuning

to converge on hidden layer and node count. Having decided on hyperparameter

configuration, we are left with one-time model training. For each scenario, we

train a model with the least number of samples that enables it to predict with

both precision and recall greater than 80% and either precision or recall greater

than 90%. Table 4.4 shows the training data size for each dataset. We choose to

benchmark model training on the RPi3 edge to provide reference for cases when

the edge needs to carry on model training. Note that we also consider model

training to be an offline operation and therefore will not factor this cost into our

overhead-savings analysis.

We benchmark model precision and recall for each dataset. Precision indi-

cates the percentage of relevant results Precision = TruePositiveCount
TruePositiveCount+FalsePositiveCount

.

30

KDDCup Digits Gestures
0

25

50

75

100

99
.5

91
.1

2

93
.0

3

97
.9

6

90
.1

89
.698

.9

97
.4

3

82

99
.4

7

92
.4

2

98
.2

R
ec

al
l(

%
)

RF MLP KNN LDA QDA

(a)

KDDCup Digits Gestures
0

25

50

75

100

10
0

97
.1

2

93
.9

7

98
.9

95
.1

94
.510

0

94 97
.8

8

10
0

83
.1

8

91
.6

2

P
re

ci
si

on
(%

)

RF MLP KNN LDA QDA

(b)

Figure 4.2: All models are viable for the datasets chosen. All models perform
best for the KDDCup dataset, containing the lowest number of features, and
post precision and recall values of 98.9% and 97.96% respectively. RF and QDA
offer the best prediction accuracy for Gestures while RF and KNN offer the best
prediction accuracy for Digits.

Recall indicates the percentage of results accurately classified by the algorithm

Recall = TruePositiveCount
TruePositiveCount+FalseNegativeCount

. We also tabulate the time and energy

consumption of each model’s training phase and prediction phase. The training

phase entails instantiating a model with a hyperparameter configuration and fit-

ting the model on training samples. The prediction phase entails executing the

model predict function on a buffer of test samples. Time is measured by setting

timers within the Python code while energy is measured using EMPIOT. All data

transmitted to the cloud is secured using 256-bit AES encryption. Note that en-

cryption overhead is factored into our cost analysis. For each model and dataset,

we show precision, recall, prediction time and energy, training time and energy,

the number of observations and MBs saved by the cloud, and lastly, the time

and energy saved using anomaly detection. We then closely analyze the quanti-

tative results and study the performance tradeoffs of different models in different

scenarios.

31

KDDCup Digits Gestures
0

50

100

150

200

0.
94

34
.7

2

4.
27

2.
84

16
8

22
.3

5

0.
91 6.
09

0.
13

0.
19

23
.6

5

0.
59

Tr
ai

ni
ng

Ti
m

e
(s

)

RF MLP KNN LDA QDA

(a)

KDDCup Digits Gestures
0

200

400

600

800

2.
75

91
.1

8

12
.1

5

7.
49

52
4.

97

60
.7

6

2.
55

14
.9

6

0.
35

0.
27 62

.7
8

1.
5

Tr
ai

ni
ng

E
ne

rg
y

(J
)

RF MLP KNN LDA QDA

(b)

Figure 4.3: MLP features the most expensive training phase with RF, QDA,
LDA, and KNN generally following in this order as shown in (a) and (b). MLP
costs approximately 500% more time and 500% more energy than the next best
performing model across all datasets.

4.2.2 Results and Analysis

We present the model performance and model overhead results obtained from

each dataset. We recommend the best model for each scenario based on training

and prediction overhead and model performance. Note that the time and energy

savings reported for each anomaly detection model consider prediction cost and

not the offline training cost. We conclude this section with an analysis of general

model behavior observed across all datasets and propose recommended use cases

for each model.

KDDCup Dataset

For the 3 feature KDDCup dataset, all models are trained using 10000 network

observations out of a total of 567497 labeled training samples with 0.35% anomaly

rate. Note that this dataset has the lowest dimensionality as well as the lowest

anomaly rate among the three datasets. In this scenario, the edge device aggre-

32

KDDCup Digits Gestures
0

100

200

300

1.
39

0.
17

0.
2

8.
8
·1

0−
2

0.
34

5.
4
·1

0−
2

37
.6

3

22
9.

