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Abstract

UAVino is a drone solution that uses aerial imagery to determine the overall plant health
and water content of vineyards. In general, the system focuses on automating crop
inspection by taking aerial imagery of a vineyard, conducting post-processing, and
outputting an easily interpreted map of the vineyard’s overall health. The project’s key
innovation is an auto-docking system that allows the drone to automatically return to its
launch point and recharge in order to extend mission duration. Long term, UAVino is
envisioned as a multi-year, interdisciplinary project involving both the Santa Clara
University Robotics Systems Laboratory and local wineries in order to develop a fully

functional drone agricultural inspection service.
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CHAPTER 1

Introduction

1.1 Drone Background

Over the past few years, personal use drones have surged in popularity due to a
dramatic increase in their capabilities. Together, the efforts of casual hobby enthusiasts
and professional developers have resulted in the creation of advanced control systems
and sensors that have opened the doors to this new technology; drone research and
experiments that used to require funding on a professional level are now available to
the everyday civilian. Although personal drones have come under criticism because of
potential safety and privacy issues, many industries stand to benefit from this emerging

technology, provided it is applied in a safe and sensible way.

Already, drones have been modified to meet a wide variety of needs and scenarios, as
shown in Figure 1.1. One of the first notable drone applications occurred in 2013 when
the Seattle Police Department considered their use for a wide variety of tasks, including
crowd monitoring [1]. Ultimately, the Department was forced to abandon its plans due
to public concern over privacy, but not all potential drone applications have met this
same fate [2]. In September 2014, the Federal Aviation Administration granted
regulatory exceptions to several video production companies, paving the way for drone
use in the film industry [3]. One application that has actually garnered public excitement
is Prime Air, a drone package delivery service currently being developed by Amazon.com
[4]. Although somewhat futuristic, the benefits resulting from such a system with
regards to reduced carbon emissions, faster delivery times, and lower overall costs are

intriguing.

While drones are certainly poised to increase profits for well-established industries, they
are also well-suited for social benefit applications. In late 2014, a graduate student at
Delft University of Technology in the Netherlands equipped a quadcopter with a

defibrillator in order to create a concept drone that could be used to enhance



emergency response services [5]. Additionally, drones have been deployed for animal

tracking and poaching prevention in the developing world, including rural Africa [6, 7].

Figure 1.1: Left: Prototype drone for Amazon’s planned Prime Air delivery service. Photo
courtesy of amazon.com. Right: Conceptual defibrillator-equipped drone developed by
Delft University of Technology. Photo courtesy of tudelft.nl.

Provided that the Federal Aviation Administration is able to meet its 2015 deadline to
integrate drones into the National Airspace System, it is estimated that the unmanned
aerial vehicle industry will create 70,000 new jobs and make $13.6 billion in economic
impact by 2018. By 2025, those numbers reach over 100,000 new jobs and over $80
billion in economic impact [8]. Given the number of applications towards which drones
have already being applied, this technology has an exciting future with the potential to

positively affect the world.

1.2 Agricultural Inspection Techniques

In particular, the agricultural industry stands to benefit from the use of drones due to
the relative ease with which an aerial vehicle can cover the large land area occupied by
crops. One potential application is crop monitoring, as drones are ideal for modern field
inspection methods that involve multispectral and infrared aerial imaging. Although
these advanced inspection techniques are still actively being developed, research has
shown that, with the correct post processing, these image types can be used to

accurately yield information about crop health.

One processing method uses multispectral images to generate a Normalized Difference

Vegetation Index (NDVI), which provides information about differing chlorophyll levels



in crops in order to examine their health. The NDVI is determined with two multispectral
bands: near-infrared reflectance and visible reflectance. Dividing the difference in these
two quantities by their sum yields a fraction that indicates vegetation in a particular
area as well as the concentration of chlorophyll in the leaves of plants. A larger NDVI

indicates dense vegetation, while a smaller value suggests poor crop health [9]. An

example multispectral image and its processed NDVI version are shown in Figure 1.2.

Figure 1.2: Example of a raw multispectral image and its processed counterpart. Green
indicates vegetation in good health, yellow indicates moderate health, and red indicates
poor health or areas of non-vegetation.

Additionally, the temperature information returned in infrared images can be used to
determine the water content of soil and the water stress in crops. In general, colder
temperatures of surrounding soil and plant canopies indicate higher water content and
lower water stress, and vice versa [9]. In some cases, fractional vegetation coverage
obtained through the NDVI can also be used to conduct more detailed soil moisture
analysis using a technique called the ‘triangular method’ [10]. Thermal imaging has also
been used to detect pathogens and disease within plants with methods that also utilize

overall canopy and leaf temperatures [11, 12].

Research involving these imaging techniques for agricultural use includes a 2003 NASA
study, in which a small drone equipped with multispectral and hyperspectral imaging
cameras was used to conduct research flights at California vineyards. Ultimately, the

test flights showed that these imaging techniques could provide accurate information



and high resolution data regarding percentage vegetation cover [13]. A similar 2003
study conducted by California State University Monterey Bay and NASA AMES Research
Center used the NDVI to determine the leaf area of vineyards and concluded that these
methods showed promise with regards to indicating vegetation cover and plant canopy
health [14]. Additional multispectral imaging experiments with successful results include
a 2001 study at Adelaide University that determined wine grape varieties based on
chlorophyll level calculations and a 2005 study at the University of Georgia that

differentiated field types based on vegetation density information [15, 16].

1.3 Agricultural Inspection Systems

In industry, determining crop health with multispectral and infrared imaging data has
largely been conducted with satellites, as a variety of companies offer the required

services at competitive prices. An example of such services is shown in Figure 1.3.
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Figure 1.3: Example of Tree Grading analysis on a 0.6m resolution satellite imaging using
DigitalGlobe’s AgroWatch™ custom software. Image courtesy of Satellite Imaging
Corporation.

Some satellite imaging companies advertise resolutions of up to 0.5m at costs on the

order of $20 per acre per year [17]. Although satellite imagery is an attractive option,

the image resolution, while impressive, may not be sufficient to yield the required



health data. Additionally, satellite images can only be taken on days with no cloud cover,
which may be difficult depending upon a particular field’s location. Moreover, farmers
must contract with external companies in order to obtain satellite imaging data,
meaning that crop health information is not always immediately accessible. Therefore,
while satellites may be suitable for some crop monitoring situations, they do not

provide a perfect solution.

Drone platforms are able to take image data at ground resolutions on the order of
centimeters per pixel, much greater than any available satellite. Additionally, such
systems are highly flexible, as they can be purchased directly by an individual farmer
and deployed at will. This precise, versatile, and on-demand nature makes drones ideal
for crop monitoring. This potential has already been recognized, as many small drone
platforms are available for aerial imaging applications. One such product is the Precision
Hawk Lancaster Platform, which is a highly customizable drone that can be tailored for a
wide variety of industries, including agricultural monitoring, mining, and infrastructure
surveying. While this system is extremely advanced and highly capable, its base price is
$25,000 and therefore is prohibitively expensive to many smaller farmers [18]. More
recently, 3D Robotics released their Aero-M and XM-8 aerial mapping platforms, which
are in the $5,000 range. These products are clearly trying to meet the demand for a
cheaper drone solution, but they require technological knowledge in order to build and

operate [19].

Ultimately, multispectral and infrared imaging technology has proven to be a promising
method of measuring crop health, and drones have been recognized as an ideal aerial
imaging platform. However, these two technologies have yet to be mated into a
complete crop monitoring system that is both affordable and straightforward to

implement.

1.4 Agricultural Inspection Needs

The need for effective and efficient crop inspection methods has recently been

highlighted in California, where water conservation is paramount due to severe levels of



drought. In 2013, California had the driest year in recorded state history and Governor
Jerry Brown declared a drought emergency, including asking the state to voluntarily cut
waste water usage by 20 percent [20]. This unprecedented drought, shown graphically
in Figure 1.4, has forced farmers into a state of duress and placed added pressure on

their crops.
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Figure 1.4: Graphical depiction of the extent of California’s drought as of January 2015.
The U.S. Drought Monitor is jointly produced by the National Drought Mitigation Center
at the University of Nebraska-Lincoln, the United States Department of Agriculture, and
the National Oceanic and Atmospheric Administration. Map courtesy of NDMC-UNL.

Particularly under stress are California’s small vineyard owners, who operate with
relatively low excess capital and are having difficulty coping with extremely high water
costs. If an inexpensive and easy-to-use drone crop monitoring system was developed, it
could greatly help these vintners by providing information regarding where and how to
most efficiently water their fields. Winemaking is a staple of California’s economy and

local, family-run vineyards are a hallmark of the wine industry. Therefore, an



opportunity exists to meet a customer need as well as make a positive social impact

using drone technology.

1.5 Problem Statement

The long-term vision of UAVino is to develop a fully autonomous drone crop inspection
system. The objective in this first year of the project was to demonstrate that
multispectral imaging is a viable method of determining crop health using drones and to
lay the foundations for autonomous docking and recharging. In order to accomplish this
goal, a docking station with recharging capability was designed and constructed,
computer vision algorithms were researched and implemented, and multispectral data
processing techniques were tested. Additionally, a variety of octocopter modifications
were made in order to allow the vehicle to take multispectral images, dock precisely and
recharge with the station, and fly autonomously using a computer vision algorithm.
Although the system is not yet fully autonomous, the end result of this year’s work is a
successful proof-of-concept with a built and tested docking and recharging station, an
in-progress landing algorithm, and tested data processing techniques. Thus, future
teams are well-positioned to continue developing UAVino in order to meet its ultimate

goal of bringing valuable crop health information to real world vineyard customers.



CHAPTER 2

Systems-Level Design

2.1 Design Overview

UAVino is envisioned as a multi-year project that Santa Clara University students can
continually build upon and develop as new drone technologies become available. The
project in its current state represents one academic year of effort aimed at developing a
proof-of-concept agricultural inspection system capable of photographing crops and
yielding plant health data. Long term, the goal is to reach a level of autonomy where
UAVino is capable of operating without any human monitoring. Such a system might
include features such as multiple octocopters, collision detection and avoidance, and
real-time post-processing. Thus, there are numerous educational and business benefits

associated with continued project development.

The key technological innovation developed in this system proof-of-concept is a
portable station that the octocopter automatically returns to, docks with, and then
recharges from in order to extend mission duration. The need for this station arises
from the relatively low flight time of octocopter vehicles, which is typically under 15
minutes per flight battery. Therefore, inspecting large farms requires multiple flights in
order to complete. Typically, this limitation has required the vehicle operator to
manually replace or recharge the flight battery multiple times in order to continue a
mission. However, UAVino’s docking station mitigates this need, as it greatly increases

system autonomy and reduces operator workload.

Ultimately, UAVino is imagined as a crop inspection service that students in the Santa
Clara University Robotics Systems Laboratory will be able to provide to local farmers on
an as-needed basis. Via this service-type implementation, individual farmers will not
need to invest significant capital to purchase the system outright or spend time training
and familiarizing themselves with how to operate complicated technology. Instead,

interested farmers will simply request the service when needed and benefit from the



crop health information produced. Additionally, this service model allows Santa Clara
University students to gain an understanding of business fundamentals and experience

real-world customer interaction.

2.2 Customer Needs

After developing the idea for UAVino, interviews were conducted with relevant
stakeholders and consumers to gather more information about the potential uses and
scope of the project and thus further refine its initial concept. Professor Kitts and
Thomas Adamek, who serve in advisory roles on the project and are akin to investors
and long-term operations managers, were interviewed for their interest and concerns
regarding UAVino’s long-term viability. Lindsay Kalkbrenner, Director for Sustainability
at Santa Clara University, was interviewed in order to research what type of tasks
UAVino might be applied towards besides agricultural inspection. Lastly, UAVino’s real
vineyard customer, John Aver of Aver Family Vineyards, was interviewed in order to
understand more about how vineyard inspections are currently performed and what
type of final data product would most help in determining vine health. Overall, these
interviews vyielded a list of priorities that aided in setting goals and deliverables

throughout the year. Actual interview questions are available in Appendix C.

As a stakeholder in the project, Professor Kitts reinforced his belief that UAVino would
best be implemented as a service provided by the Robotics Systems Laboratory to local
customers, rather than as a product sold at market. Ultimately, his long-term goal is to
make the project self-sustainable financially so that it can benefit engineering
education, seed real-world research projects, and provide a real benefit to real people.
Although there are several other companies currently working on developing drones for
agricultural use, Professor Kitts stated that this competition serves as good motivation
and that he is not concerned UAVino will fail to make an impact. Instead, his major
concerns lie with developing and using the product in a safe and professional manner in

order to maintain strong customer relationships.



Thomas Adamek shared similar thoughts as those of Professor Kitts, as he also believes
UAVino would best be implemented as a service instead of a product. This view stems
from the likelihood that teaching a farmer who is inexperienced with robotics and
remote controlled aircraft would prove difficult. Therefore, it would be easier for that
farmer to simply contract with a service provider rather than learn an entirely new
platform. Because Thomas is one of the stakeholders who will continue working
firsthand with this project in future years, he is particularly interested in ensuring that

progress is well documented so that it is easy for others to transition onto the project.

Lindsay Kalkbrenner was excited to discuss the potential applications of UAVino on the
Santa Clara University campus, as such deployments are planned long term expansions
of the project beyond agricultural monitoring. When asked where and how the system
could help, she highlighted field water content monitoring as a primary need. Currently,
the University uses both recycled water and drinking water for fields and landscaping.
Because water in general, particularly potable water, is expensive, it is critical to use this
resource efficiently. Kalkbrenner felt that UAVino could help monitor water usage on
campus, especially places that use expensive drinking water, such as the Mission

Gardens and Buckshaw Stadium, to help develop more sustainable watering practices.

The insight provided by John Aver was used to identify specific needs and requirements
for UAVino’s final data product when monitoring agricultural field health. Because Aver
Family Vineyards is a small and local business, it was not surprising to learn that the
typical method of inspection for these types of vineyards is very time consuming and
labor intensive, as it typically involves literally walking up and down vineyard rows and
inspecting individual vines by sight. While Aver felt that this type of inspection is
invaluable and would always be required on some level, he welcomed any additional
data provided by UAVino that could help identify problem areas so that he could more
easily focus manual inspections. In this regard, providing both vegetation indices and
water content measurements would be extremely beneficial in order to help ensure the

health of each grape vine.

10



2.3 System Requirements

Using this customer feedback in conjunction with the initial design concept, a series of

requirements, shown in Figure 2.1, were created to guide future decisions.

saanpadold
Sunesadg

0|20y |

uonaaioad
apejg

sBumas
BIBLIEY)

uoIe|0s)
uonesgqIp

uianed
Jamowume
arean _ safewn aiols
uedauue|d o1pieoq
OISSI uosip3 asn
i 1
sajnuiw Qg > uonels safew)
sl dmag punoig 5199]]00
puewaned Aijigedes
Aamouumey |equig Suifueyn
sall4 pueuosipl afeBua
pue ‘ISN 1SN Walshs
wHam g0 _ _ azl _ .
ydiam |ero) 5 | Aed isny Funpop
\7 |edtueypagy
w14 Aoedes 7
Suigam
% o1 aspaud
siwyiuofje
5 —
IPUe] ajes afiey)
A
uonejos! (Pa|qeus awn afeyd
elep |eaaa|3 BuiBaeyd) mnoyTt >
afewn 13)j00 1a1dorolno EITRETT
o m.uummz 1oy uondaioad 10 %06 SHI0p
[BIUBWUCIIAUT Aiajes Ajinyssacang Buiieyn
|axid
1ad uonnjosal
punoio jaadaiaun
o1 Asea elep afieydas
ajew ol spaaN A\fm_u. .: mh_...Dr_ m C_ Ajsnowouoine uonexg
Alauipn Jany dejn a12iqe 7| sumpoa
Suissanoad 20 01 spasN
1504

UAVino system requirements flowchart.

Figure 2.1
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Putting system requirements in flowchart format allowed for easy determination of root
level system requirements, which are shown in green boxes in the Figure. These items
are:
e The docking station must be able to recharge the octocopter battery within 1
hour.
e The octocopter must have a flight time of at least 15 minutes.
e The overall setup time of the system must take less than 30 minutes.
e The octocopter must be able to carry the necessary camera payload in addition
to an Intel Edison microcontroller and recharging electronics.

e The final data product must have a ground resolution of at least 0.5cm/pixel.

2.4 System Sketch

Figure 2.2 shows the process by which UAVino inspects an agricultural field.
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Figure 2.2: Sketch showing the process by which UAVino inspects an agricultural field
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In general, a UAVino mission begins with setting up the docking station and ground
station at the desired field site and then sending flight path coordinates to the
octocopter via a command uplink. When ready, the octocopter departs from the
docking station, flies to the desired field, and then overflies it in a grid-like pattern to
collect imaging data. When the octocopter’s battery reaches a specified level, the
vehicle stops flying the grid pattern and returns to the docking station in order to
recharge. Once the battery is full, the octocopter takes off, returns to the vineyard, and
resumes mapping. After the entire mission is complete, the octocopter once again

returns to the docking station to transfer image data to the ground station for analysis.

During the mission, the ground station receives flight telemetry data so that mission
operators are aware of the vehicle’s position, height, speed, flight mode, and other
parameters. Additionally, the octocopter is linked to GPS in order to determine

positional data.

After the mission is complete, the multispectral images are processed to yield a
vegetation index, which determines overall crop health, and the infrared imagery is
interpreted to find a field’s water content. This data product is provided to the
agricultural customer in the form of an easily interpreted aerial map depicting a

particular field’s health

2.5 Functional Analysis

2.5.1 Functional Decomposition

UAVino is divided into three main components: the octocopter docking station, the
octocopter vehicle, and the ground control station. These subsystems must seamlessly
work together to ensure a successful result, as the project relies on the octocopter’s
ability to successfully fly in a grid pattern over an agricultural field and then
automatically dock with and recharge via the docking station. Figure 2.3 shows the key

features of each system component.
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Figure 2.3: Functional decomposition of UAVino.

Because of its limited battery life, the octocopter must be able to recharge during its
mission so that it can ultimately map an entire agricultural field. This need is
accomplished via a docking station that the octocopter automatically returns to and
lands on. The docking station contains a commercial battery charger and power source
to autonomously recharge the octocopter’s flight battery after the vehicle has docked.
The station also features mechanical components that aid in precisely positioning the
octocopter during landing so electrical contact between the vehicle and station is

established.

The octocopter is responsible for collecting imaging data via multispectral and infrared
imaging cameras as well as flying in a grid-like pattern over fields via a GPS-linked
autopilot. Additionally, the vehicle carries a microcontroller and vision camera coupled
with the autopilot in order to precisely control the drone while landing on the docking
station. This software-driven landing solution is augmented by mechanical components
that ensure custom fitted electrical contacts on the vehicle’s feet properly mate with

components on the docking station to enable recharging capability.

While flying, a ground control station connected to the octocopter via a telemetry link

provides positional data and flight mode parameters to the operator. Additionally, this
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ground station is equipped with mission planning software that allows for the
development of flight path coordinates that are uploaded to the vehicle before a

mission.

2.5.2 Summary of System Inputs, Outputs, and Constraints

For the docking station, octocopter, and ground station to function together and create
a functioning system, a variety of data are obtained from and shared between
components in the form of inputs, outputs, and constraints. In general, the octocopter
uses GPS positional data to follow a predefined flight path and visual cues from a
camera to precisely land on the docking station. While charging, the docking station
takes power from an external source to recharge the octocopter’s battery as well as
monitors the individual voltage of each flight battery cell to ensure a safe, balanced
charge takes place. During the mission, the ground control station monitors the status
of the octocopter using telemetry. Specific inputs, outputs, and constraints for UAVino

are listed in Appendix G.

2.6 Product Competition

Aerial mapping, particularly for agricultural use, is a quickly growing field with regards to
small drones. Therefore, it is not surprising that numerous platforms for aerial crop
monitoring already exist and several more are likely to be released in the near future.
Two of the most prominent platforms and their competitive offerings are described

below and photographs are available in Figure 2.4.

e 3D Robotics XM-8
o Includes Pix4Dmapper LT 3DR Edition software
o 14 minute flight time
o 0.7in/pixel maximum ground resolution
e Precision Hawk Lancaster Platform
o Highly customizable for a wide variety of applications

o On-board diagnostics

15



o Fixed wing platform; not a multirotor drone
o Water landing capability
o All-in-one package
e Precision Drone PaceSetter
o Real-time video streaming
o Telemetry

o Route scouting software

S -L’ %H
XAt ¥

Figure 2.4: Top-Left: 3D Robotics X8-M multirotor platform. Photo courtesy of
3drobotics.com. Top-Right: Precision Hawk Lancaster fixed wing platform. Photo
courtesy of precisionhawk.com. Bottom-Center: Precision Drone Pacesetter platform.
Photo courtesy of precisionhawk.com.

Table 2.1 summarizes the key specifications of these competitors’ platforms and

compares them to UAVino’s offerings.

Table 2.1: Specifications for several agricultural drone competitors.

Feature 3D Robotics Precision Precision UAVino
Hawk Drone
Price $5,400 $25,000 $17,500 $6,050

Weight 5.41bs 3lbs 4.5lbs 7.0lbs
Flight Time 14mins Shrs 20mins 10mins

Camera 12MP Multiple 11MP Multispectral
Autopilot Yes Yes Yes Yes

Notable Hobby-style, Fixed Wing Rea.I-Time Autonomous

Features Entry Level Platform Video Docking

System Streaming Capability

16




After researching competitors’ offerings during the initial system design, it was
determined that the main areas UAVino could capitalize on were price, simplicity, and
the addition of a docking station. With the exception of 3D Robotics' octocopter, the
platforms are extremely expensive—well above the upfront investment a small scale
vineyard owner might be willing to pay for a new, complicated, and largely unproven
technology. Thus, UAVino’s service style-implementation with low upfront cost and

minimal risk to the vineyard owner is a key marketing opportunity for the system.

Also, while some of the competing models are sold as all-in-one packages, they all
appear fairly complicated to set up and actually use. One of the goals of UAVino was to
lessen the time required to actually begin collecting data after the system is deployed
on location. In order to accomplish this task, development focused on making the

system straightforward and intuitive to use.

Finally, none of the competitors offer the use of a docking station or platform to
recharge the system, which is critical due to the somewhat remote location of
agricultural fields and the relatively low flight time of octocopters. Therefore, being able
to successfully develop and implement a remote charging station was identified as a

major competitive advantage for UAVino.

2.7 Key Systems Issues

2.7.1 Docking Station Charging Method

Three options were considered for the method by which the octocopter would recharge
after landing on the docking station: inductive charging, charging via electrical contact
plates, and charging via a battery connector. Concepts drawings for each of these
charging methods and how they would integrate with the docking station and
octocopter are available in Appendix E. While each of these designs had merits, charging
via contact plates was ultimately selected because of its balance between ease of
manufacturing and robust charging. The major concern with this design centered on the

safety risk of exposed electrical plates, but it was decided that this risk could be

17



sufficiently mitigated by installing protective covering over the contacts and
programming the charging software such that current only flows from the station when

the octocopter is properly docked with it.

Inductive charging was particularly attractive because it would not require extremely
precise landing capability, thus greatly simplifying the docking challenge. Additionally,
inductive charging is currently being explored in a wide variety of industries and has
even been demonstrated in drone recharging applications, so more resources would be
available regarding how to create such a system. However, this method was not
selected because although it has benefits, manufacturing the required electrical
components would have proven difficult and the end results would not have been
capable of transmitting enough current to recharge the octocopter battery in a

reasonable amount of time.

Using a regular battery connector to recharge the octocopter would have been the
safest option, as it would not include any exposed electrical connections. However, the
precision of the docking algorithm required to mate the male and female ends of a

battery connector prohibited it from being practical with regards to UAVino.

2.7.2 Docking Mechanism

The requirement of the docking mechanism was to ensure that the octocopter could
reliably and safely land on the station platform such that the recharging mechanism
engaged. Because the contact plate charging method selected required an accuracy of 2
inches, it was determined that a computer vision system alone could not deliver the
precision needed. Thus, the final docking solution involves both a computer vision
algorithm to bring the octocopter to the approximate position of the docking station
and a mechanical mechanism to precisely position the vehicle on the recharging

platform.

A wide variety of mechanical possibilities were considered that are available in Appendix

E. However, because of a limited build time, the final solution needed be
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straightforward. This fact helped focus design solutions towards strategies that involved
simple, passive elements. The final design selected uses a set of guidance poles that
extend from the base of the docking station in a tapered fashion. A pair of rings
attached to the octocopter position themselves around these poles, locking the vehicle’s
lateral position, and the vehicle then descends onto the platform in a precise location.

This design is illustrated in Figure 2.5.

—L Octocopter J—

) \

Docking Station Platform

Figure 2.5: Overview of the octocopter ring and cylindrical cone docking method.

This mechanical docking system was extremely easy to manufacture and implement and
proved reliable, provided that the computer algorithm positions the octocopter properly
for the rings and tapered cones to mate. One initial concern with this method was the
potential for vehicle propellers to accidentally strike the poles while the autopilot was
working to correctly position the octocopter. However, this risk was mitigated in the
landing algorithm software by ensuring that the vehicle does not descend below a
height that would allow propellers to contact the poles until the correct lateral position

is achieved.

