
Santa Clara University
Scholar Commons

Mechanical Engineering Master's Theses Engineering Master's Theses

3-29-2017

Techniques for Adaptive Navigation of Multi-
Robot Clusters
Robert McDonald

Follow this and additional works at: http://scholarcommons.scu.edu/mech_mstr

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/mech_mstr?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_master_theses?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/mech_mstr?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages

Techniques for Adaptive Navigation of Multi-Robot

Clusters

By

Robert McDonald

Graduate Thesis

Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Mechanical Engineering
in the School of Engineering at
Santa Clara University, 2017

Santa Clara, California

Techniques for Adaptive Navigation of Multi-Robot Clusters

Robert McDonald

Department of Mechanical Engineering
Santa Clara University
Santa Clara, California

2017

ABSTRACT

Sensor based navigation techniques are those that alter the path being followed based

on realtime sensor readings. They are often used in scalar fields, which are regions with

a scalar quantity of interest, such as temperature or concentration level, associated with

every point in the field. An example of sensor based navigation in a scalar field is using a

set of measurements from a distributed group of robots in order to estimate the gradient

of a field; driving in the direction of the gradient leads the group to the maximum value

in the field, a point that often has practical value. In previous work, researchers in the

Santa Clara University Robotic Systems Laboratory have proposed multirobot sensor

based controllers to move to maximum points, minimum points, and along field contour

lines. This thesis work contributes to this work, presenting work performed with other

researchers in the Lab to navigate ridges, trenches, and saddle points. Simulations

have verified that these techniques can track field features with a minimal amount of

steady state error. The complete set of primitive controllers was then used as a basis for

an application controller that used a state machine architecture to switch between the

primitive controllers in order to execute complex tasks. Four different applications were

demonstrated in simulation using this method: ridge control with recovery, moving from

one local maximum to another, mapping the contours around a maximum, and traveling

to a designated location while staying above a particular scalar value. These controllers

were successfully demonstrated in simulation under a number of ideal conditions. Future

work is proposed in order to extend the capabilities of this technique and to improve

robustness.

iii

Acknowledgments

First and foremost, I would like to thank my advisor Dr. Christopher Kitts. He has

provided endless guidance, support, patience, and inspiration. If not for him I would

never have been motivated to pursue robotics research, and none of this would have

been possible.

I would also like to thank all of my peers, coworkers, and predecessors in the lab. In

particular, I want to acknowledge Thomas Adamek, who played a huge role in pioneering

the Adaptive Navigation technique, and Michael Neumann, with his endless supply of

both insight and criticism.

I also want to thank my friends and family. Specifically, my friend Dan Ward was always

there to provide advice, edits, and to act as living proof that it is in fact possible to

finish a Master’s thesis. Last but certainly not least, I want to thank my wonderful wife

Jill for her love, support, huge amounts of tolerance, and her uncanny ability to make

me laugh at myself.

A portion of this work has been submitted for publication [24].

iv

Table of Contents

1 Introduction . 1

1.1 Cluster Control . 2

1.2 Adaptive Navigation . 3

1.2.1 Previous Adaptive Navigation Work 4

1.2.2 Extending the Strategy . 8

1.3 Project Statement . 10

2 Ridge, Trench, and Saddle Navigation 11

2.1 Cluster Definition and Simulation . 11

2.2 Ridge and Trench Navigation . 14

2.2.1 Control Strategy . 15

2.3 Saddle Point Navigation . 18

2.4 Discussion . 21

3 Adaptive Field Applications . 22

3.1 Overview of Architecture . 22

3.2 Ridge Controller with Recovery . 24

3.3 From Local Maximum to Local Maximum 28

3.4 Contour Mapping . 34

3.5 Maintaining Signal Strength . 38

3.6 Discussion . 41

3.6.1 Unknown Features . 42

3.6.2 Unwanted Repetition . 42

v

4 Conclusion . 43

4.1 Summary . 43

4.2 Future Work . 44

4.2.1 Exploration with Memory . 44

4.2.2 Adaptive Cluster Sizing . 44

4.2.3 Additional Field Testing . 45

Bibliography . 46

Appendices . A1

vi

List of Figures

1.1 General cluster space architecture for n robots 3

1.2 A three robot cluster in an equilateral triangle formation 5

1.3 A robot cluster moving in two spatial dimensions, and navigating a scalar
surface [11] . 6

1.4 The vectors used to calculate the gradient using a three robot cluster [11] 6

1.5 Three simulated clusters of robots, each of which navigates to a different
extremum . 7

1.6 Three simulated clusters of robots, navigating three different contour lines 8

1.7 Three automated kayaks traversing a scalar field at Stevens Creek Reser-
voir in Cupertino, CA [11] . 9

1.8 Layers of the Adaptive Navigation Strategy, where solid lines represent
commands, and dashed lines represent environmental data 10