48

10
.2

7

1.
7
·1

0−
2

0.
11

0.
45

P
re

di
ct

io
n

Ti
m

e
(s

)

RF MLP KNN LDA QDA

(a)

KDDCup Digits Gestures
0

200

400

600

800

3.
29

0.
42

0.
56

0.
22

0.
87

0.
14

10
0.

42

60
1.

14

28
.7

5.
7
·1

0−
2

0.
3

1.
16

P
re

di
ct

io
n

E
ne

rg
y

(J
)

RF MLP KNN LDA QDA

(b)

Figure 4.4: LDA offers the most cost-effective prediction phase for both Digits as
well as KDDCup datasets as shown in (a) and (b). MLP offers the most cost-
effective prediction phase for the 64 feature Gestures dataset. KNN costs nearly
600% more energy and 650% more time than the next best performing model
across all datasets.

gates 50000 size network status buffers for the prediction phase (i.e., anomaly

detection) and subsequent transmission.

Figure 4.2 shows the precision and recall values observed when applying each

model for each scenario. We see that all models post exceptional precision and

recall values on the sparse anomaly KDDCup dataset. Relatively speaking, MLP

posts the lowest precision and recall values at 98.9% and 97.9% respectively. All

other models post over 99% recall and 100% precision. We subsequently examined

that one of the features in this dataset has a Gaussian distribution and that the

anomalies primarily occur when the feature’s value lied ±3σ outside of the mean.

Given this level of accuracy in anomaly detection, we assert that the edge device

can save around 99.5% of the data (i.e., approximately 1.2 MB) per buffer sent to

the cloud.

Figure 4.3 shows the training time and energy for each model applied on

different datasets. Specifically for KDDCup, LDA has the most time and energy

33

efficient training phase among all models. This is because LDA uses an underly-

ing dimensionality-reduction technique for generating a class-separating boundary

that is efficiently performed on a 3 dimensional dataset. KNN, RF, and MLP

follow in order. RF takes a significantly longer time proportional to KNN for this

dataset due to the relatively large test data buffer size.

Figure 4.4 shows the prediction time and energy when each model is applied.

As shown in Figure 4, when applied on the KDDCup data, LDA is also the most

cost-effective model for prediction. The low dimensionality of inputs to the model

enables LDA to classify anomalies very efficiently. It is followed by MLP, RF, and

KNN. MLP is marginally worse than LDA for this scenario considering the fact

that it is slightly inferior in terms of prediction accuracy. RF is a well-rounded

choice with respect to both prediction accuracy and overhead. Note that RF’s

prediction overhead exceeds LDA’s prediction overhead due to the complexity

involved in processing test samples at multiple nodes at multiple tree levels. KNN

is rendered slow and ineffective for this scenario as its prediction phase consumes

nearly 38 seconds and 101J for a 50000×3 buffer.

Digits Dataset

The 784 feature Digits dataset has the highest dimensionality among all our

datasets and is emblematic of an anomalous image detection scenario. For this

dataset, all models are trained using 3000 images out of the total 20000 images

with a 10% anomaly rate. The edge device performs anomaly detection on buffers

containing 2000 images and transmits the anomalous images identified.

Regarding prediction accuracy, Figure 4.2 shows that KNN offers the best

overall precision and recall among all models at 94% and 97.4% respectively. RF

34

posts the highest precision out of all the models at 97.1%. LDA performs the

poorest in this scenario offering 92.42% recall but only 83.18% precision. Given

the overall high level of accuracy in anomaly detection, we assert that the edge

device can save around 89.5% of the data (i.e., approximately 11.3 MB) per buffer

sent to the cloud.

As far as training overhead, Figure 4.3 shows that KNN has the most effi-

cient training phase on the Digits dataset. KNN only stores training samples as

part of its training phase rather than formulating a mapping between inputs and

outputs. Therefore, for this 784 dimensional dataset, the other algorithms have

a considerably more demanding training phase. KNN is followed by LDA, RF,

and MLP in order. MLP, which has the most expensive training phase, costs 168

seconds and 524.97J. This result is expected given the computationally expensive

nature of MLP’s backpropagation algorithm and high data dimensionality.