2.8 System-Level Design Layout

Figure 2.6 shows a block diagram of UAVino’s system components.
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Figure 2.6

, the docking station, and the

the system is divided into the octocopter

In general,

ground control station. The octocopter is treated as the hub of the system, which is

powered by a lithium polymer flight battery and is centered upon an Intel Edison

20



microprocessor, which handles landing algorithm computation, and the Pixhawk
Autopilot, which is responsible for flight control. When landed, the octocopter connects
to a Raspberry Pi microcontroller on the docking station via WiFi in order to initiate
charging. The station is powered independently by a 12V marine battery. During flight,
the ground station sends and receives data via a telemetry radio and the operators are

able to take manual control in an emergency via a 2.4Ghz radio system.

2,9 Team and Project Management

2.9.1 Project Challenges and Constraints

Of the many challenges associated with creating UAVino, one of the most difficult and
crucial elements was how to automatically dock the octocopter with the docking
station. While the team had several promising ideas for how to complete this mission
task, there were no professional drone recharging stations that UAVino could draw from
or compare against. Additionally, while the equipment and code for flying drones in
predetermined paths is fairly advanced, these default sensors and algorithms were not
precise enough to dock the octocopter consistently and reliably. Therefore, the degree
to which the docking station and associated landing algorithms needed to be built and
tested from scratch meant significant time and effort had to be budgeted for their

development.

Beyond the design scope of the project, the physical distance of the vineyard customer
and complicated setup required to conduct octocopter flights on Santa Clara
University’s campus made testing relatively difficult to conduct. In general, test flights
required at least one week of preparation with and notice to the involved parties.
Therefore, advanced planning and strict adherence to project deadlines was required in
order to ensure that test flights were not wasted opportunities. Ultimately, the ability of
all team members to pace their individual tasks and bring the required items together

for test flights helped ensure success of the project.
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With regards to the team in general, a major challenge was working together to manage
the schedules of six individual team members taking classes for three different majors.
Because of the limited times during which all members could meet and discuss team-
wide issues, maintaining effective communication through email and cell phones was
critical to ensure that individual items were progressing as needed. When all-team
meetings were held, they focused on ensuring seamless integration between the
different designs of computer, mechanical, and electrical engineers. Throughout
development, it was imperative to review bottlenecks and resource contention to verify

that one group’s progress or lack thereof did not hinder another’s.

Although team members were generally friendly and worked well together, great care
was taken in electing team leaders and delegating tasks. The immense work associated
with creating UAVino needed to be distributed in a way that made sense and remained
fair to all members. Ultimately, the goal was to allow everyone to take ownership of
specific parts of the project so that they could feel proud of the final product delivered

at the end of the year.

2,9.2 Budget

UAVino’s $3,750 budget is comprised of grants from Santa Clara University’s School of
Engineering and the Silicon Valley Section of the American Society of Mechanical
Engineers. Large expenses, such as the base 3D Robotics X8 octocopter and
multispectral imaging cameras, were provided by the Santa Clara University Robotics
Systems Laboratory and Intel Corporation, respectively. More budget details and

specific cost breakdowns are available in Chapter 8 and Appendix F.

2.9.3 Timeline

Figure 2.7 shows an overview of UAVino’s project timeline over the course of the

academic year.
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Figure 2.7: Overview of UAVino project timeline.

In general, the fall academic quarter was spent brainstorming docking solutions,
researching current drone autopilot capabilities, experimenting with vision recognition
software, and building a relationship with the vineyard customer. Following
Thanksgiving, a major team meeting was held to finalize the conceptual design,
particularly the docking station solution, so that a complete system picture was in place
leading into winter break. Docking station manufacturing, landing algorithm
development, and recharging circuit design and bench testing began immediately upon
return in January. These build phases and core project development lasted through
February, at which point system integration began. Basic test flights at local parks were
conducted in early March and lasted until the end of the winter academic quarter.
Actual vineyard test flights began in April, immediately at the beginning of spring
quarter, and lasted through the remainder of the year as the system continued to be

refined and developed. A detailed project Gantt chart is available in Appendix F.

2.9.4 Design Process

Because of UAVino’s interdisciplinary nature involving both mechanical and computer
engineers, component design tasks were delegated to the group of engineers best

geared towards creating a solution. At this level, members were responsible for
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individually brainstorming solutions and then scheduling a meeting with impacted team
members to discuss the merits of each idea. From these meetings, a final solution was
created that tried to combine the positive aspects of each individual design. For
solutions that required input from both computer and mechanical engineers, the entire
team came together to discuss how well individual ideas would integrate. Typically,
these individual and all-team brainstorming sessions were conducted weekly to
streamline communication and ensure all options were considered before choosing a

final design.

Some aspects of UAVino, such as the docking station and landing algorithm, were
extremely complicated systems to develop, so the design process was a highly
interactive one. Tweaks and adjustments occurred well into the prototyping phase,
especially for the mechanical docking mechanism, in order to achieve an optimum

solution.

2.9.5 Risks and Mitigations

Public safety is of the upmost importance when developing any engineering project.
With regards to UAVino, safety is a particularly important consideration since drone
malfunctions run the serious risk of damaging property or causing injury. To help
mitigate hazards, significant effort was directed towards equipping the octocopter with
both passive and active safety features. Ultimately, it is the team’s responsibility to
uphold safety as the project’s most important concern and do what is necessary to

ensure that the final product is as safe as possible.

Beyond the risks associated with system design, human error increases the possibility of
malfunctions during operation. UAVino requires a series of complex steps for proper
operation, and failure to follow these procedures greatly increases the chances of an
accident. To reduce the potential error incurred by human operation, detailed flight
procedures and checklists were developed so that a safe operation exists and can be

followed during every deployment.
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2.9.6 Team Management

This year’s UAVino team was led by a student manager responsible for ensuring that key
deadlines were met and that the overall project was progressing as needed. This
manager also allowed for a single point of contact between team members, and the
project’s academic advisor, and the real-world customer. Below the student manager,
UAVino was broken down into software and hardware teams, with one member
overseeing each area. In order to complete the various tasks within the project, all team
members were assigned various responsibilities and were tasked with working at an

appropriate pace to complete the required work on time. Figure 2.8 shows the task

breakdown of UAVino’s team.

Student
Manager
Project ||| Vineyard
Advisor Customer
1 1
Software Hardware
Autopilot | || Docking
Station
Docking || Vibration
Algorithm Isolation
Post
Processing

Figure 2.8: Breakdown of UAVino’s team structure.

In general, meetings with the entire team occurred twice per week in order to review

any matters relating to the project as a whole and resolve any concerns. One of these
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weekly meetings included the project advisor to provide feedback and guidance as
necessary. Meetings within the software and hardware sub-teams of the project
occurred as needed and typically took place at least once per week. Conflicts were
resolved by gathering those affected by the decision in question, discussing the matter

in detail, and then voting on an appropriate solution.

Team dynamics played a crucial role in the way UAVino was managed. It was the
responsibility of all team members to work towards creating an open and non-
judgmental environment where everyone felt comfortable sharing ideas. To help meet
this goal, effective communication between members was critical, meaning that all

team members needed to respect and allow others to voice their opinions.
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CHAPTER 3

Docking Station

3.1 Overview

The docking station is an extremely important aspect of UAVino, as it is the component
that most separates the system from competitors. Unlike other drone crop inspection
systems, which are limited in battery life, the docking station allows UAVino’s
octocopter to repeatedly recharge until the mission is complete, thus greatly expanding
range and duration. Ultimately, it is the centerpiece that enables UAVino to
autonomously map a vineyard and provide customers with the agricultural information

necessary to make logical decisions.

The docking station serves as a major technological innovation for UAVino because no
comparable product is currently available that allows both precise drone landing and
recharging capability. Over the past few years, a variety of companies have made great
strides towards achieving both of these goals independently, but rarely have the two
technologies been paired together. By combining both landing and recharging functions,
UAVino acts as a stand-alone system that offers easy and affordable access to

agricultural crop monitoring.

3.2 Requirements

The key requirement of the docking station is that it allows the octocopter to land
precisely such that an electrical connection between the station and octocopter is
established and the flight battery is able to recharge consistently and reliably. To
accomplish this goal, a computer vision based landing algorithm on the octocopter
works in conjunction with mechanical devices on the docking station to properly orient
and land the vehicle on the charging platform. The mechanical docking mechanism
consists of tapered cones on the charging platform and a pair of rings on the octocopter.

When landing, the vision guided algorithm works to align the octocopter’s rings with the
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tapered cones, effectively fixing the lateral position of the vehicle, so that it can then

descend smoothly onto the platform in the precise location needed.

Recharging the octocopter’s battery means that high levels of current must flow
between the docking station and octocopter, which give rise to a variety of safety
requirements. To ensure that the docking station is safe, master safety switches,
warning lights, and fuses are built into the charging circuity to help reduce the risk of
electrical shock and general component damage. Also, due to the flammability risk
associated with charging lithium polymer batteries, safety algorithms are included in the

charging software that shut off current flow to the battery should any anomalies occur.

Finally, the docking station must be rugged enough to withstand its intended
operational environment. Although the station is not designed to be permanently
situated in a field, it does spend extended periods of time outside and thus must be able
to withstand repeated exposure to the elements. This requirement is met largely by
material choice. For example, the docking station is made almost entirely from wood so
that it does not experience rust and other deteriorating effects that upset non-natural
materials. Although certain elements of the station, such as the charging contacts, are
more susceptible to the elements, the station as a whole is designed to endure the

climate it experiences on a day to day basis.

3.3 Options and Tradeoffs

One of the most important options for the docking station is the method by which it
recharges the flight battery, as the design for many subsequent components are derived
from this decision. During the conceptual design phase, the two most logical options
considered were charging via induction with a custom charge controller or via a series of
contact plates interfaced with an off-the-shelf battery charger. While each of these
methods had benefits, the contact plate option was chosen because it was the most
practical to implement and sustain. Inductive charging did offer a variety of attractive

options, namely a decreased reliance on landing accuracy since connecting small
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electrical plates on the octocopter and docking station would no longer be required.
However, inductive charging would be slower than contact charging and since a fast

recharging time was a goal to maximize mapping capability, this option was bypassed.

Once the charging plate option was chosen, an additional decision arose regarding how
to best facilitate battery charging. One option involved mounting a charge controller on
the drone itself, while another simply used a commercial battery charger housed in the
docking station. A drone-mounted charging controller seemed promising, as it would
allow for fewer contacts and a larger surface area, therefore reducing the accuracy
required for landing. However, this option was ultimately avoided because of electrical
circuit complexity and added vehicle weight. The final solution uses a programmable
commercial battery charger located inside the docking station to facilitate charging and
the only additional weight to the drone are five 20-gauge wires soldered onto the

contact feet that lead directly into the balancing plug of the flight battery.

Lastly, the general docking station design included a high level tradeoff regarding overall
complexity. Having components such as the docking station frame professionally
manufactured and assembled was an option to increase the overall appearance of the
design and ensure functionality. However, contracting with professional machine shops
would increase cost and take longer to construct compared to team members building
on-site during spare time. Given the extremely short timeframe of the project and the
necessary functionality of the docking station, it was concluded that designing and
manufacturing all components in-house would be more conducive to meeting design
and build deadlines. Therefore, design also focused on using easily purchased off-the-

shelf parts to reduce cost and increase ease of manufacturing.

3.4 Design

3.4.1 Docking Station Frame

At its most basic level, the docking station is a rectangular table with a drawer to house

charging electronics and a platform for the octocopter to land on. Although relatively
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simple, the station is well-suited to deliver the functionality required. Figure 3.1 shows

an overview of the completed docking station.

Figure 3.1: Completed docking station

Figure 3.2 shows a CAD model of the docking station frame, the sides and floor of which
are made from 3/4” maple plywood. The frame also contains a 3/4” square alignment
bar made from poplar that runs across the top and mates with a corresponding
alignment bar on the platform. The entire frame is supported by four 18” high legs made

from 4” square Douglas fir. Standard wood screws hold the frame together.

Figure 3.2: Docking station frame CAD rendering
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A pivot foot mounted on a length of 1/4-20 all-thread is screwed into a matching
threaded insert on the bottom of each station leg. The height of each individual foot can
be adjusted and this feature, combined with the fact that each foot rests on a pivot
swivel, helps level the station if it rests on uneven ground. A detail of the adjustable foot

is shown in Figure 3.3.

Figure 3.3: Docking station adjustable foot detail

Although the leveling feature is useful, its effect is minimized by the small size of the
feet, which sink into loose soil due to the station’s weight. Thus, while the general
design is correct, a future improvement needed is to increase the surface area of each

foot in order to mitigate this effect.

The drawer, shown in Figure 3.4, measures 22” x 22.5” x 8” and is made from the same
3/4" maple plywood as the docking station frame. It is equipped with a handle for easy
operation and is held together with standard wood screws. The drawer is not mounted
on drawer hinges, but does slide in and out of the frame freely so that it can be
completely removed in the event that total access is required to the electronics inside.
Figure 3.4 displays a CAD image of the drawer along with a picture showing the interior

electronics.
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Figure 3.4: Docking station drawer and interior electronics

3.4.2 Docking Station Platform

The station platform is made from a 2’ x 3’ piece of 3/4" maple plywood and is painted a
distinct red and black target shape so that the octocopter’s vision camera is able to
recognize the station from the air. The platform dimensions are derived from what
space is required to comfortably accommodate the octocopter, the cone mechanism,
and charging plates. Shown in Figure 3.5, the platform is fully removable and serves as a
secondary means of accessing the charging and safety circuitry inside the station should

the operator not wish to remove the drawer.

Figure 3.5: Docking station platform CAD rendering

To allow for proper alignment each time the platform is placed on the station, alignment

bars are attached to the underside of the platform that mate with the inside surfaces of
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the station frame. This allows the platform to be placed in the exact same location each
time and not experience lateral motion during operation. A detail of this feature is

shown in Figure 3.6.

Figure 3.6: Docking station platform alignment bars

3.4.3 Guidance Cones

The purpose of the guidance cones are to mate with the rings on the octocopter so that
the vehicle’s lateral position becomes locked and it can then land on the station
platform in the proper orientation. The motivation behind locking the vehicle’s position
arises from ground effect, which adversely affects the flight characteristics of the vehicle
as it comes close to the ground and makes it difficult to land precisely. Additionally,
depending upon how hard of a landing the flight controller makes, the octocopter may
land where desired but then bounce off target. By ensuring that the octocopter always
lands in the same position and in the same configuration, the cone mechanism helps
create a reliable system that ensures the vehicle correctly engages the charging contact

plates with each landing.

The initial cone design called for hard plastic soccer cones to be mounted atop ABS pipe,
as the smooth plastic finish would minimize friction between the octocopter’s rings and
the cones during docking. However, attaching these cones to the ABS pipe in an

acceptable manner proved difficult, as there was little surface area on the cones to work
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with and the glue used created a lip at the joint. During testing, this lip caused the
octocopter rings to catch and therefore did not allow for a smooth landing or takeoff.

This initial design is shown in Figure 3.7.

Figure 3.7: Initial docking station cone design using hard plastic soccer cones.

Ultimately, the plastic cones were abandoned in favor of a redesign. The final version,

shown in Figure 3.8, uses open cell Styrofoam cones.

Figure 3.8: Docking station guidance cone
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Styrofoam is ideal for this application because it is strong enough to hold shape and
combat the loads experienced by the ocotcopter’s rings, yet weak enough that should
the octocopter accidentally hit the cones while docking, the propellers would slice
through the cone cleanly rather than become lodged in it and likely cause a crash. Each
cone is glued atop a 9” long section of 4” diameter ABS pipe, which is then connected to
the platform via two right angle brackets and wood screws. The Styrofoam is coated
with epoxy resin to help smooth the rough Styrofoam finish and to prevent general wear

and tear over time.

3.4.4 ContactPlates

Recharging is facilitated through eight copper plates that the octocopter rests on after
landing. These plates are made from copper and measure 2” x 1.5” x 0.125”. Each plate
is glued to four small steel compression springs to ensure that it remains in contact with
the corresponding electrical connection on the octocopter. A set of two contact plates
rest in a wood bracket that is fastened to the docking platform with wood screws. Figure
3.9 shows a detailed view of a contact plate pair and Figure 3.10 shows the same

contact plate with the octocopter foot resting on it.

Figure 3.9: Two docking station contact plates fastened to compression springs and
attached to the station via a wood bracket.
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Figure 3.10: Octocopter foot resting on docking station contact plates.

Each copper plate is connected electrically to a wire via a crimp-on connector and small
machine screw. These wires then run through the platform and into the charger housed

within the station.

3.5 Recharging Circuitry

3.5.1 Overview

The octocopter is powered by a 4 cell 14.8V 6000mAh lithium polymer battery, as

shown in Figure 3.11.

Figure 3.11: Octocopter battery
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Lithium polymer batteries require balancing, meaning that each cell needs to be
charged independently in order to allow for safe, even charging. This method requires a
specially designed “smart” balance charger that is capable of monitoring the voltage and
current of each cell. Such charging is facilitated in the docking station through the

Revolextrix CellPro Multi-4 battery charger, which is shown in Figure 3.12.

Figure 3.12: Revolectrix CellPro Multi-4 battery charger

This charger was selected because it provides serial input and output using UART
communication at a 19200 BAUD rate. This protocol is used to programmatically start,
stop, and provide status regarding battery charging. The contact plates to each of the
contact feet on the drone are connected directly to this commercial charger. This
charging solution is ideal, as housing the CellPro Multi-4 in the docking station
eliminates the need for any additional hardware on the drone and thus helps minimize

the weight of the vehicle.

Two microprocessor options were considered to interface with the CellPro Multi-4 and
control the docking station: the Intel Edison and the Raspberry Pi. Details of both

processors are available in Table 3.1.
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Table 3.1: Intel Edison and Raspberry Pi features comparison.

_ Intel Edison Raspberry Pi
USB Ports 1 4
GPIO Pins 20 40

Processor Architecture

Dual-Core x86 @500mhz

Single-Core ARM @ 700mhz

Random Access Memory

1GB

512MB

WiFi

Integrated

External USB (Separate)

Display Out

None

HDMI

Ultimately, the Raspberry Pi was chosen for its ease of use, as it features a well-
supported package manager that allows for easy installation of required drivers and
subcomponents. Additionally, the Raspberry Pl is geared more towards the operational
needs of controlling the docking station, as it acts as a centralized hub. The Intel Edison,
on the other hand, is more suitable as a powerhouse computational device. A Raspberry

Pi is shown in Figure 3.13.

Figure 3.13: Raspberry Pi microcontroller.

The Raspberry Pi microcontroller interfaces and communicates with the CellPro Multi-4
charger via Revolectrix’s FUMI-3 FTDI USB interface. This solution is straightforward
because the Raspberry Pi natively supports FTDI virtual COM port drivers. The Raspberry
Pi connects to the FTDI interface via USB, and the FTDI interface is connected directly to

the charger. When connected, the Raspberry Pi is able to send commands to and
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retrieve responses from the charger. The charger regularly sends a status string, which
contains various information about the charger and the charge status so that the

Raspberry Pi can check for anomalies and terminate charging if needed.

3.5.2 Wireless Network

In order to facilitate communication between the octocopter and docking station, the
Raspberry Pi is configured as a wireless access point. This feature enables the Intel
Edison microcontroller on the octocopter to establish communication via WiFi after
landing in order to begin charging. The Raspberry Pi uses a Netis WF2190 AC1200
Wireless USB adapter, shown in Figure 3.14, which eliminates the need for an external

wireless router.

Figure 3.14: Netis WF2190 AV1200 Wireless USB Adaptor

The Raspberry Pi is configured to function as a WiFi access point by acting as a router
following Dynamic Host Configuration Protocol (DCHP). The microcontroller runs a DCHP
client called uDCHP and has a static IP address on which the client listens for
connections. A client called hostAPD sets up a wireless access network with a secure
WPA encryption. The Raspberry Pi also runs software called iptables, which enables

Network Address Translation (NAT) to allow for multiple devices to connect to the
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Raspberry Pi without individual devices fighting for resources that would

bottlenecked by atomic availability.

3.5.3 Charging Routine

Figure 3.15 shows the software flowchart for the recharging procedure.

P Invoke Charging
Routine

Setup USB
Commnication

otherwise be

Select Preset&
Start Charge
Failsafe
Termination

Vo

Check Charger 4
Status
CSIeep 10 Seconds)

t Error p
Status
Still Charging

Fully Charged

Successful
Termination

Figure 3.15: Charging routine software flowchart.
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The ideal scenario is for the Intel Edison on the octocopter to automatically connect to
the Raspberry Pi's wireless hotspot and then request charging to be initiated. However,
this automated wireless connection has not yet been implemented. The remaining
charge routine procedures as described in Figure 3.15 are implemented in a Python
recharging script. Once the script is invoked, the Raspberry Pi interfaces with the CellPro
Multi-4 charger through the USB FTDI serial interface to begin charging. Initially, the
code attempts to establish a connection with the USB FTDI serial interface. If

communication fails, it repeats up to ten attempts before entering a failsafe state.

Once communication with the charger is established, the Raspberry Pi sends a series of
commands that selects the desired charge preset. The charge preset ensures that the
charger operates within the required specifications, such as number of cells and overall
capacity, for the octocopter’s flight battery. Afterwards, the charger sends the
commands that initialize charging. While the charger is not finished charging, the
Raspberry Pi checks the status of the charger every ten seconds. Each time the
Raspberry Pi checks the charger status, it monitors for an error code, which is signaled
by the battery in the event an anomaly occurs. An error code can be generated for a
number of reasons, such as if docking station contacts become shorted or disconnected,

or if the charger's supply voltage or current falls outside of acceptable parameters.

When the Raspberry Pi detects that the charger is finished charging, the Python script
ends in the success state. In the future, this success state will need to signal the
octocopter to perform its takeoff routine. However, the Python script terminates in the
failsafe state if it detects an error status from the charger’s status string at any point
during charging. Whenever the system enters the failsafe state, the charger becomes
inactive and the octocopter remains on the docking station indefinitely. The charging

source code is available in Appendix K.

3.5.4 Power Delivery

The entire docking station is designed as a standalone system: one that can operate

independently of external power sources and wireless network requirements. This
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capability arises from the fact that the station is meant for deployment in remote and
unaccommodating locations, namely agricultural fields. The system is powered by a 12V
60AH marine battery, which is spill-proof, high capacity, and ultimately maintenance
free. 2-gauge wires connect the marine battery to the docking station, where power is
divided using two four-point power distribution blocks. All parallel connections to the

marine battery have fuses in the event of a short circuit or other anomaly.

Figure 3.16 shows an overview of the charging station circuity.

Y Warning Lights
250mA
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Output
Contact Plates

Figure 3.16: Docking station circuit diagram

Although the CellPro Multi-4 charger and LED warning lights can be powered directly
from the 12V marine battery supply, the Raspberry Pi requires a steady 5V supply with a
max current draw of 2A. In addition, this source must reach the Raspberry Pi via a USB
cable with microUSB connector. This requirement is met using a Drok DC/DC buck

converter with USB output, which is capable of providing a regulated 5V output across a
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4.5V-40V input range. The particular buck converter used contains a digital display
indicating the marine battery voltage and thus allows for visual voltage monitoring

without any additional equipment.

Figure 3.17 shows the docking station electronics with annotations identifying each

component.

Netis WiFi Adaptor Buck Converter Fuse Box Marine Battery Leads

Raspberry Pi ~ Shut Down Button  FTDI Interface  Revolectrix CellPro Multi-4

Figure 3.17: Docking station electronics with each component identified.

3.5.5 Safety

Current levels near 3A are needed to recharge the octocopter quickly and therefore
electrical safety of the docking station is paramount. A wide variety of precautionary
systems have been installed to allow for safe operation. One such system is a master
switch that instantly shuts off power to the entire station in the event of an emergency.
Before the 12V marine battery is able to supply any power to the station, this switch
must be physically engaged, which helps serve as a reminder to users whether or not
the system is live. Along with the safety switch, two large red LED lights are located on

the docking station platform. These lights power on when the octocopter is charging so
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that operators know the contact plates are not safe to touch. These lights are activated
using the Raspberry Pi and a 5V SPDT relay in conjunction with a 2N3904 transistor.
Lastly, each power line running in parallel between the two contacts of the marine

battery is protected with a fuse.

3.6 Testing and Verification

Autonomous landing tests were not conducted due to difficulties with the vision landing
algorithm, which are discussed in Chapter 5. However, manual flight tests were
conducted in an attempt to gauge the effectiveness of the cone and ring system. For
these tests, the octocopter was placed on the station and a series of trials were
conducted in which the octocopter took off from the station platform. To gauge the
success of each of these trials, team members closely observed the rings as they slid up
the cones upon takeoff. If the rings did not get caught at any point during the takeoff,
the trial was considered a success. Out of the five trials conducted, four were successful.
There was one trial where the octocopter briefly got stuck, but was able to recover and
continue its liftoff. In general, the octocopter was easily and smoothly able to ascend up
the cones and lift off from the station platform. These successful tests were able to
demonstrate the proper functionality of the cone and ring mechanical docking

mechanism.

