
Santa Clara University
Scholar Commons

Engineering Ph.D. Theses Student Scholarship

6-2017

Towards Efficient Resource Provisioning in
Hadoop
Peter P. Nghiem
Santa Clara University, pnghiem@scu.edu

Follow this and additional works at: http://scholarcommons.scu.edu/eng_phd_theses

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Student Scholarship at Scholar Commons. It has been accepted for inclusion in
Engineering Ph.D. Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Nghiem, Peter P., "Towards Efficient Resource Provisioning in Hadoop" (2017). Engineering Ph.D. Theses. 10.
http://scholarcommons.scu.edu/eng_phd_theses/10

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/student_scholar?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_phd_theses?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_phd_theses/10?utm_source=scholarcommons.scu.edu%2Feng_phd_theses%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Department of Computer Engineering

June 2017

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY
SUPERVISION BY

Peter P. Nghiem

ENTITLED

Towards Efficient Resource Provisioning in Hadoop

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AND ENGINEERING

] / "f

,7 L-^4.. "tl. Ut...^
^ •<„. }{"'t»-''''s,,.....^t.^_^

Chair of Doctoral Committee Member of Doctorai Committee

Member of DoctdFraI Committee Member of Doctoral Committee

W^iu£^5 &^
Member of Doctoral Comamttee Chair of Department

Santa Clara University
Department of Computer Engineering

June 2017

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY

SUPERVISION BY

Peter P. Nghiem

ENTITLED

Towards Efficient Resource Provisioning in Hadoop

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AND ENGINEERING

_______________________ _______________________
Chair of Doctoral Committee Member of Doctoral Committee

_______________________ _______________________
Member of Doctoral Committee Member of Doctoral Committee

_______________________ _______________________
Member of Doctoral Committee Chair of Department

i

TOWARDS EFFICIENT RESOURCE PROVISIONING IN HADOOP

by

Peter P. Nghiem

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in Computer Science and Engineering

School of Engineering

Santa Clara University

Santa Clara, California

June 2017

ii

Abstract

Considering recent exponential growth in the amount of information processed in Big

Data, the high energy consumed by data processing engines in datacenters has become a

major issue, underlining the need for efficient resource allocation for better energy-

efficient computing. This thesis proposes the Best Trade-off Point (BToP) method which

provides a general approach and techniques based on an algorithm with mathematical

formulas to find the best trade-off point on an elbow curve of performance vs. resources

for efficient resource provisioning in Hadoop MapReduce and Apache Spark. Our novel

BToP method is expected to work for any applications and systems which rely on a trade-

off curve with an elbow shape, non-inverted or inverted, for making good decisions. This

breakthrough method for optimal resource provisioning was not available before in the

scientific, computing, and economic communities.

To illustrate the effectiveness of the BToP method on the ubiquitous Hadoop

MapReduce, our Terasort experiment shows that the number of task resources

recommended by the BToP algorithm is always accurate and optimal when compared to

the ones suggested by three popular rules of thumbs. We also test the BToP method on the

emerging cluster computing framework Apache Spark running in YARN cluster mode.

Despite the effectiveness of Spark’s robust and sophisticated built-in dynamic resource

allocation mechanism, which is not available in MapReduce, the BToP method could still

consistently outperform it according to our Spark-Bench Terasort test results. The

performance efficiency gained from the BToP method not only leads to significant energy

saving but also improves overall system throughput and prevents cluster underutilization

in a multi-tenancy environment. In General, the BToP method is preferable for workloads

with identical resource consumption signatures in production environment where job

profiling for behavioral replication will lead to the most efficient resource provisioning.

iii

Keywords

Best Trade-off Point; Hadoop MapReduce; Apache Spark; YARN; Optimal resource

provisioning; Dynamic resource allocation; Energy efficiency; Performance efficiency;

Yield curve; Exponential decay curve; Elbow curve.

iv

Acknowledgments

 First, I would like to thank my PhD advisor, Professor Dr. Silvia M. Figueira for

accepting me to the PhD program under her supervision, supporting my research, guiding

me throughout the academic process, having faith in my innovative ideas and hard work,

and examining and proofreading my journal research papers.

 I would like to thank all the members of my doctoral committee, who are Professor

Dr. Nicholas Tran, Professor Dr. Yi Fang, Professor Dr. Weijia Shang, and Professor Dr.

Ahmed Amer, for their continuing support, encouragement, suggestion, and advice in my

research and studies for the PhD degree in Computer Science and Engineering. I

particularly would like to express my appreciation to Professor Dr. Nicholas Tran who

thoroughly examined my journal research paper and provided good feedback in every step

of the way. I also particularly would like to express my appreciation to Professor Dr. Yi

Fang for letting me use his entire group research disk space on SCU Design Center’s

Hadoop cluster for my benchmark testing and examining my journal research paper. I

would like to especially thank SCU Design Center System Administrator Chris Tracy for

setting up, configuring, and maintaining any necessary Hadoop MapReduce, Spark, and

Spark-Bench suite and benchmark tools, and allocating additional disk space sufficient for

my research on SCU Design Center’s Hadoop cluster whenever needed. Special thanks go

to Professor Dr. JoAnne Holliday, Professor Dr. Ahmed Amer, and Professor Dr. Weijia

Shang for advising me in the Master of Science degree in Computer Science and

Engineering. In addition, I would like to thank the late Professor Dr. Robert Parden for

advising me in the Master of Science degree in Engineering Management and Leadership.

 I would like to thank the Chair of SCU Computer Engineering department, Professor

Dr. Nam Ling for his continuing support, guidance, and advice on the academic process

and requirements of SCU graduate programs in Computer Science and Engineering. I also

would like to thank the Dean of SCU School of engineering, Dean Professor Dr. Godfrey

Mungal for his continuous support and advice, and the Dean’s Fellowship for my

continuing PhD research at SCU. Finally, I would like to thank all the professors who have

v

giving me invaluable knowledge in their courses and advices over the decades of my

graduate engineering studies at SCU.

 Last, but not least, I would like to thank my parents, my sisters and brothers, my other

relatives, and my friends, who have supported my graduate engineering studies and

academic goal at SCU.

vi

Table of Contents

Abstract …………………………………………………………………………………..ii

Keywords ………………………………………………………………………………..iii

Acknowledgments ………………………………………………………………….…...iv

Table of Contents ……………………………………………………………………….vi

List of Figures ………………………………………………………………………….viii

List of Tables ………………………………………………………………………….…xi

Chapter 1 Introduction ………………………………….……………………..........1

1.1 Acknowledgment of Funding and Use of Facilities …………………………..1

 1.2 Thesis Overview ………………………………………………………...…….1

 1.3 Thesis Contributions …………………………………………………………..2

Chapter 2 Best Trade-off Point Method (BToP) ……………….…………………..6

Chapter 3 Efficient Resource Provisioning in MapReduce ………………….......13

 3.1 Pertinent Research in Performance Efficiency of MapReduce …………….13

 3.2 Background Knowledge on MapReduce ……...……………………………14

 3.2.1 Hadoop Distributed File System (HDFS) ………………..…..……15

 3.2.2 MapReduce Programming Model ………………………..………..16

 3.2.3 MapReduce Job Execution on YARN …………………...………..18

 3.3 MapReduce Resource Provisioning ………………………………………..20

 3.4 BToP Algorithm for Optimal Resource Provisioning ………………………23

 3.5 Design, Analysis, and Implementation of BToP Algorithm …………….….25

 3.5.1 Experimental Background …………………………………………25

 3.5.2 Preview Data …………………………...……………………...…..29

 3.5.3 Process for Ascertaining Optimal Number of Tasks ………………30

 3.6 Resource Provisioning with BToP Method vs. Popular Rules of Thumbs ….39

Chapter 4 Efficient Resource Provisioning in Spark …………………………….44

4.1 Background Knowledge on Apache Spark …………...…………………….46

 4.1.1 Spark Architecture and Resilient Distributed Dataset (RDD) ……48

vii

 4.1.2 Distributed Execution in Spark …………….…………………….50

 4.1.3 Spark’s Dynamic Resource Allocation (DRA) …………………..51

4.2 Spark-Bench Terasort Experiment with BToP Method …………………….55

4.3 Analysis of Spark with BToP method vs. Spark with DRA enabled ……....67

 4.3.1 Performance Gain ……………………………………………….67

 4.3.2 Energy Saving …………………………………………………...70

Chapter 5 Conclusion and Future Work ………………………………………....73

References ……………………………………….……………………………………...75

viii

List of Figures

Fig. 1 Flowchart of Best Trade-off Point Method ……………………………………...3

Fig. 2 Best Trade-off Point Algorithm for an Elbow Curve (Noninverted) ………….…7

Fig. 3 Best Trade-off Point Algorithm for an Inverted Elbow Curve …………………9

Fig. 4 Architecture of Hadoop Distributed File System (HDFS) ……………………..15

Fig. 5 MapReduce Data Flow ………………………………………………………...17

Fig. 6 MapReduce Job Execution on YARN …………………………………………19

Fig. 7 Graphs of time spent by all map tasks, CPU, and Teragen execution versus

number of launched map tasks. The runtime elbow curves of Teragen (a)

10 GB, (b) 100 GB and (c) 1 TB workloads plotted at different y-axis scales

all appear to have the best trade-off points for performance efficiency at

around 10 map tasks. But that is refuted by our algorithm as a visual

misperception of different granularities at low magnification ..……………….21

Fig. 8 Allocating Task Resources to Sample Executions on the Target Hadoop

Cluster …………………………………………………………………………26

Fig. 9 Test Run of Terasort 100GB with –Dmapreduce.job.reduces = 32 ……..….....27

Fig. 10 Graphs of time spent by all map tasks, all reduce tasks, CPU, and Terasort

execution versus number of launched reduce tasks. The runtime elbow

curves of Terasort (a) 10 GB, (b) 100 GB and (c) 1 TB workloads plotted

at different y-axis scales all appear to have the best trade-off points for

performance efficiency at around 10 reduce tasks. But that is disproved

by our algorithm as a visual misperception of different granularities at

low magnification .………………………………………………………….....28

Fig. 11 Fitting Teragen preview data using Levenberg–Marquardt Algorithm

(LMA), aka the damped least-squares (DLS) method…………………...31

Fig. 12 Fitted runtime elbow curves of (a) Teragen and (b) Terasort 10 GB, 100 GB,

and 1 TB workloads versus number of launched map/reduce tasks, and

their fit parameters a and b in the graph function f (x)=(a/x)+b ...………....33

Fig. 13 Applying BToP algorithm to Teragen 10 GB, 100 GB, and 1 TB workloads,

our program tabulates the number of tasks over range of slopes, acceleration

over range of slopes, and recommended acceleration, slope, and optimal

ix

number of tasks over range of incremental changes in acceleration per

slope increment, to output the final recommended optimal numbers of

tasks for each Teragen workload……….…………………………………35

Fig. 14 The optimal number of tasks for Teragen 10 GB, 100 GB, and 1 TB

workloads are identified by the major plateaus lasting at least eight

increments on the graphs. The algorithm searches for break points in the

changes in acceleration and outputs: (a) recommended acceleration, (b)

corresponding slope and (c) task resources versus change in acceleration

per slope increment ……………………………………………………..……..36

Fig. 15 Applying BToP algorithm to MR Terasort 10 GB, 100 GB, and 1 TB

workloads, our program tabulates the number of tasks over range of

slopes, acceleration over range of slopes, and recommended acceleration,

slope, and optimal number of tasks over range of incremental changes in

acceleration per slope increment, to output the final recommended

optimal numbers of tasks for each Terasort workload ..……………………….37

Fig. 16 The optimal numbers of tasks for Terasort 10 GB, 100 GB, and 1 TB

workloads are identified by the major plateaus lasting at least eight

increments on the graphs. The algorithm searches for break points in

the changes in acceleration and outputs: (a) recommended acceleration,

(b) corresponding slope and (c) task resources versus change in

acceleration per slope increment ………………………………………………38

Fig. 17 Fitted elbow curves of Terasort 10 GB, 100 GB, and 1 TB workloads from

sampled executions verify the accuracy of our algorithm for optimal

resource provisioning in contrast to the unreliable number of reducers

calculated from three popular rules of thumb (A, B, and C(2)), which

could lead to significant waste of computing resources and energy ...………...39

Fig. 18 Apache Spark Echosystem ………………………………………………........47

Fig. 19 Spark Architecture in Cluster Mode …………………………………………..48

Fig. 20 DAG visualization of a simple word count job …………..……………………50

Fig. 21 Apache Spark 1.5.0 Dynamic Resource Allocation Properties ………………...52

Fig. 22 SparkBench env.sh settings for the experiment with 48 executors …………...57

Fig. 23 Plots of Preview data of duration vs. executors of SparkBench Terasort

10GB, 100GB and 1TB of data at different vertical scales …………………...60

Fig. 24 Fitting Spark-Bench Terasort preview data points to the function

f(x) = (a/x)+b ………………………………………………………………….62

x

Fig. 25 Fitted runtime vs. executors’ elbow curves of SparkBench Terasort 10GB,

100GB, and 1TB of data, and their runtimes with Dynamic Resource

Allocation (DRA) enabled …..………………………………………………...63

Fig. 26 Applying BToP algorithm to Spark-Bench Terasort 10 GB, 100 GB and

1 TB workloads to tabulate the number of executors over range of slopes,

acceleration over range of slopes, and recommended acceleration, slope,

and optimal number of executors over range of incremental changes in

acceleration per slope increment, to output the final recommended

optimal numbers of executors for each workload …...………………….......…64

Fig. 27 The optimal numbers of executors for Spark-Bench Terasort 10 GB,

100 GB, and 1 TB workloads are identified by the major plateaus lasting

at least seven increments on the graphs. The algorithm searches for break

points in the changes in acceleration and outputs: (a) recommended

acceleration, (b) corresponding slope and (c) executors versus

change in acceleration per slope increment ……………………….......………65

xi

List of Tables

Table 1 Performance of Spark-Bench Terasort with Dynamic Resource Allocation

(DRA) enabled vs. Spark using BToP method (with DRA disabled) ……….68

Table 2 Energy savings in using Spark with BToP method in lieu of Dynamic

Resource Allocation (DRA) enabled for Spark-Bench Terasort of 10GB,

100GB, and 1TB …………………………………………………………….71

1

Chapter 1

Introduction

1.1 Acknowledgment of Funding and Use of Facilities

The work presented in this thesis was mostly supported by the author’s own federal

student loans. The second part of the author’s research during the academic year 2016-

2017 was supported in part by a fellowship from the Dean of SCU School of Engineering.