In terms of prediction overhead, Figure 4.4 shows that LDA has the most

efficient prediction phase among all models and costs only 0.11 sec and 0.3J for

prediction on a 2000 image buffer. It is followed by RF, MLP, and KNN in order.

KNN is very expensive for prediction and costs nearly 230 seconds and 600J. This

is because the distance computation between K neighbors and all M test sam-

ples is costly for 784 dimensional data points. If we prioritize prediction accuracy

much higher than prediction time, KNN offers the best precision and recall values

at the expense of costly prediction overhead. If the primary objective is to mini-

mize transmission time delay, LDA offers a robust solution at the expense of low

precision (i.e., 83.18%). RF and MLP lie in the middle ground and are the two

most well-rounded solutions for this scenario. Because RF also has significantly

less training overhead, we propose that RF is the best anomaly detection method

for this image classification scenario.

35

KDDCup Digits Gestures
−400

−200

0

200

0.
56 16

.3
7

1.
46

1.
6 16

.2

1.
62

−
35

.9
4

−
21

2.
93

−
8.

58

1.
67 16

.4
3

1.
21

Ti
m

e
S

av
ed

(s
)

RF MLP KNN LDA QDA

(a)

KDDCup Digits Gestures

−800

−600

−400

−200

0

200

1.
28 45

.1
2

4.
05

4.
35 44

.6
6

4.
46

−
95

.5
8

−
55

4.
99

−
24

.0
9

4.
51

16
.4

3

3.
22

E
ne

rg
y

S
av

ed
(J

)

RF MLP KNN LDA QDA

(b)

Figure 4.5: RF, MLP, and LDA all demonstrate overhead savings when applied
to data before transmission; most notably, RF applied to the Digits dataset saves
45.119 J and 16.37 seconds per 2000 image buffer. KNN is a poor choice for real-
time anomaly detection scenarios given that it causes net time and energy loss
across all datasets.

Gestures Dataset

For this 64 feature dataset, all the models are trained using 3000 hand gesture ob-

servations out of a total of 12000 hand gesture observations with a 25.3% anomaly

rate. This dataset has the second highest dimensionality and the highest anomaly

rate among all datasets. In this scenario, the edge device aggregates 3000 observa-

tions (gestures) per buffer for the prediction phase and subsequent transmission.

Note that we use QDA only on this dataset instead of LDA as LDA posted less

than 20% precision. This is because LDA could only generate a linear fit for cer-

tain features in this dataset that exhibited quadratic patterns. Nevertheless, we

benchmarked LDA and observed that it takes 0.43 seconds for the training phase

and 0.051 seconds for the prediction phase. Therefore, if LDA demonstrated ac-

ceptable prediction accuracy for Gestures, it would have claimed the second most

efficient training phase and the most efficient prediction phase among all models.

With regard to prediction accuracy, Figure 4.2 shows that QDA posts the

36

KDDCup Digits Gestures
0

25

50

75

100
99

.5
9

89
.4

74
.6

7

99
.5

9

89
.6

74
.6

99
.6

89
.6

74
.5

99
.6

89
.5

74
.7

3

D
at

a
Tr

an
sm

is
si

on
R

ed
uc

tio
n

pe
rB

uf
fe

r(
%

)

RF MLP KNN LDA QDA

(a)

KDDCup Digits Gestures
0

5

10

15

1.
2

11
.3

1.
18

1.
2

11
.3

1.
17

1.
2

11
.2

9

1.
19

1.
2

11
.1

6

1.
12

Le
ss

D
at

a
to

C
lo

ud
(M

B
)

RF MLP KNN LDA QDA

(b)

Figure 4.6: From (a) we observe that the models reduce approximately 90% of the
observations sent from Digits’ buffers, 76% of the observations sent from Gestures’
buffers, and 99.5% of the observations sent from KDDCup’s buffers. The resulting
saved cloud storage shown in (b) is substantial, especially for Digits dataset where
we saved nearly 12 MB of data sent per 2000 image buffer.

highest recall out of all models at 98.2%. RF also performs well with 93.03%

recall and 93.97% precision. It is followed by MLP and KNN in order. Given the

overall high level of accuracy in anomaly detection, we assert that the edge device

can save around 75% of the data (i.e., approximately 1.15 MB) per buffer sent to

the cloud.