To determine charging performance of the docking station, a test was conducted to
compare two charging scenarios. In one setup, the octocopter’s battery was charged via
the docking station’s contact plates and the built-in CellPro Multi-4 charger, which was
powered via the deep cell marine battery. In the second scenario, both the contact
plates and marine battery were eliminated. Instead, the octocopter’s battery was
charged by plugging it directly into the CellPro Multi-4 commercial charger, which was
plugged into a standard wall outlet for power. The goal of this test was to compare the
charging time of the docking station to a more traditional charging method that would

be employed if the system were operated manually by humans instead of
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autonomously. The results of these test are shown in Figure 3.18, which depicts charge

curves using each method.
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Figure 3.18: Docking station charge performance results.

The fact that the charge curves for the docking station and the control test are nearly
identical verifies that the docking station can effectively act as a stand-alone system and
charge the octocopter’s battery just as efficiently as if it was charged via an at-home
setup using a standard wall outlet. Although charge time varies based on the initial
voltage level of the battery, Figure 3.18 demonstrates that charge times using the
docking station are close to 60 minutes, which is under the 90 minute goal set as
success criteria. This relatively fast recharge time allows for increased coverage
capability and data collection and agricultural crop monitoring. Ultimately, the insight
gained in these charge tests substantiate the design choices made when creating the
charging method for the docking station and prove that the docking station can act as a

high performance stand-alone platform for UAVino’s autonomous operation.

3.7 Charging Future Work

Although the charging routine has been written, the Intel Edison is not yet programmed
to automatically connect to the Raspberry Pi's WiFi hotspot and request charging.

Future teams will need to implement a network socket server on the Raspberry Pi to
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constantly listen to a network port for any incoming socket connections. Then the Intel
Edison can be programmed to connect to the Raspberry Pi’s listening socket to establish
communication between the octocopter and docking station. The socket server on the
Raspberry Pi should be integrated with the Cellpro Multi-4 serial communication and
charging code. Ideally, it should also be implemented in Python so that the serial
communication code can be imported as a module and the charging script can be
directly embedded within the socket server code itself. The socket server should also
constantly monitor the socket connection and halt the charge on detection of a lost
connection. An easy option would be for the Python script to manage a Linux process
control system such as Supervisor, which would launch the script when the Raspberry Pi
is powered on. The Supervisor process control system also provides logging and

automatic process restarting in the event that the Python socket server code crashes.

The charging system has been tested, but not with the drone powered on. When flight
battery is connected and the vehicle is idle on the docking station, it still draws 500mA
of current. The system may still work with the discharge leads connected, but the
CellPro Multi-4 Charger will likely need a preset set to a lower charge voltage in the
event that the battery voltage drops lower as a result of the power drawn. Additionally,
if the leads are still connected, the battery might never hit 100% capacity as seen from
the charger, unless the stopping float voltage is set lower. This problem may also be
solved by having a docking station controlled relay placed in series with a discharge
leads on the battery. In this situation, the docking station can activate the relay via the
extra contact feet on the drone, enabling the octocopter to effectively be turned off

while charging.

Furthermore, the charge time may be improved by using an alternate commercial
battery charger. One such option is the Revolextrix CellPro PowerlLab 8 serial charger,
which has the ability to charge from the battery’s discharge leads as well as from its
balancing cable. The PowerLab 8 charger has a much higher charge rate, but longevity

concerns and limited heat dissipation of the battery must be taken into consideration.

46



3.8 Summary

The docking station is a stand-alone platform that provides a unique solution for
UAVino’s autonomous docking and recharging. The station uses a static, mechanical
cone mechanism that mates with rings on the octocopter to allow the vehicle to
smoothly descend onto the station’s platform. Once landed, the octocopter rests on
spring loaded copper contact plates, which allow the octocopter’s onboard battery to

establish an electrical connection with the docking station to facilitate recharging.

In its current state, the docking station has demonstrated functional recharging
capability that is comparable to recharging performance from a standard wall outlet.
Additionally, WiFi communication framework between the docking station and
octocopter has been laid out in order to initiate charging, although this system has yet
not been fully implemented and tested. The mechanical ring and cone mechanism has
successfully been manually tested, although the system is not yet capable of

autonomous flight.
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CHAPTER 4

Octocopter Additions

4.1 Overview

Although a variety of off-the-shelf multirotor vehicles are available that provide a wide
range of capabilities, no platform was suitable for UAVino that did not require
modifications and additions. In order to allow for autonomous landing and recharging
capability as well as multispectral data collection, a variety of components have been
designed and added to the octocopter’s main frame. In general, these additions include
a set of rings that mate with the cone system on the docking station, a mounting plate
for the multispectral imaging camera, electrical contact feet that enable battery
recharging, and a vision camera and microprocessor that handle automated landing
capability. The overarching goal with these modifications and additions was to provide
the required functionality while keeping added weight to a minimum. Most multirotor
drones have a flight time near 15 minutes and in order to maximize UAVino’s mapping

capability, minimizing vehicle weight was critical.

The base flight vehicle is 3D Robotics’ X8 octocopter, which is shown in Figure 4.1.

Figure 4.1: 3D Robotics X8 octocoper drone

This octocopter is widely popular as a hobby-style multirotor drone because it is highly
modular and is based upon software that is open source. The drone comes equipped

with a Pixhawk autopilot board, GPS and compass modules, and built-in telemetry so
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that it is nearly ready-to-fly when received and very little assembly is required. These
built-in functions made the X8 the ideal choice for UAVino, as it allowed development to
focus on the required modifications rather than on trying to include basic radio and

autopilot functionality.

Table 4.1 lists the major components added to the vehicle and their weights, as well as

the total weight of the flight-ready octocopter.

Table 4.1: Octocopter and additional component weights

Item Quantity | Item Weight (g) | Total Weight (g)
Unloaded Octocopter 1 1965 1965
Flight Battery 1 605 605
Multispectral Imaging Camera 1 90 90
Vision Camera 1 40 40

Ring Bracket 2 40 80
Vibration Isolation Camera Mount 1 195 195
Charging Foot 4 35 140

Intel Edison Microprocessor 1 75 75

Total Octocopter Weight 3190

4.2 Requirements

The modification with the most stringent requirements is the set of guidance rings, as
this component is critical for automated docking. These rings mate with corresponding
cones on the docking station in order to fix the lateral position of the vehicle and allow it
to descend smoothly onto the platform. When the octocopter lands and takes off,
asymmetric thrust or external factors such as wind cause the rings to push or pull
against the cones and it is crucial that the design of this system withstand these loads,
which are somewhat unpredictable. Materials with both lightweight and high strength
characteristics are used in the ring mounting system, but finite element analysis was

conducted in order to verify the design.

In addition to attaching the multispectral imaging camera to the octocopter, the camera
mounting requirement is that it damps out vehicle vibrations so that the camera is able

to take clear, high quality pictures. As they rotate, the octocopter’s motors are a source
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of high frequency vibrations that travel through the vehicle’s frame and inherently
affect anything connected to it. In order to quell these frequencies, the camera mount
includes passive vibration isolation components that act to stabilize the camera and

limit the motion it experiences.

The key requirement for the octocopter’s contact feet is that the component
successfully establishes an electrical connection with corresponding contacts on the
docking station. This connection must be established consistently and reliably with each
landing. Due to the high levels of current that are needed to charge the octocopter’s
battery, the contact feet are made from a material with a high electrical conductivity

and that will not fail due to excessive heat.

4.3 Ring Mounting System

Figure 4.2 shows an overview of the ring mounting bracket.

Figure 4.2: Ring mounting bracket detail.

The ring itself is made from a 5” diameter bamboo embroidery hoop and is connected
to a 1/4" square carbon fiber rod via two aluminum angle brackets and a plated steel
M4 screw. The carbon fiber rod is epoxy set in a custom machined acrylic block that is

attached to the octocopter frame via two stainless steel M3 screws.
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The choice of materials for the ring system was crucial in order to provide the required
strength without adding unnecessary weight. Carbon fiber and bamboo were ideal for

this application, as it provides a sturdy structure that weighs just 40g.

4.3.1 Finite Element Analysis Overview

Since the ring mounting system is so critical to the success of UAVino’s autonomous
docking capability, detailed analysis was conducted on the bracket system to determine
how it would perform in operation. Loading situations for the ring assembly were
selected based upon what types of forces the actual octocopter might experience when
landing. In reality, these forces are hard to predict when considering how environmental
factors, such as wind and ground effect, might influence the vehicle’s flight. Ultimately,
it was decided to test a horizontal and vertical load applied on the bamboo ring, as well
as a rotational torque applied at the joint of the ring and carbon fiber rod. These

situations are shown in Figure 4.3.
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Figure 4.3: Loading conditions applied for ring mounting bracket finite element analysis.

o

During UAVino’s operation, most loading phenomena on the ring bracket are a
combination of these three conditions. By testing each situation individually, the intent
was to determine which areas of the structure are weakest and what types of loading

scenarios are cause for concern.

For each of the two directional force loading conditions, a 2 pound force was applied.
This load was determined based on the worst case scenario that the ring structure
would need, which is half the entire weight of the vehicle, approximately 7 pounds.

Because there are two ring brackets, this load is assumed to be shared equally.
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4.3.2 Finite Element Analysis Expectations

It was expected that the analysis would show the most critical joint is the connection
between the bamboo hoop and carbon fiber rod, as the aluminum brackets and bolts
joining these two components bear the brunt of any load applied to the bamboo hoops.
In particular, the corner of the bend in the aluminum brackets is an area of concern, as
stress concentrations resulting from such geometry are likely to magnify the stresses

seen in this area.

The failure criteria for the ring and carbon fiber rod joint was set as any stress exceeding
the yield strength of the aluminum bracket, as such a stress would permanently deform
the bracket and prevent the ring from properly aligning with the rest of the docking

system.

4.3.3 Finite Element Analysis Results

Figure 4.4 shows the stress distribution in the assembly when the ring is subjected to a
2lb horizontal load applied towards the acrylic mounting bracket. This loading scenario
results in a maximum compressive stress of 1674psi and a maximum tensile stress of
6905psi. Figure 4.5 shows the same stress distribution, but is focused on the joint

between the bamboo ring and the carbon fiber rod.
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Figure 4.4: Stress distribution in the ring bracket resulting from a 2lb horizontal load.
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Figure 4.5: Stress distribution in the ring joint resulting from a 2lb horizontal load.

Similar finite element analysis was conducted for the other two loading conditions.
When the ring is subjected to a 2lb vertical load directed upwards, it results in a
maximum compressive stress of 1015psi and a maximum tensile stress of 8761psi. The
areas of highest tensile stress in this scenario are located on the bottom corner fibers of
the carbon fiber rod. When the ring is subjected to a 2in-lb counterclockwise torque
applied about the axis parallel to the carbon fiber rod, the result is a maximum

compressive stress of 106psi and a maximum tensile stress of 618psi.

After testing the three key potential loading conditions that the ring mounting system
could experience in operation, it was determined that the system would be able to
withstand the loads and function properly. The highest stress observed in the three
tested models was a tensile stress of 8761psi, which is well below the yield strength of
any material used in the ring mount. These results validate the strength and safety of

the ring mounting system.

4.4 \Vibration Isolation Camera Mount

Figures 4.6 and 4.7 show theoretical CAD and actual manufactured versions of the

vibration isolation multispectral camera mount.
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Figure 4.7: Vibration isolation camera mount.

The camera mount consists of two laser cut acrylic plates held together by 12 small
vibration damping pads, which have been repurposed from an industry grade gimbal.

The entire mount is attached to the octocopter frame using four 2.5” long aluminum
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standoffs and 6-32 machine screws. Including the standoffs, the vibration isolation

camera mount weighs 195g.

During testing, the multispectral camera attached to this vibration isolation mount was
able to provide suitable photographs for post processing and therefore this component
is viewed as successful. However, performance of this vibration isolation mount
compared to industry counterparts or the lack of a vibration isolation device altogether
has not been characterized. Future work is required in this area to provide better insight
into whether or not this design can be improved and the degree to which it is actually

needed.

4.5 Charging Feet

The charging foot concept is shown in Figure 4.8.

Figure 4.8: Charging foot CAD rendering.

One charging foot is connected to the bottom of each of the four legs of the octocopter.
Each foot is made from a piece of 5” x 1.25” x 0.3” poplar which has two copper plugs
press fit and then glued into it. These copper plugs have a machined flat bottom so that
they rest flat against the contact plates on the docking station. Additionally, a small lip
on each plug, shown in Figure 4.9, allows it to sit just below the bottom of the wood
piece so that just the plug is in contact with the station, meaning that the full weight of
the octocopter rests on these connections points to help ensure a solid electrical

connection.
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Figure 4.9: Charging foot bottom detail

While the main purpose of the feet is to enable charging, an added benefit is that they
provide added stability for the octocopter as it lands. Each foot is connected to one of
the octocopter’s legs via right angle brackets and M3 machine screws, which is shown in

Figure 4.10.

Figure 4.10: Charging foot detail

20-gauge wire is soldered into each copper plug and then routed up the octocopter legs
to the flight battery’s balancing plug. In this way, the feet act as an extension of the
lithium polymer battery’s balancing node that the off-the-shelf charger housed in the
docking station is then able to charge through. Figure 4.11 shows a wiring schematic

depicting how the contact feet are connected to the octocopter flight battery.
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With two copper plugs per foot and four feet total, the octocopter has a total of eight
connection points. Currently, only five of these points are being used. The remaining

three could be used in the future to support batteries with more cells or faster charging

rates.
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Figure 4.11: Octocopter circuit diagram

Note that Figure 4.11 shows that the multispectral camera and Intel Edison are powered
independently from 9V batteries. In the future, these components should ideally be
powered from the octocopter’s flight battery. Such a system could be implemented
through a buck converter connected to the flight battery and that is in parallel with the
rest of the octocopter's electronics. In this way, the buck converter would act as a
voltage regulator as well as a voltage step-down or step up. However, the buck
converter would need to be inserted after the power module, as this component sends

important battery voltage remaining and current draw information to the Pixhawk
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autopilot. If the buck converter were connected before the power module, the Pixhawk
autopilot may underestimate the battery life remaining and cause the vehicle to enter a

failsafe state.

4.6 Landing Algorithm Hardware

In addition to the ring brackets required for the mechanical docking system, hardware
elements are also required for the vision landing system. These components are the
Mobius vision camera, shown in Figure 4.12, and an Intel Edison microprocessor, shown
in Figure 4.13. The Mobius camera is a compact video camera that is mounted to the
bottom of the octocopter using Velcro. This camera takes pictures at a regular interval
and sends them to the Intel Edison, which then runs software to identify the docking
station and maneuver the octocopter towards it. The Intel Edison rests on the top of the
octocopter and is loosely held in place with zip ties. Detail on these two components

and how they specifically work to control the octocopter is discussed in Chapter 5.

Figure 4.12: Detail of Mobius vision camera, boxed in red, mounted to the octocopter.
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Figure 4.13: Detail of Intel Edison, boxed in red, mounted to the octocopter.

4.7 Summary

To allow for UAVino’s autonomous mapping operation, certain modifications had to be
made to the octocopter vehicle. In general, these additions include a set of guidance
rings that mate with the cone system on the docking station, a mounting plate with
vibration isolation for the multispectral imaging camera, electrical contact feet that
enable battery recharging, and a vision camera and computing platform that handle
automated landing capability. Since multirotor drones have a relatively short flight time,
it was crucial to consider the weight of each component during design and the impact it

would have on the system’s flight time and, by extension, its coverage capability.

Testing these added components has proved that they function properly. Finite element
analysis was conducted on the ring mounting system for a variety of loading conditions,
and results show that the system can withstand its intended operation. Additionally,

recharging testing has verified that octocopter’s charging feet can establish and
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maintain an electrical connection between the octocopter’s battery and the docking
station. Lastly, the vibration isolation camera mount experienced field tests and was
able to yield clear and useful multispectral imaging data, therefore lending confidence in
its performance. Overall, these octocopter additions allow for the successful

implementation of UAVino’s unique method for the autonomous mapping capability.
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CHAPTER 5

Landing Algorithm

5.1 Overview

A critical part of UAVino’s autonomous operation is the ability of the octocopter to land
itself precisely on the docking station, as this task enables the vehicle to recharge and
ultimately extend mission duration and range. Although GPS helps the octocopter
return to the general vicinity of the docking station, it does not provide the accuracy
needed to align the ring and cone guidance system. In order to achieve precision
landing, UAVino uses a vision-guided landing system that involves a standard video
camera and co-processing board, both of which are mounted to the octocopter. The
interaction between these components and the octocopter’s built-in control system is

shown in Figure 5.1.

Co-Processor | ‘landingInstructions Autopilot
(Intel Edison) (Pixhawk)

Landing Camera GPS ESCs (x8)

(Mobius)

Motors (x8)

Figure 5.1: Vision guided landing system components.

When operating, the vision camera sends pictures to the processing board, which
identifies the docking station via its distinct painted surface. Using the picture, an

algorithm calculates the movement required to center the vehicle over the station and
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then sends commands to the vehicle’s autopilot board in order to make those
movements. This algorithm is repeated until the vehicle is hovering directly above the
docking station, at which point it begins descending. The two steps of centering and
descending are periodically repeated so that the vehicle can adjust its position and
ensure it remains centered. Ultimately, the vehicle engages the docking rings and cones

that allow precise landing on the station’s charging terminals.

5.2 Requirements

In order for the octocopter to successfully dock and recharge, the landing algorithm
must be able to orient the octocopter within 2.5in of center so that the vehicle’s
guidance rings engage the station’s cones. Achieving this level of accuracy hinges upon
the landing algorithm consistently detecting the docking station in various orientations
and lighting conditions so that it can continually send movement commands to correctly

position the vehicle.

To facilitate consistent recognition, the docking station is painted with recognizable red
and black concentric squares. This pattern is shown in Shown in Figure 5.2 and was

selected because it minimizes reflectance, yet remains visually distinct.

Figure 5.2: Docking station alignment pattern
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Lastly, the entire vision algorithm relies on the autopilot’s ability to position itself
correctly and precisely given the direction commands it receives from the landing

algorithm software.

5.3 Hardware

5.3.1 Mobius Vision Camera

The need for a lightweight vision camera that produces high quality images for image
recognition is fulfilled by the Mobius Action Camera 1080P HD Mini Sports Cam, which is

shown in Figure 5.3.

Figure 5.3: Mobius Action Cam vision camera

Figure 5.3 shows the Mobius converted via a GoPro Form Factor kit, which allows for
easier mounting and also reduces the component’s weight to 30g. The Mobius was
selected because it offers a wide range of features, including still image capture, time-
lapse image capture, video capture, and video streaming. Of these modes, the Mobius’
streaming ability is particularly important to UAVino, as it allows the co-processing

board to pull still frames for analysis on demand.

5.3.2 Intel Edison

The landing algorithm requires processing speed and power in order to analyze images
and compute new flight commands easily. In order to deliver these requirements, the

Intel Edison, shown in Figure 5.4, was selected as the co-processing board.
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Figure 5.4: Intel Edison computing platform

The Edison was chosen over similar competitors, such as the Raspberry Pi, due to its
processing power and low energy consumption. Table 5.1 compares the Intel Edison to

competing Raspberry Pi B+ and Beaglebone Black microcontrollers.

Table 5.1: Comparison between the Intel Edison, Raspberry Pi B+, and Beaglebone Black

Microprocessor Pros Cons
Intel Edison e Dual-core processor; e 1 USB port
e Integrated Wi-Fi, e Expensive
Bluetooth LE e No video output
e Support for Yocto (HDMI, Direct LCD,
Linux Arduino and Composite)
Python e 1/0 connectors require
e Lower Power extra boards
consumption (3.3V -
4.5V @ <1W)
Raspberry Pi B+ e Broadcom VideoCore e No Integrated Wi-Fi or
IV GPU Bluetooth.
e 4 USB ports e Higher power
e Video output (HDMI, consumption (5V @
Direct LCD, Composite) 600 mA)
e Inexpensive e less processing power
Beaglebone Black e ARM® Cortex-A8 e 1USB port
Processor e Expensive
e 4GB Onboard Flash e No Integrated Wi-Fi or
e USB, Ethernet, micro Bluetooth.
HDMI ports

The Intel Edison is offered as computing platform for internet-of-things products. It is

designed to be fast, powerful, efficient, and easily connectable to other devices via WiFi
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and Bluetooth. This processor provides a fast and powerful platform for processing
images and translating the results into useful data that is sent to the octocopter’s
autopilot. The Edison also gives the ability to establish a wireless hotspot, which is
useful for communicating with the docking station to initiate or stop charging as well as

for operators to remotely login to run or monitor scripts.

The need for low power consumption is critical in a system where power is a limited
resource and is crucial to system success. The less energy the octocopter uses powering
the co-processor, the more flight time the octocopter has. In addition to its low power
consumption, the Intel Edison’s dual-core CPU easily handles the tasks of image
recognition and flight command generation at a fast enough speed to allow for efficient

octocopter flight.

5.3.3 Pixhawk Autopilot Board

UAVino uses the Pixhawk autopilot board, shown in Figure 5.5, to control the

octocopter.

o pixlhiawik e

Figure 5.5: Pixhawk autopilot board. Photo courtesy of 3drobotics.com.

The Pixhawk is built by 3D Robotics and is included as the default autopilot for their X8
octocopter, which is the platform upon which UAVino is based. The autopilot runs the
NuttX Real Time operating system over a PX4 driver layer and is built with integrated
multithreading. It also provides numerous ports for serial communication and PWM
control, which allows it to power the octocopter and communicate with motors, sensors

and ground control stations.
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5.4 Landing Algorithm Stages

5.4.1 Overview

The vision-guided algorithm that lands the octocopter is composed of three stages:
locating the docking station, determining the steps needed to move to the octocopter
towards the docking station, and sending commands to execute these movements to

the vehicle’s autopilot. The overall landing algorithm flow is shown in Figure 5.6.

Not Landed
Start Landed
‘ IDI-(())cclff:g Calculate Execute @
) Next Next
Station Move Move

Figure 5.6: Landing algorithm logic flow

In general, the docking station is first located using images from the Mobius camera
processed using a Haar Cascade classifier. Then, the distance to the docking station is
calculated and commands for the octocopter are created. Finally, these commands are
sent to the octocopter’s autopilot and executed. As shown in Figure 5.7, the execution
of these stages is split between the autopilot board, which directly controls the
octocopter, and the Intel Edison co-processor, which executes the computations for

target location and movement calculation.

Companion Computer Autopilot Board

Commands
(Intel Edison) (Pixhawk)
e Target Location e Runs Autopilot
e Movement Calculation Flight Sensor Info o Controls Motors
e Sends Landing o Reads flight sensors
Commands e Executes Landing

Figure 5.7: Separation of onboard processing and flight control
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5.4.2 Locate Docking Station

In the first phase of the landing algorithm, the location of and distance to the docking
station relative to the drone is determined using computer vision. The need for
computer vision became apparent after exploring other positioning devices. GPS, which
is included by default with the Pixhawk autopilot, is an excellent asset for locating the
general position of the docking station, but is only accurate to within approximately
1.5m. Differential GPS (DGPS) could be used, which is accurate to about 4in, but
requires the use of a reference station and differential GPS locators. Although DGPS can
deliver close to UAVino’s accuracy requirement of 2.5in, it can only be used for latitude
and longitude determination. Therefore, while DGPS could be used to accurately center
the octocopter over the docking station, auxiliary systems would be required to orient
the drone’s yaw axis and calculate its altitude, resulting in added system complexity.

Figure 5.8 shows the maximum error of UAVino’s computer vision system
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Figure 5.8: Error between estimated lateral distance using UAVino’s computer vision
algorithm and the true lateral distance versus altitude. In a lab setting, the error at each
altitude was calculated by taking the maximum difference between the estimated and
true distance over a series of five trials at each altitude.
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Computer Vision offers the best solution for vehicle orientation because it can adapt to
a dynamically changing environment and still provide the accuracy required to dock. Via,
Figure 5.8 it is clear that the maximum error of UAVino’s computer vision system is well
within the 2.5in margin of error. It also shows that as the drone descends towards the
docking station, the error between measured distance and actual distance decreases,

thus improving the likelihood of a successful dock.

Once the Intel Edison obtains images from the Mobius camera, the microprocessor uses
a Haar Cascade classifier to locate the docking station within the image, which is shown

in Figure 5.9.

Figure 5.9: Example of docking station being located (green box) and the octocopter
orientating itself over the located target.

The Haar Cascade classifier was trained and run using a computer vision library called
OpenCV, which was selected due to its reliability, open source license, cross platform
support, and excellent supporting documentation. Haar Cascade classifiers are created
using a supervised learning approach, meaning that they are trained on a series of
positive images containing the target object and negative images without the target
object. A large and diverse set of positive and negative images, particularly with regards
to lighting conditions and image orientation, is required to train an accurate classifier

that works well in various environments.

Red and black were chosen as the colors for the docking station due to their

distinctness, their lack of resemblance to nature, and their ability to flood the color
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spectrum, all of which made classifier training easier. During testing, these colors
yielded promising results in a lab environment. However, field testing revealed that the
classifier recognized a large number of false positives. These results are likely due to the

fact that black closely resembles shadows, which were present in nearly all images.

UAVino’s landing algorithm was originally developed in C++ for performance reasons,
but was later ported to Python since DroneKit, the APl used to control the octocopter, is

written for Python.