The author gratefully acknowledges use of the Hadoop cluster of SCU School of

Engineering Design Center.

1.2 Thesis Overview

 This thesis addresses the problem of allocating the right amount of task resources for

a workload in Hadoop MapReduce and similarly, the right number of executors for a

workload in Apache Spark. It relates generally to resource provisioning in software

framework and computing systems including but not limited to parallel and distributed

processing of Big Data by large computer clusters. More specifically, it relates to methods

for determining the number of task resources for each different workload to optimally

balance performance and energy efficiency.

Gartner Inc. research firm has forecasted that the rapidly-growing cloud ecosystem

will have up to 25 billion IoT sensor devices connected by 2020 [15]. This large number

of IoT devices will generate hundreds of zettabytes of information in the cloud to be

analyzed by Big Data processing engines, such as Hadoop MapReduce and Apache Spark,

and other analytics platforms to deliver practical value in business, technology, and

manufacturing processes for better innovation and more intelligent decisions. In such an

era of exponential growth in Big Data, energy efficiency has become an important issue

for the ubiquitous Hadoop and Spark ecosystems.

It is now established that the energy consumption cost of a server over its useful life

has far exceeded its original capital expenditure [27]. Gartner estimated in a July 2016

report that Google at the time had 2.5 million servers and counting [13]. As such, the energy

2

consumption associated with datacenters has become a major concern as more companies

have more datacenters with over a million servers. In fact, datacenter electricity

consumption is projected to increase to roughly 140 billion kilowatt-hours annually by

2020, the equivalent annual output of 50 power plants, costing American businesses $13

billion annually in electricity bills and emitting nearly 100 million metric tons of carbon

pollution per year [40]. A large portion of datacenter workloads is processed by Hadoop

MapReduce and Apache Spark, popular de facto standard frameworks for Big Data

processing, which have been adopted by many world’s leading cloud computing providers

and top Big Data companies, among many other organizations and institutions. As such,

we could reduce this datacenter energy expense which is largely incurred for Big Data

processing, through more efficient resource provisioning in MapReduce and Spark among

other data processing frameworks.

There is a growing amount of research work dedicated to making these Big Data

processing frameworks more energy efficient. However, there has been no definite answer

to the question of what optimal number of resources should be allocated for a job to get the

most efficient performance from MapReduce until now when this proposed Best Trade-off

Point method is made available. Hadoop developers and users previously had to rely on

popular but inaccurate rules of thumb widely circulated in industry for their MapReduce

job execution, leading to significant unintended waste of computing resources and energy.

This thesis proposes an innovative method and algorithm for obtaining the best trade-off

between performance and computing resources for energy efficiency in any workload

running on Hadoop MapReduce and Apache Spark among other applications and systems

which rely on a trade-off elbow curve, non-inverted or inverted, for good decision making.

1.3 Thesis Contributions

This thesis makes the following contributions:

We develop the Best Trade-off Point (BToP) method which is applicable to any

system relying on a trade-off elbow curve for making good decisions (Fig. 1). It provides

a general approach and techniques based on an algorithm with mathematical formulas to

find the best trade-off point on an elbow curve, non-inverted as f(x)=(a/x)+b or inverted as

f(x)=-(a/x)+b, of performance vs. resources.

3

We present the BToP method as a job profiling method for optimal resource

provisioning for any MapReduce workload by getting runtime samples of the cluster

targeted for calibration as reference points for curve-fitting and computation to find the

best trade-off point on the runtime elbow curve (Fig. 1).

We then apply the BToP method to Apache Spark running in YARN cluster mode.

We show how preview data can be extracted from sample executions of different

workloads on Spark YARN cluster computing system targeted for calibration as reference

points for curve-fitting and computation to find the best trade-off point on the runtime

elbow curve (Fig. 1).

Fig. 1 Flowchart of Best Trade-off Point Method

4

We also provide a step-by-step computation process with mathematical formulas for

the runtime graph function f (x)=(a/x)+b , its first derivative, its second derivative, the

Chain Rule, and search conditions for breakpoints and major plateaus to find the optimal

number of tasks.

We design an algorithm for best trade-off point to take the single parameter a in the

graph function f (x)=(a/x)+b for a workload as input and output the exact recommended

optimal number of task resources.

We validate our design and techniques using experiments on a real 24-node

homogeneous Hadoop cluster with Teragen and Terasort components of the Terasort

benchmark test with 10 GB, 100 GB and 1 TB of data (Fig. 8 in Section 3.5.1).

 We verify and compare the results of our algorithm against the numbers of tasks

suggested by three currently well-known rules of thumbs widely circulated in industry

using the fitted runtime elbow curves. We also provide a numerical example of potential

energy savings from the results.

 The results of our evaluation show that our approach consistently provides accurate

and optimal number of task resources for any MapReduce workload to achieve

performance efficiency while the numbers of reduce tasks suggested by the three popular

rules of thumb are inaccurate leading to significant unintended waste of computing

resources and energy as shown in Fig. 17 in Section 3.6.

 We, then, further verify the Best Trade-off method with Apache Spark workloads by

executing Spark-Bench Terasort with 10GB, 100GB, and 1TB of data on the same real 24-

node homogeneous Hadoop cluster, albeit with a different and newer

CDH (Cloudera's Distribution Including Apache Hadoop) version. The Spark-Bench

Terasort tests were measured with Spark’s built-in dynamic resource allocation feature first

set to enabled and then disabled by manually assigning the numbers of executors.

The results of our Spark-Bench Terasort evaluation show that the optimal numbers

of executors recommended by the Best Trade-off Point method are consistently better than

the numbers of executors used by Spark’s dynamic resource allocation during the most part

of a job execution for large datasets. The overall runtime of Spark using dynamic resource

http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000045

5

allocation is consistently slower than the duration of the same workload using Spark with

the Best Trade-off Point method (Fig. 25 and Table 1 in Section 4.2). In other words, Spark

using the BToP method consistently outperforms Spark using the built-in dynamic resource

allocation, particularly in production environment where job profiling for behavioral

replication will lead to the most optimal resource provisioning.

Our experiment with Spark-Bench Terasort confirms that Spark using BToP method

to determine the optimal number of executors for a workload not only saves energy

consumption, but also improves job runtime performance in comparison to Spark with its

built-in dynamic resource allocation enabled (Tables 1-2 in Section 4.2). These

improvements could add up quickly to make a significant impact in performance and cost

for numerous jobs with similar profiles in production environment.

6

Chapter 2

Best Trade-off Point Method (BToP)

 The Best Trade of Point (BToP) method provides an innovative approach and

algorithm with mathematical formulas for finding an exact optimal number of computing

resources for a workload as the best trade-off point between performance and resources on

a runtime elbow curve fitted from sampled executions of the target cluster. The proposed

techniques could be used in a large variety of systems and applications which utilize a

trade-off curve as a powerful tool for making informed decisions. This thesis will focus on

efficient resource provisioning in the two most prominent cluster-computing frameworks,

Hadoop MapReduce and Apache Spark.

 The sequential steps for implementing the proposed BToP method on a cluster-

computing system are as follows (Fig. 1):

1. Complete the configuration and fine tuning of the architecture, software and

hardware of the production cluster-computing system targeted for calibration.

2. Collect necessary preview job performance data from historical runtime

performances or sampled executions on the same target production system, configured

exactly as in step 1, as reference points for each workload.

3. Curve-fit the preview data to obtain the fit parameters a and b in the runtime elbow

curve function f(x)=(a/x)+b, where x is the number of task resources.

4. Input the fit parameter a to the Best Trade-off Point algorithm to obtain the

recommended optimal number of tasks for a workload (Fig. 2-3).

 a. The algorithm computes the number of tasks over a range of slopes from

the first derivative of f(x)=(a/x)+b and the acceleration over a range of slopes from

the second derivative of f(x)=(a/x)+b (Fig. 2-3).

7

 b. The algorithm applies the Chain Rule to search for break points and major

plateaus on the graphs of acceleration, slope, and task resources over a range of

incremental changes in acceleration per slope increment (Fig. 2-3).

 c. The algorithm extracts the exact number of tasks at the best trade-off point

on the elbow curve and outputs it as recommended optimal number of tasks for a

workload (Fig. 2-3).

 5. Repeat steps 2-4 to gather sufficient resource provisioning data points for different

workloads to build a database of resource consumption signatures for subsequent job

profiling.

 6. Repeat steps 1-5 to recalibrate the database of resource consumption signatures if

there are any major changes to step 1.

Fig. 2 Best Trade-off Point Algorithm for an Elbow Curve (Noninverted)

8

 7. Use the database of resource consumption signatures to match dynamically

submitted production jobs to their recommended optimal number of tasks for efficient

resource provisioning.

 These steps for implementing the Best Trade-off Point algorithm for efficient

resource provisioning could be also used with any other types of software components or

data processing engines in the Hadoop ecosystem, any computing system, network data

routing system, cluster microarchitecture system, payload engine system including but not

limited to vehicle, aircraft/plane/jet, boat/ship, and rocket. This method could also be used

with the yield curve of various types of securities, the convex iso yield curve, also known

as convex isoquant curve, and the indifference curve in economics and manufacturing such

as the semiconductor/IC yield curve, the manufacturing quality control curve, and any

other types of trade-off curves with elbow shapes, both inverted or non-inverted, for

making intelligent decisions. The isoquant analysis shows various combinations of factors

of production that can produce a certain amount of output. In the convex isoquant curve,

the factors can be substituted for each other only up to a certain extent. The proposed

method can be used to determine the sweet spot on the elbow curve which is the best trade-

off point between the factors.

 In general, the proposed Best Trade-off Point method can be used in any other types

of applications which rely on an elbow curve f(x)=(a/x)+b or an inverted elbow curve

f(x)=-(a/x)+b of performance vs. resources for good decision making including efficient

resource provisioning. An elbow curve is a form of an exponential function with a negative

growth rate. It is an exponential decay function f(x)=(a/x)+b where f(x) approaches b

instead of zero when x approaches infinity. On the other hand, an inverted elbow curve is

a function with inverted exponential growth f(x)=-(a/x)+b where f(x) approaches b instead

of infinity when x approaches infinity.

 Typically, in Data Science applications, we could have an inverted elbow curve, also

known as a knee curve (negative elbow curve), of performance vs. data where increasing

the size of data no longer improves performance after a certain point. Thus, the BToP

algorithm for an inverted elbow curve could simply be derived from the BToP algorithm

for a non-inverted elbow curve as shown in Fig, 3. And the sequential steps of the BToP

9

method will still be the same with the exception that the elbow curve function is now

inverted as f(x)=-(a/x)+b).

 To illustrate another area of application of the proposed BToP method with an

inverted elbow curve, we could consider a simplified example of determining the optimal

travel speed for achieving the best miles-per-gallon (MPG) in fuel resource consumption

on any individual fuel engine vehicle. There have been many suggestions that the travel

speed for best MPG is within the range from 50 to 70 miles per hour. But there is yet a

viable method for determining the exact optimal travel speed for best MPG, which varies

from one car to another even on the same model. The optimal travel speed for best MPG

depends on many factors and variables including but not limited to car model, engine size,

car condition, engine tuning condition, tires, type of fuel, loads, route and weather

condition, and so on, just to name a few. Using the proposed method and algorithm to

Fig. 3 Best Trade-off Point Algorithm for an Inverted Elbow Curve

10

determine the Best Trade-off Point on an elbow curve of performance vs. resources, which

is an inverted elbow curve of travel speed vs. fuel resources, in this case, the travel speed

for best MPG could be accurately and precisely determined for every individual car.

 The steps to Implement the Best Trade-off Point algorithm for efficient fuel resource

provisioning in a fuel engine vehicle carrying a certain payload on a specific route and

weather condition are basically the same as the ones for the application on a computer

system. Following is the outline of sequential steps that a fuel engine system would perform

to implement an embodiment of the proposed method.

 1. Complete the tune-up of the fuel engine vehicle targeted for calibration.

 2. Collect enough samples of speed performance vs. fuel resource consumption as

preview data to plot the inverted elbow curve (knee curve) by running the car at different

travel speeds on a specific route and weather condition and take measurements of the

corresponding fuel consumption at those speeds. Each payload on a specific route and

weather condition will have its own inverted elbow curve of speed performance vs fuel

resources.

3. Curve-fitting the preview data to obtain the fit parameters a and b in the inverted

elbow curve function f(x)=-(a/x)+b, where x is the number of fuel resources.

 4. Input the fit parameter a to the Best-Trade-off-Point algorithm (Fig. 3) which is

now modeled with f(x)=-(a/x)+b for an inverted elbow curve, to obtain the recommended

optimal number of fuel resources for a payload on a specific route and weather condition.

 a. The algorithm computes the number of fuel resources over a range of slopes

from the first derivative of f(x)=-(a/x)+b and the acceleration over a range of slopes

from the second derivative of f(x)=-(a/x)+b.

 b. The algorithm applies the Chain Rule to search for break points and major

plateaus on the graphs of acceleration, slope, and fuel resources over a range of

incremental changes in acceleration per slope increment.

11

c. The algorithm extracts the exact number of fuel resources at the best trade-

off point on the inverted elbow curve and outputs it as recommended optimal number

of fuel resources for a payload on a specific route and weather condition.

 5. Repeat steps 2–4 to build a database of resource consumption signatures with

different payloads on a specific route and weather condition for subsequent transportation

job profiling.

 6. If there is any major change to step 1, repeat steps 1–5 to recalibrate the database

of resource consumption signatures.

 7. Use the database of resource consumption signatures to match transportation jobs

to their optimal number of fuel resources for efficient resource provisioning.