2.1 The general form of the 5-robot cluster definition 13

2.2 A five robot cluster for ridge and trench navigation 13

2.3 One cluster (in red) navigates down a curved ridge, and another (in blue)
goes up a trench to a saddle point. 14

2.4 The same paths from Figure 2.3, but from an overhead contour perspective 15

2.5 A time history plot of the scalar differential between robots 2 and 3, as
well as between robots 4 and 5, from the same simulation run as Figures
2.3 and 2.4. 18

2.6 The blue cluster is the same set of robots from Figures 2.3, and 2.4,
traveling up a trench to the saddle point, and the green path is coming
down a ridge into the same point. 19

2.7 The same paths from Figure 2.6 from a two dimensional overhead per-
spective . 20

2.8 A time history plot of the scalar differentials between robots 2 and 3, 4
and 5, 2 and 4, and 3 and 5, as the cluster travels up a trench to a saddle
point . 20

vii

3.1 Layers of the Adaptive Navigation Strategy, where solid lines represent
commands, and dashed lines represent environmental data 23

3.2 The nine-robot cluster used for the state level controllers 24

3.3 State diagram depicting the states required for the ridge following con-
troller with a recovery mode . 24

3.4 Two robot clusters navigate a scalar surface, one of which seeks and tracks
a ridge, the other does the same with a trench 26

3.5 The same robot clusters from Figure 3.4 viewed from above 27

3.6 Time history plots of the states and transition criteria for the red path
from Figures 3.4 and 3.5 . 27

3.7 State diagram for going from local maximum to local maximum 28

3.8 A robot cluster relative to a contour line (displayed in red). 30

3.9 A robot cluster travels to one local max, then to another 32

3.10 The time response plots for the states and transition criteria throughout
the path displayed in Figure 3.9 . 33

3.11 State diagram for mapping the contour lines around a peak 34

3.12 A robot cluster mapping contours around a maximum in the field 36

3.13 Contour mapping time history containing state and transition information 37

3.14 A robot cluster gets stuck while mapping contours due to a secondary
maximum . 38

3.15 State diagram for navigating to a point while maintaining signal strength 39

3.16 A robot cluster navigating to x = 75, y = −75, using a state controller
to remain above a scalar threshold . 40

3.17 Time response containing state and transition information for maintaing
scalar magnitude . 41

1 Simulink block diagram used for all simulations. A1

2 This diagram is a subsection of Figure 4, and calls a ‘.m’ file that changes
based upon which controller is in use. A1

3 This Simulink diagram is inside the kinematics block in Figure 4. A2

4 This Simulink diagram is inside the transfer function block in Figure 3. . A2

viii

List of Tables

2.1 Cluster variable definitions . 12

3.1 Summary of Transition Criteria for Ridge Recovery 25

3.2 Summary of Transition Criteria for Extrema Hopping 28

3.3 Summary of Transition Criteria for Contour Mapping 34

3.4 Summary of Transition Criteria for Extrema Hopping 39

ix

Chapter 1

Introduction

Robotic systems are an excellent tool for executing any number of tasks, particularly

those that would be tedious, difficult, or dangerous for a human to accomplish. It is

particularly effective to customize a robotic system for a particular purpose, increasing

its speed, precision, and mobility to maximize performance. While single robots can

solve a large variety of problems, multi-robot systems can provide improved performance

and flexibility for many applications. Some of the advantages of using multiple mobile

robots include distributed sensing and actuation, redundancy, and reconfigurability [1].

Multirobot systems are effective in a variety of applications. For example, a team of

robots can work together to perform object transportation tasks. In [2] a multirobot

system is used to manage the distribution of supplies in a hospital setting. There are

also higher precision techniques being developed, like using two robots to move a single

unwieldy object with the use of force control [3]. The use of multiple mobile robots is

also well suited for any application that involves covering a large amount of area, like

in [4], where a system of robots is used to deploy communications relays for network

coverage.