5.4.3 Movement Calculation

After locating the docking station in an image, the Intel Edison calculates the drone
movement required to center the drone over the station. There are three different kinds
of movement the octocopter must make in order to properly orient itself: lateral

movement, yaw rotation, and vertical movement, which are illustrated in Figure 5.10.
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Horizontal (XY) Movement Yaw Rotation Vertical (Z) Movement

Figure 5.10: The three movement types generated by UAVino's landing algorithm.

First, horizontal movement is used to center the octocopter over the docking station.
Then, yaw rotation is used to align the rings on the octocopter with the cones on the
docking station. Finally, vertical movement is used to descend the octocopter and mate
the guidance rings with the station’s cones. UAVino is programmed to execute only one

kind movement in each iteration of the landing algorithm to make the system simple to

69



debug, as it is easier for the operator to visualize the thought process of the octocopter.
The process by which the octocopter chooses which kind of movement to make is

described in Table 5.2 and further illustrated in Figure 5.11.

Table 5.2: Movement type selection process

If the vehicle is... Then execute...
Not centered over the docking station Horizontal move
Centered over the docking station, the hoops are not Yaw rotation

aligned with the station’s cones
Centered over the station and properly aligned with the Vertical move
station’s cones

Not Centered Over
Docking Station

Centered

Oriented

Not Oriented
v Correctly v

Vertical Yaw Horizontal
Move Rotation Move

Figure 5.11: Movement type selection process

Horizontal movement is calculated by finding the distance in pixels from the center of
the detected docking station to the center of the landing camera, which is shown in

Figure 5.12.
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Figure 5.12: Calculating distance in pixels from Mobius camera image

The pixel distance is converted to ground distance by calculating the Ground Sample
Distance (GSD), which is the ground distance represented by a pixel. The GSD is linear

with respect to the camera’s distance from the ground and is calculated by

GSD = cr

where GSD is the ground sample distance, c is a constant, and r is the relative altitude.
The constant can theoretically be calculated from the camera’s sensor size and focal
length, but experimental methods were used to determine ¢ in UAVino's landing
algorithm because the sensor size and focal length of the Mobius camera are not readily
available. Appendix | discusses the experimental process by which this constant was

determined.

Because the GSD is calculated using altitude, any error in determining relative altitude
decreases landing accuracy. However UAVino’s landing algorithm constant is roughly
0.0025, so an altitude error of 30 feet is required to introduce a lateral position error on
the order of lin. Therefore, effects of altitude error are minimal. UAVino’s onboard
barometer is used to determine relative altitude since it is accurate enough for this
application and can be used without adding complexity to the system. Should more
precision be needed in the future, a radar or sonar altimeter could be used to more

accurately determine altitude.
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It is also possible for the landing algorithm to determine drone altitude using the GSD
constant and the known distance between two detected objects in the analyzed image.

The relevant equation is

~—
T
N

ﬁ |

where r is the relative altitude, d is the known distance, p is the known distance
represented in pixels, and c is the constant. Determining drone altitude using this
equation and the known width of the docking station proved less accurate than the
onboard barometer because the detected width of the station fluctuates with factors

such as camera angle or lens distortion.

The distances and directions of movement calculated from the analyzed image are
represented in the camera’s frame of reference. However, the drone’s Pixhawk
autopilot only supports navigation in the North East Down (NED) frame of reference.
The movements are converted from the octocopter’s body frame to the NED frame

using the following transformation, where yaw is ¢ roll is ¥, and pitch is 6.

N
El=
D
cos(¢) cos(8) cos(¢) sin(y) sin(8) — sin(¢) cos(yp) sin(¢) sin(yp) + cos(¢p) cos() sin(0) | 1x
sin(¢) cos(8) cos(¢) cos(P) + sin(¢) sin(y) sin(8) sin(¢p) cos(y) cos(8) — cos(¢p) sin(y)| |Y
—sin(6) sin(y) cos(9) cos(y) cos(0) Z

The movements are passed to the flight command execution stage after they have been
transformed into the NED frame. Note that this transformation requires the Z
commands to be given in the camera’s frame of reference. If the Z commands are given

in the Down axis, the transformation instead becomes

N cos(¢p) cos(8) cos(¢) sin(y) sin(8) — sin(¢p) cos(yp) 07 [X
E| = [sin(¢) cos(8) cos(¢) cos(y) + sin(¢) sin(y)sin(0) 0] Y
D 0 0 11z
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Yaw rotation has not yet been implemented in UAVino, but groundwork has been laid
for this feature to be added using the center of the detected docking station and

another fiducial marker.

The vertical movement algorithm is designed to descend half of the drone’s altitude
with each iteration. In order for this method to become fully operational, it needs to be
supplemented with a stage to descend a fixed distance once the octocopter is close

enough to the docking station that the ring and cone mechanism is engaged.

5.4.4 Flight Command Execution

After the Intel Edison correctly calculates and translates the required movement vector
of the drone, a command corresponding to this vector is sent to the Pixhawk autopilot.
Ultimately, communicating between the Edison and Pixhawk requires encoding,
transmitting, and decoding a message. However, this detail is abstracted away by the
Pixhawk’s ArduPilot software and DroneKit, an APl that supports both sending
commands to and receiving flight information from an autopilot board running
ArduPilot software. Thus, the only task the Intel Edison must focus on is actually

generating the movement command to send to the autopilot board.

UAVino relies on two main commands for vehicle movement: changing the octocopter’s
lateral position and changing the octocopter’s yaw orientation. DroneKit and ArduPilot
provide a function that instructs the vehicle to change its position; however, this
function is only as precise as the autopilot’s return-to-home method, which is
approximately 1m. Because UAVino requires accurate movement to within 2.5in, the
algorithm instead uses a function provided by DroneKit and ArduPilot to instruct the

vehicle to change its velocity.

There are a two main approaches to accurately controlling a vehicle by velocity. One
method is a camera-polling approach, which sets a vehicle velocity and then
continuously analyzes images from a camera to determine whether the vehicle needs to

continue moving, readjust course, or stop. The main disadvantage of this method is the
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relatively long time it takes to obtain and process an image, as any delays in the
algorithm reduce accuracy. However, one key advantage of camera-polling is that the
stopping position is determined dynamically. Thus, if a gust of wind were to blow the
vehicle off course, the algorithm would naturally adjust itself and continue towards the
correct stopping position. Another advantage of a camera-polling approach is that only

the direction of travel is required; no distance measurement is needed.

A second approach to controlling a vehicle by its velocity is a time-polling approach,
which sets a specified velocity, uses time to estimate the distance travelled, and stops
the vehicle once the desired distance has been reached. The main advantage of this
approach is that it can be executed more quickly than a camera-polling approach, but it
comes at the cost of the stopping position being determined statically at the beginning
of the movement. Thus, the vehicle is not be able to effectively respond to a disturbance
during movement. Another disadvantage of the time-polling method is that it requires
both a velocity and accurate distance to execute. Table 5.3 shows a comparison

between the camera-polling and time-polling methods.

Table 5.3: Velocity control methods

- Camera-Polling Method Time-Polling Method
Pros e Dynamically determines e Quick response
course
e Only requires a direction
Cons e Slow response e Statically determines course
e Requires both a direction and a
distance

UAVino’s landing algorithm combines the time-polling method with a repeated
approximation approach to provide both a quick movement calculation and mild course

correction.

5.5 Summary

In order for the octocopter to recharge, it must be able to precisely land on and

establish an electrical connection with the docking station. GPS cannot deliver the level
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of precision required, so UAVino uses a vision landing system for guidance. This
algorithm relies on visually locating the docking station using an onboard camera and a
Haar Cascade classifier. Once the docking station has been located, the octocopter
navigates to the docking station, centers over it, and then descends onto the landing
platform. Although there has been some success with recognizing the docking station
and flying towards it, the system is currently unable to achieve autonomous landing.
These difficulties are linked to the Haar Cascade classifier being inadequately trained,
leading to either a low detection rate or a high false positive detection rate. Future work
needs to be done to either better train an accurate Haar Cascade classifier or to change
the overall method of locating the docking station, such as using infrared beacons.
Additionally, a proportional-integral-derivative control system needs to be implemented
to more precisely execute the landing commands sent to the octocopter. Overall, the
landing algorithm has a modular framework, so these future implementations can easily

be integrated into the existing platform.
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CHAPTER 6

Data Processing

6.1 Overview

This year, a straightforward processing method has been developed to convert
multispectral images collected by the octocopter into crop health information that is
useful to real-world customers. In general, this data conversion is accomplished by
running the multispectral images through various software packages that return
vegetation indices, which are numerical values that provide an indication of plant
health. Ultimately, the goal is for this data to augment a customer’s existing knowledge

to help determine overall crop health, as well as locate areas of stress or concern.

The first step in post processing the multispectral data is to manually review the
collected images and remove ones with defects such as blurriness or overexposure.
Additionally, the general set of pictures is examined to ensure that it contains sufficient
coverage of the inspected agricultural field. The images are then used to create a photo-
mosaic map of the agricultural field, which is processed to depict a vegetation index.
The final data product is an aerial map of the inspected fields showing color-coordinated

crop health information that is accessible and easy to interpret.

This year, UAVino focused on providing the foundational methods for post processing
and succeeded in creating a proof of concept. However, the most powerful results from
multispectral data come from long term monitoring, which has yet to be implemented.
This type of monitoring creates a well-established standard against which new data is
compared, thus making it easier to determine if crop behavior is unusual or indicative of
water stress or disease. It is through monitoring vineyards over a longer period of time
that UAVino will be able to warn customers about changes in plant health before crops

show physical signs of disease.
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6.2 Requirements

6.2.1 Customer Requirements

The most important requirement for image post processing is that the final data product
be presented in an easy to interpret and accurate form for the customer. This

requirement includes the following elements:

e The customer should not have to perform any additional processing on the data
after it is received in order to determine health information.

e The collected data needs to be presented with an easily accessible overview so
that the customer is not overwhelmed by the amount of information received.

e A method of interpreting the data needs to be presented along with the data
itself to ensure that the customer understands the implications of the data,
particularly what it does and does not depict and to what accuracy it can be

trusted.

6.2.2 Image Resolution Requirements

Although not an explicit requirement to obtain vegetation index data, obtaining aerial
pictures with a 1.0cm per pixel resolution is UAVino’s image requirement. Achieving this
level of precision is one key reason why a multirotor flight vehicle was chosen, as such
platforms can fly lower and slower than fixed wing drones to obtain better resolution
data. A 1.0cm per pixel image resolution is at least double the resolution of fixed wing
platforms, which is typically around 2cm per pixel, and many times greater than satellite

imagery, which is typically around 0.5m per pixel.

6.2.3 Image Overlap Requirements

Agisoft, the orthographic photo-mosaicking software used, requires 80% forward
overlap and 60% side overlap between multispectral images in order to successfully
create an aerial map of the inspected agricultural fields. At a minimum, 50% forward
overlap and 40% side overlap is required to create an aerial map using Adobe

Photoshop, although this software does not provide orthographic mapping capability.
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6.3 Key Components

6.3.1 Multispectral Camera

Multispectral data is gathered using a Tetracam ADC Micro multispectral camera, which
is mounted to the bottom of the octocopter and takes pictures at a regular interval as
the vehicle flies over agricultural fields. The camera, shown in Figure 6.1, is ideal for

UAVino’s application because it is both lightweight and compact.

Figure 6.1: Tetracam ADC Micro multispectral imaging camera.

Measuring 2.97” x 2.33” x 1.29” and weighing only 90g, the ADC Micro takes images in
the red, green, and near infrared multispectral bands and saves composite false color

images in a proprietary format on a removable micro-SD card.

6.3.2 Image Mosaicking Software

In order to provide data in an easy to interpret format, image-mosaicking software is
required to convert the multispectral images into an aerial map of the entire agricultural
field of interest. This map provides the customer with a single image from which to
interpret data, instead of hundreds, and thus allows for quick understanding of the

information gathered.
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Image-mosaicking is conducted using two software packages: Agisoft and Adobe
Photoshop. Agisoft creates a single orthomosaic map from a set of images, meaning that
individual images are shifted and scaled by the program so that each pixel in the final
output represents the same amount of land area. Achieving the level of precision
required to create such a map is difficult, so Photoshop is also used as a more basic
image-mosaicking package that simply stitches images together without creating an
even perspective. Although Photoshop results are less accurate, it is a faster and easier
way of getting data and serves as a point of comparison when orthographic data is able

to be obtained through Agisoft.

6.3.3 Image Processing Software

After creating a single aerial map from the gathered image data, it is processed into a
vegetation index map using Pixelwrench2, a software package provide by Tetracam. This
program also converts Tetracam’s proprietary image format into more cross-compatible
versions and provides the ability to control multispectral camera settings through a file

stored on the camera’s micro-SD card.

6.4 PostProcessing Approach

6.4.1 Flight Parameters and Camera Settings

The quality of multispectral images taken during flight depends upon a number of
vehicle parameters, which were optimized by conducting a series of test flights with

different settings and comparing the resulting data.

Achieving the necessary image overlap requirements is primarily a function of flight
speed, altitude, and image capture rate. However, due to internal data processing, the
ADC Micro camera has a maximum capture rate of one photo every three seconds.
Therefore, this capture rate is treated as fixed so that image overlap becomes
dependent upon vehicle speed and altitude only. Flying at a higher altitude allows for
faster flight speed and increased area coverage, but comes at the cost of decreased

image resolution. Because one key interest with UAVino is the increased resolution
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capabilities of multirotor drones compared to their fixed wing counterparts, image
resolution was generally favored over vehicle flight time during testing for optimal flight

parameters.

Ultimately, test flights were conducted at an altitude of 20m to provide a final image
resolution of approximately 20mm per pixel. At this altitude, the flight speed required to
obtain the desired forward overlap is 2m/s or less. A lateral speed of 1.75m/s was used
in order to achieve the desired 80% forward coverage without sacrificing the

octocopter’s ability to map a reasonable amount of land area per flight battery.

One recurring problem encountered when gathering data was blurry pictures, which
could still be included in the final image mosaic but caused decreased performance in
the mapping software. Typically, blurry photos occurred when the octocopter
experienced sudden movements due to turbulence or oversensitive corrective inputs by
the flight controller. This behavior was most prevalent on windy days and short of re-
tuning the control software, little could be done to prevent such motion. Flying
excessively fast could also cause motion blur, but the selected 1.75m/s lateral speed
was slow enough that blurriness was not a problem during normal flight on days with

relatively calm air. Figure 6.2 shows an example of a blurry multispectral image.

Figure 6.2: Blurry multispectral image
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A much more severe problem prevalent throughout early testing was overexposure,
which rendered images unusable and created gaps in the final data product. Figure 6.3

shows an example of an overexposed image.

Figure 6.3: Overexposed multispectral image

Overexposure is a photography phenomenon that occurs when too much light is let into
a camera’s aperture while taking a photo. During initial test fights, the ADC Micro’s
automatic exposure setting was used, which yielded overexposure rates as high as 40%
in some data sets. Initially, overexposure was thought to be caused by excessive sunlight
and flight speed, but changing both of these variables had little impact on overexposure
rates. Eventually, it was determined that the camera’s automatic exposure setting was
changing the exposure with each image and would occasionally select an incorrect
setting due to lighting conditions, thus yielding overexposed images. This problem was
eliminated by selecting a manual exposure setting that remained constant during flight.
With some experimentation, a 5ms exposure setting was selected, which yielded less

than 4% overexposed images and greatly decreased the severity of data loss.

6.4.2 Image Mosaicking

Unfortunately, successful ortho-mosaicking has not yet been implemented with UAVino

due to software difficulties. However, meaningful results have been generated using

81



Photoshop, which presents images in a mosaicked form that can still be effectively

communicated to customers.

The ortho-mosaicking software, Agisoft, has very strict overlap requirements in order to
create a complete aerial map. During initial flight tests, no useful data could be
extracted due to the extreme number of overexposed and blurry images reducing the
amount of overlap to the point where Agisoft could not successfully complete mapping.
An example of these poor initial results is shown in Figure 6.4. As the amount of overlap
increased with adjusted flight speeds, the quality of the maps produced also increased,
but results were still well short of a complete map of the vineyard capable of being

processed with a vegetation index.

Figure 6.4: Agisoft orthomosaic example

Once the problem with overexposure in the multispectral images was addressed, there
was another marked improvement in the quality of the maps being produced due to the
increased data being provided to Agisoft. However, these results were still

unsatisfactory for vegetation index processing.
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Because of these problems, Photoshop was employed as an alternative photo-
mosaicking software package and produced far better results. Even using data where a
number of photos had to be removed due to overexposure, Photoshop could still
produce a complete aerial map of the vineyard, an example of which can be seen in
Figure 6.5. Although Photoshop does not provide orthographic capability, it is sufficient

for demonstrating a proof-of-concept using vegetation index analysis.

Figure 6.5: Photoshop mosaic example
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6.4.3 Vegetation Index

There are a variety of equations and vegetation indices which can be used to obtain
crop health information from multispectral data, such as the Normalized Difference
Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Green NDVI.
UAVino uses the Normalized Difference Vegetation Index (NDVI) because it is based on
spectral bands which the Tetracam ADC Micro camera collects and is currently the most
widely used vegetation index in the application of multispectral data. Additionally,
UAVino began with no knowledge of agricultural monitoring or the processing of
multispectral imaging, so it was prudent to experiment with the most well-documented

and understood post processing method in order to develop a proof-of-concept.

The NDVI is based on the equation

NIR — R

NDVI = ———
v NIR + R

where NDVI is the Normalized Difference Vegetation Index returned on a scale
between +1 and -1, NIR is the near infrared channel reflectance, and R is the red

channel reflectance.

The near infrared channel is used in the NDVI because healthy and unhealthy vegetation
have very different levels of reflectance within this band. This difference is caused by
photosynthesis, which occurs much more in healthy vegetation and reflects a greater
amount of the near infrared spectrum. In contrast to near infrared reflectance, the red
reflectance of healthy vegetation is lower than that seen in unhealthy vegetation. This
phenomenon leads to a normalized number, as the high levels of NIR reflectance seen in
healthy vegetation result in an NDVI value close to +1. As the amount of NIR reflection
decreases with a decrease in plant health, the NDVI correspondingly decreases towards
a more neutral value of 0. If the multispectral image contains an area with no
vegetation, the NDVI is close to a minimum value of -1 since -R/R dominates the

equation.
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Figure 6.6 depicts how the reflectance of these two channels change between healthy

and unhealthy vegetation.
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Figure 6.6: Graph of reflectance values across the visible and near infrared spectrum for
healthy versus unhealthy vegetation. Photo courtesy of tetracam.com.

UAVino generates NDVI data via Tetracam’s Pixelwrench2 software, which looks at the

red, green, and NIR reflectance values stored on a per-pixel basis.

6.5 PostProcessing Review

Figure 6.7 provides a more general overview of UAVino’s post processing methods.
These steps were discussed in detail in Section 6.4, but are shown in a more abbreviated

view for simplicity.
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Figure 6.7: Overview of the entire data processing method.
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6.6 Verification

6.6.1 Proof of Concept

In order to verify that multispectral data could show failing crop health and that the
correct post-processing methods were being employed, testing was conducted to
identify a known problem area within the vineyard. Ultimately, UAVino’s goal is to
locate problem areas before they become known to a customer, but conducting a proof
of concept test was critical in proving the feasibility of this data collection process and

the authenticity of the results. Figure 6.8 shows the results of this test.

Figure 6.8: Raw multispectral image of a diseased vine and its NDVI processed
counterpart. The yellow-green colors in the center of the scale at the right side of the
NDVI processed image correspond to NDVI values of 0.0 to 0.4.

The vine in Figure 6.8 was identified by a vineyard owner as suffering from leaf-roll
disease, which is clearly visible in the NDVI processed image. The leaves towards the top
of the image exhibit a yellow-green color, which correspond to an NDVI of 0.0 to 0.4.
These leaves are clearly less healthy than those towards the bottom of the processed

image, which are bright green, corresponding to an NDVI near 1.0.

6.6.2 Verification of Crop Health Data

Although a limited amount of data has been obtained thus far, a week-to-week
comparison of growth provides an interesting sample of how the NDVI changes with
time in a particular field. Figure 6.9 shows the development of the same vineyard over a

three week span, during which the vines are undergoing their spring growth spurt.
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Figure 6.9: NDVI processed images showing the change in a vineyard over the course of
three weeks. The uppermost image corresponds to week 1, the middle image
corresponds to week 2, and the lower image corresponds to week 3.
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Via Figure 6.8, it is clear that a significant amount of growth occurs from the first to the
second week, particularly in the bottom six rows of vines. These six rows also show a
higher NDVI value, indicating a higher level of photosynthetic activity taking place.
Although the change from the second to the third week is not as marked, it is still clear
that growth is happening, as the percentage of vegetation falling within the higher NDVI
ranges continues to increase. Continuing data collection in this manner would help
provide an understanding of how this particular field should develop over the course of

the spring, and any deviation from this pattern in future years could be easily noticed.

6.7 Long Term Monitoring

While successfully identifying problems already known to a vineyard owner and showing
vineyard growth over time serves as a proof of concept, the real motivation behind
UAVino is to help customers identify unhealthy crops before physical evidence is found
on the plants themselves. In order to achieve this goal, it is necessary to maintain long
term monitoring of an agricultural field. By watching crops over time, it is possible to
create a health standard that can be used as a comparison point for future tests.
Ultimately, knowing what a particular field should look like at different points

throughout the season leads to early detection of anomalies as new data is collected.

Unfortunately, UAVino’s short development cycle did not provide enough time to
generate a well-established standard upon which to base long term monitoring, as the
drone vehicle was not ready to fly until April, at which point plant growth was minimal.
Additionally, this early spring timeframe was dedicated towards determining how to
best collect data and minimize overexposed and blurry images. However, with data
collection and post processing methods now largely functional, future UAVino teams are

excellently positioned to begin long term monitoring.

6.8 Summary

The post processing phase of UAVino is a series of steps that takes images collected

during flight and turns them into a final data product showing crop health. First, images
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are examined and blurry or overexposed photos not suitable for processing are rejected.
Second, the remaining images are mosaicked using Photoshop in order to create a single
image depicting the acreage mapped. Once a complete photomosaic has been obtained,
the resulting image is then processed using Pixelwrench2 software in order to obtain the
NDVI, which gives actual crop health data. While a foundation has been set for post
processing using this technology, there is still work to be done, as future teams must
continue gathering multispectral data to implement long term monitoring. Additionally,
work is required to obtain orthomosaicked images using Agisoft software, which

provides a more accurate mapping result than Photoshop.
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CHAPTER 7

System Testing

7.1 Overview

To gauge the effectiveness of UAVino’s various subsystems, a variety of tests were
conducted to characterize performance. The results of these tests were then compared
to goals set during the project’s conceptual design phase, which are listed in Appendix A
as the Product Design Specification. Ultimately, the build timeline did not allow for
sufficient testing of each individual goal. Instead, a few high level tests were conducted
in order to confirm key areas of the Product Design Specification and show that
although UAVino is only one year into a multi-year development phase, the project is

making progress towards becoming a fully autonomous system.

The main performance areas analyzed were octocopter weight, octocopter coverage
capability, docking station recharging capability, and vision recognition system accuracy.
Assessing whether or not the goals for these major components are met lends insight
into the current status of the project and which areas require the most focus of future
teams in order to ensure that the project ultimately becomes a viable solution for

autonomous crop monitoring.

7.2 Vehicle Weight Tests

Octocopter and various component weights were measured and compared to
predictions because these values heavily impact the flight time and coverage capability
of UAVino. Significant design effort went towards creating components that are
lightweight, yet durable, and assessing the results of these designs helps define whether

or not they are successful at performing their intended functions.

Table 7.1 shows the weights of the various components of the octocopter as well as the
weight of the flight-ready vehicle, all of which were measured using a traditional gram

scale.
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Table 7.1: Vehicle Weights

Item Quantity | Item Weight (g) | Total Weight (g)
Unloaded Octocopter 1 1965 1965
Flight Battery 1 605 605
Multispectral Imaging Camera 1 90 90
Vision Camera 1 40 40

Ring Bracket 2 40 80
Vibration Isolation Camera Mount 1 195 195
Charging Foot 4 35 140

Intel Edison Microprocessor 1 75 75

Total Octocopter Weight 3190

In the Product Design Specification, 7 pounds was set as the predicted flying weight of
the vehicle given the empty weight of the base octocopter and the planned additions.
As seen in Table 7.1, the actual vehicle weight is very close to this expected value and

thus this design criteria is met.

More important than the final vehicle weight value is whether or not this weight allows
sufficient flight time to map an agricultural field. Therefore, tests were conducted during
operation to gauge an average flight time over a series of flights and battery levels. The
predicted flight time goal was 10 minutes, and the fully loaded octocopter was able to
achieve this goal in several successive tests. Although this 10 minutes flight time is a
decrease from the advertised 12-13 minutes of the empty octocopter, these tests
confirm that the added weight of the components does not affect the flight time of the

octocopter to the extent that it hinders mapping capability.