The crux of the proposed Best Trade-off Point method is not tied to any specific

system. The Best Trade-off Point method provides a general approach and techniques

based on an algorithm with mathematical formulas to find the best trade-off point on an

elbow curve which is applicable to any system relying on a trade-off curve for making

good decisions. As mentioned earlier, there are quite a few of applications and systems

which are characterized by an elbow curve. The potential of commercializing the proposed

method is huge since it touches every area of decision making process which relies on a

trade-off curve for good decision making, including but not limited to efficient resource

provisioning. Although the proposed method as presented in this thesis is used to optimize

resource provisioning in Hadoop MapReduce and Apache Spark for performance

efficiency, which often corresponds to energy efficiency, it is not limited to that software

frameworks and hardware computing system. As clearly stated, the proposed method to

find the best trade-off point for efficient resource provisioning is applicable whenever there

is an elbow curve which is the fundamental trade-off curve. As such, the hardware that the

invention could run on depends on the type of application which the Best Trade-off Point

method is implemented on. As an example, for applications with runtime vs. resource

trade-off curves, the hardware could be any computing systems including multicore

systems, computer cluster, grid computers, network routers, and so on. For applications

with trade-off curves of horse power, speed, travel distance, payload or weight vs. resource

such as fuel or electricity, the hardware could be a car engine, jet engine, boat engine or

12

rocket. Not to mention for business applications with cost vs. quality control or delivery

time, the underline hardware then becomes a manufacturing or production system.

13

Chapter 3

Efficient Resource Provisioning in

MapReduce

3.1 Pertinent Research in Performance Efficiency of MapReduce

 Several research groups have worked on the performance and energy efficiency of

Hadoop MapReduce. Krish et al. [26] present a workflow scheduler for MapReduce

framework that profiles the performance and energy characteristics of applications on each

hardware sub-cluster in a heterogeneous cluster to improve matching application to

resource while ensuring energy efficiency and performance related Service Level

Agreement goals. Hartog et al. [17] suggest a MapReduce framework configuration to

evaluate node power consumption status and dynamically shift work toward more energy

efficient node. Leverich and Kozyrakis [29] propose modifying Hadoop to allow the

scaling down of operational clusters by keeping only a small fraction of the nodes running

while disabling nodes not in the covering subset to conserve power. Lang and

Patel [28] use all the nodes in the Hadoop cluster to run a workload and then power down

the entire cluster when there is no work as an all-in-strategy. Kaushik and

Bhandarkar [25] place classified data into two logical zones of HDFS, where 26% energy

consumption reduction is achieved from cold zone power management, and there is room

for further energy saving in the under-utilized hot zone. Lin et al. [30] analyze and derive

the job energy consumption from the job completion reliability of the general MapReduce

infrastructure based on a Poisson distribution to find way to achieve energy-efficient

MapReduce environment. Wang et al. [38] use a genetic algorithm with practical

encoding and decoding methods, and specially designed genetic operators to support a new

MapReduce energy-efficient task scheduling model. Chen et al. [8] show that for

MapReduce workloads, where the work rate is proportional to the amount of resources

used, improving the performance as measured by traditional metrics such as job duration

is equivalent to improving the performance as measured by lower energy consumed. For

http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000085
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000055
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000100
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000095
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000080
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000105
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000130
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000040

14

most systems, decreasing energy consumption is equivalent to decreasing the finishing

time.

 Among the above research work dedicated to improving the energy efficiency of

Hadoop MapReduce, we find that Chen et al. [8]’s publication is the most closely related

to our work. Chen et al. [8] suggest a way to answer the question of how many machines

to allocate to a particular job by comparing energy consumption of different numbers of

machines but do not provide a method to find the exact optimal number. A smaller number

of machines always consumes less energy, and takes longer to finish a job unless it has far

exceeded the resources required for the job. In this thesis, we present a solution for finding

the best trade-off point in performance and energy efficiency. We propose a general

method, formula, and algorithm for obtaining the exact optimal number of tasks for any

workload running on Hadoop MapReduce, to provision for performance efficiency based

on the actual preview runtime data of the cluster targeted for calibration.

3.2 Background knowledge on MapReduce

 Apache Hadoop [1, 39] is an open source framework for distributed storage and

processing of large sets of data on clusters of commodity hardware. Although Hadoop

ecosystem includes several software packages such as HBase, Hive, Mahout, Pig, Scoop,

Spark, Storm and others, the base Apache Hadoop 2.0 framework comprises only four key

modules: (1) Hadoop Common which provides file systems and OS level abstractions, (2)

Hadoop Distributed File System (HDFS), (3) Hadoop YARN (Yet Another Resource

Negotiator) which manages computing resources in clusters and using them for scheduling

of users’ apps, and (4) Hadoop MapReduce engine (MR2) which implements MR

programming model (Fig. 8). With the addition of YARN in Hadoop 2.0, multiple

applications while sharing a common cluster resource management can now be run in

parallel by new engines. Hadoop clusters can now be scaled up to a much larger

configuration and support iterative processing, graph processing, stream processing, and

general cluster computing all at the same time.

http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000040
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000040
http://www.sciencedirect.com/science/article/pii/S0743731516300077%22﷟HYPERLINK%20%22http:/www.sciencedirect.com/science/article/pii/S0743731516300077#br000005

15

3.2.1 Hadoop Distributed File System (HDFS)

HDFS, which is based on Google File System (GFS), a master/slave architecture,

supports large-scale data processing workloads and reliable data storage of several TB on

clusters of commodity hardware (Fig. 4). It features high scalability, high availability, fault

tolerance, flexible access, load balancing, tunable replication, and security. Since HDFS is

designed more for batch processing rather than interactive use, it emphasizes more on high

throughput of data than low latency of data access. HDFS has a simple coherency model:

write-one-and-read-many access model, which supports appends and truncates only with

no updates at arbitrary points. It is designed for high portability across heterogeneous

hardware and software platforms.

Source: hadoop.apache.org

Fig. 4 Architecture of Hadoop Distributed File System (HDFS)

 HDFS splits files into default blocks of 64 MB or 128 MB, which are distributed

among the nodes to provide a very high aggregate bandwidth across the cluster for compute

performance and data protection. There is a single master called NameNode, which

coordinates access and metadata as a simple centralized management system. There is no

data caching error because the NameNode stores all metadata, which include filenames and

locations of each file on DataNode, in memory for fast lookup. The DataNode only stores

16

blocks from files. NameNode makes all decisions regarding block replications. NameNode

periodically receives a Heartbeat and a Blockreport from each DataNode. A secondary

NameNode, running on a separate machine, periodically merges edit logs with namespace

snapshot image stored on disk to prevent the edit log file from growing into a large file. In

case of NameNode failure, the saved metadata can rebuild a failed primary NameNode

with some data loss since the state of secondary NameNode always lags from the primary

NameNode.

 HDFS’s block replication feature is designed to tolerate frequent component failure

and is optimized for huge number of very large files on up to several thousand nodes

cluster, which are mostly read and appended. HDFS minimizes global bandwidth

consumption and read latency with replica locality. Nodes are chosen based on rack-aware

replica placement policy first, and then storage types and policies, to improve data

reliability, availability, and network bandwidth utilization.

3.2.2 MapReduce Programming Model

 The MapReduce programming model uses parallel and distributed algorithm on a

cluster of nodes to process large datasets, unstructured as in a file system or structured as

in a database. MapReduce can take advantage of data locality by passing data to each data

node within the Hadoop cluster. MapReduce also packages users’ MapReduce functions

as a Java ARchive (JAR) file and sends it out to each node. The JAR file operates locally

on that slice of input on that data node and therefore, reduces the distance over which it

must be transmitted. By executing compute at the location of data instead of having data

moved to the compute location, traditional network bandwidth bottlenecks could be

avoided. Moving computation to data is much more efficient than vice versa, The

MapReduce framework provides scalability, security and authentication, resource

management, optimized scheduling, flexibility, and high availability for a variety of

applications in Big Data including but not limited to machine learning, financial analysis,

genetic algorithms, natural language processing, signal processing, and simulation.

17

Source: Yahoo! Developer Network

Fig. 5 MapReduce Data Flow

MapReduce consists of three phases, map, shuffle and reduce, where all values are

processed independently. The reduce phase cannot start until the map phase is completely

finished. At the map phase, map() functions run in parallel, creating different intermediate

values from different input datasets: map(input_key, input_value) ->list

<intermediate_key, intermediate_value>. At the shuffle phase after partitioning, values are

18

exchanged by a shuffle/combine process which runs on mapper nodes as a mini reduce

phase on local map output to save bandwidth before sending data to full reducer. At the

reduce phase, reduce() functions, also running in parallel, aggregate all values for a specific

key to a single output to generate a new list of reduced output: list<intermediate_key,

intermediate_value>->list<output_key, output_value> (Fig. 5).

3.2.3 MapReduce Job Execution on YARN

 YARN splits the responsibilities of job tracker and task tracker in MapReduce v.1

into four separate entities in MapReduce v.2: (1) The ResourceManager has a built-in

scheduler, which allocates resources across all applications based on the applications’

resource requirements. (2) The MR ApplicationMaster, which negotiates appropriate

resource containers from the scheduler and tracks their progress, coordinates and manages

each and every instance of MapReduce jobs executed on YARN. (3) The NodeManager,

which is responsible for containers, monitors each and every node’s resource usage (CPU,

memory, disk, network bandwidth) within YARN. (4) The Container allocates and

represents resources per node available for each specific application (Fig.6). Thus, the tasks

running MapReduce job is coordinated by the MR Application Master, which creates a

map task object for each split and a number of reduce task objects determined by

the mapreduce.job.reduces property.

 The sequential steps of how Hadoop runs a MapReduce job using YARN are

shown in Fig. 6. Step (1), a MapReduce job is submitted to a job client. Step (2), the job

client requests for a new application ID from ResourceManager. Step (3), the job client

checks HDFS to see whether an output has been created for that input and copy the result

from HDFS directly if it exists. Otherwise, the job client copies job resources from HDFS.

Step (4), the job is submitted to ResourceManager where a Scheduler allocates resources

and an Application Manager monitors progress and status of the job. Step (5),

ResourceManager contacts a NodeManager to start a new container and launch a

MapReduce AppMaster for the job. Step (6), MR AppMaster creates an object for

bookkeeping purpose and task management. Step (7), MR AppMaster retrieves the input

splits from HDFS and creates a task for each split. Step (8), MR AppMaster decides how

19

Source: Hadoop: The Definitive Guide by Tom White (2012)

Fig. 6 MapReduce Job Execution on YARN

to run the MapReduce task. Small jobs can be run on the same JVM on a single node as an

Uber task. Large jobs request more resources to be allocated by ResourceManager which

gathers information from the heartbeats of NodeManagers to consider data locality in its

node allocation. Step (9), MR AppMaster contacts a NodeManager to start a new container

for task execution. A YarnChild is launched to run on a separate JVM to isolate user codes

from long running system deamons. Step (10), YarnChild retrieves job resources from

HDFS. Step (11), YarnChild runs Map task or Reduce task. In every 3 secs, YarnChild

sends a progress report to MR AppMaster which aggregates all reports and sends an update

20

directly to the job client. Upon job completion, MR AppMaster and task containers clean

up their working states, and terminate themselves to release resources.

3.3. MapReduce Resource Provisioning

In general, allocating a higher number of tasks increases parallelization, framework

overhead and load balancing, and minimizes the cost of failures to smaller increments of

resources. But too many or too few tasks, whether mappers or reducers, are both

detrimental for job performance. When the number of tasks is too large potentially causing

resource contention and overall performance degradation, the overhead time spent by all

task resources continues to grow while there is no further reduction in job runtime with the

gradual increase in number of allocated tasks. When the number of tasks is too little for a

workload, the job runtime is extremely high due to resource insufficiency (Fig. 7). Our goal

is to find the best trade-off point between runtime and task resources to provision for

optimal performance and energy efficiency.

 There are some prior works on MapReduce resource provisioning to achieve certain

application performance goals and Service Level Objectives (SLOs) which could be

referenced when using our method for obtaining optimal task resources for energy efficient

computing. Babu [6] suggests different techniques for automatic setting of job

configuration parameters for MapReduce programs, including dynamic profiling, but

acknowledges that this is an inherently difficult research and engineering challenge when

the properties of the actual job being processed, its input data, and resource allocation are

not known. Herodotou et al. [18] introduce the Elasticizer system to configure the right

cluster size matching a workload’s performance needs by using an automated technique

based on a mix of job profiling and simulation. Verma et al. [37] generate a set of resource

provisioning options to meet given SLOs by applying scaling rules to the job past

executions or sampled executions from a given application on the set of small input

datasets. Kambatla et al. [22] propose a brute force job provisioning approach by

analyzing and comparing the resource consumption of the application at hand with a

database of similar resource consumption signatures of other applications to calculate the

optimum configuration.

http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000005
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000030
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000060
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000125
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000070

21

Fig. 7 Graphs of time spent by all map tasks, CPU, and Teragen execution versus

number of launched map tasks. The runtime elbow curves of Teragen (a) 10 GB,

(b) 100 GB and (c) 1 TB workloads plotted at different y-axis scales all appear

to have the best trade-off points for performance efficiency at around 10 map

tasks. But that is refuted by our algorithm as a visual misperception of different

granularities at low magnification.

22

 For the greater part, these prior research papers on resource provisioning for

MapReduce v.1 are still applicable to MapReduce v.2. However, MapReduce v.2 is

considerably different than MapReduce v.1, where there are pre-configured static slots for

map and reduce tasks, which are inflexible and often leads to an under-utilization of

resources. In YARN, the job tracker’s role of the previous MapReduce v.1 is now handled

by a separate resource manager and history server to improve scalability. The

NodeManager in MapReduce v.2, which manages resources and deployment on a node, is

now responsible for launching containers. Each container can store a map or reduce task.

MapReduce v.2 running on YARN is more scalable with resource utilization configured in

terms of physical RAM limit, virtual memory and JVM heap size limit for each task. These

improvements allow Hadoop to share resources dynamically between applications in a

finer-grained, more practical and scalable resource configuration for better provisioning

and cluster utilization. Along the lines proposed by these prior papers for resource

provisioning by job profiles, our research paper further provides an innovative method,

formula and algorithm to eliminate the guesswork, and accurately identify the optimal

numbers of task resources for different workloads to achieve performance efficiency on

any specific Hadoop cluster while minimizing any strenuous brute force.