Systems of multiple robots are becoming more common in mapping and exploration ap-

plications. These techniques use either vision or distributed sensing, have a framework

for building maps as the robots progress, and use path planning to reach unexplored re-

gions [5]. An example is mapping an environment via omnidirectional vision localization

with 360 degree cameras mounted on multiple robots [6]. There have been variations

on this theme, including using topographical mapping strategies instead of traditional

grid maps [7]. Once obstacles are introduced, methods like the fuzzy logic approach

presented in [8], or the tree-based approaches presented in [9] can be used to avoid them

along the way.

In contrast to typical map-generation exploration techniques that try to document an

entire region, an adaptive navigation strategy is one that varies the path traveled in

1

order to take a more direct route to points of interest. These techniques are based upon

reactive controllers that are perpetually updating the desired travel bearing based on

realtime measurements of the environment. This not only reduces the required mission

time and resources, but also makes these techniques far more suitable for transient

environments than purely “mow the lawn” mapping. Adaptive navigation decisions

are based upon distributed sensor information provided by multiple robots traveling

in formation. Because of this, either implicit or explicit formation control is typically

required to get accurate information about the field.

This thesis review contributions to expanding the repertoire of adaptive navigation con-

trol primitives and explores the sequencing of specific adaptive navigation strategies in

order to perform interesing environmentally-dependent tasks. This introductory chap-

ter discusses the previous work in this area by the Robotic Systems Laboratory (RSL)

at Santa Clara University. This includes a method for controlling a cluster of multiple

robots (section 1.1), and methods for using these clusters to navigate to or along basic

features of a scalar field (section 1.2). Both of these categories of work have been verified

and implemented in simulation, and in some cases in field environments. It is this body

of work that forms the foundation for the research presented in this thesis.

1.1 Cluster Control

The Robotic System Laboratory at Santa Clara University developed the cluster control

method for controlling a number of mobile robots at once. This method has been verified

in the field, on many different platforms, including rovers [10], marine platforms [11],

and airborne robots [12]. Not only has the cluster control method been tested in a

variety of environments, field testing has also been conducted for both two [10] and

three [12] dimensional environments. This control technique is suited for a wide variety

of applications, and has been field tested with a variety of objectives and configurations,

including: a set of robots in a guarding configuration [13], a line of communication relay

robots arranged to optimize signal strength[14], and the adaptive navigation of scalar

fields [11]. Adaptive navigation is one of the cluster space control areas which has large

potential for expansion.

Cluster space control treats n robots as part of a virtual, articulating mechanism, with

full degree of freedom control [10]. As an operational space control approach, it offers

the advantage of specifying the motion of the cluster rather than those of the individual

2

robots. The cluster space pose is defined by the position and orientation of the cluster,

its geometry, and the relative rotation of individual robots. Formal kinematic transforms

are used to relate the cluster variables to the individual robot pose variables, and to

relate the sensed robot state data back to the cluster space pose data [10]. An inverse

Jacobian transform can be used to convert the cluster level velocity commands to the

appropriate robot level velocity commands, and a Jacobian transform can be used to

transform robot level velocity data back to the cluster space.

It is important to note that as both Jacobian transforms are dependent on the exact

cluster configuration, the matrices need to be updated over time to compensate for

changes in formation [10]. Figure 1.1 is the general form of the cluster space architecture.

Higher level controllers are typically built on top of this structure, including those used

for adaptive navigation.

Cluster space
controller

~Cdes J−1(~R) n Robots

J(~R)

KIN(~̇R)

~̇Ccmd
~̇Rcmd

~R ~̇R~C

~̇C

Fig. 1.1: General cluster space architecture for n robots

1.2 Adaptive Navigation

A scalar field is a physical area in which each spatial point has a corresponding scalar

value. These scalar values can represent phenomena such as temperature, bathymetry,

and many others. The distribution of the field can usually be represented visually by

a heat map or virtual surface. Adaptive navigation techniques use scalar readings to

generate spatial movement commands, which lead the robots to points of interest in the

virtual surface that represents the scalar field.

Planar adaptive navigation of scalar fields has been conducted using a variety of con-

trollers and platforms. For single-robot setups, dithering or circular movement is re-

quired to estimate the field gradient in order to navigate to the minimum or maximum

3

of a scalar field [15] [16]. These methods have the advantage of simplicity, but can be

slow due to extraneous movement and perform poorly when tracking dynamic fields.