It is important to note that the 12-13 minute advertised flight time is an approximate
number, as actual results depend up factors such as weather, aerodynamics, and overall
piloting ability. Therefore, an additional test not conducted, but that would be
appropriate to lend more insight into flight time, would be to conduct drone inspections
without the precision docking components. Such a configuration would result in over
300g of weight being removed from the octocopter, leading to an increased flight time.

Flight time data could then be compared between flights with and without the
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automated docking components in order to more precisely determine the flight time
penalty for seeking a fully autonomous system versus a system with a manual operator

responsible for takeoff and landing.

7.3 Coverage Capability Tests

The octocopter weight directly affects flight time, which directly affects the coverage
capability of the octocopter. In order to determine how much land area UAVino is able
to map per unit time, multiple tests were conducted at Aver Family Vineyards in which
the drone repeatedly flew the same pre-defined flight path comprising an area of
approximately 0.5 acres. This test flight path is shown in Figure 7.1. The flight
parameters, such as altitude and lateral speed, were adjusted until viable multispectral
data was obtained, and then measurements were taken to see how many times the
drone could fly the path on a single battery. This information was then used to extract

coverage area per unit time.

Figure 7.1: Mission planning software depicting flight path.

With the octocopter flying the path shown in Figure 7.1 at a height of 20m and a lateral
speed of 1.75m/s, the drone was able to cover the 0.5 acre area flight path twice with
each battery. These two flights, lasting nearly 10 minutes in total, indicate that UAVino
has a coverage capability of approximately 1 acre per flight battery, which equates to 6
acres per hour, assuming continuous flight. Adjusting for recharging using the docking

station, which takes approximately 60 minutes to recharge a battery that has been
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flown for 10 minutes, UAVino is able to cover approximately .85 acres per hour.
Although this number is lower than desired, it is sufficient to handle small-scale

vineyards and allow for practical and timely vineyard crop inspection.

7.4 Recharging Capability Tests

Another factor determining how much land area UAVino can cover is the time it takes to
recharge the octocopter’s battery. The goal is to minimize charging time while still
remaining safe, as doing so increases the time that the drone is able to spend mapping.
To quantify the performance of the docking station’s recharging capability, tests were
conducted to compare the charging rate of the station versus conventional recharging

methods.

For the docking station test, recharging was facilitated via the station’s housed
commercial charger and power was supplied from the system’s 12V marine battery. The
octocopter was placed on the station’s charging contacts and the charge sequence was
initiated. The conventional charging method test was facilitated by the same
commercial charger, but plugged into a standard wall outlet as the power source and
the battery was connected directly to the charger rather than via the station’s contact

plates. Figure 7.2 shows charge curves depicting both of these tests.
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Figure 7.2: Charge curves for docking station and standard commercial charger.
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As Figure 7.2 shows, it is clear that the two charge curves are nearly identical and
therefore the recharging performance of the docking station is as good as conventional
recharging methods. Additionally, the docking station is able to recharge a battery in
under 90 minutes, which is a goal set forth in the Product Design Specification. Although
battery recharge time does depend upon the level of discharge within the battery, both
of these tests were conducted with batteries that had been flown for approximately 10
minutes with the octocopter, which is close to the flight time that the system will

actually experience during operation.

7.5 Vision Recognition Tests

The automated landing system is not yet functional and therefore it is not possible to
conduct tests regarding this subsystem as a whole. However, it is known that at least a
2.5 inch accuracy is required for the octocopter to successfully dock with the station.
Therefore, lab tests were conducted to compare the landing algorithm’s estimated
lateral error against an actual known value at varying altitudes. Figure 7.3 shows these
test results, which ultimately prove whether vision recognition is capable of meeting the

2.5 inch requirement.
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Figure 7.3: Lab tests showing the error between the landing algorithms’ estimated
lateral distance and the true lateral distance versus altitude.
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Figure 7.3 shows that UAVino’s vision recognition algorithm is able to deliver the
required accuracy at all altitudes. Furthermore, the system becomes more precise as the
octocopter descends towards the station, thus proving that this system is a promising

method of allowing the octocopter to achieve automated landing.

7.6 Summary

To ensure that all of the subsystems of UAVino are able to work in harmony and
eventually allow for fully autonomous crop monitoring, it is crucial to conduct tests to
measure their performance. Testing was primarily conducted on vehicle weight, system
coverage capability, docking station recharging, and vision recognition algorithms. These
key subsystems have their respective challenges, but each is critical to the full

integration and autonomous functionality of UAVino.

Ultimately, tests for octocopter weight, docking station charging, and vision recognition
proved satisfactory. While the coverage capability of .85 acres per hour is lower than
desired, it is sufficient for a proof-of-concept system geared for small-scale vineyards.
The major limitation to coverage capability is the recharging time of the octocopter, as it
must spend nearly six times as long recharging as it does flying. Therefore,
improvements to this this system are the most likely way to increase coverage capability

in the future.
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CHAPTER 8

Costing Analysis

8.1 Budgetand Costs

UAVino’s allocated budget comprises of a $3,000 grant from the Santa Clara University
School of Engineering and a $750 grant from the Silicon Valley Section of the American
Society for Mechanical Engineers. Additional support for UAVino comes from the Santa
Clara University Robotics Systems Laboratory, which has supplied the team with the
base 3D Robotics X8 octocopter and a variety of tools to work with. The multispectral
camera and Edison microcontroller boards have been donated by Intel Corporation.

UAVino is grateful to these sponsors for their support of the project.

Table 8.1 shows the cost of UAVino’s major components. More detailed budget analysis

is available in Appendix F.

Table 8.1: General UAVino cost breakdown

Component Cost Notes

Multispectral Imaging Camera $2,500 | Donated by Intel
Octocopter with Telemetry $1,500 | Provided by SCU RSL
Octocopter Hardware and Electronics $450 Intel Edison Donated by Intel
Docking Station Hardware $300

Docking Station Electronics S600

Travel $350

Bench testing Electronics $350

Total $6,050
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CHAPTER 9

Commercialization Plan

9.1 Executive Summary

Over the past few years, a dramatic increase in the capabilities of small aerial drones has
created a potential for their use in a wide variety of commercial applications. In an
attempt to enter this market, UAVino seeks to utilize octocopters in the field of vineyard
inspection to monitor overall crop health using multispectral and infrared imaging
technology. Long term, UAVino is envisioned as a multi-year, interdisciplinary project
involving both the Santa Clara University Robotics Systems Laboratory and local wineries

in order to develop a fully functional drone agricultural inspection service.

9.2 Background

The goal of UAVino is to develop a fully autonomous drone agricultural inspection
system that is offered by the Santa Clara University Robotics System Laboratory as a
service to local wineries and other agricultural operations. In general, the system
focuses on automating crop inspection by taking aerial imagery of a vineyard,
conducting post-processing, and outputting an easily interpreted map of the vineyard’s
overall health. The project’s key innovation is an auto-docking system that allows the
drone to automatically return to its launch point and recharge in order to extend

mission duration.

Aside from drones, the primary methods for obtaining crop health include sensor
networks and satellite imagery, both of which are lacking. For example, sensor networks
are generally unavailable to small scale agricultural operations due to their complexity
and upfront cost. Instead, owners of small wineries typically resort to manual inspection
techniques, which are labor intensive and far from ideal. Similarly, satellite imagery is
problematic due to the need to contract with an external imaging service as well as

weather and data resolution limitations.
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Although agricultural-use drones are a quickly growing field and a number of companies
are looking to offer systems similar to UAVino, there is no company that currently offers
a fully autonomous, easy-to-deploy contract service to determine crop health.

Therefore, UAVino stands to offer a unique service to the agricultural industry.

9.3 Goals and Objectives

UAVino is imagined as a crop inspection service that students in the Santa Clara
University Robotics Systems Laboratory will be able to provide to local farmers on an as-
needed basis. Via this service-type implementation, individual farmers will not need to
invest significant capital to purchase UAVino outright or spend time training and
familiarizing themselves with how to operate complicated technology. Instead,
interested farmers will simply request the service when needed and benefit from the

crop health information produced.

From a monetary standpoint, the goal of UAVino is to have the system break even so
that it can be self-sustaining and continue to serve as a base for future educational
projects associated with the Robotics Systems Laboratory. Any profit gained from
conducting agricultural inspection would likely be reinvested into the system for future
improvements. Thus, the goal is not to make the system profitable to the extent that it
could be implemented as a full scale business with several employees, although such an
implementation might be possible. Instead, the objective is to create a solid educational
platform that pays for itself and allows future Santa Clara University students to gain an

understanding of business fundamentals and experience real customer interactions.

9.4 Key Technologies

The key technological innovation developed in UAVino is a portable station that the
octocopter automatically returns to, docks with, and then recharges from in order to
extend mission duration. The need for this station arises from the relatively low flight
time of octocopter vehicles, which is typically under 15 minutes per flight battery.

Therefore, inspecting large amounts of acreage requires multiple flights in order to
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complete. Typically, this limitation has required the vehicle operator to manually
replace or recharge the flight battery multiple times in order to continue a mission.
However, UAVino’s docking station mitigates this need, as it greatly increases system

autonomy and reduces operator workload.

9.5 Customers and Marketing

UAVino’s target customers are small California vineyard owners who operate with
relatively low excess capital therefore are on a tight budget. Currently, these vineyards
are experiencing added difficulty due to high water costs associated with California’s
drought. If an inexpensive and easy-to-use drone crop monitoring system was
developed, it could greatly help these vintners by providing information regarding

where and how to most efficiently water their fields.

UAVino has already established a working relationship with one vineyard near Gilroy, CA
in order to conduct testing. There are over 25 local vineyards in the Santa Clara Valley
alone, and some of these vineyards have already expressed interest in UAVino should
the system become fully-functional. Additionally, given that Napa and Sonoma Valleys,
which are the epicenter of winemaking in California, are both within reasonable driving

distance from Santa Clara University, the potential market for UAVino is vast.

Because the goal of UAVino is to maintain a close and personal relationship with
customers in order to provide them with meaningful data while using their vineyards as
a means of testing an educational project, any project expansion would likely occur
slowly and by word of mouth amongst local vineyard owners. No extensive advertising

or marketing campaigns are anticipated in widening the project.

9.6 Manufacturing

Given the relatively simple service that the Robotics Systems Laboratory would offer to
local vineyards and the fact that a small number of docking stations and octocopters

would actually need to be built and modified, manufacturing could likely take place in-
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house by students to minimize overhead. The required components to build a drone and

docking station pair are listed in Table 9.1.

Table 9.1: General UAVino cost breakdown

Component Cost
Multispectral Imaging Camera $2,500
Octocopter with Telemetry $1,500
Octocopter Hardware and Electronics S450
Docking Station Hardware $300
Docking Station Electronics S600
Travel $350
Bench testing Electronics $350
Total $6,050

9.7 Service Cost and Price

Although the upfront cost of $6,050 per drone and docking station pair is relatively
significant, very little maintenance is required long-term and therefore the system
would become profitable after recouping the initial investment. Given that UAVino will
remain a project that rotates on annually, collecting sufficient funds to replace the

system on an annual basis would make it sustainable from an educational standpoint.

Testing revealed that UAVino can map approximately 10 acres in one day. Given that
most small scale vineyards are less than 20 acres, it is reasonable to assume that UAVino
could map one vineyard per week, given that testing would typically need to occur on
weekends to minimize impact on student academic workloads. Due to Santa Clara
University’s 10-week quarter system, assuming one vineyard mapping trip per week
would equate to 30 trips per year. Therefore, garnering $200 from each trip would yield
an annual income of $6,000, which would be sufficient to purchase a new drone and

docking station combination each year.

After a sufficient clientele is built up and more data is collected on how many acres each
vineyard is on average, the $200 per visit could better be broken down into an hourly or

per acre rate.
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CHAPTER 10

Engineering Standards and Realistic Constraints

10.1 Ethics Analysis

As UAVino was developed, several important ethical considerations were held
paramount. These same considerations must be adhered to as the project progresses in
future years. First, intellectual property is of importance due to the rapidly growing field
of unmanned aerial vehicles. Both entrepreneurs and well-established companies are
working to develop technology for drones, and therefore it is UAVino’s responsibility to
thoroughly research and understand what possible ideas and solutions are claimed as
intellectual property by these parties. Because so much energy is currently being
directed towards drones for agricultural research, special attention must be paid to
these types of projects in particular to ensure that UAVino’s design solutions do not
inadvertently infringe upon any approved patents. Beyond intellectual property, it is
also the responsibility of UAVino to analyze the research conducted by other universities
and institutions to ensure that the team does not accidentally claim any previously

published findings regarding agricultural drones as unique to UAVino.

Another major ethical consideration is to ensure that the finished system delivers
accurate and reliable information. The real-world customers who contract with UAVino
trust that the information provided regarding crop health is accurate. Supplying these
customers with false data, even if done so inadvertently, could lead to significant crop
and profit loss. Therefore, the system must be subject to rigorous testing to verify that it

works as intended and is able to provide the best possible data.

Thirdly, it is the responsibility of UAVino operators to keep in mind the privacy of others
while the drone is flying. Although agricultural fields are somewhat remote, the camera
equipment on board the octocopter could capture individuals who do not wish to be
photographed. Care must be taken to ensure that the system is operated in such a

manner that respects the privacy of others by censoring parts of images that
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accidentally depict individuals. Invasion of privacy is currently one of the biggest
criticisms of personal drones, so giving special consideration to this seemingly remote
possibility is critical, as failing to do so might negatively contribute to the drone privacy

argument.

Provided that these considerations are carefully monitored during all phases of the
project, UAVino can be an ethically justified system given the positive impact it stands to
make on the agricultural industry. California is currently in a state of severe drought and
small scale farmers are hard pressed to reduce water usage. UAVino has the potential to
help these individuals more accurately monitor the condition of their crops and
therefore better cope with this challenge. Because of the major benefits UAVino can
bring to an industry in need and the ability to mitigate the ethical risks associated with

doing so, the project is justified in its cause.

10.2 Legal Analysis

The United States Federal Aviation Administration (FAA) is beginning to implement a
series of drone regulations to help integrate this new technology into the National
Airspace System. While the exact details of these regulations might seem vague in some
areas and excessive in others, they are in place to keep the general public safe.
Therefore, UAVino developers and operators must become familiar with these laws in
order to prevent an inadvertent violation and ensure that all activity is conducted
legally. Ensuring continued compliance with these regulations is of particular
importance to future teams who wish to take UAVino’s design further, as government
regulations are expected to change significantly over the next few years as unmanned

aerial drones continue to be safely introduced into the nation’s airspace.

Aside from FAA restrictions, future UAVino applications might involve flights at Santa
Clara University, meaning that University-specific guidelines must also be read and
understood. Therefore, it is necessary for the team to communicate and coordinate with
the University’s Facilities and Health and Safety departments to ensure that operations

are conducted in compliance with all relevant parties.
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10.3 Health and Safety Analysis

Safety is a primary concern for UAVino, as drone malfunctions have the very real
possibility of damaging property or causing injury, particularly if the vehicle is airborne
when a failure occurs. To minimize the risk of such an incident, detailed flight
procedures have been developed and are strictly adhered to during operation. Although
it is not possible to completely eliminate the safety risks of operating an aerial drone,
ensuring that the same checklist is followed in the same way during every deployment

reduces the possibility of human error causing an accident.

Beyond following checklists and procedures, it is the team’s responsibility to use
common sense when operating and conduct thorough testing to ensure that the system
is safe to the fullest extent possible. To operate UAVino knowing that a potential safety
flaw exists would be a serious ethical violation, as customers must be able to trust that
the system can be used without seriously risking injury. To see physical or monetary
harm result from the manifestation of such a flaw would be truly awful, especially if

something could have been done to prevent the issue.

10.4 Manufacturability Analysis

Given that the centerpiece of UAVino, the octocopter, is based upon a commercially
available drone vehicle with fairly straightforward modifications, the system is easily
manufactured should it ever need to be massed produced or should other parties be
interested in replicating it for academic use. All system components, including the
docking station, were manufactured using basic machine shop tools; no professional

knowledge or manufacturing was required.

Although it was not an overarching goal during manufacturing, design effort was put
into using off-the-shelf parts in order to reduce cost and make the system easily
modifiable for future system developers. Combined, the modified octocopter, without
the multispectral camera, and the docking station cost less than $2,500. Therefore, the

system is an extremely affordable base platform that can be extended for other aerial
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applications. For example, UAVino could easily be applied towards heat mapping or

videography applications with the implementation of the proper camera system.

Overall, UAVino is a straightforward, easy-to-manufacture system that embodies the
current open source movement of personal use drones so that others can build and

improve upon its design in the future.

10.5 Social Impact Analysis

With regards to social impact, one major goal of UAVino is to help vintners reduce water
usage through more efficient practices. Vineyard health and crop yield are highly
dependent upon the amount of water stress within the crops and a significant amount

of the growing effort goes towards achieving a correct water stress balance.

Within California, water usage is a focal point due to severe levels of drought, and the
agriculture industry has been targeted the state’s largest water consumer. Overall,
California’s agricultural industry accounts for 80% of the state’s water consumption, yet
only 2% of its economic activity [21]. Therefore, a huge gap exists between the impact
agriculture causes on the state’s water budget versus the benefit it brings in terms of
money. A particularly interesting fact surrounding this statistic, however, is that if
California’s agricultural businesses could reduce water usage by just 12.5%, it would
allow for statewide residential and industrial use to increase by 50% [22]. This
considerable increase in availability for water in residential and industrial applications

would be able to relieve significant stress associated with California’s current drought.

Given how a relatively small reduction in agricultural water usage can vyield a significant
amount of relief on the wider population, a method of judging UAVino’s potential is
whether or not the system might be able to provide a 12.5% reduction in water usage
on a small, per vineyard basis. If so, this reduction could prove significant if similar
agricultural drone solutions were implemented on a larger scale statewide. Although a

12.5% reduction is ambitious, analysis shows that UAVino and similar systems can make
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a meaningful impact, perhaps 6%, by helping with efficient watering methods called

irrigation scheduling and regulated deficit irrigation.

A recent study by the Natural Resources Defense Council looked at potential efficient
watering techniques, defined as “measures that reduce water use without affecting the
benefits water provides” [23]. Overall, the article discussed three methods which, when
combined, could reduce water usage by 5.6-6.6 million acre-feet per year, or 17-22% if
implemented statewide in California. Of the methods discussed, UAVino could greatly
aid with two: irrigation scheduling and regulated deficit irrigation. Irrigation scheduling
relies on careful planning involving local weather predictions, soil water content, and
plant water requirements to most efficiently water crops. Regulated deficit irrigation is a
technique applied towards crops which have periods in which they are drought
resistant, such as almonds, pistachios, and wine grapes. The idea with regulated deficit
irrigation is that during drought resistant periods, these crops can undergo a significant
reduction in watering without causing detrimental effects to their health. If these two
practices were adopted on a large scale, they could account for a savings of up to 4.8
million acre-feet during a dry year in California. Based on the statistics cited in the
Natural Resources Defense Council study, employment of these methods could amount
to water savings of roughly 15%, even more than the 12.5% required to cause a 50%

relief in residential and industrial usage.

Both irrigation scheduling and regulated deficit irrigation involve closely monitoring crop
growth in order to conserve water. One article on the subject stresses that “Regardless
of the type of irrigation program used, there is a need to develop scientific irrigation
scheduling procedures. In particular, if [deficit irrigation] is used, monitoring the soil or
plant water status is even more critical for minimizing risk, given the uncertainties in
determining the exact water requirements” [24]. The remote data which can be
provided by drones, such as multispectral and infrared imaging, could be particularly
helpful in this process and is cited by the same article as a method of monitoring that

could help with the application of deficit irrigation. Ultimately, multispectral crop
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monitoring systems such as UAVino can give an indication of crop vigor, which has a

direct correlation to plant water stress. Providing farmers with this information could

help them better schedule their irrigation and provide them with a higher level of

comfort in adopting these reduced watering practices. Although the presence of remote

monitoring systems such as UAVino may not lead to widespread adoption of these

practices, if the increased information provided could even result in a 30% adoption of

irrigation scheduling and deficit irrigation, it would result in a 5% agricultural water

savings.

10.6 Arts

As part of satisfying the Santa Clara University Core Arts and Humanities requirements,

members of UAVino have contributed original drawings, sketches, and CAD models to

the project. Table 10.1 lists a sampling at least one such artifact, and a reference to it,

for each of the team members.

Table 10.1: Arts requirement

Team Member Description Location
Figure 5.8
Matthew Belesiu | Landing algorithm error and movement types. and Figure
5.10.
Nathan Carlson Rech:?\rging sketches and docking station CAD zf;;epzfndix
drawings.
H.
Figure 3.16
Aaron Chung Docking station and octocopter circuit diagrams. and Figure
4.11.
Figure D.1
Phillip Coyle Recharging and docking concept sketches. and Figure
D.3.
. L Landing algorithm logic flow and movement selection F|gur§: >
Kirby Linvill process, and Figure
5.11.
Figure D.2
Megan Peekema | Recharging and docking concept sketches. and Figure
D.5.
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CHAPTER 11

Summary and Conclusions

11.1 Project Summary

The long term goal of UAVino is to create and offer a fully autonomous drone crop
inspection system to small-scale, local vineyards. Although that goal has not yet been
met, significant progress has been made during this project’s first year, which was
geared towards creating a proof-of-concept. Currently, the system consists of an
octocopter vehicle that has been modified with guidance rings for precision docking and
equipped with a multispectral imaging camera to take specialized photographs.
Automated landing has not yet been implemented, but significant progress has been
made, including the creation of a computer vision landing algorithm that identifies the
docking station and navigates the vehicle towards it. Despite the lack of precision
docking, the octocopter has collected numerous multispectral images, allowing for the
creation of post processing methods that output an easily interpreted data product
depicting crop health. Additionally, UAVino consists of a docking station that has
demonstrated capability of recharging the octocopter’s flight battery to extend mission
duration and range. In the future, wireless communication between this station and the
octocopter will be tested in order to allow for completely autonomous recharging. Once
functional, UAVino will be a complete system that seamlessly integrates with current
vineyard practices, meaning that it is a cost effective solution with minimal

infrastructure required for deployment.

By working in conjunction with a real-world customer to develop the UAVino, the end
result is one that is practical and has been demonstrated in actual application. Through
this type of verification, the system stands to make a real-world impact on the
agricultural industry. More generally, UAVino contributes to the growing field of
commercial drone applications by pushing the boundaries of autonomous drone

operations. Through its demonstration of precise automated landing capability, the
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project will hopefully stand as an inspiration for others to develop and expand similar

drone technology.

11.2 Future Work

Although the system is not yet complete, a solid foundation has been laid for future
teams to continue developing UAVino and ultimately reach fully autonomous mapping
capability. Undoubtedly, the system which is most difficult to develop and still requires
the largest amount of work to complete is autonomous docking. This year, the team
made solid progress towards using a vision camera and microprocessor to recognize and
navigate the drone towards the docking station, although actual autonomous landing
was not completed. Future teams will inherit the basic capability of controlling the
drone via this vision recognition algorithm, but will need to further develop consistent
and more accurate forms of judging the drone’s location in relation to the docking
station. A potential solution to this problem may include augmenting the current vision
system with infrared beacons or modulated lights in order to decrease false positive
identifications. Such a system may also help with yaw orientation control to align the
octocopter’s hoops with the docking station cones, which has yet to be implemented.
Additionally, more work is required to create and then tune a proportional-integral-
derivative control system to more accurately fly the octocopter with the vision guided
algorithm and reduce phenomena such as overshoot when attempting to center over
the station. Future teams will also need to implement the flight management algorithm
that controls overarching drone decisions, such as at what point the drone must stop
mapping and return to the docking station to recharge, as well as what sections of the
desired fields still require mapping during a mission. Finally, although framework for
wireless communication between the drone and docking station has been implemented,
this system still requires testing and debugging. Ultimately, these features are the key

elements that must be solved before a fully autonomous system is possible.

A great strength of UAVino is that the system is highly modular and therefore future

teams can augment the initial functionality to provide better crop health data. For
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example, a straightforward expansion is to collect infrared data in addition to
multispectral data, which would allow for direct measurement of soil and plant water
content in addition to overall health. The combination of these two monitoring
techniques could give vineyard owners a much more powerful picture of their field’s
health and provide insight on how to more effectively use water resources. Infrared
imagery would also open the doors to entirely different monitoring systems, such as

inspecting buildings for sources of heat loss.

UAVino is just a small subset of a much broader and more exciting movement towards
implementing drones for commercial applications. Therefore, this system is likely to be
presented with new opportunities as others work to develop new capabilities and make
drones more adept at completing complex tasks. In the future, UAVino could evolve into
a complex and comprehensive crop monitoring system that uses multiple drones
interacting on a real-time basis in order to more efficiently map larger areas of crops.
Overall, the future of drones and, with it, the future of UAVino, is a thrilling and ever-

expanding horizon that should be closely watched in the years to come.
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APPENDIX A

Product Design Specification

Revision: 5

Date: 26 May 2015

Datum: 3D Robotics X8 Octocopter

Table A.1: Product Design Specification

Elements / Requirements Units Datum Target / Range
System Cost Dollars 5,400 8,000
Octocopter Weight Pounds 5.4 7
Flight Time Minutes 12-13 10
Recharging Time Minutes 60 90
Setup Time Minutes 20
Octocopter Digital Storage Gigabytes 128
Multispectral Camera Battery Life | Minutes 120
Vision Camera Battery Life Minutes 120
System Mapping Capability Acres/Hour 2
Thermal Range Degrees Fahrenheit 32-104 30-105
Vision Algorithm Accuracy Inches 2.5
Octocopter Size Inches 24"x24"x8” 30”x24"x12”
Docking Station Size Inches 36”x24”x60”
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APPENDIX B

Customer Interview Questions

Below are the interview questions asked to Professor Christopher Kitts.