 Obtaining the optimal number of mappers and reducers for each job has been a

challenge for Hadoop MapReduce users since there are lots of variables involved in

balancing computing resources with network transfer bandwidth and disk reads. There are

more than 180 parameters specified to control the behavior of a MapReduce job in Hadoop

and the settings of more than 25 of these parameters can have significant impact on job

performance [6, 22]. However, the optimal number of tasks for a job depends not only on

the settings of various parameters and metrics for fine tuning Hadoop cluster performance

but also on several other factors including but not limited to the type of application, dataset

size and structure, cluster hardware specifications, system setup and configuration, and

output buffer size. Therefore, the most practical method to indirectly take all those factors

into account is to compute the optimal number of tasks from the actual sampled runtime

data of the target cluster.

http://www.sciencedirect.com/science/article/pii/S0743731516300077%22﷟HYPERLINK%20%22http:/www.sciencedirect.com/science/article/pii/S0743731516300077#br000030

23

 The number of maps needed for a certain job is usually decided by the number of

blocks in the job inputs, which varies with the HDFS block size. The current default HDFS

block size is 128 MB, an increase from the previous version, which was 64 MB. In some

cases, capitalizing on data locality to enlarge the HDFS block size up to 512 MB to store a

large input file can reduce the runtime for I/O bound jobs. On the other hand, when mappers

are more CPU bound and less I/O bound, reducing the HDFS block size can improve the

utilization of computing resources in the cluster. Hence, the total number of mappers

running for a job depends on the number of input splits of the data. According to Hadoop

Wiki, the right level of parallelism for maps seems to be around 10–100 maps/node,

although it could be taken up to 300 or so for very CPU-light map tasks [16]. Significantly,

the number of reducers at the aggregation step is more difficult to estimate since it is not

easy to ascertain any spill of intermediate outputs to memory buffer and/or to disk for

different workloads. Although there are currently three popular rules of thumb widely

circulated in industry for deciding on the optimal number of reducers for a job, none of

them provide an accurate and verifiable number of task resources for certain workload as

shown in Fig. 17 in Section 3.6.

3.4. Best Trade-off Point (BToP) Algorithm for Optimal Resource Provisioning

 We have developed an algorithm (Fig. 2-3) to search for the best trade-off points on

the elbow curve of runtime versus number of launched tasks to overcome the uncertainty

of all variables involved in finding the optimal number of tasks for a job to run in a specific

Hadoop cluster. Before applying the algorithm, Hadoop users should first get some

sampled executions from their target production system as reference points sufficient to

plot a smooth elbow curve for each workload.

From the shape of the elbow curve of runtime versus task resources, we intuitively

recognize its graph function f (x)=(a/x)+b , which is confirmed by curve-fitting the

preview data to obtain the fit parameters a and b . Using the fit parameter a as input, our

program computes the number of tasks over a range of slopes from the first derivative and

the acceleration over a range of slopes from the second derivative. Applying the Chain rule

to our search algorithm for break points and major plateaus on the graphs of acceleration,

slope, and task resources over a range of incremental changes in acceleration per slope

http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000015
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000045
http://www.sciencedirect.com/science/article/pii/S0743731516300077#s000045
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000010

24

increment, our program extracts the exact number of tasks at the best trade-off point on the

elbow curve and outputs it as recommended optimal number of tasks for a workload

(Fig. 13-14 in Section 3.5.3).

This preview method, as job profiling for optimization of task resource provisioning,

should work out well in any production environment where most of the jobs frequently

submitted are of the same type of applications combined with different sizes of dataset.

Hadoop users only need to calibrate the optimal numbers of tasks for each different

workload in their production system once to build up a table of signatures and use them for

all equivalent jobs. However, if there are subsequent changes made to the cluster’s system

architecture, hardware setup, and configuration, a recalibration for a new set of optimal

number of task resources might be necessary to maintain accuracy and precision. Once a

database of signatures has been established, dynamically submitted jobs with different

workloads can be quickly matched to their recommended optimal resource values for

allocation using nested for-loops or equivalent structure to find resembling applications

and datasets. The performance of task resources should be predictable through the job

profiling of the same identical cluster-based system.

 Therefore, it is possible to provide a single and general approach for automatic

provisioning based on each specific system and application. However, users must establish

a database of resource utilization signatures corresponding to workloads for every different

application with various sizes of input datasets in advance. This approach relying on

behavior replication is best suitable for production environment with repetitive workloads

corresponding to the values of identical characteristics within the range of signatures pre-

computed during a preview stage. It may be difficult and far less accurate to generally

provision for a class of applications due to the diversified nature of MapReduce

applications. Chen and Ganapathi et al. [7], in their development of an empirical workload

model using production workload traces from Facebook and Yahoo to generate and replay

synthetic workloads, acknowledge that per-workload performance measurements are

necessary, and using proxy datasets and map/reduce functions can alter performance

behavior considerably. In order to avoid recalibration of their workload model upon any

change in the input data, map/reduce function code, or the underlying hardware/software

http://www.sciencedirect.com/science/article/pii/S0743731516300077#s000040
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000035

25

system, Chen and Ganapathi et al. [7] exclude system characteristics and system behavior

from the workload description. Their method with replay mechanisms, which yield some

useful insights by enabling performance comparisons across various system and workload

changes, is in contrast with our general approach, which emphasizes on the accuracy of

optimal resource provisioning for each application running on a specific system.

3.5 Design, Analysis, and Implementation of BToP Algorithm

3.5.1 Experimental background

 To illustrate our method for obtaining the optimal number of task resources for

different workloads, we use the Teragen and Terasort components of the Terasort

benchmark test, which is part of the open source Apache Hadoop distribution, to

experiment with 10 GB, 100 GB and 1 TB datasets. The benchmark tests are performed on

a 24-node homogeneous Hadoop cluster, with two racks of 12 nodes each, running

Cloudera CDH-5.2 YARN (MapReduce v.2). The NameNodes are VM (virtual machines)

of 4 cores and 24 GB of RAM each running on Intel Xeon E5-2690 physical hosts of 8

cores and 16 threads with 2.9 GHz base frequency and 3.8 GHz max turbo frequency, and

Thermal Design Power (TDP) of 135 W. The DataNodes/NodeManagers are physical

system running Intel Xeon E3-1240 v.3 CPUs with 3.4 GHz base frequency and 3.8 GHz

max turbo frequency, and TDP of 80 W. Each NodeManager has 4 cores, 8 threads, 32 GB

of RAM, two 6 TB hard disks and 1Gbit network bandwidth. All nodes are connected to a

switch with a backplane speed of 48 Gbps.

 To sample executions of the Hadoop cluster under test, we use the -

Dmapreduce.job.maps = (int num) and -Dmapreduce.job.reduces = (int num) as a hint

to the InputFormat to allocate the number of mappers and reducers during command line

execution of JAR instead of setting the number of tasks in the code using the

JobConf’s conf.setNumMapTasks (int num) and conf.setNumReduceTasks (int num). For

Teragen, which uses MapReduce programming engine to break up the data to be sorted

using a random sequence, we generate 10 GB, 100 GB and 1 TB of data with -

Dmapreduce.job.maps set equal to a few reference points between 1 and 96. For Terasort,

which uses MapReduce programming engine to sample and sort the data created by

Teragen, we sort 10 GB, 100 GB and 1 TB of data with -Dmapreduce.job.reduces set equal

http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000035
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000035

26

to a few reference points between 1 and 96 (Fig. 8). We observe MapReduce’s behaviors

in terms of total time spent by all map tasks, total time spent by all reduce tasks, CPU time

spent by MapReduce framework, and the job execution time to develop a general formula

for obtaining the optimal number of tasks for efficient use of available computing resources

(Fig. 9, Fig. 7, and Fig. 10).

Fig. 8 Allocating Task Resources to Sample Executions on the Target Hadoop Cluster.

http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000005
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000015

27

Fig. 9 Test Run of Terasort 100GB with –Dmapreduce.job.reduces = 32

28

Fig. 10 Graphs of time spent by all map tasks, all reduce tasks, CPU, and Terasort

execution versus number of launched reduce tasks. The runtime elbow curves of

Terasort (a) 10 GB, (b) 100 GB and (c) 1 TB workloads plotted at different y-

axis scales all appear to have the best trade-off points for performance efficiency

at around 10 reduce tasks. But that is disproved by our algorithm as a visual

misperception of different granularities at low magnification.

29

3.5.2 Preview data

Although we performed thorough benchmark tests at numerous data points in our

experiment, sampling around over a dozen points, which cover the whole elbow curve, will

be sufficient to compute the target optimal task resource values. To get a little smoother

graph, increase the number of points for the theoretical curve. Since the graphs of both

Teragen and Terasort preview data are plotted at different vertical scales, where the 100 GB

and 1 TB plots are around 10 to 100 times lower in magnification than the 10 GB plot,

respectively (Fig. 7 and Fig. 10), it appears at first glance that there is no further significant

improvement in runtime at the bottom of the elbow curves starting from around 10

launched map tasks and up for all three workloads. But that is a visual misperception of

different granularities at low magnification since our algorithm shows that the best trade-

off points are actually located at higher numbers of tasks, especially for large workloads.

In both component benchmark tests (Fig. 7 and Fig. 10), the CPU time spent by

MapReduce framework increases with the number of task resources since there is more

framework overhead. There is no plot of CPU time spent on reduce tasks in Teragen since

it only breaks up the data to be sorted by Terasort and does not do any aggregation. For

Terasort, we are only concerned about the time spent by all reduce tasks. We let mappers

be allocated by MapReduce in Terasort based on the number of blocks in the input dataset

previously generated by Teragen. The number of mappers for a given workload is driven

by the number of input splits, and not by the -Dmapreduce.job.maps parameter set at the

command line JAR execution. For each input split, a map task is spawned by MapReduce

framework. Thus, 80 mappers are spawned from 10 GB /

128 MB = 10∗1024 MB/128 MB = 80 input splits for Terasort 10 GB, and that

number increases to 800 and 8192 mappers for Terasort 100 GB and 1 TB, respectively.

As expected, the job execution time increases with larger workload and decreases

with a higher number of launched tasks. However, assigning more tasks than necessary for

a job will result in waste of computing resources since the reduction in execution time

quickly decreases and becomes insignificant after the needed task resource value has been

reached.

http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000005
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000015
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000005
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000015

30

3.5.3 Process for Ascertaining Optimal Number of Tasks

The best trade-off point on the runtime elbow curve should be the location where no further

significant decrease in execution time could be obtained by continuing to increase the

number of launched tasks. Since the rate of descending of the execution time is the downhill

slope of the graph, the target point could be found in the area where the slope is gentle and

no longer steep, and the vertical movement has diminished close to almost flat. To find the

slope, we take the derivative of the polynomial function

 (1)

where x is the number of launched map tasks and launched reduced tasks for Teragen and

Terasort, respectively. The derivative of f (x) is a slope of a tangent line at a point x on a

graph f (x) . It is equivalent to the slope of a secant line between two points x

and on the graph, where approaches 0.

 (2)

From (1),

f ′(x)=−ax − 2 (3)

and therefore,

 (4)

where f ′ (x)<0 for a downhill slope with a negative value.

Using GNUplot to curve-fit the preview data points, we obtain the fit

parameters a and b of the graph function f (x)=(a/x)+b (Fig. 11) . GNUplot fit

command uses Levenberg–Marquardt Algorithm (LMA), also known as the damped least-

squares (DLS) method, which is used to solve non-linear least squares problems. LMA

interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient

descent. However, LMA is more robust than the Gauss-Neuton algorithm since, in many

cases, it could find a solution even if it starts very far off the final minimum. The GNUplot

http://www.sciencedirect.com/science/article/pii/S0743731516300077#fd000005

31

Fig. 11 Fitting Teragen preview data using Levenberg–Marquardt Algorithm (LMA), aka

the damped least-squares (DLS) method.

32

fit command is used to find a set of parameters that best fits the input data to the user-

defined function, which is f(x)=(a/x)+b here. The fit is judged based on the Sum of Squared

Residuals (SSR) between the input data and the function values, evaluated at the same

places on the curve. LMA will try to minimize the weighted SSR or chisquare. A reduced

chisquare much larger than 1.0 may be caused by incorrect data error estimates, data errors

not normally distributed, systematic measurement errors, 'outliers', or an incorrect model

function. The parameter error estimates, which are readily obtained from the variance-

covariance matrix after the final iteration, is reported as "asymptotic standard errors".

Using the obtained fit parameter a, we then plot the three fitted elbow curves of

execution time versus launched task resources for Teragen and Terasort 10 GB, 100 GB

and 1 TB workloads (Fig. 12).

Taking the second derivative of the function f (x) , which is the derivative of the slope,

we have the acceleration of the rate of change in number of task resources:

f ″ (x)=f ′(f ′(x)) (5)

 (6)

 (7)

as the second symmetric derivative.

From (2),

f ″ (x)=2ax − 3 (8)

Our algorithm finds the optimal number of tasks recommended for a workload by

locating the best trade-off point at the bottom of the elbow curve where assigning more

task resources no longer significantly reduces the job execution time and therefore, reduces

the overall system efficiency in resource utilization and energy consumption. Taking the

http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000020
http://www.sciencedirect.com/science/article/pii/S0743731516300077#fd000010

33

Fig. 12 Fitted runtime elbow curves of (a) Teragen and (b) Terasort 10 GB, 100 GB, and

1 TB workloads versus number of launched map/reduce tasks, and their fit

parameters a and b in the graph function f (x)=(a/x)+b .

34

parameter a in f (x)=(a/x)+b as input, our program computes and tabulates the number

of tasks over a range of slopes from −0.25 to −39.25 for , and the

acceleration over a range of slopes from −0.25 to −39.25 for .

Applying the Chain Rule

 (9)

the rate of change in acceleration with respect to tasks is

 (10)

 Our algorithm looks for break points on the graphs to compute a table of

recommended acceleration, corresponding slope, and optimal number of tasks, when the

change in acceleration in the current slope increment is greater than or equal to the target

value of change in acceleration per slope increment, and the change in acceleration in the

next slope increment is less than the target value of change in acceleration per slope

increment (Fig. 2-3, Fig. 13 and Fig. 15). Finally, our algorithm searches for all major

plateaus lasting at least eight increments of change in acceleration on the graph of task

resources versus change in acceleration per slope increment, which corresponds to the

graph of slope versus change in acceleration per slope increment and the graph of

acceleration versus change in acceleration per slope increment (Fig. 14 and Fig. 16). Our

program then outputs the exact optimal numbers of tasks recommended for different

workloads (Fig. 13 and Fig. 15). The first recommended number of tasks for the same

workload provides the highest efficiency in system performance and energy consumption

ratio. The subsequent recommended number(s) of tasks lowers the job runtime a little bit

more but at a much less efficient performance/energy ratio. However, increasing the

number of tasks beyond the recommended range does not necessarily translate into any

further performance gain in execution time.

http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000010
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000025
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000030
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000035
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000040
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000025
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000030

35

Fig. 13 Applying BToP algorithm to Teragen 10 GB, 100 GB, and 1 TB workloads, our

program tabulates the number of tasks over range of slopes, acceleration over

range of slopes, and recommended acceleration, slope, and optimal number of

tasks over range of incremental changes in acceleration per slope increment, to

output the final recommended optimal numbers of tasks for each Teragen

workload.