An alternative single robot solution to this problem is a vehicle with a differential array

of sensors on board. This method has been used to follow a gas odor in the form of a

plume [17].

Using multiple robots to navigate scalar fields provides a number of advantages including

the instantaneous computation of field characteristics critical to navigation decisions,

reduced maneuver costs, robustness to vehicle failure, and the ability to adjust the

formation size to accommodate the particular field of interest [18]. Multirobot methods

have been implemented by a number of groups, some of which included lab testing, and

others that were strictly in simulation. One of these groups used multiple robots in an

experimental setting to navigate to a maxima in a field, however it still required one of

the robots to dither spatially to acquire the necessary gradient data [19]. In [20] and [18]

a multi-robot adaptive navigation technique was developed, stability was proven, and

the gradient navigation was decoupled from the formation keeping function. This work

was verified in [21] and [22], where it was simulated using temperature data collected

from the Autonomous Ocean Sampling Network in Monterey Bay, CA. However, this

work has never been demonstrated experimentally. Overall, nearly all previous work

has focused on extrema-finding, little of the work has been experimentally verified, and

none of it has be demonstrated in the field.

1.2.1 Previous Adaptive Navigation Work

The adaptive navigation control primitives developed previously by RSL researchers

have used gradient based navigation techniques. To facilitate the calculation of the

gradient, these control methods make use of three robots in a triangular formation as

seen in Figure 1.2 and Figure 1.3. This allows for three scalar measurements, which is

enough to compute an estimate of the local gradient. The first step is to use Equations

1.1, and 1.2 to construct two vectors, where x and y are the physical position of a

particular bot, and z is the scalar value at that point. Equation 1.3 is then used to

create a normal vector, followed by Equation 1.4 to project that vector onto a two

dimensional plane, to provide the bearing of the gradient (bgrad) [11]. The relationships

between these vectors is displayed in Figure 1.4.

4

x

y

{C}

xc

yc

θc

{1}
x1

y1{2} x2

y2

{3}

x3

y3

q

p

φ1

φ2

φ3

β

Fig. 1.2: A three robot cluster in an equilateral triangle formation

~R12 =

x2 − x1y2 − y1
z2 − z1

 (1.1)

~R13 =

x3 − x1y3 − y1
z3 − z1

 (1.2)

~N = −~R12 × ~R13 (1.3)

bgrad = π/2− tan−1(Ny/Nx) (1.4)

The first control primitive, navigating to a minimum or maximum, is possibly the most

obvious one. To get to the maximum, the robot cluster is simply commanded to travel

in the direction of bgrad, so it just follows the gradient to a local maximum in the scalar

field. Conversely, by going the other direction, the robot cluster will reach a local

5

Fig. 1.3: A robot cluster moving in two spatial dimensions, and navigating a scalar
surface [11]

Fig. 1.4: The vectors used to calculate the gradient using a three robot cluster [11]

minimum of the field. With this in mind, the desired bearing (bdes) is calculated using

Equation 1.5, where d = 0 to climb to a maximum, and d = 1 to descend to a minimum

[11].

bdes = bgrad + (d ∗ π) (1.5)

This ability to find extrema in a scalar field is useful in a variety of applications, including

seeking the source of a transmission, pollutant, et cetera. Figure 1.5 contains simulated

results of this navigation method, with two paths going to maximums, and one to

a minimum. One clear limitation of these methods is that they only find the local

minimum/maximum and provide no indication of whether that local one is also the

global value.

The second primitive available is designed to follow the contours of a scalar field. The

6

Student Version of MATLAB

Fig. 1.5: Three simulated clusters of robots, each of which navigates to a different
extremum

calculation of the desired bearing is nearly the same as before, however adding ±π/2
to the bearing angle results in movement perpendicular to the gradient, which results

in following a contour. In the holonomic implementation, additional terms are added

to the desired bearing to keep the cluster on the desired contour level. The method for

finding the desired angle of travel is shown in equation 1.6, where zdes is the desired

contour level, zc is the current cluster scalar level (averaged), and Kct is the cross track

gain. The desired ẋc and ẏc are calculated using equations 1.7 and 1.8, which simply

break the desired bearing into component velocities and multiply by the gains Ky and

Kx. Figure 1.6 demonstrates this contour following method for three different contour

levels, including both clockwise and counter-clockwise travel.