Because you envision UAVino as a possible multi-year project, what is the
ultimate long term value or goal of it? Is the idea simply to make money by
providing a service or product to vineyard owners, or is the return on investment
instead in the networking opportunities that might stem from developing
UAVino and gaining name recognition as a knowledgeable drone developer?

Is the ultimate end result of UAVino a product that you would ultimately sell to
vineyard owners to make a profit, or would you instead create a service using
that product and then rely on vineyard owners to contract with you when they
need vineyards inspected? Whether it's a product you sell, a service you provide,
or a combination, what's the motivation behind your answer?

As a stakeholder or investor, what are the primary concerns you have that might
result in UAVino being unsuccessful. Among these potential concerns, is there
any fear that UAVino might be 'white noise' given that the number of companies
seeking to make a profit via aerial mapping drones is growing rapidly?

Given that aerial mapping drones are aimed at a fairly niche market, how much
of that market would UAVino need to capture in order to be successful? If it will
ultimately be a product that you sell, how many units would need to be sold to
justify development costs? If it will be a service that you provide, how many

customers would you need in order to make it justifiable as a business venture?

Below are the interview questions asked to Thomas Adamek.

Do you see this product being more viable as a service which someone can rent,

or something to be bought and operated by the customer. Why?
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e What do you think is the potential long term value of this project as it may be a
multi-year project? What do you think future groups could expand upon?

e Does this project have any elements that stand out to you as fulfilling a unique
need in the field? If yes—what? If no—do you think it has potential to develop
in that direction?

e [s there anything we could do as a group to make a transition of this project to a
future team easier for you?

e Do you have any concerns that may keep this project form being successful?

Below are the interview questions asked to Lindsay Kalkbrenner.

e How can our project help on campus?

e How often do you do field inspections on campus?

e What are the safety restrictions and regulations for flying a UAV on campus?

e What types of data do you want collected?

e Would you be interested in working exclusively with future senior design teams?

e If we were selling our product, would you like to purchase the system for Santa
Clara University and be responsible for performing inspections, or would you
rather the Robotics System Laboratory provide field inspections as a service and

then contract this service as needed?

Below are the interview questions asked to John Aver of Aver Family Vineyards.

e What are the current methods you use for vineyard inspection?

e How often do you inspect the vineyard?

e Conceptually, what types of data would be useful to you in order to augment
current inspection technigues and help determine vineyard health information?

e Would you be willing to buy and then train yourself on the system we develop,
or would you prefer to have it available as a service provided by a company that
you could then call in on a regular basis?

e In general, what is the yearly cycle of your vineyard?
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Design Project = [UAVino System= |Enclosure Method

TARGET DESIGN IDEAS
or
CRITERIA FACTOR |1 =Baseline Hinged Enclosure |Accordian Overlapping Leaf
Tirne - Design 15 15 5 5 30
Tirme - Build 20 20 10 15 40
Tirne - Test 3 3 1 2 5
Time Score 10 10 3.89 583 18.89
Cost - Prototype $ 4000 |% 40.00 $ 20.00 $ 40.00 $100.00
Cost - Production $ 100.00 | $100.00 $ 70.00 $ 70.00 $200.00
Cost Score 10 10 6.00 850 22.50

Weight 6 3 18 1 6 1 6 2 12
Size 4 3 12 1 4 1 4 3 12
Charging Time 15 3 45 3 45 3 45 3 45
Housing 1 3 3 4 4 3 3 1 1
Positioning 19 3 57 B 38 2 38 4 76
Precision
Asthetics 3 3 9 A 6 2 6 5 15
Reliability 14 3 42 4 56 3 42 1 14
Safety 16 3 48 4 64 4 64 2 2
Ease of 14 3 42 A 28 2 28 1 14
Manufacturing
Setup Time

TOTAL

RANK

% MAX

MAX

Figure C.2: Ranking of enclosure design concepts using decision matrix.
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Design Project = [UAVino System=\Positioning Method

TARGET DESIGN IDEAS
or
CRITERIA FACTOR |1=Baseline PE Positioning Magnetic
Time - Design 10 10 50 10
Tirne - Build 30 30 &0 15
Tirne - Test 5 5 20 5
Time Score 10 10 36.67 833
Cozt - Prototype 50 50 150 20
Cost - Production 100 100 200 50
Cost Score 10 10 25.00 450

Weight 6 3 18 3 18 4 24
Size 4 3 12 4 16 4 16
Charging Time 15 3 45 3 45 3 45
Housing 1 3 3 5 5 4 4
Positioning 19 3 57 2 38 1 19
Precision
Asthetics 3 3 9 4 12 4 12
Reliability 14 3 42 2 28 1 14
Safety 16 B 48 4 64 4 64
Ease of 14 3 42 1 14 4 56
Manufacturing
Setup Time

TOTAL

RANK

%9 MAX

MAX 300.0

Figure C.3: Ranking of positioning method concepts using decision matrix.
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Design Project = [UAVino

System= |Charging Method

TARGET DESIGN IDEAS
or
CRITERIA FACTOR |1=Baseline Connector Inductance
Time - Design 20 20 20 30
Tirne - Build 40 40 40 40
Time - Test 15 15 30 30
Time Score 10 10 1333 15.00
Cost - Praototupe i 100 | % 100 $ 200 3 150
Cost - Production % 150 | % 150 $ 200 ) 150
Cost Score 10 10 16.67 12.50

Weight 6 3 18 2 12 4 24
Size 4 3 12 2 8 3 12
Charging Time 15 3 45 4 60 1 15
Housing 1 3 3 3 3 3 3
Positioning 19 3 57 1 19 5 95
Precision
Asthetics 3 3 g9 3 9 3 9
Reliability 14 3 42 4 56 3 42
Safety 16 3 48 4 64 4 64
Ease of 14 3 42 2 28 1 14
Manufacturing
Setup Time

TOTAL

RANK

% MAX

MAX 300.0

Figure C.4: Ranking of charging method concepts using decision matrix.
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APPENDIX D

Product Sketches
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Figure D.1: Charging concept design using contact plates. Drawing by Phillip Coyle.
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Charging concept design using induction. Drawing by Megan Peekema.

Figure D.2
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Figure D.3: Docking concept using cones for guidance. Drawing by Phillip Coyle.
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Figure D.5
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APPENDIX E

Project Timeline
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APPENDIX F

Project Budget

Expenses and donations for UAVino and any relevant notes regarding specific items are

listed in the tables below.

Table F.1: UAVino Donations

Component Cost Notes

Multispectral Imaging Camera $2,500 | Donated by Intel

Octocopter with Telemetry $1,500 | Provided by SCU RSL

Edison Microcontroller S99 Intel Edison Donated by Intel
Santa Clara University School of Engineering | $3000

ASME Silicon Valley Section $750

Total $7,849

Table F.2: UAVino Expenses

Component Cost Notes

Multispectral Imaging Camera $2,500 | Donated by Intel
Octocopter with Telemetry $1,500 | Provided by SCU RSL
Octocopter Hardware and Electronics $450 Intel Edison Donated by Intel
Docking Station Hardware $300

Docking Station Electronics S600

Travel $350

Bench testing Electronics S350

Total $6,050
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APPENDIX G

System Inputs, Outputs, and Constraints

Table G.1: Inputs

Docking Station:

External power source used for charging

Octocopter:

GPS position data used by the vehicle’s autopilot

Flight plan coordinates from mission planner

Rate of image capture

Height from radar altimeter

Battery Power

Visual positioning data from onboard camera

Ground Control Station:

Coordinates for mission planner in order to control flight
path of octocopter

Image Data

Battery Power

Table G.2: Outputs

Docking Station:

Power to lithium polymer battery on octocpoter

Passive positioning assistance for octocpter as it lands

Octocopter:

Thermal/multispectral images

Ground Control Station:

Normalized Vegetation index

Water content data

Flight path for octocopter generated by algorithm based on
waypoint data

Table G.3: Constraints

Docking Station:

Charging rate of chosen charging method

Cannot interfere with propellers of octocopter as it is landing

Needs to be able to be carried by two people easily

Contacts must be protected so station is electrically
safe/isolated

Must provide level surface on which the octocopter can land

Octocopter:

Weight of payload octocopter is able to carry

Limited accuracy of positioning based on GPS coordinates

Flight time based on battery life

Memory for data storage of images

Ground Control Station:

Processing Power of system used
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APPENDIX H

Detailed Assembly and Parts Drawings
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APPENDIX |

Determining Ground Sample Distance Constant

Ground Sample Distance (GSD) is the ground distance represented by a pixel in an
image. It is roughly linear with respect to the distance between the camera and the
ground, which is approximated by the octocopter’s altitude. The GSD is calculated by

multiplying the relative altitude by a constant, ¢, where

_ Pixel Size
= Focal Length

Reliable details for the pixel size and focal length of the Mobius vision camera were not
readily available. Therefore, this constant was determined experimentally by setting the
camera at a known fixed distance away from a target, measuring the true distance from
the target to a secondary marker, and then measuring the pixel distance from the target

to the marker. The constant is calculated as

True Distance

Cc =
(Pixel Distance)(Camera distance)

The pixel distance was calculated using OpenCV to detect the target using a Haar
Cascade classifier and measuring the distance between the center of the detected target
and the marker. The measurement was repeated for four different positions of the
target at each distance and was repeated ten times for each position. The target was

positioned:

e Above the center of the camera frame
e Below the center of the camera frame
e To the left of the center of the camera frame

e To theright of the center of the camera frame

The calculated constant for each position and camera distance is shown in Table I.1
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Table I.1: Average GSD Constant values for each camera distance and position

Camera Distance Target Above Target Below Target Left of Target Right of

(inches) Center Center Center Center
72 0.00206214 0.002142313 0.002374061 0.002518516
108 0.002048804 0.002132202 0.002300974 0.002465543
144 0.002179538 0.000930099 0.000749191 0.00240162
180 0.002145062 0.002242788 0.002283587 0.002437097
216 0.002083795 0.002336668 0.002235786 0.002481399

The constants calculated for the Y positions (above and below) and for the X positions
(left and right) resulted in different GSD constants. This is likely due to the Mobius’
fisheye lens, which causes some distortion. The variance in measurements grew as
camera distance increased, so the final GSD x and GSD y constant was calculated using

only the measurements at distances 72 inches and 108 inches. The final constants are
GSD, = 0.002414773

GSD,, = 0.002096365
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APPENDIXJ

Product Datasheets

Product Brief

intel/ Edison

Intel® Edison
Development Platform

Introduction

-

20 digital input/output pins, Intel® Edison Breakout Board

including 4 pi PWM
The Intel® Edison development e Ue e A pinsas Slightly larger than the

platform is designed to lower the outputs. ) Intel® Edison module, the

barriers to entry for a range of + 6analog inputs. Intel® Edison Breakout Board has
inventors, entrepreneurs, and +« 1 UART (RogfTx). a minimal set of features:
consumer product designers to 1 .

rapidly prototype and produce 1IFC . Eudposes niﬂ:l\ie 1.8V I/O of the
“Internet of Things” (loT) and + 1ICSP &-pin header (SPI). 1son modute.

-

wearable computing products. Micro USB device connector OR 0.1 inch grid 10 array of

-

{via mechanical switch) through-hole solder points.
Intel® Edison Board for Arduino® dedicated standard size USB « USB OTG with USB Micro
Supports Arduino Sketch, Linux, host Type-A connector. Type-AB connector.
Wi-Fi, and Bluetooth. + Micro USB device (connected to + USB OTG power switch.

UART).

Board 1/0: Compatible with + Battery charger.

Arduino Uno (except 4 PWM * SD card connector. « USB to device UART bridge with

instead of 6 PWM): « DC power jack (7 to15 VDC USB micro Type-B connector.
input).

+ DC power supply jack (7 to
15 VDC input).

Intel® IoT Analytics Platform

Provides seamless Device-to-
Device and Device-to-Cloud
communication.

-

PEEW

-

Ability to run rules on your data
stream that trigger alerts based
on advanced analytics.

Foundational tools for
collecting, storing, and
processing data in the cloud.

Free for limited and
noncommercial use.

-

-

=)
—i
-
(2]
xza
=
i
[}
-
=
-
m
o]
-]
—
s
e

Figure J.1: Intel Edison datasheet (Page 1)
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Intel® Edison Development Platform

Form factor Board with T0-pin connector

Dimensions 355 = 250 = 3.9 mm (1.4 = 1.0 = 0.15 inches) max
CfM/fF Blue PCB with shields f Mo enclosure

Connector Hirose DF40 Series (1.5, 2.0, or 3.0 mm stack height]
Operating temperature 32 to 104°F [0 to 40°C)

EXTERMAL INTERFACES
Total of 40 GPI0s, which can be configured as:

SO card 1 interface
UART 2 controllers (1 full flow control, 1 RxTx)
12 2 controllers
SPI 1 controller with 2 chip selects
125 1 controller
GRIO Additional 12 [with 4 capable of PWHM)
Us8e 2.0 1 OTG controller
Clock output 32 kHz, 19.2 MHz
SoC 22 nmi Intel® SoC that includes a dual-core, dual-threaded Intel® Atom™ CPU at 500 MHz and a 32-bit
Intel® Quark™ microcontroller at 100 MHz
RAM 1 GE LPDDR32 POP memory
(2 channel 32bits @ B00MT fsec)
Flash storage 4 GB eMMC [wd.51 spec)
WiFi Broadcom* 43340 802.11 a/bfg/n;

Dual-band (2.4 and 5 GHz)
Onboard antenna or external antenna (SKU configurations)

Bluetooth Bluetooth 4.0

Input 33045V

Output 100 ma @3.3Vand 100 ma @ 1.8V
Power Standby (Mo radios): 13 mw

Standby (Bluetooth 4.0): 21.5 mW [BTLE in Q4-14)
Standby [Wi-Fi): 35 mw
FIRMWARE + SOFTWARE
CPUOS Yocto Linux® v1.6
Development environments Arduino® IDE
Eclipse supporting: C, C++, and Python
Intel XDK supporting: Mode_I5 and HTMLS
MCU 0% RTO=
Development environments MCU SDK and IDE

Tt ity T Changies o SecHiCTtinns and rocurt eSTiptions at 2y 1, wWithiit notice. DEesigris st i nely o this 3baanae oF Craracienstics of any feaiures o insructions

iarkie eSS o *LNCIFNGCT el NESEVES these for AN Cenion and Srall KAt N nespOrEbiRy waCoeer for Con TS or iNCOMmpasbilises ariing DM LR canges I them. n #
The irvlormation hene i subject 1o change without nofice. Do not finalize 2 desigr with s infonmation,
Contact your local Iniel sakes. ofiop or your distribuon o obriain the lest spedifications and beloee placing your produc arder. l n

Coypies of documents which Fawve an order number and ane redenenced in this dooument, o ofes inoel literaine, may be abvained by cilling 1-800-54B8-4775 or by visking iniel's webshe
at e s el comydesignyiteratune b,

e R TEESED TAETIEETS 3 ot 3 M of performrance:. PIOCEssor nsmbers ciflenenting features within each proosssor family, not arroes different processor farmibes.

S ity il oo produCSprocess_number ior detls

inind, the inkel kg, Siom, Pentium, Quark, and ¥eon ane vademanks.of inbel Corporation in the United States and ofer counries.

"Deher rarmes and brands may be daimed as the property of cihers.

Cogrgright & 2014 Inbed Conporation. All ighis resenec. 3 Piease Recyde 321179-001

Figure J.2: Intel Edison datasheet (Page 2)
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RB-Trs-32
3DR PX4 Pixhawk Advanced Autopilot

Pixhawk is an advanced autopilot system designed by the PX4 open-hardware project and
manufactured by 3D Robeoties. It features advanced processor and sensor technology from ST
Microelectronics® and a NuttX real-time operating system, delivering incredible performance,
flexibility, and reliability for controlling any autonomous vehicle.

The benefits of the Pixhawk system include integrated multithreading, a Unix/Linux-like programming
environment, completely new autopilot functions such as Lua scripting of missions and flight behavior,
and a custom PX4 driver layer ensuring tight timing across all processes. These advanced capabilities
ensure that there are no limitations to your autonomous vehicle. Pixhawk allows existing APM and
PX4 operators to seamlessly transition to this system and lowers the barriers to entry for new users to
participate in the exeiting world of autonomous vehicles.

The flagship Pixhawk module will be accompanied by new peripheral options, including a digital
airspeed sensor, support for an external multi-color LED indicator and an external magnetometer. All
peripherals are automatically detected and configured.

Features

* Advanced 32 bit ARM Cortex® M4 Processor running NuttX RTOS

* 14 PWM/servo outputs (8 with failsafe and manual override, 6 auxiliary, high-power
compatible)

« Abundant connectivity options for additional peripherals (UART, I2C, CAN)

* Integrated backup system for in-flight recovery and manual override with dedicated processor
and stand-alone power supply

* Backup system integrates mixing, providing consistent autopilot and manual override mixing
modes

* Redundant power supply inputs and automatic fatlover

* External safety button for easy motor activation

Figure J.3: Pixhawk datasheet (Page 1)
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*  Multicolor LED indicator
* High-power, multi-tone piezo audio indicator
+ microSD card for long-time high-rate logging

Specifications

Microprocessor
* 32 bit STM32F427 Cortex M4 core with FPU
+ 168 MH#/256 KB RAM/2 MB Flash
* 32 bit STM32F103 failsafe co-processor

Sensors
* ST Miero L3GD20H 16 bit gyroscope
* ST Micro LSM303D 14 bit accelerometer / magnetometer
*  MEAS MS5611 barometer

Interfaces

*  5x UART (serial ports), one high-power capable, 2x with HW flow control

*+ 2x CAN

*  Spektrum DSM /DSM2 / DSM-X® Satellite compatible input
* Futaba S BUS® compatible input and output

*  PPM sum signal

+ RSSI(PWM or voltage) input

+ [I2C®

+ SPI

* 33 and 6.6V ADC inputs

+ External microlUUSB port

Power System
* Ideal diode controller with automatic failover
+  Servo rail high-power (7 V) and high-current ready
*  All peripheral outputs over-current protected, all inputs ESD protected

Weight and Dimensions
*  Weight: 38g (1.310z)
+  Width: 50mm (1.96")
+ Thickness: 15.5mm (.613")
* Length: 81.5mm (3.21")

Figure J.4: Pixhawk datasheet (Page 2)

171



TOP BOTTOM

Basic Specifications:

. Rechargeable LIPO Battery (820mah), with
Battery Charger Manage IC

Video: 1080P 30FPS FULL HD, 720P 80FPS,
T720P 30FPS HD H.264/AVC1 video codec,
selectable file format.

. Photo: 2304 x 1536, 1920 x 1080, 1280 x 720, =t
supports Time Lapse Photo Shooting
. microSD card slot, supports up to 32GB (some
64 & 128GB cards), must use Class 4 or above.
- USB2.0, plug and play, easy connection with
computers, no driver needed. —
. Live TV video output while recording videos with }——1 .38in ——‘
the TV out cables (TV out cable sold separately) : Record
. Super mini size, only around 61mm (L) x 35mm FRONT BACK indicator
(W) x18mm (H) _T_
. Super light-weighted: only approx 38g! 70in

Multifunctional, you can use it as an ActionCam,
GunCam, BowCam, Pocket camcorder, sports
camera, driving recorder, a camera, a webcam, a

USB Slot  TF Card Slot

removable USB drive.

What's special about this Mobius ActionCam?

1.It's a camera designed and developed by users and for users. And it's on-going. We will keep improving this
camera and add more features by firmware updating. If you have any feedback / comments / suggestions,
please contact us!

2. This camera is so small and light, and it has wide field of view with minimum fisheye distortion. It has a quality
lens and it has outstanding image quality, corner to corner sharpness and uniform brightness across entire
frame. Check out the video samples here, and from other users. Also check out the great Mobius forum
maintained by Tom Frank. You will get plenty of helpful information there as well.

3. This camera ships with most updated and stable firmware of the time, and it works perfectly out of box. Don't
worry about the complicated settings (actually it's not complicated at all, you will find it fun and easy later).

4 Below is a list of the current Mobius settings for the current firmware version; and there will be more to follow.

Figure J.5: Mobius datasheet (Page 1)
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. Set the video resolution and frame rate for Video Mode 1 & 2 separately.

. Selectable Video Resolutions (1080p, 720p & WWGA)

. Selectable Video Frame Rates (5 fps, 10 fps, 15 fps, 20 fps, 25 fps, 30 fps, 50 fps, 60 fps) to corresponding
resolutions.

. Field of View (FOV) Narrow & Wide selectable to corresponding resolutions.

. Set Photo Size (2304x1536,1920=x1080,1280=720, 848=480)

Set Time Lapse photo shooting (from 0.25s a photo to 30s & custom with Day, Hours & Minutes settings)

Video Clip length/Movie Cycle Time (3minutes, Sminutes, 10 minutes, 15 minutes, and max to 4G byte)

. Time Lapse Video; (0.25s, 0.5s, 1s, 2s, 5s, 10s, 30s & custom with Hours & Minutes settings)

. Video Motion Detect with Sensitivity & Timeout Settings

. Video File Type selectable; MOV, AVI, MP4 or WAV (sound only)

- Video Image Settings; user configurable; Sharpness, Exposure, Contrast, Saturation, Color Options, White

Balance)

You can set loop recording On or Off

- You can set time stamp on or off

. You can mute the video sound if needed.

. You can flip the video 180 degrees (when you use the camera upside down)

- You can set the Movie qulity (Low, Standard, High, default is Standard)

. You can set WDR (Wide/High Dynamic Range) for low light filming.

To avoid camera sudden powering on in your pocket, you can set the power on delay.

- You can auto power off waiting time and set it off.

. You can set Auto record on with power (helpful when using Mobius as Driving recorder / Car Dash Camera)

. You can set the LED indicator light off if needed (default is on).

. If you use Android devices, you may use them to set this camera or view your videos. (App can be located and
downloaded from the Google store, by Theau2000)

. You can set TV out video mode and 4:3 or 16:9.

5. The camera can be configured manually by editting the SYSCFG.txt, but it is suggested to us Isoprop’s great
windows GUI (msetup). The simple and extremely user-friendly program is fully plug-and-play and includes an
integrated User Manual. (a similar tool for Mac based systems also exists; MobiusManager.App)

Figure J.6: Mobius datasheet (Page 2)
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Charger specifications

For battery types Lithium Polymer (1s to 45 balanced, 15 to 25 unbalanced)*
Lithium lon (15 to 45 balanced, 15 to 25 unbalanced)
Lithium Manganese (15 to 48 balanced, 15 to 25 unbalanced)
A1Z3 (25 1o 45 balanced, 15 to 55 unbalanced)”
MiCd (15 o 12g)
MiMH {15 to 125)
&Y and 12V Lead Acid batteries
Pack capacity SmaAh to 32Ah (charge time limited to maximum of 8 hours)
Input voltage 10 to 16VDC, reverse polarnity protected
Input current 58 masdimum
Power comversion 125kHz switcher operating at 90% efficency
Dwitput current Up to 44
Cell balancing To within SmV/ fior 2 to 4s LiPo, Li-lon, Li-Mn or A123 packs
Voltage calibration Cell voltage measurements are factory calibrated to a standand
traceable to NIST, calibration iz to +6m\y
Current calibration Charge current is factory calibrated on a 44 standard; calibration is to

+1mib,

Meagsurement accuracy

Voltage: +6m\/

Charge current: +1%
Capacity added to pack: 1%
Percent capacity (“Fuel”). +5%

Serial data output

19.2kbps, B bite, 1 start bit, 1 stop bit, mo parity

“champer can be used with balanced 25 fo 45 packs having a nogde connechor (am
appropriate FWA adapler may be required)

Figure J.7: Revolextrix CellPro Multi4 datasheet
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‘ Raspberry Pi

MODEL B+

Product Name

Product Descripfion

Specifications
Chip

Core architecture
CPU

GPU

Memory
Operating System

Dimensions
Power

Conneciors:
Ethernet
Video Qutput

Audio Output
usBe

GPIO Connecilor

Camera Conneclor

JTAG
Display Connector

Memory Card Slot

Raspberry Pi Model B+

The Rospbamry Pl Model B+ Incorporates a number of enhancemants
and new features. Improved power consumption, iIncrecsed
connecthity and gredater 10 are armong the Improvemnents to this
powerful, small and lightwelght ARM bosed computer.