36

Fig. 14 The optimal number of tasks for Teragen 10 GB, 100 GB, and 1 TB workloads

are identified by the major plateaus lasting at least eight increments on the graphs.

The algorithm searches for break points in the changes in acceleration and

outputs: (a) recommended acceleration, (b) corresponding slope and (c) task

resources versus change in acceleration per slope increment.

37

Fig. 15 Applying BToP algorithm to MR Terasort 10 GB, 100 GB, and 1 TB workloads,

our program tabulates the number of tasks over range of slopes, acceleration over

range of slopes, and recommended acceleration, slope, and optimal number of

tasks over range of incremental changes in acceleration per slope increment, to

output the final recommended optimal numbers of tasks for each Terasort

workload.

38

Fig. 16 The optimal numbers of tasks for Terasort 10 GB, 100 GB, and 1 TB workloads

are identified by the major plateaus lasting at least eight increments on the graphs.

The algorithm searches for break points in the changes in acceleration and

outputs: (a) recommended acceleration, (b) corresponding slope and (c) task

resources versus change in acceleration per slope increment.

39

3.6. Comparison of BToP Method to Rules of Thumbs for MapReduce Workload

 The recommended optimal resources for Teragen and Terasort 10 GB, 100 GB, and

1 TB in decimal notation generated by our program should be rounded off to integers

before use (Fig. 13 and Fig. 15). Their pinpoint accuracy and integrity are verified by the

fitted runtime elbow curves generated from their sampled executions (Fig. 12). Comparing

the reduce task numbers from our algorithm to those suggested by the three popular rules

of thumbs, we notice some major discrepancies throughout the workloads not only between

our algorithm and the rules of thumb but also between the rules of thumb themselves

(Fig. 17).

 From our BToP algorithm, the recommended numbers of reduce tasks were 4–9 for

Terasort 10 GB, 11–14 for Terasort 100 GB, and 24–27–31 for Terasort 1 TB (Fig. 15).

Fig. 17 Fitted elbow curves of Terasort 10 GB, 100 GB, and 1 TB workloads from

sampled executions verify the accuracy of our algorithm for optimal resource

provisioning in contrast to the unreliable number of reducers calculated from

three popular rules of thumb (A, B, and C(2)), which could lead to significant

waste of computing resources and energy.

http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000030
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000020
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000045
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000030

40

These values are not only optimal but also accurate, as verified by the fitted elbow curves

in Fig. 17, since they were derived from the sampled job runtimes of the actual cluster-

based system targeted for calibration.

According to rule of thumb (A) [23], where the ideal setting for each reduce task to

process should be in a range of 1 GB to 5 GB, the suggested range of reducers are 2–10,

20–100 and 200–1000 for Terasort 10 GB, 100 GB and 1 TB, respectively. Apparently, the

suggested range of reducers for Terasort 10 GB is close enough but starting at 2 reducers

might be a little weak in performance. The ranges of reducers for Terasort 100 GB and

1 TB are not only wide but also too high causing significant energy waste for no further

gain in performance, particularly for 1 TB workload (Fig. 17).

Per Rule of thumb (B) [2], the suggested number of reducers

is 0 .95∗(number of nodes ∗number of maximum containers per node)=

0.095∗(24∗3.6)=82 or 1 .75∗(number of nodes ∗ number of maximum

containers per node)=1.75∗(24∗3.6)=151 for better load balancing. For our

cluster node of 4 cores, 2 disks and 32 GB of RAM, the maximum number of

containers/node = min (2∗number of CPU cores , 1 .8∗ number of disks , Total

available memory/Minimum container size) = min (2∗4, 1 .8∗2, (32-6 reserved for

system) GB/2 GB) = 3.6, and the recommended minimum container size for total RAM

per node above 24 GB is 2048 MB [19]. These suggested numbers of reducers derived

solely from the hardware architecture specifications, without taking into consideration the

different workloads, are not tailored for performance efficiency since it appears to be based

on the misconception that more parallelism is always faster. This rule of thumb suggests

an overkill solution for all three Terasort 10 GB, 100 GB, and 1 TB workloads. Using more

tasks than necessary equates to overloading the NameNode with unused objects and

unnecessarily increasing network transfer as well as framework overhead, needless to say

wasting computing resources and energy (Fig. 17).

 Under Rule of thumb (C) [16], the ideal number of reducers should be the optimal

value that gets them closest to: (1) a multiple of the block size; (2) a task time between 5

and 15 min; (3) creates the fewest files possible. Applying the measurable Rule C(2) of a

task time between 300 and 900 s to the benchmark data of our 24-node cluster and their

http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000045
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000075
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000045
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000010
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000065
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000045
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000015

41

fitted curve functions, the suggested numbers of reducers come out to be 3–7 and 36–158

for Terasort 100 GB and 1 TB, respectively. A value of 1 task is suggested for Terasort

10 GB even though its benchmark task time is below 156 s. None of these values matches

the actual optimal range of reducers for Terasort 10 GB, 100 GB and 1 TB workloads. The

first value of 36 tasks at the beginning of the range for Terasort 1 TB might be close to the

tail end of the actual optimal range of 24–27–31 tasks. But this rule of thumb further

suggests an upper range for Terasort 1 TB of up to 158 reducers which is a complete waste

of energy with no further improvement in runtime (Fig. 17).

Job runtime is an important metric in MapReduce v.2 since resources are shared by

several applications running in parallel on YARN, which allocates maps and reduces as

needed by the job dynamically. As shown in equation 11, the energy consumption per job

can be computed from the linear sum of job duration multiplied by active power and idle

duration multiplied by idle power [8]. Power models based on a linear interpolation of

CPU utilization have been shown to be accurate with I/O workloads for this class of server,

since network and disk activity contribute negligibly to dynamic power consumption [29,

33].

Energy(N) = [Timerun(N) * Poweractive(N)] + [Timeidle * Poweridle] (11)

To quantify the potential saving in using our algorithm, we compare the highest

recommended number of tasks for Terasort 1 TB from our algorithm (31 tasks equivalent

to 9 nodes) and the rule of thumb C(2) (158 tasks equivalent to 44 nodes) based on a cluster

with a maximum number of containers per node of 3.6 [19]. For an active power

consumption per node of 250 W, idle power of 235 W, and an average job arrival time of

2000 s:

 E(9) = [1,773 s * (250 W * 9)] + [(2,000 s – 1,773 s) * 235 W]

 = 4,042.595 kj = 1.123 kWh per job

 E(44) = [969 s * (250 W * 44)] + [(2,000 s – 969 s) * 235 W]

 = 10,901.285 kj = 3.028 kWh per job

http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000045
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000040
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000100
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000100
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000065

42

Hence, by provisioning task resources with our algorithm, we reduce the energy

consumption by about two-thirds. This translates to (1.905 kWh saved per job) *

[((365*24) h/yr / ((2000/3600) h/job)] = 30,038 kWh saved per year. According to the US

Department of Energy, the May 2015 average retail price of electricity to commercial

customers in California was $0.1482 per kWh. Thus, the annual energy saving amounts to

$4,451.63 for the given 1TB compute job [36].

From the table of number of reducers suggested by different methods under

assessment for Terasort 10 GB, 100 GB, and 1 TB workloads (Fig. 17), the potential

energy savings could be significantly larger if we compared the highest recommended

numbers of tasks for Terasort 1 TB from our algorithm (31 tasks) and the rule of thumb A

(1000 tasks), or the highest recommended numbers of tasks for Terasort 10 GB and 100 GB

from our algorithm (9 tasks and 14 tasks, respectively) and the rule of thumb B (151 tasks

for both workloads).

Using only the right number of tasks needed for a job will allow users to allocate the

remaining resources for other jobs in a multi-tenant Hadoop YARN cluster running at full

or near full capacity and therefore, will increase the overall system throughput. Even when

the system is lightly loaded, avoiding allocating more tasks than necessary still certainly

results in energy saving. Dialing up the number of tasks allocated for a job within the

recommended range, users could get a little bit of extra performance gain. However, the

continuing slight reduction in execution time quickly disappears while the power

consumption expense increases linearly with the number of tasks launched. As such, we

do not recommend allocating more task resources beyond the best trade-off points, which

offers rapidly diminishing returns, when it comes to runtime performance and energy

efficiency.

Our proposed solution for resource provisioning in MapReduce offers a verifiable

working method, formula and algorithm to ascertain the optimal task resource values for

performance efficiency. The recommended values will always be accurate since they are

derived from actual sampled executions of each specific application and system in use.

Hadoop MapReduce users no longer have to rely on inaccurate rules of thumb to guess the

required number of tasks for a job. Although our experiment is conducted on a small-scale

http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000120
http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000045

43

24-node Hadoop cluster, our proposed solution should also work for larger workloads

running on a much bigger cluster of several thousands of nodes in today’s datacenter. If

our proposed method for efficient resource provisioning is adopted and consistently applied

to all jobs running on all Hadoop clusters in an organization’s datacenter such as the 42,000

compute nodes running Hadoop clusters in Yahoo datacenter, the amount of aggregate

annual energy saving will be very significant, up to several million dollars.

44

Chapter 4

Efficient Resource Provisioning in

Spark

 We previously proposed the innovative Best Trade-off Point (BToP) method and

algorithm for obtaining the best trade-off between performance and computing resources

for energy efficiency in any workload running on Hadoop MapReduce [32]. Since then we

have further explored some more software modules and data processing engines running

on Hadoop ecosystem including Apache Spark for similar or different approach to optimize

resource provisioning for performance efficiency. In this second part of the thesis, we

address the same question of how to allocate the optimal number of executor resources for

a workload in Apache Spark, an emerging general purpose and lightning fast cluster

computing system providing rich high-level APIs which define Resilient Distributed

Datasets (RDDs) for parallel and distributed computing across cluster nodes.

Since Spark is already quite efficient in resource utilization with its built-in Dynamic

Resource Allocation (DRA) mechanism, we initially did not expect to gain any further

performance improvement by applying the proposed BToP method to Spark. However,

Spark-Bench [5, 31] Terasort tests prove that Spark using BToP method could still

outperform Spark with DRA enabled, particularly in production environment where job

profiling for behavioral replication will lead to the most optimal resource provisioning.

Our experiment with Spark-Bench Terasort indicates that Spark with BToP method

consistently yield better performance than Spark with DRA enabled for all three datasets

of 10GB, 100GB, and 1TB. Since the recommended number of executor resources for a

workload derived from the BToP method is based on behavioral replication by matching a

workload to its corresponding resource consumption signature, it is expected to be more

precise for identical repetitive jobs in production environment. On the other hand, Spark’s

performance optimized by dynamic resource allocation is suitable for all general purposes

applications including any workload with erratic and unpredictable behaviors.

45

In MapReduce programming model, multiple MapReduce jobs must be strung

together to create a data pipeline with data read from disk in between every stage of the

pipeline, and written back to disk when completed. Apache Spark effectively minimizes

these excessive disk I/O bottlenecks by keeping all activities in memory whenever possible.

Although the emerging Spark with its high-speed in-memory computations does not

replace Hadoop MapReduce for low latency data process, many interactive data mining,

iterative algorithms of machine learning, and data streaming applications previously

available on MapReduce have now become deprecated and substituted by equivalent

applications on Spark. Apache Spark also has the functionality to process structured data

in Hive and SQL, streaming data from Flume, Twitter, and HDFS, and graphs. As such, a

large portion of datacenter workloads will eventually be processed by Apache Spark.

Hence, we expect that there will be many more research groups and Big Data companies

including Databricks [11], a company founded by the creators of Apache Spark, working

on the improvement of Spark’s performance efficiency and energy saving upon its

maturity.

Meanwhile, at the high level, many prior research works on Hadoop resource

provisioning to accomplish certain application performance goals through dynamic job

profiling [6], cluster size elasticizing [18], scaling past execution results to meet given

service level objectives [37], and matching an application’s resource consumption with a

database of similar signatures of other applications [22] could still be referenced when

applying the BToP method [32] to Spark.

Our BToP method for optimal resource provisioning is expected to work for many

other types of parallel processing frameworks running on Hadoop YARN beyond

MapReduce. One such example is Apache Spark, which has recently gained its momentum

of popularity for in-memory processing of Big Data analytic applications with better

sorting performance for large clusters. Apache Spark, which can access HDFS datasets

without being tied to the two-stage MapReduce paradigm [1], also supports running

application JARs in HDFS. In this experiment, we evaluate the effectiveness of resource

allocation of Apache Spark in Hadoop YARN cluster mode.

46

In YARN cluster mode, each instance of SparkContext runs an independent set of

executor processes while YARN provides facilities for scheduling across applications.

Multiple Spark jobs initiated by different threads may run concurrently within each Spark

application. Allocation of executor resources on the cluster can be controlled by Spark

YARN client using the –num-executors option which overrides Spark’s built-in Dynamic

Resource Allocation (DRA) mechanism [4]. We use this option to apply our BToP method

and algorithm to determine the optimal static number of executors required for a workload

throughout its entire execution.

Apache Spark could relinquish executors when they are no longer used and acquire

executors when they are needed according to its DRA mechanism to gracefully

decommission an executor by preserving its state before its removal using timeout [4, 10].

Spark’s DRA offering an elastic resource scaling ability, which is missing in MapReduce,

helps prevent under-utilization of cluster resources allocated for an application and

starvation of others in a multi-tenant system environment. To determine whether Spark

using BToP method with DRA disabled or Spark with DRA enabled would be best for

certain circumstances, we need to examine Spark’s architecture with its Resilient

Distributed Dataset (RDD), its distributed execution and DRA mechanism.

4.1 Background Knowledge on Apache Spark

Apache Spark is a general-purpose data processing engine suitable for interactive

analytics, machine learning, streaming processing, and data integration. Its cluster-

computing framework provides simple APIs centered on Resilient Distributed Datasets

(RDDs) functioning as a working set for distributed programming and fault tolerance.