KNN training, as shown in Figure 4.3, is the most efficient and MLP training

is the least efficient. RF training costs substantially more overhead than QDA.

This is explained by the computation involved in creating a set of randomized

decision trees for a pool of 64 features.

As far as prediction overhead, MLP has the most efficient prediction phase

for the Gestures dataset and consumes 0.054 seconds and 0.142J per buffer. This

is 274% more time efficient and 294% more energy efficient than the next best RF

prediction phase. QDA and KNN follow in order. MLP is the clear choice for this

37

scenario because it offers fast anomaly detection and the best cost-savings among

all four models.

General Observations

We note that time and energy savings for each anomaly detection model is calcu-

lated by subtracting both prediction phase overhead and anomalous buffer trans-

mission overhead from full buffer transmission overhead. Figure 4.5 shows the

overhead savings observed when applying each model on each dataset. LDA pro-

vides the most data transmission overhead savings among all models. MLP, QDA,

RF, and KNN follow in order. Considering that the deployment of KNN leads

to net overhead loss across all benchmarked scenarios, its use may be eliminated

from real-time anomaly detection scenarios.

Comparing both Figure 4.5 and Figure 4.4, we note that the rank ordering

of models’ overhead savings from least to greatest matches the rank ordering of

models’ prediction phase overhead from greatest to least. From Figure 4.4, note

that QDA, which is used in place of LDA for the Gestures dataset, substantially

exceeds LDA in prediction phase overhead consumption. This explains why MLP

has the fastest prediction phase for the Gestures dataset but has the second and

third slowest prediction phase for KDDCup and Digits datasets respectively. Also

note that RF has the second most efficient prediction phase for Digits but is sub-

stantially less efficient than MLP for KDDCup. This suggests that RFs are more

sensitive to testing buffer size than dimensionality. For reference purposes, the

rank ordering of training time complexity from greatest to least is generally MLP,

RF, QDA, LDA, and KNN across all datasets. Note that all rankings presented are

based on testing with Python’s scikit-learn library and experimental results may

vary when using other software implementations of the machine learning models.

38

Figure 4.6 shows percentages of buffer size reduction and fewer MBs of data

sent to the cloud upon applying each model on each dataset. The amount of

data storage conserved on the cloud depends on the dateset’s anomaly rate and

dimensionality. Low anomaly rate indicates that there will be a proportionally

smaller number of observations sent to the cloud. Low dimensionality indicates

that there will be fewer bytes of data per observation sent to the cloud. The cloud

would benefit the most when applying anomaly detection for a scenario with very

high dimensional data and low anomaly detection rate. In this way, the cloud

will not receive the vast majority of data points sent from the edge. With this

in mind, we will examine the cloud storage savings observed for each discussed

scenario. KDDCup has the lowest dimensionality (i.e., 3) and lowest anomaly rate

(i.e., 0.35%) among all the datasets. Therefore, we are able to filter over 99% of

the observations captured on the edge but save only 3 features per observation.

This explains why we are only able to save approximately 1.2 MB sent to the

cloud during prediction phase even though the buffer size is 50000. Digits has

the highest dimensionality (i.e., 784) among all datasets and falls between the

other two datasets with regard to anomaly rate (i.e., 10%). Despite having a

considerably higher anomaly rate than KDDCup, Digit’s dimensionality ensures

that we save 784 data points sent to the cloud per observation. Thus, by filtering

90% of each Digits buffer we save roughly 12.3 MB sent to the cloud. Lastly,

Gestures has the highest anomaly detection rate (i.e., 25.3%) and ranks second as

far as dimensionality (i.e., 64). This indicates that there is a substantially higher

proportion of observations needed to be notified to the cloud compared to the other

scenarios and a moderate level of data points saved per filtered observation. These

two factors slightly downgrade cloud storage savings and result in approximately

1.15 MB saved by the cloud per data buffer.

39

Model Suitable Applications

RF
Minimal training samples
Delay sensitive applications

MLP
Non-linear relationship between training inputs and outputs
Extremely time-sensitive application

KNN
Resource constrained training
Delay insensitive application

DA
Resource constrained training and prediction
Delay sensitive and mission critical application

Table 4.5: Sample use cases for different models.