Broadcorn BCM2835 SeC

ARMII

700 MHz Low Power ARM1176JZF5 Applications Processor
Dual Core VideoCore IVE Mullimedia Co-Processor

Provides Open GL ES 2.0, hardware-accelerated OpenvG, and
1080030 H.254 high-profile decode

Capabla of 1Gpixel/s. 1.5Gtexalfs or 24GFLOPs with texture fitedng
and DMA Infrastructure

512MB SDRAM

Boots from Micro S0 card, running a version of the Linux operating
system

85x 56 x 17rnm
Micro USE sockat 5V, 24

104100 BaseT Ethernat socket

HDMI (ren 1.3 & 1.4)

Compoesite RCA (PAL and NTSC)

3.5mm jock, HOMI

4 x USE 2.0 Connector

40-pin 2.54 mm (100 mil) expansion header: 2x20 stip

Providing 27 GPIO pins as well as +3.3 ¥, +5 V and GND supply lines
15-pin MIPI Camera Seral Interfoce (C51-2)

Not populated

Display Seral Interface (DS 15 way fiat flex cable connector
with two data lanes and a clock kane

SDIC

Figure J.8: Raspberry Pi datasheet
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Easy Network, Trustable

AC1200 Wireless D
USB Adapter

WF2190

Rc 7| mma B
EET Mem SdBi USE 10 ok AP
- r
L]
@ IR & 4O
—WPs mmin s F N
Features:

=Maximum speed up to 2.4GHz 300Mbps and 5GHz 867Mbps

=Integrate the latest B802.11 AC technology, use in 2.4 G or 5 G Networks

=2 * 5dBi detachable antennas allowing for stronger antenna upgrades

=Advanced security feature with the latest WPAZ encryption to protect the network

»Easy connection to a wireless network at a push of the WPS button

=Access Point feature to set up a Wi-Fi hotspot to share the Internet

»Easy to install and configure with the setup CD and utility

Erief.

The netis WF2190 is designed to connect a desktop or notebook computer to a wireless network and access high-
spead Internet connection. It's compatible with 802, 11a/b/g/nfac devices and provides the wireless transfer speed
up to 2 4GHz 300Mbps or 5GHz B6 TMbps, offering a better performance on online gaming, HD video streaming,
and VolP phone calling. With the 802.11n MIMO and 802_11ac technology, It ensures a strong and stable wireless
connection and allows you to enjoy the wireless freedom around your home. Moreover, it features with a WPS
button which helps you easily setup a secure wireless connection in a snap.

www. netis-systems.com

Figure J.9: Netis AC1200 Wireless Adaptor datasheet (Page 1).
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AC1200 Wireless Dual Band USB Adapter

Specification:

WF2190

Etandards IEEE B0Z. 11 a/biginiac
2.4GHz Up 1o 300Mbgs;

Signal Rats 5GHz UP 1o BETMbgs
2.4-7 4835GHZ

TaqueRCY Fange 5.180-5.825GHT

Wireless Mode Statlon, Access Point

Wiralass Socurity Suppart 64/128-bit WEF, WRA-PEKAWPAZ-PSK, B0Z.1 X

Part usBa0

Butsan WPE

DimensionsiLx W xH ) 92.5% 27 w15 mm

Others

Cartification FCC, CE, KC

Windows XF (32064bits ), Windows Visia (32/64bits),

Windows 7 {32/E4bils), Windows & [32/54bits),
System Requirgments Windows 8.1 [ 3284bits )

Linue (a5 Uburitu 12.10¢13.04/13,10/14.10);

Mac OF 10,401 0.5M0.6/1 0.7110.8/1 0.8/10.10

— Dpaorating Temparature: FFC-40°C Storage Temperaiure: -40°C-T0°C
i Dperating Humidity: 10%-90% non-condensing Storage Humidity: 5%-90% nor-condansing
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Figure J.10: Netis AC1200 Wireless Adaptor datasheet (Page 2).
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Specifications

3.2 megapixel CMOS sensor, 2048 x 1536
Sensor Image Array 6.59x4.9 mm
Sensor pixel pitch 3.18 um.
Permanently mounted long pass filter in front of lens
Image storage to micro SD cards in Tetracam RAW or DCM lossless format
Miniature 8.3 mm fixed focus and aperture lens
USB Disk interface
Multi-pin /O connector for use with Tetracam designed accessories

Image Capture (speed dependent on SD card features)

Capacity: (DCM10) Approx. 2.3MB per image
(RAW10) 6.15MB per image
(RAWS) 3.07MB per image

Rate: (DCM10) Capture to end of cycle: 7 sec.
(RAW10) Capture to ready : 2.8 sec.
(RAW 8) Capture to ready : 3 sec.

Inputs

6to12 VDC

RS-232 For user controls and NMEA GPS sentences
External Trigger

USB 2.0 Data Connection

Outputs

NTSC or PAL video
USB 2.0 Data Connection

ADC Micro Dimensions

45x3.0x09in. (75 mm x 59 mm x 33 mm) lens included
3.53 oz. (100 gr.)

Figure J.11: Tetracam ADC Micro datasheet.
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APPENDIX K

UAVino Charge Control Source Code

CellproMulti4.py

#!/usr/bin/env python

import time
import RPi.GPIO as gpio

relayPin = 11

class CellproMultid4:
def init (self, communication object,charger number=0) :
self.communication object = communication object
self.charger number = charger number

gpio.setmode (gpio.BOARD)

print 'Setting up pin %d' % self.pin
gpio.setup (relayPin, gpio.OUT)
gpio.output (relayPin, gpio.LOW)

def SelP(self, preset num):
to _send string = "SelP" + chr(preset num)
crc =
self.communication object.sendStringAndFetchCRC(to_send string)
#TODO: calculate CRC
return True

def Sel(self, command letter):
if ( command letter in ['B'] ):

to _send string = "Sel" + command letter
crc =

self.communication object.sendStringAndFetchCRC (to_send string)
return (crc == 0x05DC)

#print self.communication object.sendStringAndFetchBytes (
to send string, 149 )
else:
raise Exception ("Invalid Command Letter %$s" %
command letter)

def start charge(self):

status = self.get status()

if( status["mode"] == 0 ):
self.Sel('B') # go to confirm battery phase
time.sleep(2)
status = self.get status()
time.sleep (2)
if( status["mode"] == ): # ensure no error
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self.Sel('B') # start charging battery
gpio.output (relayPin, gpio.HIGH)
return True

def stop(self):
status = self.get status()
if( status["mode"] in [6,7,8,9,11] ):
if( self.Sel('B'") ):
time.sleep (1)
status = self.get status()
if( status["mode"] == 0 ):
gpio.output (relayPin, gpio.HIGH)
return True
return False

def choose preset( self, number ):

if ( type (number) == type(0) and number >= 0 and number <= 24 ):
return self.SelP( number )

else:
raise Exception( "Invalid preset %d" % number )

def isError(self, status=None):
if not status:
status = self.get status()
return status["mode"] == 99

def clear error(self, status=None):
if not status:
status = self.get status()
if( status["mode"] == 99 ):
if( self.Sel('B'") ):
time.sleep (1)
status = self.get status()
if( status["mode"] == 0 ):
return True
return False

def isCharging(self, status=None) :
if not status:
status = self.get status()
return True if status["mode"] in [6, 7] else False

def get status(self):
ret = {}
raw_byte array =
self.communication object.sendStringAndFetchBytes (
"Ram"+chr (self.charger number), 149 )
print raw byte array
print len(raw byte array)
#print raw byte array.index (20)
def word( first index ):
return
(raw_byte array[first index]<<8)+raw byte array[first index+1]
def dword( first index ):
return (word(first index)<<16)+word(first index+1)
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def sword( first index ):
ret = word(first index)
if( ret >= 32768 ):
ret = ret - 65536
return ret

ret["mode"] = raw byte array[-13]
ret ["loaded preset"] = raw byte array[84]
ret[nversion"] = raw_byte_array[o] /100'0

#TODO: cell voltages calculate incorrectly
#ret["cell voltages"] = [ x * 5.12 / 65536 for x in
[word (i*2+1) for i in range(0,4)] ]

self.last status = ret
return ret
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CellproMulti4 Serial.py

#!/usr/bin/env python

#runs on
#inspired by https://github.com/coryrc/battery-cycler
import serial,time

class CellproMultid Single Serial:
def init ( self, serialPortFilename ):
self.filename = serialPortFilename
self.open ()

def sendStringAndFetchCRC(self, some string):
result = self.sendStringAndFetchBytes (some string, 2)
return (result[0]<<8)+result[l]

def sendStringAndFetchBytes(self, some string, number bytes):
try:
self.usbSerialInterface.flushInput ()
self.usbSerialInterface.write (some string)
self.usbSerialInterface.flush{()
s ret =
self.usbSerialInterface.read (number bytes+len(some string))
except OSError, e:
print "Serial port no longer exists"
self.usbSerialInterface.close ()
self.open()
return self.sendStringAndFetchBytes (some string,
number bytes)
retList = [ord(x) for x in s ret]
for i in range (0, len(some string)):
del retList[0]
return retlist

def open(self):
attemptNum = 1
while (attemptNum <= 10) :

try:

self.usbSeriallInterface = serial.Serial(self.filename,
19200, timeout=.2)

return

except serial.serialutil.SerialException, e:
print "Open serial error: " + str(e)
time.sleep (2)
attemptNum += 1

exit (1)

def close(self):
self.usbSerialInterface.close()

182



ChargeRoutine.py

import CellproMultié
from CellproMulti4 Serial import CellproMultid4 Single Serial
import time

if name == " main ":

communication = CellproMulti4 Single Serial ("/dev/ttyUSBO")
chargerController = CellproMultid.CellproMultid (communication)

chargerController.clear error ()

print chargerController.get status()
chargerController.start charge()
print chargerController.get status()

#get status once, no need to constantly keep getting more statuses
status = chargerController.get status()
while chargerController.isCharging(status):
if chargerController.isError (status):
chargerController.stop()
chargerController.clear error()
exit(l) #failsafe state, return with error status 1,
overlying script will handle error
time.sleep (10)
status = chargerController.get status()

exit (0)

183



APPENDIX L

UAVino Landing Control Source Code

DetectObject.py

mrrn

Contains methods used to detect and display targets using OpenCV

mrmrn

__author = 'Kirby'
import cv2
import cv

# Returns detected targets
def detect targets(frame, cascade):
gray = cv2.cvtColor (frame, cv2.COLOR BGR2GRAY)
cv2.equalizeHist (gray, gray)
targets = cascade.detectMultiScale(gray, 1.1, 2,
cv.CV_HAAR SCALE IMAGE, (30, 30))
return targets

# Displays an image with boxes around the detected targets
def display targets(frame, targets):
for (x, y, w, h) in targets:
# Draws a bounding rectangle around the object and a small
rectangle at the center of the object
cv2.rectangle (frame, (x, y), (x+w, y+h), (0,255,0), 8)
cv2.rectangle (frame, (x + w/2 - 5, y + h/2 - 5), (x + w/2 + 5,
y + h/2 + 5), (0,255,0), 8)
cv2.imshow ("Detected Objects", frame)

def detect and display targets(frame, cascade):
targets = detect targets(frame, cascade)
display targets (frame, targets)

# Overlays boxes around the detected targets and returns the image
def overlay targets(frame, targets):
for (x, y, w, h) in targets:
# Draws a bounding rectangle around the object and a small
rectangle at the center of the object
cv2.rectangle (frame, (x, y), (x+w, y+h), (255,0,255), 8)
cv2.rectangle (frame, (x + w/2 - 5, y + h/2 - 5), (x + w/2 + 5,
y + h/2 + 5), (255,0,255), 8)
return frame

# saves an image to the given file
def save image (frame, save file):
return cv2.imwrite (save file, frame)
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GenerateDirections.py

mmrn

Contains methods that generate the directions needed to center a camera

over a target
mmrn

__author = 'Kirby'
import Command as cmd

# Speed in cm

# TODO: figure out good default speeds (maybe tiered system, close and
not close)

default speed = 20

# divide the altitude by this each time until close to the ground
# TODO: figure out both this factor and the altitude threshold
altitude descent factor = 2

# Values used to check to see if the object is '"close enough" to
# the center of the target (in pixels)

# TODO: figure out the desirable center buffer

center width = 80

center height = 80

center width buffer = center width / 2

center height buffer = center height / 2

def get next command(obj center x, obj center y, pic width, pic height,
current altitude, GSD constant x, GSD constant y):

mrmrn

Generates directions needed to center a camera over a target

This method generates directions for a mobile camera

and stationary target. A stationary target is not required but the
camera must be mobile. If instead you want to

center a target using a stationary camera, the horizontal (xy)
directions generated by this function should be

reversed.

:param obj center x:

:param obj center y:

:param pic width:

:param pic height:

:param current altitude:

:param GSD constant x:

:param GSD constant y:

mrrr

dist per pixel x = GSD constant x * current altitude
dist per pixel y = GSD constant y * current altitude
pic center x = pic width / 2

pic center y = pic_height / 2

x dist =0
y_dist 0
z dist 0
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# TODO: add in code to orient the drone by rotating if needed

# Calculate x direction movement (+x 1is right, -x is left)
if abs(obj center x - pic center x) > center width buffer:
x _dist = (obj center x - pic_center x) * dist per pixel x

# Calculate y direction movement (image y direction which means 0
is at the top)
if abs(obj center y - pic_center_ y) > center height buffer:
y _dist = (obj center y - pic center y) * dist per pixel y

# Move 1n the z direction

if x dist == 0 and y dist == 0:
# TODO: add in positive z direction for the sake of completion
z dist = (current altitude -

current altitude/altitude descent factor)
next command = cmd.Command (cmd.CommandKind.Z TRANSLATION,
frame=cmd.RefFrame.BODY,
vector=cmd.Vector (x=0, vy=0,
z=z dist), speed=default speed)

# Move in the xy plane
else:
next command = cmd.Command (cmd.CommandKind.XY TRANSLATION,
frame=cmd.RefFrame.BODY,
vector=cmd.Vector (x=x_dist,
y=y dist, z=0), speed=default speed)

return next command
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c constructs.py

mmrn

Contains the class definitions needed to emulate some useful C

constructs

Currently only enums are implemented

mmrn
__author = 'Kirby'

class Enum(set):

mrrn
Helper class to mimic C's enumerations
mrrn
def getattr (self, name):

if name in self:

return name

raise AttributeError ('Invalid enumeration value')
def  setattr (self, name, value):

raise AttributeError ('Cannot change the value of an

enumeration')
def delattr (self, item):
raise AttributeError ('Cannot delete the value of an

enumeration')
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Command.py

mmrn

Implements the Command class which contains a command to send to a

copter
mmrn

__author = 'Kirby'
from math import radians, cos, sin, pi
from numpy import array, dot
from c constructs import Enum
For the **body frame**:
*A+X* % points **towards the right** side of the copter
**+Y** points **towards the back** side of the copter
*A4LZ 4% points **up away** from the copter
Rotations are yaw rotations
For the **NED frame**:
**X+X** points **North**
XALY* % points **East**
**+7**% points **Down** towards the Earth

Rotations are yaw rotations

Note: at yaw = pitch = roll = 0:

S e R R R S h e R R e S Sk R R YR Y S R R R R R R R R e

N = -Y
E =X
D= -2

#: Enumeration that indicates the type of command
CommandKind = Enum(["XY TRANSLATION", "Z TRANSLATION", "YAW ROTATION"])

# RefFrame should properly be an enumeration

# RefFrame represents the frame of reference of the command

# See the comments above CommandKind for explanations of each frame of
reference

#: Enumeration that indicates the frame of reference of the command
RefFrame = Enum(["BODY", "NED"])

class Vector () :

mmrn

Helper class that contains x, y, and z coordinates for a 3-
dimensional vector
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param x: x component vector
:param y: y component vector
:param z: z component vector
mrrn
def init (self, x=0, y=0, z=0):
self. x = x
self. y =y
self. z = z

@property
def x(self):

mmrn

Get x component

:return: x

mrrn

return self. x

@property
def y(self):

mrrn

Get y component

:return: y

mrrn

return self. y

@property
def z (self):

mrmrn

Get z component

:return: =z

mrmrn

return self. z

def str (self):
return "X: {:.2f} \tY: {:.2f} \tZ: {:.2f}".format(self. x,

self. y, self. z)

class Command() :

mmrn

Class containing a command to send to a copter

Creates either a translation command, 1in which case vector should
be set, or a rotation command, in which case
degrees should be set

:param command kind: kind of movement, either a translation or
rotation an attribute of an instance of CommandKind

:param frame: frame of reference, an attribute of an instance of
Frame

:param vector: desired movement vector, an instance of Vector,

command_kind must be a translation
:param degrees: desired yaw rotation in degrees, command kind must
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be a rotation
:param speed: desired speed in cm/s

mmrn

def init (self, command kind, frame, vector=None, degrees=None,
speed=10) :

if command kind in ([CommandKind.XY TRANSLATION,
CommandKind.Z TRANSLATION, CommandKind.YAW ROTATION]) :
if frame in ([RefFrame.BODY, RefFrame.NED]) :
self. command kind = command kind
self. frame = frame
self. speed = speed

if vector is not None and command kind not in
([CommandKind.XY TRANSLATION, CommandKind.Z TRANSLATION]) :
raise ValueError ('Error: Tried to pass in a vector
to a non-translational command kind')
self. vector = vector

if degrees is not None and command kind not in
([CommandKind.YAW ROTATION]) :
raise ValueError ('Error: Tried to pass in a degree
rotation to a non-rotational command kind')
self. degrees = degrees

else:

raise ValueError ('Invalid reference frame passed in')
else:

raise ValueError ('Invalid command kind passed in')

# Set translation parameters
def set translation params(self, vector=Vector(0,0,0), speed=10):

mrrn

Set vector and speed, command kind must be a translation

:param vector: desired movement vector, an instance of Vector
:param speed: desired speed in cm/s
if self. command kind in ([CommandKind.XY TRANSLATION,
CommandKind.Z TRANSLATION]) :
self. vector = vector
self. speed = speed
else:
raise ValueError ('Translation params function called for
invalid or non-translation command kind: '
+ self. command kind)

def set rotation params(self, degrees=0, speed=10):

mrmrn

Set degrees to rotate

:param degrees: desired degrees of yaw rotation

:param speed: desired speed in cm/s
mmrn

if self. command kind in [CommandKind.YAW ROTATION]:
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self. degrees = degrees
self. speed = speed
else:
raise ValueError ('Rotation params function called for
invalid or non-rotation command kind: '
+ self. command kind)

@property
def command kind(self):

mmrn

Get Command Kind

:return: command kind

mrmn

return self. command kind

@property
def frame(self):

mrmn

Get Frame of Reference

:return: frame of reference
mrrn

return self. frame

@property
def get vector (self):

mrrn

Get the move Vector

:return: vector

mrmrn

if self. command kind not in ([CommandKind.XY TRANSLATION,
CommandKind.Zz TRANSLATION]) :

raise ValueError ('distance value is a translation parameter
but has been requested by invalid or '
'non-translation command kind: ' +

self. command kind)

return self. vector

@property
def degrees(self):

mrrn

Get the rotation degrees

:return: degrees

mrmrn

if self. command kind in [CommandKind.YAW ROTATION]:

raise ValueError ('degrees value is a rotation parameter but
has been requested by invalid or '
'non-rotation command kind: ' +

self. command kind)

return self. degrees

@property
def speed(self):

mmrn
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Get the move/rotation speed

:return: speed

mmrn

return self. speed

def transform body to NED yaw only(self, yawd):
mmrn
Transforms Commands in the camera (body) frame to coordinates
in the NED frame but assumes that roll and pitch
are 0. The transform body to NED yaw pitch roll method should
be used instead since the yaw pitch roll method
is more accurate and the speed difference is negligible

:param yawd: current yaw in degrees
mrrn
if self. frame == RefFrame.NED:
# Already in NED reference frame
return
elif self. frame == RefFrame.BODY:
# convert from degrees to radians
yawr = radians (yawd)

self. vector = Vector(self. vector.x * -sin(yawr) -
self. vector.y * cos(yawr),
self. vector.x * cos(yawr) -
self. vector.y * sin(yawr),
-self. vector.z)
self. frame = RefFrame.NED

else:
raise ValueError ('Transformation from given reference frame
to NED reference frame not supported')

def transform body to NED yaw pitch roll(self, yawd, pitchd,

rolld):

mmrn

Transforms a Command in the camera (body) frame to a Command in
the NED frame. Use this method

instead of transform body to NED yaw only since this method is
more accurate. Though this method 1is

theoretically slower, the difference is negligible in practice

:param yawd: current yaw in degrees
:param pitchd: current pitch in degrees
:param rolld: current roll in degrees
if self. frame == RefFrame.NED:
# Already in NED reference frame
return
elif self. frame == RefFrame.BODY:
convert from degrees to radians
= radians (yawd)
= radians (pitchd)
r= radians (rolld)

T = %
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# The full transformation matrix, incorporates the yaw,
pitch, and roll matrices all multiplied together
# This method is the fastest

ypr mat = array([[cos(y)*cos(p), cos (y) *sin(r) *sin(p) -
cos (r) *sin(y), sin(r) *sin(y)+tcos(r) *cos(y) *sin(p) ],
[sin(y) *cos (p),
cos (r) *cos (y) +sin(r) *sin (y) *sin (p), cos (r) *sin(y) *sin (p) -
cos (y) *sin(xr) ],
[-sin(p), cos (p) *sin(r),
cos (r) *cos (p)11)
# directions: N = -y, E = x, D = -z
in vec = ([[-self. vector.y],

[self. vector.x],
[-self. vector.z]])
out _vec = dot (ypr mat, in vec)

# out vec is a 3x1 vector so N = [0][0], E = [1][0], D =
[2]1[0]
self. vector = Vector (out vec[0]([O0],
out vec[1][0],
out vec[2][0])
self. frame = RefFrame.NED

else:
raise ValueError ('Transformation from' + self. frame +
'reference frame to NED reference frame not supported')

def transform body to NED yaw pitch roll in rads(self, yawr,
pitchr, rollr):
Transforms a Command in the camera (body) frame to a Command in
the NED frame. Use this method
instead of transform body to NED yaw only since this method 1is
more accurate. Though this method 1is
theoretically slower, the difference is negligible in practice

:param yawr: current yaw in radians
:param pitchr: current pitch in radians
:param rollr: current roll in radians

o

yvawd = yawr * 180 / pi
pitchd = pitchr * 180 / pi
rolld = rollr * 180 / pi

self.transform body to NED yaw pitch roll(yawd, pitchd, rolld)

def str (self):
return string = "Command Kind: \t" + self. command kind
return _string += "\nFrame of Reference: \t" + self. frame

if self. command kind in [CommandKind.YAW ROTATION]:
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return string += "\nDegrees: \t" + str(self. degrees)
else:
return string += "\n" + str(self. vector)

return string += "\nSpeed: \t" + str(self. speed)

return return string
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CommandToMAVLink.py

mmrn

Contains methods that convert directions to actionable MAVLink commands

for use with droneAPI
mrrn

__author = 'Kirby'

from numpy import multiply

from numpy.linalg import norm

from time import time, sleep

from geopy.distance import vincenty
from droneapi.lib import VehicleMode
from pymavlink import mavutil

from constants import command wait

def change mode (new _mode, vehicle, api):

mrrn

Repeatedly attempts to change the mode of the vehicle until the
desired mode is achieved.

:param new mode: Name of the mode to switch to
:param vehicle: A droneAPI vehicle object whose mode is to be
changed
:param api: A droneAPI instance that can be monitored for exit
requests
while vehicle.mode.name != VehicleMode (new mode) .name and not
api.exit:
vehicle.mode = VehicleMode (new mode)
vehicle.flush ()
sleep (command wait)

def move to(N, E, D, vehicle, api):

Relative move. Switches to GUIDED mode to make the move and
switches back to LOITER mode after the move 1is

completed.

:param N: North movement component in m

:param E: East movement component in m

:param D: Down movement component in m

:param vehicle: A droneAPI vehicle object to be moved

:param api: A droneAPI instance that can be monitored for exit
requests

o

move method = "VEL"
change mode ("GUIDED", vehicle, api)
if move method == "VEL":

# TODO: Dynamically pass in velocity. It's currently set to 0.5
vel move (N, E, D, 0.5, vehicle, api)
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elif move method == "POS":
pos move (N, E, D, vehicle, api)
else:
change mode ("LOITER", vehicle, api)
raise ValueError ("Move method must be either velocity (VEL) or
position (POS) based.")

# IMPORTANT NOTE: SWITCHING TO LOITER MODE SETS THE VELOCITY BACK
TO ZERO

# set mode to loiter mode

change mode ("LOITER", vehicle, api)

def vel move (N, E, D, speed, vehicle, api):

mrrn

Move accomplished by setting the velocity. This detection method
relies on using time to figure out how far it's

moved since the GPS we are using 1s too inaccurate for precise
movements (our GPS' precision is ~ 1.5 m).