θdes = bgrad + d× (sgn(zdes − zc)×min[Kct× |zdes − zc|, π/2]− π/2) (1.6)

ẏc = Ky sin(θdes) (1.7)

7

ẋc = Kx cos(θdes) (1.8)

Student Version of MATLAB

Fig. 1.6: Three simulated clusters of robots, navigating three different contour lines

These two primitives provide basic adaptive navigation capabilities, and were success-

fully tested in the field. The first set of tests were conducted using autonomous kayaks.

The tests were conducted at Stevens Creek Reservoir Cupertino California 1.7, and near

the Southwestern shore of Lake Tahoe [11]. Tests were also conducted at Bellomy Field

at Santa Clara University, this time with rovers tasked with following radio frequency

fields generated by an antenna set up for this purpose[23]. These field deployments

served as successful verification of the the adaptive navigation techniques.

1.2.2 Extending the Strategy

Our goal is to explore a region based on scalar measurements taken by individual robots,

which are moving in formation. This sensor information is used to navigate with re-

8

Fig. 1.7: Three automated kayaks traversing a scalar field at Stevens Creek Reservoir
in Cupertino, CA [11]

spect to primitive features in the scalar field. These primitives include: minimums,

maximums, contours of constant value, ridges, trenches, and saddle points. Each of

these features could be important to a mission. For example, maximums and minimums

could represent sources or dead zones in a field. By following a contour, one could

establish a perimeter at a particular scalar level. Ridges and trenches divide or accu-

mulate resources, and saddle points represent the intersection between a ridge and a

trench, which makes them act as a crossroads. All of these primitive features are useful

regardless of the type of scalar field the robots are navigating, whether it is temperature,

altitude, bathymetry, chemical concentration, et cetera.

While navigating with respect to a single feature has operational value, by chaining

these primitive controllers together, more complex tasks can be accomplished. For

example, the controller may start finding the local maximum, then move down a ridge,

through a saddle and up an adjoining maximum. It is possible to imagine a variety of

application or mission specific sequencing stragies, all coordinated through a governing

state machine.

Adding a state level controller to the adaptive navigation technique adds an additional

layer to the control architecture. Given the mission profile and realtime scalar and robot

data, the state machine selects and configures the appropriate primitive controller. The

primitive controller, in turn, interacts with the cluster space controller to execute that

specific adaptive navigation behavior.

9

Application State
Machine Controller

State Transition Criteria

Adaptive Nav. Primitive
Controller (changes

based on state)

Cluster Level Controller

n Robot Controllers

Fig. 1.8: Layers of the Adaptive Navigation Strategy, where solid lines represent com-
mands, and dashed lines represent environmental data

1.3 Project Statement

The research covered in this thesis has contributed to the development of an extended

set of adaptive navigation control primitives and has explored the use of a state machine

to execute several specific applications.

The first task was performed collaboratively with other members of the multirobot

control research group; this author’s role included helping to conceptualize and iterate

appropriate control primitives, simulating behaviors, and developing visualizations of

how the robot clusters moved through a scalar field. Chapter 2 presents this work.

The second major task was led by this author and consisted of implementing the state

machine control approach, integrating it with existing adaptive navigation primitive

controllers, devloping several plausible application-specific primitive sequences, and sim-

ulating the results. Chapter 3 presents this work.

Overall the contribution of this work is a significant extension to the field of multirobot

adaptive navigation. A first of its kind comprehensive suite of adaptive navigation

primitives has been established; furthermore, it has been shown how these primitives

can be sequenced to perform a variety of real world applications.

10

Chapter 2

Ridge, Trench, and Saddle
Navigation

With extrema and contour navigation established, the next logical step was the de-

velopment of a controller that could navigate ridges, trenches, and saddle points. As

discussed in Chapter 1, each of these features play an important role in a scalar field.

In nature, ridges tend to divide resources, trenches accumulate, and saddle points act

as a gateway between local extrema. In addition to their individual value, the ability to

navigate these features is also required for higher level tasks, as discussed in Chapter 3.

A number of different control strategies were simulated in an attempt to find a viable

solution, with varying levels of success. While the first two control primitives developed

used a gradient-based navigation technique, this controller doesn’t require the com-

putation of the gradient, and instead uses the scalar measurements as the basis for a

differential control strategy. Another key difference in implementation is the need to add

an extra robot to verify proper functionality for the ridge/trench following primitive.

The devlopment of the control primitives present in this chapter was a collaborative

effort involving multiple researchers within the Robotic Systems Laboratory. The author

actively collaborated in the design process, and was responsible for creating simulations

to test a variety of techniques.