40

Chapter 5

Conclusion

Both studies in this thesis offer ways to reduce resource consumption of IoT de-

vices. In Energy and Processing Demand Analysis of TLS Protocol in Internet of

Things Applications, we benchmark three different ciphers and present the most

lightweight configuration when running the TLS handshake. Every fraction of

time and energy saved per TLS handshake pays enormous dividends in the long

run considering that TLS authentication is utilized by many billions of IoT devices

worldwide. In Edge Mining on IoT Devices using Anomaly Detection, we propose

using supervised machine learning anomaly detection techniques to considerably

reduce data sent to the cloud. This can considerably reduce edge device data

transmission overhead costs as well as cloud storage requirements.

In our TLS benchmarking study, we conclude that the order of the ciphers

from least to greatest energy efficiency is the following: C1, C3, C2. Specifically,

C1 consumes 55% more energy than C3, and C3 consumes 150% more than C2.

Clearly, the most efficient cipher based on the results is C2 (i.e., ECDHE using

RSA). However, when choosing between RSA and ECDSA encryption, there are

two considerations: RSA generally has heavier signatures than ECDSA, however,

ECDSA requires more computation for certificate verification. Our study proves

that the energy consumption of ECDSA certificate verification considerably out-

weighs RSA’s energy consumption for heavier signature generation. We plan on

expanding this study by extending our pool of ciphers, ranking the ciphers based

41

on level of security, and including network overhead, using various types of IoT

devices. For future work, we would like to benchmark TLS with additional cipher

suite configurations using multiple hardware platforms.

In our edge mining anomaly detection study, we proved that RF, MLP, LDA,

and QDA anomaly detection models have considerable potential to save edge de-

vice transmission overhead as well as cloud storage. The overhead-savings for a

generic IoT scenario varies depending upon the anomaly rate and dimensionality of

the transmitted data. We conclude that LDA has the most cost-effective anomaly

detection phase that we have benchmarked across all scenarios and should be the

primary choice for an extremely resource constrained edge device. QDA also has

a very efficient anomaly detection phase but undoubtedly demands more overhead

than LDA for the quadratic fit operation. We also conclude that RF is the most

well-rounded anomaly detection method among all models featuring a comparably

lightweight prediction phase and offering exceptional precision and recall. MLP

also works very well for time-critical prediction tasks given that there are not sig-

nificant resource constraints for training. The KNN classifier, despite its reliable

prediction accuracy, demands excessive amounts of time and energy for anomaly

detection, which rules out its use case in most IoT scenarios. The only reason

to consider using KNN is in a case of stringent resource constraints for model

training.

This work clearly demonstrates the overhead-savings potential of machine

learning based anomaly detection on both edge and cloud. We also have pro-

vided a comprehensive overview of the tradeoffs involved in the deployment of

these models. For future work, we aim to benchmark unsupervised classification

methods for anomaly detection. Unsupervised machine learning methods are very

useful when we do not have ground truth labeling but can infer properties from

42

the training dataset. For example, Elliptical Envelope is a suitable technique for a

dataset which expresses a multivariate gaussian distribution and an Isolation For-

est is optimal for a dataset which expresses a multimodal distribution. For future

contribution, we also aim to scale our experimental setup to other IoT platforms

such as Cypress CYW43907.

43

Bibliography

[1] M. Shirvanimoghaddam, M. Dohler, and S. J. Johnson, “Massive non-

orthogonal multiple access for cellular iot: Potentials and limitations,” IEEE

Communications Magazine, vol. 55, no. 9, pp. 55–61, 2017. 1

[2] R. Mzid, M. Boujelben, H. Youssef, and M. Abid, “Adapting tls handshake

protocol for heterogenous ip-based wsn using identity based cryptography,” in

International Conference on Communication in Wireless Environments and

Ubiquitous Systems: New Challenges (ICWUS). IEEE, 2010, pp. 1–8. 2

[3] D. E. Simos, K. Kleine, A. G. Voyiatzis, R. Kuhn, and R. Kacker, “Tls ci-

pher suites recommendations: A combinatorial coverage measurement ap-

proach,” in International Conference on Software Quality, Reliability and Se-

curity (QRS). IEEE, 2016, pp. 69–73. 2, 13

[4] U. Banerjee, C. Juvekar, A. Wright, A. P. Chandrakasan et al., “An energy-

efficient reconfigurable dtls cryptographic engine for end-to-end security in

iot applications,” in International Solid-State Circuits Conference (ISSCC).