Spark can expedite complex analytic applications up to 100 times faster than MapReduce

with in-memory processing or up to 10 times faster on disk. Spark job performs multiple

operations consecutively in memory and only spills to disk when exceeding memory

limitations. Spark is written in Scala to be used with a wide range of programming

languages including Java, Python, Scala, SQL, and R, on many different platforms [11,

24].

47

Fig. 18 Apache Spark Echosystem

Apache Spark stack comprises Spark SQL, Spark Streaming, Machine Learning

libraries (MLlib), and GraphX which are built on top of Spark core, the base distributed

execution engine. Spark core handles the basic functions of task scheduling, memory

management, fault recovery, and interacting with storage systems, and is home to the APIs

which define RDDs. Spark SQL allows querying data via SQL and HQL, supports many

sources of data, such as Hive, parquet, and json, and combines SQL queries with

programmatic data manipulations supported by RDDs. Spark Streaming provides API for

manipulating data streams and provides some degree of fault tolerance, throughput, and

scalability as Spark core. MLlib provides Machine Learning algorithms (classification,

regression, clustering, collaborative filtering, generic gradient descent optimization).

GraphX provides libraries for manipulating graphs and performing graph-parallel

computations and allows the creation of directed graph with arbitrary properties attached

to each vertex and edge. Spark is highly scalable and can be used with any storage systems

supported by Hadoop APIs including but not limited HDFS, local FS, Google cloud,

Cassandra, Hive, MapR FS, and HBase. Spark can run on a variety of clusters including

Hadoop YARN, Apache Mesos, and Amazon web services Elastic Compute Cloud (EC2),

or in a stand-alone mode (Fig. 18).

48

4.1.1 Spark Architecture and Resilient Distributed Dataset (RDD)

Spark’s driver programs access Spark through a SparkContext object, which

represents a connection to a computing cluster. A driver program typically manages a few

Worker Nodes, also known as Executors. Each Executor represents a unique resource unit

in Spark, which is a combination of certain number of CPU cores and memory as specified

through spark.executor.cores and spark.executor.memory, for requesting resources from

the cluster manager (Fig. 19). The number of CPU cores occupied by each task is defined

through spark.task.cpus as the smallest running unit in Spark execution layer. The number

of required executors is derived from the number of task execution units.

SparkContext is used to build RDD, which is Spark’s fundamental abstraction for

distributing data and computation, and for running parallel operations. RDDs are

immutable collections of objects supporting in-memory data storage distributed across

cluster. Spark’s efficiency is achieved through parallelization of processing across multiple

cluster nodes and minimization of data replication between those nodes. Its fault-tolerance

is achieved in part by logging the lineage of transformations applied to coarse-grained sets

of data for recovery when needed. In case of data loss or node failure, an RDD has

sufficient information of how it was derived from other RDDs to recover the lost partition

without any costly replication [42, 43].

Fig. 19 Spark Architecture in Cluster Mode

49

Spark programming model is based on two types high order functions which are

transformations to create new RDD and actions to compute result without changing the

original data. Transformations are lazily evaluated since they are not executed until a

subsequent action has the need for the result. This lazy operator approach further improves

performance by avoiding unnecessary data processing when result is later not needed.

However, it can also introduce processing bottlenecks causing application stall. For better

cluster performance, RDDs persist in memory whenever possible.

Spark jobs often comprises multiple sequential stages. When an action is called on

an RDD, a Directed Acyclic Graph (DAG)1 of stages is built from the RDD lineage graph

at the low level and submitted to the DAG scheduler. Operators are divided into stages

which contain pipelined transformations with narrow dependencies. A stage contains task

based on the partition of the input data. A task is a combination of data and computation,

which is assigned to an executor pool thread. The stages are passed on to the Task Scheduler

which launches task through the cluster manager [12].

For example, Fig. 20 illustrates a DAG visualization of a simple word count job.

Once the DAG is build, Spark scheduler creates a physical execution plan. It splits the

graph into multiple stages which are created based on the transformations. The narrow

transformations are pipelined together into a single stage as stage 0 with three operations.

Stage 1 has a single operation for the wide transformation. The number of tasks in stages

submitted to the task scheduler depends on the number of partitions present in the textFile.

A set of tasks is created for each of the partitions which are submitted in parallel provided

there are enough core resources. In stage 0, a textFile operation is performed to read an

input file in HDFS, then a flatMap operation is carried out to split each line into words,

then a map operation is executed to form (word, 1) pairs, then finally

a reduceByKey operation is performed to sum the counts for each word. The dots in the

1 A Directed Acyclic Graph (DAG) is consistent with the conditional independence

relations in the First Order Markov process which states that the state of Xi depends only

on Xi-1. For any sequence, p(X1=x1, …, Xn=xn) = p(X1=x1|Xi-1=xi-1). i.e. Once the state is

known, the history may be discarded since the future is independent of the past given the

present. e.g. The probability of the sequence X1, X2, and X3 is the joint probability

p(X1=x1, X2=x2, X3=x3) = p(X1=x1) p(X2=x2|X1=x1) p(X3=x3|X1=x1, X2=x2) given by the

chain rule of probability.

50

 Source: Databricks

Fig. 20 DAG visualization of a simple word count job.

boxes represent RDDs created in the corresponding operations. One of the RDDs denoted

in green is cached in the first stage to reduce reading from HDFS. Significantly, Spark

optimizes pipeline operations with several operators in the same task to eliminate the need

for an extra stage [12].

4.1.2 Distributed Execution in Spark

Although Spark starts up in YARN, it does all task scheduling, task forming, and

process execution independent of YARN. Spark driver runs inside of YARN’s

ApplicationMaster, which is responsible for driving the application and requesting

resources from YARN. Spark job runs as a Java process on a JVM.

 Typically, Spark program execution starts by calling sc.textFile() to create input

RDDs from external data. New RDDs are then defined by using narrow transformations

such as filter(), map(), and union(), which does not require data to be shuffled across the

partitions, or wide transformations such as groupByKey() and reduceByKey(), which

51

requires data to be shuffled. Any intermediate RDDs which will need to be reused, are kept

in memory through persist(). The sequence of commands creates an RDD lineage, a DAG

of RDDs, which could be later used in a called action. Output results are obtained by launch

actions, such as reduce(), collect(), count(), first(), and take(), on RDDs to begin parallel

computation which is then optimized and executed by Spark. A lot of Spark’s API revolves

around passing functions to its operators to run them on the cluster. Spark automatically

takes a user’s function and distributes it to executors. A user’s code in a single driver

program is automatically distributed for execution on multiple cluster nodes. All work is

expressed in either creating new RDDs, transforming existing RDDs, or calling operations

on RDDs to compute a result [24, 41].

4.1.3 Spark’s Dynamic Resource Allocation (DRA)

 Although sufficient resource pre-allocation for a workload could improve

performance, it might lead to underutilization of cluster resources and starvation of other

applications. In addition, unlike the MapReduce task which resides in a process and is

killed when the task is finished, the Spark task is a thread residing in a process known as

executor which is launched at the start of Spark application and is not killed until the

application is finished. To solve these problems, an elastic resource scaling ability, also

known as Dynamic Resource Allocation (DRA) feature, has been added to Spark since

version 1.2 as a built-in mechanism for acquiring and releasing executors during runtime

according to the load of current application. This robust feature is particularly useful when

multiple applications share resources in a Spark cluster.

 To enable DRA, we set spark.dynamicAllocation.enabled to true and enable

spark.shuffle.service.enabled for external shuffle data transmission to support dynamically

added and removed executors. The minimum and maximum numbers of executors that

should be allocated to an application can be specified through

spark.dynamicAllocation.minExecutors and Spark.dynamicAllocation.maxExecutors. The

initial number of executors can be set in the

spark.dynamicAllocation.initialExecutors parameter. The behavior of DRA can be further

fine-tuned with several properties listed in Spark’s official document for DRA (Fig. 21)

[4].

52

 Source: Spark.apache.org

Fig. 21 Apache Spark 1.5.0 Dynamic Resource Allocation Properties

53

To disable DRA for a Spark job without hard-coding the properties in the SparkConfig file,

we specified the --num-executors in Spark-Bench env.sh settings at time of job submission

(Fig. 22).

Spark’s ExecutorAllocationManager calculates the maximum number of executors it

requires through pending and running tasks.

If the current target executor number exceeds the actual number which is needed,

Spark stops adding new executors and notifies cluster manager to cancel any extra pending

requests. If the new target executor number remains the same, Spark stops sending request

to cluster manager.

Unlike static allocation as in the BToP method where all resources are provisioned at

the start of the job execution, the DRA mechanism could request and remove resources

dynamically during run-time. If the current executor number cannot satisfy the desired

executor number, Spark updates the target number and boost it with the number of

executors to add for the first round which is doubled in each subsequent round.

54

To acquire executors when they are needed and to relinquish executors when they are

no longer used, Spark uses several different timeouts for its request and remove policies,

respectively. The request for executors is triggered when there have been pending tasks

for spark.dynamicAllocation.schedulerBacklogTimeout seconds, and then triggered again

every spark.dynamicAllocation.sustainedSchedulerBacklogTimeout seconds thereafter if

the queue of pending tasks persists. To efficiently deal with the common slow start and fast

55

ramp-up in actual needs, the number of executors requested in each round increase

exponentially, in the order of 1, 2, 4, 8, 16, and so on, from the previous round. Any unused

executor is removed when it has been idle for more than

spark.dynamicAllocation.executorIdleTimeout seconds (60s for default value).

To handle multiple parallel jobs from separate threads which can run simultaneously

inside a SparkContext instance, Spark’s scheduler runs jobs in a FIFO fashion with an

option to use a round robin fair scheduler to prevent large jobs at the head of the queue

from significantly delay later jobs in the queue [3, 4].

4.2 Spark-Bench Terasort Experiment with BToP Method

To illustrate our BToP method for obtaining the optimal number of executors for

different workloads, we use the Teragen and Terasort components of the Spark-Bench

Terasort test to experiment with 10 GB, 100 GB and 1 TB datasets. Spark-Bench, which

contains a comprehensive set of benchmark workloads for applications in machine

learning, graph computation, SQL queries, and streaming application, is a Spark specific

benchmarking suite proposed by M. Li et al. from IBM TJ Watson Research Center as a

standard benchmark suite for Apache Spark [31, 5]. The Terasort component among many

others not mentioned in Li et al. [31] was later added to the updated Spark-Bench on Github

[34].

We conducted the Spark-Bench Terasort tests on a real 24-node homogeneous

Hadoop cluster running Cloudera CDH-5.6 YARN with Spark 1.5.0. The cluster has 2 racks

of 12 nodes each. HDFS storage is 261TB (Raw), 80TB (usable after replication overhead).

The NameNodes are VM of 4 cores and 24GB of RAM, each running on Intel Xeon E5-

2690 physical hosts of 8 cores and 16 threads, 2.9 GHz base frequency and 3.8GHz max

turbo frequency, and TDP of 135 W. The DataNodes are physical system running Intel

Xeon E3-1240 v3, 3.4GHz base frequency and 3.8GHz max turbo frequency, and TDP of

80 W. Each node has 4 cores, 8 threads, 32GB of RAM, two 6TB hard disks and 1Gbit

network bandwidth. All nodes are connected to a switch with a backplane speed of 48Gbps.

For Spark running in YARN cluster mode, the --nun-executors option to the Spark

YARN client controls how many executors it will allocate on the cluster (as

56

spark.executor.instances configuration property), while --executor-memory (as

spark.executor.memory configuration property) and --executor-cores (as

spark.executor.cores configuration property) control the resources per executor. When the

--nun-executors option is specifically assigned to certain number of executors at runtime,

it supersedes the spark.dynamicAllocation.enabled configuration which is then disabled

for that job submission. For the three 10GB, 100GB, and 1TB workloads, we first ran

Spark-Bench Terasort with DRA enabled and then ran Spark Bench Terasort again over a

dozen times to have enough sampled data points for plotting a smooth elbow curve, each

time with a different --num-executors number specifically assigned through the Spark

option SPARK_EXECUTOR_INSTANCES=(--num-executors) in Spark-Bench env.sh

settings, which automatically turned off dynamic allocation (Fig. 22).

Spark is designed for Big Data processing but its version 1.5.0 used in our experiment

is unstable when we run Spark-Bench Terasort of 1TB of data on our 24 nodes

homogeneous Hadoop cluster. To process heavy workloads in Spark, we need to

occasionally maximize disk and network utilization which can cause timeout exceptions in

many operations in Spark such as RPC timeout, heartbeat timeout, connection timeout,

acknowledgement wait, storage blockManagerSlave timeout, and storage

blockManagerMaster timeout. Apparently, the default value of RPC communication

timeout set to 120 seconds is clearly not sufficient for a heavy 1TB workload processed by

Spark 1.5.0 with DRA enabled. To get Spark-Bench Terasort to complete the job, we have

to increase the timeouts by a large margin in setting the

SPARK_RPC_ASKTIMEOUT=800 seconds and adding the umbrella

SPARK_NETWORK_TIMEOUT=800 seconds to cover all timeout exceptions in Spark

for heavy workloads (Fig. 22).

 On the other hand, there is no problem running Spark-Bench Terasort on a 1TB

dataset by manually assigning a static --num-executors without changing any default

settings of timeouts in Spark. It appears that the DRA mechanism generates more disk and

network utilization overhead in constantly monitoring, ramping up, and releasing executor

resources and therefore, causes timeout problems in processing heavy workloads. Spark’s

57

Fig. 22 SparkBench env.sh settings for the experiment with 48 executors.

58

inherent timeout errors in processing heavy workloads has been reported by many users,

especially for Spark versions older than version 1.6.0.

Generally, Spark’s performance could easily be improved by just adding more cores

and more memory. By increasing the number of cores per executor, we can force an

increase in percentage of utilization and a reduction in execution time. To max out the

cluster, we can start with evenly divided memory and cores [21]. For a node with 32 GB

of RAM, using YARN’s DefaultResourceCalculator setup, which only takes the available

memory into account when doing its calculation, the default resource allocation can be

potentially up to 32 containers per node. However, each Worker Node in our 24-node

Hadoop cluster has only 8 vCores as available logical cores from the 4 physical cores with

hyperthreading which give 8 threads. Although each node has 32GB of RAM and YARN’s

default container allocation size is 1GB, we are restricted to running only 8 containers of

1 vCore each per node under YARN’s DominantResourceCalculator setup to prevent

overutilization of CPU resources [20].