2.1 Cluster Definition and Simulation

This implementation of the controller utilizes a five robot cluster, as opposed to the

three robots used for extrema seeking and contour following. The cluster variables are

listed in Table 2.1. These variables are required to describe and control the position

and pose of the cluster, which is required for interpreting the sensor data.

The general form of the five robot cluster used in this chapter is displayed in Figure

11

Table 2.1: Cluster variable definitions

Variable Description

xc global x position of cluster origin

yc global y position of cluster origin

θc rotation of the cluster in global frame

φi angle of an individual robot in cluster frame

d2 line between robots 1 and 2

d3 line between robots 1 and 3

d4 line between robots 2 and 4

d5 line between robots 3 and 5

β4 angle between −ŷc and d3

β4 angle between x̂c and d4

β5 angle between x̂c and d5

2.1. This setup mimics aerospace frame conventions, with the x vector for each robot

pointing out the front, the y vector pointing out the right side, and the z vector pointing

downward. The frame for the cluster of robots follows the same format, as does the

global frame. The frames were kept consistent because it is convenient to have the

angle between frames equal to zero when the axes are aligned.

As this work consisted of initial development and testing for these particular navigation

algorithms, the full set of robot dynamics was not included. Instead of separate dynamics

for each robot, the cluster was modeled as a first order system, with one second time

constants for translation in the x direction, the y direction, and rotation about the

cluster origin. Because the only dynamics were at the cluster level, the formation was

assumed to be ideal throughout operation. For this application, the ideal formation is

when d3 = d2, d5 = d4, and all the β angles are zero. This idealized configuration is

depicted in Figure 2.2. The simulation was generated using Matlab and Simulink, and

the implementation details can be found in the Appendix.

The scalar values generated via robots 2 through 5 are used to make control decisions,

while robot 1 is positioned as a reference point for determining whether the cluster is

on the feature of interest. All of these functions are formation dependent, which is why

the cluster control method is vital to this application.

12

x

y

{C}

x̂c

ŷc

(xc, yc)

θc

{5}
x5

y5

{3}
x3

y3

{2}
x2

y2

{4}
x4

y4
{1} x1

y1

d3

d2

d4

d5

φ2

β4

β3
φ1

φ3

β5

φ4

φ5

Fig. 2.1: The general form of the 5-robot cluster definition

x

y

{C}

x̂c

ŷc

(xc, yc)

θc

{5}
x5

y5

{3}
x3

y3

{1}
x2

y2

{4}
x4

y4
{1} x1

y1

d2

d2

d4

d4

φ2

φ1

φ3

φ4

φ5

Fig. 2.2: A five robot cluster for ridge and trench navigation

13

2.2 Ridge and Trench Navigation

There are a number of ways to interpret what a “ridge” is in a scalar field. In this case

it is a well defined path of shallowest descent. The red path in Figure 2.3 is following

such a ridge. The path is still headed downward along the crest of the ridge, however it

is staying on a maximum in the transverse direction. This required directionality was

a large challenge during the design process. The blue path in Figure 2.3 is following a

trench, which is the inverse of a ridge. To follow it, the robots stay close to a minimum

in one direction, and travel upward in another.

Student Version of MATLAB

Fig. 2.3: One cluster (in red) navigates down a curved ridge, and another (in blue) goes
up a trench to a saddle point.

Another key attribute of both ridges and trenches is a local increase in the curvature of

the contour lines in the field, which is centered on the ridge/trench. This is more easily

noted in Figure 2.4, as it is a contour map of the same scalar field. There is a clear,

14

sharp bend in the contour lines where the ridge or trench is located, with the vertex at

the crest/minimum of the feature. This can be a useful tool for determining whether a

ridge exists in a location, and how prominent it is.

Y (Meters)

X
(M

et
er

s)

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

−20

−10

0

10

20

30

40

50

Student Version of MATLAB

Fig. 2.4: The same paths from Figure 2.3, but from an overhead contour perspective

Knowledge of these attributes was used in the development of control methods for

navigating ridges and trenches. Because the robot cluster needs to move up in one

direction relative to the ridge/trench, and down in the other, it became evident that it

would be difficult to attempt to use control approaches that were independent of the

orientation of the cluster, as was accomplished with the extrema seeking and contour

following primitives. This led to the development of a controller that is different than

the previous gradient approaches.