IEEE, 2018, pp. 42–44. 2, 3

[5] N. J. Al Fardan and K. G. Paterson, “Lucky thirteen: Breaking the tls and

dtls record protocols,” in IEEE Symposium on Security and Privacy (SP).

IEEE, 2013, pp. 526–540. 2

44

[6] A. K. Ranjan, V. Kumar, and M. Hussain, “Security analysis of tls authenti-

cation,” in International Conference on Contemporary Computing and Infor-

matics (IC3I). IEEE, 2014, pp. 1356–1360. 2

[7] C. Peng, Q. Zhang, and C. Tang, “Improved tls handshake protocols us-

ing identity-based cryptography,” in International Symposium on Information

Engineering and Electronic Commerce (IEEC’09). IEEE, 2009, pp. 135–139.

2

[8] M. Atighetchi, N. Soule, P. Pal, J. Loyall, A. Sinclair, and R. Grant, “Safe

configuration of tls connections,” in Conference on Communications and Net-

work Security (CNS). IEEE, 2013, pp. 415–422. 2

[9] P. Miranda, M. Siekkinen, and H. Waris, “Tls and energy consumption on

a mobile device: A measurement study,” in Symposium on Computers and

Communications (ISCC). IEEE, 2011, pp. 983–989. 2, 3, 6, 7

[10] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, “A study of the

energy consumption characteristics of cryptographic algorithms and security

protocols,” IEEE Transactions on mobile computing, vol. 5, no. 2, pp. 128–

143, 2006. 3, 7, 15

[11] A. Emdadi, R. Karne, and A. Wijesinha, “Implementing the tls protocol on

a bare pc,” in Second International Conference on Computer Research and

Development. IEEE, 2010, pp. 293–297. 3

[12] S. Gueron and V. Krasnov, “Fast prime field elliptic-curve cryptography with

256-bit primes,” Journal of Cryptographic Engineering, vol. 5, no. 2, pp. 141–

151, 2015. 3

45

[13] L.-S. Huang, S. Adhikarla, D. Boneh, and C. Jackson,“An experimental study

of tls forward secrecy deployments,” IEEE Internet Computing, vol. 18, no. 6,

pp. 43–51, 2014. 3

[14] E. I. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Goldsmith, and R. Rednic,

“Edge mining the internet of things,” IEEE Sensors Journal, vol. 13, no. 10,

pp. 3816–3825, 2013. 4

[15] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in

the internet of things,” in Proceedings of the first edition of the MCC workshop

on Mobile cloud computing. ACM, 2012, pp. 13–16. 4

[16] K. Bhargava and S. Ivanov, “Collaborative edge mining for predicting heat

stress in dairy cattle,” in 2016 Wireless Days (WD). IEEE, 2016, pp. 1–6. 4

[17] I. Butun, B. Kantarci, and M. Erol-Kantarci, “Anomaly detection and privacy

preservation in cloud-centric internet of things,” in IEEE International Con-

ference on Communication Workshop (ICCW). IEEE, 2015, pp. 2610–2615.

4

[18] S. Bin, L. Yuan, and W. Xiaoyi, “Research on data mining models for the

internet of things,” in International Conference on Image Analysis and Signal

Processing. IEEE, 2010, pp. 127–132. 4

[19] P. G. Argyroudis, R. Verma, H. Tewari, and D. O’Mahony, “Performance

analysis of cryptographic protocols on handheld devices,” in Third IEEE In-

ternational Symposium on Network Computing and Applications, 2004.(NCA

2004). Proceedings. IEEE, 2004, pp. 169–174. 6

[20] A. Narayan and M. Chen, “Measuring the energy impact of security proto-

cols,” Ph.D. dissertation, 2016. 7

46

[21] M. Koschuch, M. Hudler, and M. Krüger, “Performance evaluation of the

tls handshake in the context of embedded devices,” in 2010 International

Conference on Data Communication Networking (DCNET). IEEE, 2010,

pp. 1–10. 7

[22] F. Giannoni, M. Mancini, and F. Marinelli, “Anomaly detection models for

iot time series data,” arXiv preprint arXiv:1812.00890, 2018. 8

[23] S. A. Aljawarneh and R. Vangipuram, “Garuda: Gaussian dissimilarity mea-

sure for feature representation and anomaly detection in internet of things,”