Following the same approach for CPU base resource allocation, Spark does its own

task scheduling and process execution independent of YARN. Its configured Spark driver

and executor cannot be larger than the size of a YARN container. And the total resources

requested in terms of CPU and memory cannot exceed the available resources on the cluster

for a user’s job. In YARN cluster mode, the ApplicationMaster as a non-executor container

runs the Spark driver which takes up its own resources assigned through the –driver-

memory and –driver-cores properties. Thus, the available resources are determined by the

following equations [14]:

Total vCores available>=spark.executor.cores*spark.executor.instances+1 core for driver

Total Memory available >= (spark.executor.memory + executor memory overhead)

 * spark.executor.instances + spark.driver.memory + driver memory overhead

In our experiment, we set the spark.executor.memory = 1g and the

spark.executor.cores = 1 to have a total of 192 executors with 8 executors per node. The

total memory used by 24 nodes is equal to only 192GB out of 768GB of available RAM.

As such, we can optionally increase the heap size up to 3GB without affecting the number

of executors per node. In general, a single executor should not have more than 64GB of

59

RAM to avoid excessive garbage collection delays. We notice that with a single core

executor, the overall Spark-Bench Terasort performance result in our experiment is quite

slow since the benefits of running multiple tasks in a single JVM have been eliminated by

the single core executor configuration. To fine tune Spark’s performance, we can increase

the number of cores per executor to raise the percentage of CPU utilization at the expense

of the total available number of executor instances. Ideally, to achieve full write

throughput, up to 5 vCores should be assigned to each executor to support up to 5

concurrent tasks since beyond that, HDFS client could have trouble with too many

concurrent threads [9]. In our experiment on a small 24-node Spark YARN cluster, we are

more interested in the performance improvement impacted by the BToP method on Spark

than the further fine-tuning of Spark at the expense of the total available number of

executors. Therefore, we run the experiment with a single core executor to have the largest

possible available number of executors for testing.

We now implement the 7 steps outlined in Chapter 2 for efficient resource

provisioning in Spark to apply the BToP method to Spark-Bench Terasort (Fig. 1).

1. Complete the configuration and fine tuning of the architecture, software and

hardware of the production cluster-computing system targeted for calibration.

2. Collect necessary preview job performance data from historical runtime

performances or sampled executions on the same target production system, configured

exactly as in step 1, as reference points for each workload (Fig. 23).

The preview data of Spark-Bench Terasort indicates that when the allocated number

of executors is too little for a workload, the job duration is very high due to insufficient

processing resources. However, provisioning executor resources more than what is needed

for a workload might result in an actual decrease in performance at some point in time after

the elbow turn on the runtime curve. Although increasing parallelization would normally

improve job performance, the growing framework overhead and potential resource

contention due to excessive number of executors could eventually degrade the overall job

performance. In our experiment, this observed performance degradation of Spark on

YARN despite the steady increase in executor resources is more obvious with 10GB and

100GB workloads than with 1TB workload (Fig. 23).

60

Fig. 23 Plots of Preview data of duration vs. executors of SparkBench Terasort 10GB,

100GB and 1TB of data at different vertical scales.

61

3. Curve-fit the preview data to obtain the fit parameters a and b in the runtime

elbow curve function f(x)=(a/x)+b, where x is the number of executor resources (Fig. 24).

Using GNUplot to curve-fit the preview data points, we obtain the fit

parameters a and b of the graph function f (x)=(a/x)+b . GNUplot fit command uses

Levenberg–Marquardt Algorithm (LMA), also known as the damped least-squares (DLS)

method, which is used to solve non-linear least squares problems. LMA interpolates

between the Gauss–Newton algorithm (GNA) and the method of gradient descent.

However, LMA is more robust than the Gauss-Neuton algorithm since, in many cases, it

could find a solution even if it starts very far off the final minimum. The GNUplot fit

command is used to find a set of parameters that best fits the input data to the user-defined

function, which is f(x)=(a/x)+b here. The fit is judged based on the Sum of Squared

Residuals (SSR) between the input data and the function values, evaluated at the same

places on the curve. LMA will try to minimize the weighted SSR or chisquare. A reduced

chisquare much larger than 1.0 may be caused by incorrect data error estimates, data errors

not normally distributed, systematic measurement errors, 'outliers', or an incorrect model

function. The parameter error estimates, which are readily obtained from the variance-

covariance matrix after the final iteration, is reported as "asymptotic standard errors" (Fig.

24).

With the obtained fit parameter a, we then plot the three fitted elbow curves of

duration vs. executors for Spark-Bench Terasort 10 GB, 100 GB and 1 TB workloads

(Fig. 25). The resulted performances of Spark with DRA enabled for all three workloads,

indicate that Spark’s DRA mechanism is quite effective in achieving generally good

performance. As such, it appears initially from the graphs that there might be no more room

for further improvement in running Spark with the BToP method which disables the built-

in DRA.

http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000020

62

Fig. 24 Fitting Spark-Bench Terasort preview data points to the function f(x) = (a/x)+b.

63

Fig. 25 Fitted runtime vs. executors’ elbow curves of SparkBench Terasort 10GB,

100GB, and 1TB of data, and their runtimes with Dynamic Resource Allocation

(DRA) enabled.

4. Input the fit parameter a to the BToP algorithm (Fig. 2) to obtain the

recommended optimal number of executors for a workload (Fig. 26).

 a. The algorithm computes the number of executors over a range of slopes

from the first derivative of f(x)=(a/x)+b and the acceleration over a range of slopes from

the second derivative (Fig. 26).

 b. The algorithm applies the Chain Rule to search for break points and major

plateaus on the graphs of acceleration, slope, and executor resources over a range of

incremental changes in acceleration per slope increment (Fig. 26-27).

Applying the Chain Rule, the rate of change in acceleration with respect to executors

is:

𝑑(𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

𝑑(𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠)
=

𝑑(𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

𝑑(𝑠𝑙𝑜𝑝𝑒)

𝑑(𝑠𝑙𝑜𝑝𝑒)

𝑑(𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠)

64

Fig. 26 Applying BToP algorithm to Spark-Bench Terasort 10 GB, 100 GB and 1 TB

workloads to tabulate the number of executors over range of slopes, acceleration

over range of slopes, and recommended acceleration, slope, and optimal number

of executors over range of incremental changes in acceleration per slope

increment, to output the final recommended optimal numbers of executors for

each workload.

65

Fig. 27 The optimal numbers of executors for Spark-Bench Terasort 10 GB, 100 GB,

and 1 TB workloads are identified by the major plateaus lasting at least seven

increments on the graphs. The algorithm searches for break points in the

changes in acceleration and outputs: (a) recommended acceleration, (b)

corresponding slope and (c) executors versus change in acceleration per slope

increment.

66

The BToP algorithm looks for break points on the graphs to compute a table of

recommended acceleration, corresponding slope, and optimal number of executors, when

the change in acceleration in the current slope increment is greater than or equal to the

target value of change in acceleration per slope increment, and the change in acceleration

in the next slope increment is less than the target value of change in acceleration per slope

increment (Fig. 26-27).

Finally, the algorithm searches for all major plateaus lasting at least seven increments

of change in acceleration on the graph of executors versus change in acceleration per slope

increment, which corresponds to the graph of slope versus change in acceleration per slope

increment and the graph of acceleration versus change in acceleration per slope increment.

The minimum duration of 7 executors specified for a major plateau could be adjusted by

user to further fine tune the search for the first recommended optimal executor resource

value.

 c. The BToP algorithm extracts the exact number of executors at the best

trade-off point on the elbow curve and outputs it as the recommended optimal number of

executors for a workload (Fig. 26-27).

 The BToP algorithm finds the optimal number of executors recommended for a

workload by locating the best trade-off point on the elbow curve where assigning more

executors no longer significantly reduces the job execution time and therefore, reduces the

overall system efficiency in resource utilization and energy consumption. The first

recommended number of executors for the same workload provides the highest efficiency

in system performance and energy consumption ratio. The subsequent recommended

number(s) of executors lowers the job runtime a little bit more but at a much less efficient

performance/energy ratio. However, increasing the number of executors beyond the

recommended range does not necessarily translate into any further performance gain and

on the contrary, might adversely increase the runtime. The results, as analyzed in section

4.3, prove that Spark using the BToP method could still consistently outperform Spark with

DRA enabled in all three tested workloads 10GB, 100GB, and 1TB despite the

sophistication and robustness of Spark’s DRA mechanism.

http://www.sciencedirect.com/science/article/pii/S0743731516300077#f000010

67

 5. Repeat steps 2-4 to gather sufficient resource provisioning data points for

different workloads to build a database of resource consumption signatures for subsequent

job profiling.

 6. Repeat steps 1-5 to recalibrate the database of resource consumption

signatures if there are any major changes to step 1.

 7. Use the database of resource consumption signatures to match dynamically

submitted production jobs to their recommended optimal number of executors for efficient

resource provisioning.

4.3 Analysis of Spark with BToP method vs. Spark with DRA Enabled

4.3.1 Performance Gain

From the graphs of duration vs executors of Spark-Bench Terasort, we notice that the

durations of 10GB, 100GB, and 1TB workloads eventually get longer instead of shorter

even though the number of executors continue to increase after 20, 60, and 95 executors,

respectively. This clearly indicates that adding far more executor resources long after the

best trade-off point adversely increases Spark’s runtime instead of reducing it. This

phenomenon is more noticeable with the small workloads of 10GB and 100GB than the

large 1TB workload due to growing framework overhead and resource contention. As such,

for the 10GB workload, we had to limit the number of preview data points used for curve

fitting to only the first 7 sampled data points within the range from 1 to 20 executors on

the x-axis to get the best fit of its actual elbow curve and to avoid any skew caused by the

outliers beyond that range. Similarly, for the 100GB workload, we only used the first 17

sampled data points within the range from 1 to 60 executors on the x-axis to get the best fit

of its actual elbow curve. In the same way, for the 1TB workload, we only used the first 20

sampled data points within the range from 4 to 95 executors on the x-axis to get the best fit

of its actual elbow curve for computation in the BToP method (Fig. 23).

Our goal is to have the best fitted elbow curve from the limited preview data points

within the range of interest where the best trade-off point could be located to provision

only the optimal number of executors needed for a workload to reserve the remaining

executor resources for other jobs in a multi-tenant Spark YARN cluster to improve the

68

overall system throughput. As such, we could ignore the outlier data points far beyond the

elbow turn on the runtime curve when curve fitting the elbow graph for implementing the

BToP algorithm. In fact, we do not recommend provisioning more executor resources

beyond the best trade-off points, which offers rapidly diminishing returns and possibly,

adverse effects, when it comes to runtime performance and energy efficiency.

 Running Spark with DRA enabled, we notice that Spark dynamically fluctuates the

utilized resources up to a maximum of 80 executors for the 10GB workload and 119-120

executors for the 100GB and 1TB workloads. The Spark-Bench Terasort tests with DRA

enabled result in 321.897s for 10GB, 588.674s for 100GB, and 2,923.138s for 1TB (Fig.

25 and Table 1).

Spark-

Bench

Terasort

DRA

Enabled

(s)

BToP Method

(DRA Disabled)

Improved

Performance

(%) Executors Duration (s)

10GB 321.897s 11 129.43 59.79

13 122.06 62.08

18 114.70 64.37

100GB 588.674s 33 513.50 12.77

36 498.77 15.27

40 477.73 18.85

1TB 2,923.138s 85 2,739.04 6.30

89 2,694.84 7.81

94 2,644.34 9.54

99 2,608.56 10.76

Table 1 Performance of Spark-Bench Terasort with Dynamic Resource Allocation

(DRA) enabled vs. Spark using BToP method (with DRA disabled).

69

Running Spark-Bench Terasort with the BToP method (DRA disabled), the

recommended optimal numbers of executors are 11-13-18 executors for 10GB, 33-36-40

executors for 100GB, and 85-89-94-99 executors for 1TB. By extracting the corresponding

runtimes from the fitted elbow curves of Spark-Bench Terasort, we obtain the durations of

Spark with BToP method (DRA disabled) for 10GB, 100GB, and 1TB workloads as shown

in Table 1 (Fig. 25).

These corresponding durations derived from the optimal numbers of executors

recommended by the BToP method consistently outperform the durations of Spark with

DRA enabled for all three workloads. The performance gains are up to 10.76% for 1TB,

up to 18.85% for 100GB, and up to 64.37% for 10GB (Table. 1).

The question remains whether the difference in runtimes for performance gain is

significant enough to justify the additional ground work required for applying the BToP

method to Spark, particularly for applications outside of a production environment. The

answer to that question depends on the performance criteria and Service Level Objectives

(SLO) in each individual case. Users will have to decide whether to apply the BToP method

by weighing the additional benefits in performance gain and energy saving against the extra

work involved in creating a database of resource consumption signature for dynamic job

profiling.

Our Spark-Bench Terasort experiment proves that the BToP method is more

advantageous for production runs since the BToP algorithm recommends the optimal

number of executors by matching a workload to its equivalent predetermined resource

consumption signature for behavioral replication. The dynamic job profiling is expected to

be more precise for identical repetitive jobs in production environment. Moreover, its

database of resource consumption signatures is built from historical data and sampled

executions of the same target cluster system which has been configured exactly as it was

initially set up at time of calibration for later production runs. Thus, Spark with BToP

method appears to be always slightly faster than Spark with DRA enabled due to the

inherent optimization of the BToP method. Nevertheless, when DRA is enabled, Spark

relies on its built-in DRA mechanism, its executor request and executor remove policies,

its job scheduler, and users’ configurations of the dynamic allocation properties to

70

efficiently allocate and deallocate resources as needed. Therefore, Spark with BToP

method might be more suitable for further optimizing the throughput of a target cluster in

production environment while Spark with DRA enabled is already efficient enough for

general purpose applications.

4.3.2 Energy Saving

The performance gain in using Spark with the BToP method also leads to some

energy savings which could be estimated and quantified by using the following energy

consumption equation:

Energy(N) = [Timerun(N) * Poweractive(N)] + [Timeidle * PowerAde]

The energy consumption per job can be computed from the linear sum of job duration

multiplied by active power and idle duration multiplied by idle power [8, 32]. These power

models based on a linear interpolation of CPU utilization have been verified to be accurate

with I/O workloads for this class of server, since network and disk activity contribute

negligibly to dynamic power consumption [29, 33].