:param N: North movement component in m

:param E: East movement component in m

:param D: Down movement component in m

:param speed: The movement speed

:param vehicle: A droneAPI vehicle object to be moved

:param api: A droneAPI instance that can be monitored for exit
requests

mmrn

# Calculate the component velocity vector magnitudes using the
overall speed and the position vector
# The equation used is: vel vector =
(speed/pos_vector magnitude) *pos vector
pos_vector = [[N], [E], [D]]
pos _vector magnitude = norm(pos_vector)
if pos vector magnitude == 0:
# All components are zero
vel vector = pos vector
else:
vel vector = multiply(speed/pos vector magnitude, pos vector)

# Movement speed capped at 1 m/s

velocity x = vel vector[0][0] # North direction, in m/s
velocity y = vel vector[1][0] # East direction, in m/s
velocity z = vel vector[2][0] # Down direction, in m/s

# Update delay in seconds. (This is how frequently the program
checks to see if it should have travelled an

# appropriate distance)

update delay = 0.01

# Predicted travel time, distance (as the crow flies) / speed
travel time = norm(pos_vector) / speed

msg = vehicle.message factory.set position target local ned encode (

0, #
time boot ms (not used)
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target system, target component

mavutil.mavlink.MAV FRAME LOCAL NED, # frame

0x01cCc7, #

type mask (ignore pos | ignore acc)

0, 0, 0, # x,

z positions (not used)
velocity x,

velocity y, velocity z, # x, y, z velocity in m/s

0, 0, 0, # x,

z acceleration (not used)
0, 0) #

yaw, yaw rate (not used)

# send command to vehicle
vehicle.send mavlink (msg)
vehicle.flush ()

# Initial time
t0 = time ()

while time() - t0 < travel time and not api.exit:
sleep (update delay)

def pos move (N, E, D, vehicle, api):

mrmrn

Move accomplished by setting the velocity. Currently this method

waits to complete until the velocity reaches close

to 0.

:param N: North movement component in m

:param E: East movement component in m

:param D: Down movement component in m

:param vehicle: A droneAPI vehicle object to be moved

:param api: A droneAPI instance that can be monitored for exit

requests

mrmrn

# The home location appears to be stored as the 0Oth waypoint
home location = vehicle.commands[0]

geo_home = (home location.lat, home location.long)

# Get distance from home
Ndist = vincenty((vehicle.location.lat, home location.long),

geo_home) .meters

Edist = vincenty((home location.lat, vehicle.location.long),

geo_home) .meters

# Correct for the sign of the distance

if vehicle.location.lat < home location.lat:
Ndist = -Ndist

if vehicle.location.long < home location.long:
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Edist = -Edist

Nloc = Ndist + N
Eloc Edist + E

msg = vehicle.message factory.set position target local ned encode (

0, #
time boot ms (not used)

0, 0, #
target system, target component
mavutil.mavlink.MAV FRAME LOCAL NED, # frame

0x01F8, #
type mask (ignore vel | ignore acc)

Nloc,
Eloc, D, # x, y, z positions in m

0o, 0, 0, #
x, v, z velocity in m/s (not used)

0o, 0, 0, #
x, y, z acceleration (not used)

0, 0) #

yaw, yaw rate (not used)
# send command to vehicle
vehicle.send mavlink (msg)
vehicle.flush ()

# TODO: Put a conditional check here. I can think of three

possibilities:
# 1) Use distance calculated via gps
# 2) Use distance calculated via velocity and time
# 3) Wait until velocity is about 0

while vehicle.velocity.vx > 0.01 and vehicle.velocity.vy > 0.01 and
vehicle.velocity.vz > 0.01 and not api.exit:
sleep (1)
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LogFlight.py

o

Contains methods used to log important flight information along with
images from the landing stage

o

__author = 'Kirby'

import datetime, errno, subprocess

from os.path import join, dirname

from os import makedirs

from cv2 import rectangle

import droneapi.lib

from configure path import SYSTEM

from DetectObject import save image, overlay targets
from EdisonSDCardSetup import setup sd card

# Creates a csv file with the specified header in the specified
location of the form log CURRENT-DATETIME.cCsv
# Opens the file in append mode
# Returns the log file
def setup log file():
if SYSTEM == "Edison":
sd directory = setup sd card()
log folder = join(sd directory, "Logs")

elif SYSTEM == "Kirby's Mac":
log folder =
"/Users/Kirby/Desktop/Senior Design/SVN/sw/branches/UAVino-
1.0.0/UAVino_Python_ Code/UAV_Logging/Logs"

else:
raise "Error: no SYSTEM set or unsupported SYSTEM: " + SYSTEM

# create a new folder for each specific log entry
log folder = join(log folder, datetime.datetime.now().strftime ("%¥-
$m-3dT%H_%M_%S_S%£f"))

try:

makedirs (log folder, 0755)
except OSError as exception:

if exception.errno != errno.EEXIST:

raise

# double checks that the log folder now exists
if subprocess.call(["1ls", log folder]):
raise "Error: Log folder not found at this location: " +
log folder
else:
print ("Logging to " + str(log folder))

csv_header = "Targets Detected, Command Kind, Frame of Reference, X
distance, Y distance, Z distance, Degrees, Speed, " \
"Latitude, Longitude, Altitude (meters), Altitude
Relative?, Pitch (radians), Roll (radians), " \

"Yaw (radians), Ground Speed (m/s), Flight Mode,
Time, Date"
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filename = "log " + datetime.datetime.now ()
$dT%H_3%M %S_%f") + ".csv"

file path = join(log folder, filename)

log file = open(file path, "a+")

log file.write(csv_header + "\n")
return log file

def close log file(log file):
log file.close()

def log flight info(log file,
command=None) :
drone.flush ()

drone,

# get value of variables to log

if command is not None:
command_kind command.command kind
ref frame command. frame

x _dist = command.get vector.x
y _dist = command.get vector.y
z dist = command.get vector.z
degrees = command.degrees
speed = command.speed

else:

command_kind = ""
ref frame = ""

x dist = ""

y dist = ""

z dist = ""

degrees = ""

speed = ""
latitude = drone.location.lat
longitude = drone.location.lon
altitude = drone.location.alt
relative = drone.location.is relative
pitch = drone.attitude.pitch
roll = drone.attitude.roll
yaw = drone.attitude.yaw

ground_speed drone.groundspeed
flight mode drone.mode.name

time datetime.datetime.now () .time ()
date datetime.date.today ()

# This
matches up with the csv_header string
log vars [targets detected,

y _dist, z dist, degrees, speed,
latitude, longitude,
ground_speed, flight mode, time,

altitude,

yaw, date]

for var in log vars:
log file.write(str(var))
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if var != log vars[-1]:

log file.write(", ")
else:

log file.write("\n")

# img suffix should be a unique identifier (0, 1, 2, ... 1s easiest)
# logs an unmodified image and calls log flight info

def log landing stage(log file, drone, image, targets detected,
command, img suffix):

image file name = "landing img " + str(img suffix) + ".jpg"
image file = join(dirname(log file.name), image file name)
save image (image, image file)

# save flight details for context
log flight info(log file, drone, targets detected, command)

# log two images, one with the object drawn on and one without, then
calls log flight info
# These images are used for debugging by a human, and further training
a classifier, respectively
def log landing stage for training(log file, drone, image,
detected targets, command, img suffix):

image file name = "landing img " + str(img suffix) + ".jpg"

image file = join(dirname(log file.name), image file name)

save image (image, image file)

overlaid image = overlay targets(image, detected targets)

pic _size = overlaid image.shape

pic_height = pic _size[0]

pic_width = pic size[l]

rectangle (overlaid image, (int(pic_width/2 - 40), int(pic_height/2

- 40)),
(int (pic_width/2 + 40), int(pic_height/2 + 40)), (255, O,

0), 8)

image file name = "overlaid landing img " + str(img suffix) +
" . jpg"

image file = join(dirname(log file.name), image file name)

save image (overlaid image, image file)

log flight info(log file, drone, len(detected targets), command)
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failsafes.py

mmrn

Contains failsafes and safety checks used for UAVino

Note: This functionality has not been fully tested. An error was
occurring when trying to use these methods.
I don't recall what the fix is but it should be easy

mmrn

__author = 'Kirby'

import droneapi.lib
import sys

# Monitored Attributes

# TODO: Consider adding channels 1-4 (roll, pitch, yaw, thrust) to
monitoring

monitored attributes = ['mode']

def start external command monitor (vehicle):

mmrn

Stops the script whenever the drone receives a command from a
different external source.

This method prevents multiple control sources from giving the drone
commands at the same time. This function 1is

primarily needed to accommodate RC commands and commands from
another GCS.

:param vehicle: The droneAPI vehicle instance to be monitored

mrrn

for attr in monitored attributes:
vehicle.add attribute observer(attr, lambda: sys.exit ("Exiting:
Detected external input from source other than "

"DroneKit"))

def stop external command monitor (vehicle):
mrmrn
Removes the attribute observers set by
start external command monitor

:param vehicle: The droneAPI vehicle instance being monitored
mrmrn

for attr in monitored attributes:
vehicle.remove attribute observer (attr, lambda:
sys.exit ("Exiting: Detected external input from source other "
"than
DroneKit"))
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pixel distance conversions.py

mmrn

Contains a method that can be used to estimate the distance away a
picture was taken from given the dimensions

of an object and the size in pixels of the object in the picture
mmrn

__author = 'Kirby'

def pix to alt (object width, object height, detected width,
detected height, GSD constant x, GSD constant y):

mrrn

Estimates the altitude a picture was taken from given the width and
height of an object in both ground units

(such as cm, m, feet, etc.) and in pixels using the Ground Sample
Distance constant for an image.

:param object width: The width of the object to be detected in
ground units (such as cm, m, feet, etc.)

:param object height: The height of the object to be detected in
ground units

:param detected width: The detected width of the object in pixels

:param detected height: The detected height of the object in pixels

:param GSD constant: The Ground Sample Distance constant for the
image

:return: average estimated altitude

mrmrn

dist per pixel x = object width/detected width
dist per pixel y = object height/detected height

alt est x dist per pixel x / GSD _constant x
alt est y = dist per pixel y / GSD _constant y

alt = (alt est x + alt est y) / 2

return alt
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centering demo.py

mrrn

Attempts to center a drone over the docking station

Currently this demo only centers the drone horizontally. It makes no

vertical movements or yaw rotation
mrrn

__author = 'Kirby'

import sys
sys.path.append ("/home/root/UAVino_ Python Code")

import cv

import cv2

from time import sleep

from os.path import join, dirname

import droneapi.lib

from pymavlink import mavutil

from CommandToMAVLink import move to

from DetectObject import detect targets, overlay targets
from GenerateDirections import get next command

from UAV Logging.LogFlight import setup log file, close log file,
log landing stage, log landing stage for training

from failsafes import start external command monitor,
stop external command monitor

from constants import GSD constant x, GSD constant y

api = local connect ()
vehicle = api.get vehicles () [0]
commands = vehicle.commands

# Monitor commands from another control source (RC or another GCS) 1in
order to prevent commands from multiple control

# sources at the same time

#start external command monitor (vehicle)

target cascade name = "docking5.xml"

# load classifier

target cascade = cv2Z.CascadeClassifier (target cascade name)
if not target cascade:
raise RuntimeError ('Could not load cascade classifier: ' +

target cascade name)

# read the video stream
capture = cv2.VideoCapture (-1)
if not capture.isOpened() :

raise RuntimeError ("Could not open video stream")
pic width = capture.get (cv.CV_CAP PROP FRAME WIDTH)
pic_height = capture.get(cv.CV_CAP PROP FRAME HEIGHT)

logfile = setup log file()
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counter = 0

while not api.exit:
ret val, frame = capture.read()
current altitude = vehicle.location.alt
current attitude = vehicle.attitude

if ret val:
detected targets = detect targets(frame, target cascade)

# Currently we handle multiple targets being detected by simply
not generating a command

if len(detected targets) == 1:

for (x, y, w, h) in detected targets:
next command = get next command(x+w/2, y+h/2,
pic_width, pic_height, current altitude,
GSD_constant_ x,

GSD _constant vy)

log landing stage for training(logfile, vehicle, frame,
detected targets, next command, counter)

# Transform the command to the NED frame so 1t can
guide the octo, and send it to the octo

next command.transform body to NED yaw pitch roll in rads(current attit
ude.yaw,

current attitude.pitch,
current attitude.roll)

move to(next command.get vector.x,
next command.get vector.y, 0, vehicle, api)

else:
log landing stage for training(logfile, wvehicle, frame,
detected targets, None, counter)

else:
print "No captured frame"
log landing stage for training(logfile, vehicle, frame, None,
None, counter)

counter += 1

print "Completed one move"
#sleep (0.5)

close log file(logfile)
#stop external command monitor (vehicle)
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capture images.py

mrrn

Continuously writes images captured from a camera to a file using
OpenCV

This technique 1is useful for gathering positive and negative training
images to train or improve a classifier

mrrn

__author = 'Kirby'

from cv2 import VideoCapture

from os.path import join, dirname

from time import sleep

from DetectObject import save image

from UAV Logging.LogFlight import setup log file

if name == " main ":

capture = VideoCapture ()
capture.open(-1)
if capture:

log file = setup log file()

count = 0
while True:
ret, frame = capture.read()
if ret:
# save with a 6-digit suffix
image file name = "landing img " +

"{0:0>6}".format (str (count)) + ".jpg"

count += 1

image file = join(dirname (log file.name),
image file name)

save image (frame, image file)

else:
print "No captured frame"

sleep(0.5)
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landing algorithm demo.py

mrrn

Runs a demo of the vision recognition used for UAVino.

This program is meant to be run on a laptop or desktop. It displays the
detected targets (using a Haar Cascade

classifier) and the center of the camera frame. This demo is great for
presentations and demoing the vision

capabilities.

__author = 'Kirby'

import cv

import cv2

from DetectObject import detect targets, display targets
from GenerateDirections import get next command

from pixel distance conversions import pix to alt

from constants import GSD constant x, GSD constant y

if name == '_main_ ':
target cascade name = "docking5.xml"
target width = 15.5 # in cm
target height = 17 # in cm

# TODO: Calculate altitude
current altitude = 130

# load classifier

target cascade = cv2.CascadeClassifier (target cascade name)
if not target cascade:
raise RuntimeError ('Could not load cascade classifier: ' +

target cascade name)

# read the video stream

capture = cv2.VideoCapture (-1)

pic width = capture.get (cv.CV_CAP PROP FRAME WIDTH)
pic height = capture.get(cv.CV_CAP PROP FRAME HEIGHT)

if capture:
while True:
ret val, frame = capture.read()

if ret val:
detected targets = detect targets(frame,

target cascade)
for (x, y, w, h) in detected targets:

# Get estimated altitude from detected object
current altitude = pix to_alt(target width,
target height, w, h, GSD constant x, GSD constant y)
print "Estimated Altitude: " +
str (current altitude)
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next command = get next command(x+w/2, y+h/2,
pic width, pic height, current altitude,

GSD_constant x,
GSD_constant_y)

print next command
print "\n\n"

# mark the center of the image for easy visualization
when testing

cv2.rectangle (frame, (int(pic width/2 - 40),
int (pic_height/2 - 40)), (int(pic_width/2 + 40),
int (pic_height/2 + 40)), (255,0,0), 8)
display targets (frame, detected targets)

else:
print "No captured frame"

c = cv2.waitKey (0)
if = '¢':
exit (0)
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test takeoff.py

o

Causes the vehicle to takeoff in the simulator. Should not be used
outside of a simulator since it overrides
the RC channel input

o

__author = 'Kirby'

import datetime, os

import droneapi.lib

from time import sleep

from pymavlink import mavutil

print "IMPORTANT: DO NOT RUN THIS PROGRAM UNLESS USING THE SIMULATOR.
IT OVERRIDES THE RC CHANNEL INPUT."
SIMULATING = True

api local connect ()
vehicle = api.get vehicles () [0]
commands vehicle.commands

vehicle.mode
if SIMULATING:
# This command should only be run in a simulator since it overrides
RC channel 3
vehicle.channel override = {"3" : vehicle.parameters['RC3_MIN']}
vehicle.flush ()
sleep (1)
vehicle.armed = True
vehicle.flush ()

droneapi.lib.VehicleMode ("STABILIZE")

while not vehicle.armed and not api.exit:
print "Waiting for arming..."
sleep (1)

vehicle.mode = droneapi.lib.VehicleMode ("GUIDED")
vehicle.flush ()

print "Taking off!"
if SIMULATING:
# This command should only be run in a simulator since it overrides
RC channel 3
vehicle.channel override = {"3" : vehicle.parameters['RC3_TRIM']}
vehicle.flush ()
alt = 50
vehicle.commands.takeoff (alt) # Take off to 20m height
while (vehicle.location.alt < (alt-.1) or vehicle.location.alt >
(alt+.1)) and not api.exit:
sleep (1)
vehicle.flush ()

vehicle.mode = droneapi.lib.VehicleMode ("LOITER")
vehicle.flush ()
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test alt descent.py

mrrn

Causes the vehicle to change altitude

Simply changing the altitude ended up causing the octocopter to also
change its yaw. To avoid this, use the
SET POSITION LOCAL NED Mavlink message instead

mmrn

__author = 'Kirby'

import datetime, os

import droneapi.lib

from time import sleep

from pymavlink import mavutil

api = local connect()
vehicle = api.get vehicles() [0]
commands = vehicle.commands

# TODO: CHECK TO SEE IF THIS LOOP INTERFERES WITH CONTROL VIA THE
MISSION PLANNER, RADIO CONTROL, OR FAIL-SAFES
while vehicle.mode.name != droneapi.lib.VehicleMode ("GUIDED") .name:
vehicle.mode = droneapi.lib.VehicleMode ("GUIDED")
vehicle.flush ()
print "Switching modes"
sleep (1)

target location = vehicle.location
start location alt = target location.alt # used for debugging

if vehicle.location.alt > 10.0:
target location.alt = target location.alt + 5
commands.goto (target location)
vehicle.flush ()
print "Moved up five meters from " + str(start location alt)
print "to " + str(target location)
print "Vehicle now at " + str(vehicle.location)

elif 2.0 < vehicle.location.alt <= 10.0:
target location.alt = target location.alt + 5
commands.goto (target location)
vehicle.flush ()
print "Moved up five meters from " + str(start location alt)
print "to " + str(target location)
print "Vehicle now at " + str(vehicle.location)

else:
print "Altitude at less than a meter, too close to ground"
exit (0)

while (vehicle.location.alt - target location.alt < -.1 or

vehicle.location.alt - target location.alt > .1) \
and not api.exit:
print "Ascending"
sleep (1)
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vehicle.mode = droneapi.lib.VehicleMode ("LOITER")
vehicle.flush ()
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o

test alt descent v2.py

Causes the vehicle to change altitude without changing yaw

mmrn

__author = 'Kirby'

import datetime,

oS

import droneapi.lib
from time import sleep
from pymavlink import mavutil

api
vehicle

commands

while vehicle.mode.name

= local connect ()

api.get vehicles() [0]
vehicle.commands

vehicle.mode = droneapi.lib.VehicleMode ("GUIDED")
vehicle.flush ()

print "Switching modes"
sleep (1)

target alt = vehicle.location.alt
start alt = target alt

def change alt (h):

# Note:

pos_z = -h
if h > 0:

vel z

else:

# Note:
masked as a whole.

#

MASK_Z ONLY

vel z

# used for debugging

# Down direction, in m

-0.5

axis.
MASK XYZ YAW YAW RATE ONLY =
MASK XYZ ONLY = OxFFF8

= OxFFFB

MASK_VXVYVZ ONLY = OxFFC7
MASK POS VEL XYZ = OxFFCO

msg

Currently only velocity, position,
You can't simply mask out one

0xF3F8

all distances are in relation to the home location

and acceleration can be

!= droneapi.lib.VehicleMode ("GUIDED") .name:

= vehicle.message factory.set position target local ned encode (

time boot ms (not used)

target system,

target component

mavutil.mavlink.MAV FRAME LOCAL NED, # frame

MASK VXVYVZ ONLY, # type mask

pos_z,

vel z,

# z positions in m, x and

# x, v,

z velocity in m/s

y ignored

213

#

#



x, y, z acceleration (not used)

yaw, yaw rate (not used)
# send command to vehicle
vehicle.send mavlink (msg)
vehicle.flush ()

if vehicle.location.alt > 10.0:
target alt = target alt + 5
change alt (target alt)
vehicle.flush ()
print "Moved up five meters from " + str(start _alt)
print "to " + str(target alt)
print "Vehicle now at " + str(vehicle.location)

elif 2.0 < vehicle.location.alt <= 10.0:
target alt = target alt + 5
change alt (target alt)
vehicle.flush ()
print "Moved up five meters from " + str(start _alt)
print "to " + str(target alt)
print "Vehicle now at " + str(vehicle.location)

else:
print "Altitude at less than a meter, too close to ground"

exit (0)

while (vehicle.location.alt - target alt < -.1) and not api.exit:
print "Ascending"
sleep(0.1)

vehicle.mode = droneapi.lib.VehicleMode ("LOITER")
vehicle.flush ()
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mmrn

test pos move.py

Causes the octocopter to move using the position arguments of the
SET POSITION LOCAL NED Mavlink message

mmrn

__author = 'Kirby'

from time import sleep

from droneapi.lib

import VehicleMode, Location

from pymavlink import mavutil

api =
vehicle
commands
vehicle.mode =

# Go to 10 meters
height = 10;

N dist 0;

E dist = 0;

def move (x, y, h):

local connect()
api.get vehicles() [0]
vehicle.commands
VehicleMode ("GUIDED")

above home to start

# Note: all distances are 1in relation to the home location

pos x = x

pos_y Y
pos_z -h

# North direction, in m
# East direction, in m

# Down direction, in m

MASK XYZ YAW YAW RATE ONLY = 0OxF3F8

MASK_XYZ ONLY
MASK_Z ONLY =

= OxFFF8
OxFFFB

msg = vehicle.message factory.set position target local ned encode (

0,
time boot ms (not used)
0, 0,
target system, target component
mavutil.mavlink.MAV FRAME LOCAL NED, # frame
MASK XYZ ONLY, # type mask (ignore vel | ignore acc)
pos_x,
pos_ y, pos_z, # x, y, z positions in m
o, 0, 0O,
x, y, z velocity in m/s (not used)
0, 0, 0O,
x, y, z acceleration (not used)
0, 0)
yaw, yaw rate (not used)
# send command to vehicle
vehicle.send mavlink (msg)
vehicle.flush ()
move (N _dist, E dist, height)
while (vehicle.location.alt < (height - .1) or vehicle.location.alt >
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(height + .1)) and not api.exit:
sleep (1)

print "Reached altitude of " + str(vehicle.location.alt)

# Note: all distances are in relation to the home location
N dist = 10 # North direction, in m

E dist = 0 # East direction, in m

height = 10

move (N _dist, E dist, height)

for i in range(0,20):
sleep (1)

# set mode to loiter mode

vehicle.mode = VehicleMode ("LOITER")
print "Position move completed"
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test vel move.py

mmrn

Causes the octocopter to move using the velocity arguments of the
SET POSITION LOCAL NED Mavlink message

mmrn

__author = 'Kirby'

from time import time, sleep
from droneapi.lib import VehicleMode, Location
from pymavlink import mavutil

api = local connect ()
vehicle = api.get vehicles () [0]
commands = vehicle.commands
vehicle.mode = VehicleMode ("GUIDED")

vel update rate 0.1 # in s or about 1/hz, in this case it's about 10

hz

t0 = time ()

velocity x =1 # North direction, in m/s, in this case 1 m/s * .1 s
= 10cm travelled North

velocity y = 0 # FEast direction, in m/s

velocity =z 0 # Down direction, in m/s

msg = vehicle.message factory.set position target local ned encode (

0, #
time boot ms (not used)

0, 0, #
target system, target component
mavutil.mavlink.MAV FRAME LOCAL NED, # frame

0x01Cc7, #

type mask (ignore pos | ignore acc)
0o, 0, 0, # x,
y, z positions (not used)

velocity y, velocity z, # x, y, z velocity in m/s
v, z acceleration (not used)

yaw, yaw rate (not used)

# send command to vehicle

vehicle.send mavlink (msg)

# Currently the velocity update rate doesn't really do anything.
Eventually it will be used to prevent the Edison from

# spamming commands to the PixHawk
while (time() - t0) < vel update rate:
sleep (1)

vehicle.flush ()

# IMPORTANT NOTE: SLEEPING FOR MORE THAN A COUPLE SECONDS CAUSES A
CESSATION OF THE HEARTBEAT MESSAGES WHICH TRIGGERS
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# AN IMMEDIATE RETURN TO LAUNCH. INSTEAD, SLEEP SHOULD BE PUT IN
A LOOP TO ALLOW FOR CONTINUOUS HEARTBEAT MESSAGES
# TO BE SENT
print "Pausing"
for i in range (0, 10):
sleep(.5)

# IMPORTANT NOTE: SWITCHING TO LOITER MODE SETS THE VELOCITY BACK TO

ZERO
# set mode to loiter mode
vehicle.mode = VehicleMode ("LOITER")

print "Velocity move completed"
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» Copper Plugs » Precise Landing
» Brackets "'\ g %- » Direct Contact Charging
= Added Stability ] g'r;a;h!'ga'l-hused in Docking
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Charging System Schematic
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Post-Processing Normmalized Difference Vegetation Index

» Examination of Images
» Photo-mosaic

= Vegetation Index
__(NIR - Red)

Nowi = (NIR. # Red)
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Normalized Difference Vegetation Index

Raw Multispectral Image
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Current State of the Project

» Future Functionalities
- Infrared crop imaging
~ Muttipla dronsa
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Long-Term Monitoring
= Aggregation of Data

» Standardization

= Health Tracking
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Conclusions

» Agricultural Inspection System
» Real World Customer
» Key Subsystems

- Autonomous Docking

- Recharging Capability

- Paost Procsasing
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Thank you!

We welcome any feedback and questions.
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