The Journal of Supercomputing, pp. 1–38, 2018. 8

[24] H. Haddad Pajouh, R. Javidan, R. Khayami, D. Ali, and K. R. Choo, “A

two-layer dimension reduction and two-tier classification model for anomaly-

based intrusion detection in iot backbone networks,” IEEE Transactions on

Emerging Topics in Computing, pp. 1–1, 2019. 8

[25] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion detection in

the internet of things,” Ad hoc networks, vol. 11, no. 8, pp. 2661–2674, 2013.

8

[26] R. Sommer and V. Paxson, “Outside the closed world: On using machine

learning for network intrusion detection,” in IEEE Symposium on Security

and Privacy, May 2010, pp. 305–316. 8

[27] J. Zhang and M. Zulkernine, “Anomaly based network intrusion detection

with unsupervised outlier detection,” in IEEE International Conference on

Communications, vol. 5, June 2006, pp. 2388–2393. 8

[28] G. Kotani and Y. Sekiya,“Unsupervised scanning behavior detection based on

distribution of network traffic features using robust autoencoders,” in IEEE

47

International Conference on Data Mining Workshops (ICDMW), Nov 2018,

pp. 35–38. 8

[29] S. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K.-S. Kwak, “The

internet of things for health care: a comprehensive survey,” IEEE Access,

vol. 3, pp. 678–708, 2015. 8

[30] A. Ukil, S. Bandyoapdhyay, C. Puri, and A. Pal, “Iot healthcare analytics:

The importance of anomaly detection,” in IEEE 30th International Confer-

ence on Advanced Information Networking and Applications (AINA), March

2016, pp. 994–997. 8

[31] R. K. Mishra and R. Pandey, “Aspects of network architecture for remote

healthcare systems,” in 2nd International Conference on Computational In-

telligence and Networks (CINE), Jan 2016, pp. 47–53. 8

[32] D. Stiawan, M. Y. Idris, R. F. Malik, S. Nurmaini, and R. Budiarto,“Anomaly

detection and monitoring in internet of things communication,” in 8th Inter-

national Conference on Information Technology and Electrical Engineering

(ICITEE), Oct 2016, pp. 1–4. 9

[33] T. Luo and S. G. Nagarajan, “Distributed anomaly detection using autoen-

coder neural networks in wsn for iot,” in IEEE International Conference on

Communications (ICC), May 2018, pp. 1–6. 9

[34] H. Sedjelmaci, S. M. Senouci, and T. Taleb, “An accurate security game

for low-resource iot devices,” IEEE Transactions on Vehicular Technology,

vol. 66, no. 10, pp. 9381–9393, 2017. 9

48

[35] L. Lyu, J. Jin, S. Rajasegarar, X. He, and M. Palaniswami, “Fog-empowered

anomaly detection in iot using hyperellipsoidal clustering,” IEEE Internet of

Things Journal, vol. 4, no. 5, pp. 1174–1184, 2017. 9

[36] T. Dierks, “The transport layer security (tls) protocol version 1.2,” 2008.

[Online]. Available: https://tools.ietf.org/html/rfc5246 11

[37] ARM Limited, “mbed tls,” https://github.com/ARMmbed/mbedtls, Mar.