 Since the actual executor resources allocated and utilized by a workload constantly

change in Spark with DRA enabled, it would be difficult to ascertain an apparent

fluctuating power consumption. However, for a heavy workload of 1TB, we observe from

the logged output files that the 119 to 120 executors, as the maximum number of executors

for DRA, are fully utilized most of the time in Spark-Bench Terasort execution. Moreover,

even if the maximum number of single task executor resources as single thread processes

were not fully used, they would not be released until the long running application has

finished. So, it is reasonable to use the maximum number of executors assigned in DRA

for the heavy workload of 1TB to estimate its energy consumption.

 For Spark-Bench Terasort of 1TB, we compare the estimated energy saving

between the maximum number of executors utilized in DRA (120 executors equivalent to

15 nodes) and the highest number of executors recommended by the BToP algorithm (99

executors equivalent 13 nodes) based on a 24-node Spark YARN cluster with a maximum

of 8 executors per node. For an active power consumption per node of 250 W, idle power

http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000040
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000100

71

of 235 W, and an average job arrival time of 3000 s, we have the following energy

consumptions results:

 E(15) = [2,923.14 s * (250 W * 15)] + [(3,000 s – 2,923.14 s) * 235 W]

 = 10,979,37.1 j = 3,049.95 Wh per job

 E(13) = [2,608.56 s * (250 W * 13)] + [(3,000 s – 2,608.56 s) * 235 W]

 = 8,569,808.4 j = 2,380.5 Wh per job

Hence, by provisioning executor resources with the BToP method, we reduce the

energy consumption by about 21.95%. This translates to (0.66945 kWh saved per job) *

[((365*24) h/yr / ((3000/3600) h/job)] = 7,037.26 kWh saved per year. According to the

US Department of Energy, the May 2017 average retail price of electricity for commercial

customers in California was $0.1493 per kWh. Thus, the annual energy saving amounts to

$1,050.66 for the given 1TB compute job with arrival time of 3000 s [35] (Table 2).

 From the output files of Spark-Bench Terasort of 10GB and 100GB, we observe that

Spark with DRA enabled frequently ramps up and down within the range of 0 to 80 and

120, respectively, according to the need of each stage of the jobs. But the fluctuating

resource utilization rarely reached the maximum available number of executors allocated

for DRA in both 10GB and 100GB workloads. As previously rationalized for the 1TB

workload, since their estimated energy consumptions would be inconsistent if they

Spark-

Bench

DRA Enabled BToP Method

(DRA Disabled)

Energy Saving

Terasort Max

Exec.

Equiv.

Nodes

Energy

(Wh/job)

Static

Exec.

Equiv.

Nodes

Energy

(Wh/job)

PerJob

(%)

Per Year

(kWh)

Per Year

($)

10GB 80 10 398.36 18 3 188.37 52.71 2,207.41 329.57

100GB 120 15 770.60 40 5 330.53 57.11 4,626.02 690.66

1TB 120 15 3,049.95 99 13 2,380.5 21.95 7,037.26 1,050.66

Table 2 Energy savings in using Spark with BToP method in lieu of Dynamic Resource

Allocation (DRA) enabled for Spark-Bench Terasort of 10GB, 100GB, and 1TB.

http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000120

72

were modeled after a moving target, we use their maximum numbers of executors assigned

for DRA, 80 executors for 10GB workload and 120 executors for 100GB workload, as

ceiling values to calculate their energy consumption for the worst case. As such, the energy

consumption for Spark with DRA enabled could typically be less than the estimated worst-

case values. Be that as it may, using Spark with the BToP method instead of Spark with

DRA enabled for Spark-Bench Terasort of 10GB and 100GB workloads with an average

job arrival time of 3000 s will result in an energy efficiency of 52.71% per job and 57.11%

per job, respectively. That is equivalent to an annual energy saving of $329.57 for the given

10GB compute job and $690.66 for the given 100GB compute job (Table 2).

73

Chapter 5

Conclusion and Future Work

Our proposed Best Trade-off Point (BToP) method for efficient resource

provisioning in Hadoop offers a verifiable working method and algorithm with

mathematical formulas to ascertain the optimal number of resources needed for

performance efficiency. The recommended resource values will always be accurate since

they are derived from actual sampled executions of each specific application and target

system in use. Hadoop users no longer have to guess the required number of task resources

for a MapReduce job from some unreliable rules of thumb. In addition, Spark users have

an option to gain further performance improvement and energy saving for any Spark job

running on Hadoop YARN by using the BToP method instead of simply relying on the

built-in Dynamic Resource Allocation (DRA) mechanism. Although our experiments are

conducted on a small-scale 24-node Hadoop cluster, our proposed BToP method should

also work for larger workloads running on much bigger clusters of several thousand nodes

in today’s datacenters.

Spark-Bench Terasort test confirms that our proposed BToP method for efficient

resource provisioning in Apache Spark consistently outperforms Spark with its built-in

DRA enabled, in both runtime performance and energy efficiency. Although Spark’s robust

and sophisticated DRA mechanism is effectual for general purpose applications including

any workload with erratic and unpredictable behaviors, the BToP method might be

preferable in production environment where workload behaviors are predictable and

repetitive, and can be replicated for optimal performance and energy saving. By optimizing

resource provisioning, the BToP method improves overall system throughput and prevents

cluster underutilization as well as starvation among applications running in Spark’s multi-

tenancy environment.

This study shows that significant aggregate annual energy saving can be achieved

when our proposed BToP method is adopted and consistently applied to all Big Data

processing jobs running on all Spark and Hadoop clusters in today’s large datacenters.

74

However, since Spark could process large-scale data up to 100x faster than MapReduce in

memory, or 10x faster on disk, the additional incremental gain in performance and energy

saving through a more efficient resource provisioning with the BToP method may not be

completely desirable considering the extra work involved in building an extensive database

of resource consumption signatures for this further optimization. Users will have to weigh

the benefits, performance criteria, and Service Level Objectives (SLO) in each individual

case to determine applicability and best practices.

 In general, our innovative BToP method and algorithm to compute the best trade-off

point for efficient resource provisioning is applicable whenever and wherever there is an

elbow curve of performances vs. resources. Besides MapReduce and Spark, researchers

and users will find the BToP method effective in many other applications with different

software frameworks and data processing engines, any computing system, network data

routing system, cluster microarchitecture system, payload engine system including but not

limited to vehicle, aircraft/plane/jet, boat/ship, and rocket, and any other elbow yield curves

in data science, economics, and manufacturing. In addition, the BToP method could also

be coded into Artificial Intelligence. In brief, our BToP method will work with any

fundamental trade-off curves with an elbow shape, non-inverted or inverted, for making

good decisions.

75

References

[1] Apache Hadoop. http://hadoop.apache.org

[2] Apache Hadoop 2.7.1. MapReduce Tutorial. Reducer: How Many Reduces?

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-

mapreduce-client-core/MapReduceTutorial.html#Reducer

[3] Apache Spark. http://spark.apache.org

[4] Apache Spark Dynamic Resource Allocation.

http://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-

 allocation

 [5] D. Agrawal, A. Butt, K. Doshi, J.L. Larriba-Pey, M. Li, F.R. Reiss, F. Raab, B.

Schiefer, T. Suzumura and Y. Xia. SparkBench–a spark performance testing suite.

In Technology Conference on Performance Evaluation and Benchmarking (pp. 26-

44). Springer, Cham., August 2015.

[6] S. Babu, Towards automatic optimization of MapReduce programs, in: Proceedings

of the 1st ACM symposium on Cloud computing (2010)

[7] Y. Chen, A.S. Ganapathi, R. Griffith, R.H. Katz. A methodology for understanding

mapreduce performance under diverse workloads. Tech. Rep. UCB/EECS-2010-

135 EECS Department, University of California, Berkeley (2010)

[8] Y. Chen, L. Keys, R. Katz. Towards energy efficient mapreduce. EECS

Department, Tech. Rep. UCB/EECS-2009-109 University of California, Berkeley

(2009)

[9] Cloudera. How-to: Tune Your Apache Spark Jobs (Part 2).

http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/

[10] Cloudera. Spark Dynamic Allocation. http://www.cloudera.com/content/www/en-

us/documentation/enterprise/latest/topics/cdh_ig_running_spark_on_yarn.html#con

cept_zdf_rbw_ft_unique_1

[11] Databricks. https://databricks.com/spark/about

[12] Databricks: Understanding your Apache Spark Application Through Visualization.

https://databricks.com/blog/2015/06/22/understanding-your-spark-application-

through-visualization.html

http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000010
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000035

76

[13] Datacenter Knowledge.

http://www.datacenterknowledge.com/archives/2017/03/16/google-data-center-faq

[14] DZone/Big Data Zone. Using YARN API to Determine Resources Available for

Spark Application Submission: Part II. https://dzone.com/articles/alpine-data-how-

to-use-the-yarn-api-to-determine-r

[15] Gartner’s Forecast of 25B IoT devices connected by 2020.

http://www.gartner.com/newsroom/id/2905717

[16] Hadoop Wiki: HowManyMapsAndReduces.

 http://wiki.apache.org/hadoop/HowManyMapsAndReduces

[17] J. Hertzog, Z. Fadika, E. Dede, M. Govindaraju. Configuring a MapReduce

framework for dynamic and efficient energy adaptation

2012 E 5th Int. Conference on CLOUD, IEEE (2012), pp. 914–92

[18] H. Herodotou, F. Dong, S. Babu. No one (cluster) size fits all: automatic cluster

sizing for data-intensive analytics. Proceedings of the 2nd ACM Symposium on

Cloud Computing, ACM (2011)

[19] Hortonworks Data Platform. Section 1.11.1. Manually Calculate YARN and

MapReduce Memory Configuration Settings.

 http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-

2.0.9.1/bk_installing_manually_book/content/rpm-chap1-11.html

[20] Hortonworks. Managing CPU resources in your Hadoop YARN clusters, by Varun

Vasudev. https://hortonworks.com/blog/managing-cpu-resources-in-your-hadoop-

yarn-clusters/

[21] IBM Hadoop Dev / Tech Tip / Spark / Beginner’s Guide: Apache Spark

Troubleshooting. https://developer.ibm.com/hadoop/2016/02/16/beginners-guide-

apache-spark-troubleshooting/

[22] K. Kambatla, A. Pathak, H. Pucha.: Towards optimizing hadoop provisioning in the

cloud, in: Proc. of the First Workshop on Hot Topics in Cloud Computing, 2009

[23] S. Karanth, Mastering Hadoop. Advanced MapReduce. The Reduce task. 2014, p.

50

[24] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia: Learning spark: lightning-

fast big data analysis. " O'Reilly Media, Inc.," 2015.

[25] R.T. Kaushik, M. Bhandarkar. Greenhdfs: towards an energy-conserving, storage-

efficient, hybrid hadoop compute cluster, in: Proceedings of the USENIX Annual

Technical Conf., 2010, p. 109

http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000015
http://wiki.apache.org/hadoop/HowManyMapsAndReduces
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000055
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000065
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.9.1/bk_installing_manually_book/content/rpm-chap1-11.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.9.1/bk_installing_manually_book/content/rpm-chap1-11.html
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000075
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000080

77

[26] K.R. Krish, M.S. Iqbal, M.M. Rafique, A.R. Butt. Towards energy awareness in

Hadoop. Proceedings of Fourth International Workshop on Network-Aware Data

Management, IEEE Press (2014), pp. 16–22

[27] J. Koomey. Growth in Data Center Electricity Use 2005 to 2010. Analytics Press,

Oakland, CA (2011)

[28] W. Lang, J.M. Patel. Energy management for mapreduce clusters. Proc. VLDB

Endow., 3 (1–2) (2010), pp. 129–139

[29] J. Leverich, C. Kozyrakis. On the energy (in) efficiency of hadoop clusters. ACM

SIGOPS Oper. Syst. Rev., 44 (1) (2010), pp. 61–65

[30] J. Lin, F. Leu, Y. Chen. Analyzing job completion reliability and job energy

consumption for a general MapReduce infrastructure. J. High Speed Netw., 19 (3)

(2013), pp. 203–214

[31] M. Li, J. Tan, Y. Wang, L. Zhang, V. Salapura. SparkBench: a comprehensive

benchmarking suite for in memory data analytic platform Spark. Proceedings of the

12th ACM International Conference on Computing Frontiers, ACM (2015), p. 53

[32] P.P Nghiem and S.M. Figueira. Towards efficient resource provisioning in

MapReduce. Journal of Parallel and Distributed Computing, 95, pp.29-41, 2016.

[33] S. Rivoire, P. Ranganathan, C. Kozyrakis. A comparison of high-level full-system

power models. HotPower, 8 (2008) 3–3

[34] Sparkbench: Benchmark Suite for Apache Spark.

 https://sparktc.github.io/spark-bench/

[35] U.S. Energy Information Administration.

 Electric Power Monthly Data for May 2017.

https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_06_a

[36] U.S. Energy Information Administration.

 Electric Power Monthly Data for June 2015

 http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_06_a

[37] A. Verma, L. Cherkasova, R.H. Campbell. Resource provisioning framework for

mapreduce jobs with performance goals. Middleware 2011, Springer, Berlin,

Heidelberg (2011), pp. 165–186

[38] X. Wang, Y. Wang, H. Zhu. Energy-efficient task scheduling model based on

MapReduce for cloud computing using genetic algorithm. J. Comput., 7 (12)

(2012), pp. 2962–2970

http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000085
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000090
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000095
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000120
http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000130

78

[39] T. White. Hadoop: The Definitive Guide. Yahoo Press (2010)

[40] J. Whitney and P. Delforge. Data center efficiency assessment. Issue paper on

NRDC (The Natural Resource Defense Council), 2014.

[41] R. Yadav. Spark Cookbook. Packt Publishing Ltd., 2015.

[42] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin,

S. Shenker, I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation, USENIX Association (2012) pp.

2–2

[43] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster

computing with working sets, in: Proceedings of the 2nd USENIX conference on

Hot topics in cloud computing, Vol. 10, June 2010, p. 10

http://www.sciencedirect.com/science/article/pii/S0743731516300077#br000135

	Santa Clara University
	Scholar Commons
	6-2017

	Towards Efficient Resource Provisioning in Hadoop
	Peter P. Nghiem
	Recommended Citation

	tmp.1509150579.pdf.Aov25