2017. 14, 15

[38] J. Salowey, A. Choudhury, and D. McGrew, “Aes galois counter mode (gcm)

cipher suites for tls,” Tech. Rep., 2008. 14

[39] Cypress Semiconductor. CYW43907: IEEE 802.11 a/b/g/n SoC with an

Embedded Applications Processor. [Online]. Available: http://www.cypress.

com/file/298236/download 15

[40] ——. CYW943907AEVAL1F Evaluation Kit. [Online]. Avail-

able: http://www.cypress.com/documentation/development-kitsboards/

cyw943907aeval1f-evaluation-kit 15

[41] B. Dezfouli, I. Amirtharaj, and C.-C. Li, “EMPIOT: An Energy Measurement

Platform for Wireless IoT Devices,” 2018. 15

[42] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,

2001. 24

[43] G. Louppe, “Understanding random forests: From theory to practice,” arXiv

preprint arXiv:1407.7502, 2014. 25

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Ma-

49

https://tools.ietf.org/html/rfc5246
https://github.com/ARMmbed/mbedtls
http://www.cypress.com/file/298236/download
http://www.cypress.com/file/298236/download
http://www.cypress.com/documentation/development-kitsboards/cyw943907aeval1f-evaluation-kit
http://www.cypress.com/documentation/development-kitsboards/cyw943907aeval1f-evaluation-kit

chine learning in python,” Journal of machine learning research, vol. 12, no.

Oct, pp. 2825–2830, 2011. 25

[45] S. B. Imandoust and M. Bolandraftar, “Application of k-nearest neighbor

(knn) approach for predicting economic events: Theoretical background,” In-

ternational Journal of Engineering Research and Applications, vol. 3, no. 5,

pp. 605–610, 2013. 26

[46] H. Neeb and C. Kurrus, “Distributed k-nearest neighbors,” 2016. 26

[47] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “Knn model-based approach

in classification,” in OTM Confederated International Conferences” On the

Move to Meaningful Internet Systems”. Springer, 2003, pp. 986–996. 26

[48] B. Jiang, X. Wang, and C. Leng, “A direct approach for sparse quadratic

discriminant analysis,” The Journal of Machine Learning Research, vol. 19,

no. 1, pp. 1098–1134, 2018. 26, 27

[49] “Http (kddcup99) dataset,” http://odds.cs.stonybrook.edu/

http-kddcup99-dataset/, accessed: 2019-01-30. 27

[50] “Mnist digits,” http://yann.lecun.com/exdb/mnist/, accessed: 2019-01-30. 27

[51] “Classify gestures by reading muscle activity,” https://www.kaggle.com/

kyr7plus/emg-4/metadata, accessed: 2019-01-30. 27

[52] B. Dezfouli, I. Amirtharaj, and C.-C. C. Li, “Empiot: An energy measure-

ment platform for wireless iot devices,” Journal of Network and Computer

Applications, vol. 121, pp. 135–148, 2018. 29

[53] E. Upton and G. Halfacree, Raspberry Pi user guide. John Wiley & Sons,

2014. 29

50

http://odds.cs.stonybrook.edu/http-kddcup99-dataset/
http://odds.cs.stonybrook.edu/http-kddcup99-dataset/
http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/kyr7plus/emg-4/metadata
https://www.kaggle.com/kyr7plus/emg-4/metadata

	Santa Clara University
	Scholar Commons
	6-6-2019

	Overhead Management Strategies for Internet of Things Devices
	Kavin Kamaraj
	Recommended Citation

	Thesis_Overhead Management Strategies for Internet of Things Devices_Signature
	Thesis_Overhead Management Strategies for Internet of Things Devices
	Acknowledgement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Transport Layer Security Protocol Overhead Management
	1.2 Data Transmission Overhead Reduction using Anomaly Detection Edge Mining

	2 Related Work
	2.1 Energy and Processing Demand Analysis of TLS Protocol in Internet of Things Applications
	2.2 Edge Mining on IoT Devices using Anomaly Detection

	3 Energy and Processing Demand Analysis of TLS Protocol in Internet of Things Applications
	3.1 Transport Layer Security (TLS)
	3.2 Experimental Procedure

	4 Edge Mining on IoT Devices using Anomaly Detection
	4.1 Anomaly Detection Models and Datasets Used
	4.1.1 Random Forests
	4.1.2 Multilayer Perceptron
	4.1.3 K-Nearest Neighbors
	4.1.4 Discriminant Analysis
	4.1.5 Datasets Used

	4.2 Experimentation and Analysis
	4.2.1 Methodology
	4.2.2 Results and Analysis

	5 Conclusion