2.2.1 Control Strategy

As stated previously, the navigation of the robot cluster is based on sensor readings

from each robot. These readings are scalar values, which provide an indication of the

magnitude of a scalar field at a given point. When following a ridge in the field, the

15

objective is to remain on the crest of the ridge, but to follow it downward. This means

that the cluster needs to climb in one direction, and descend in another. This led to

a differential control strategy, which attempts to balance the scalar values of different

robots in the cluster.

The angle controller attempts to align the cluster properly with the ridge or trench. The

optimal alignment for a ridge is with the cluster x direction pointed down the ridgeline.

In this ideal configuration, robots 2 and 3 should have the same scalar value, and robots

4 and 5 should have the same value. In this state, if the ridge were perfectly symmetrical,

the cluster would be perfectly aligned. Equation 2.1 generates the rotational velocity

command for the cluster, where vturn is the maximum velocity an individual robot within

the cluster is permitted to contribute to turning the formation. This value is selected

to prevent actuator saturation. This means vturn
d2

is the maximum turning rate of the

cluster. The trench controller is the same, except the cluster is oriented up the trench,

instead of down the ridge. For all equations in this section, d = 1 for ridge navigation,

and d = −1 for navigating a trench.

θ̇c = (−d)
vturn
d2
× sign[(z2 − z3)− (z4 − z5)] (2.1)

The controller for the cluster for the velocity in the x direction is fairly straightforward.

It’s sole goal is to continue downhill (or uphill in the case of a trench), and is represented

by equation 2.2. It subtracts the sum of the scalar values of the front two robots from

the sum of the values for the two robots in the rear. It gives a forward command if the

result is result is positive, and a reverse command if the result is negative.

ẋc = d× sign[(z2 + z3)− (z4 + z5)] (2.2)

The controller for the y velocity is quite similar, except that it attempts to move up the

surface if it is on a ridge, and down if it is on a trench. This upward tendency keeps

the cluster centered on the ridge in the y direction. Equation 2.3 is used to compute

the direction of the desired cluster velocity in the y direction. It compares the scalar

readings of the robots on one side of the ridge, to those on the other side of the ridge,

in an attempt to center itself.

ẏc = d× sign[(z2 + z4)− (z3 + z5)] (2.3)

16

This controller is effective, however it operates on the assumption that the cluster of

robots is spanning a ridge in the scalar field, and in good alignment. When this assump-

tion is incorrect, acceptable performance can not be guaranteed. To counter this issue,

a fifth robot is used for the purpose of sensing whether or not the cluster is spanning

the ridge. Making this check is as simple as confirming that robot 1 is reading a higher

scalar value than robots 2 and 3, plus an adequate margin (equations 2.4, 2.5). In the

case of a trench, it checks to be sure that z1 is less than z2 and z3, and subtracts the

margin.

z1 > z2 + zmar (2.4)

z1 > z3 + zmar (2.5)

The zmar would be selected based upon how defined the ridge or trench is required to

be. It is also important to note that if the cluster fails the check, it only means that it

isn’t guaranteed to be on a ridge. The ridge could just be too flat, or the cluster may be

in a poor orientation. If the cluster falls off the ridge, due to a disturbance or a complex

ridge shape, an altered controller must be used to lock onto the ridge again.

All of the control equations produce discrete velocity values for the purpose of reducing

dependency on the topology of the surface. This is extremely beneficial, as the environ-

ment robots traverse is often largely unknown, and being less dependent on the shape

of the scalar field means less prior knowledge is required.

The tracking performance of the controller can be represented by scalar field differentials

generated from measurements taken by the individual robots. Figure 2.5 is a time

response plot for the front and rear scalar differentials of the robot cluster as it follows

the red path in Figure 2.4. These two differentials represent both the lateral and angular

alignments of the robot cluster, and are used in the corresponding control equations.

As seen from the plot, there is a brief period where the cluster is aligning with the

field, followed by small oscillations for the rest of the time history. These steady-state

oscillations are caused in part by the discrete velocity commands generated by the

control equations. Despite these small oscillations, the performance is excellent. The

simulated cluster not only follows the ridge, but does so very closely, as the differentials

settle to within ±0.005 scalar units.

17

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

M
ag

ni
tu

de
 D

iff
er

en
tia

l

Robots 2−3 Scalar Value Differential
Robots 4−5 Scalar Value Differential
Set Point

Student Version of MATLAB

Fig. 2.5: A time history plot of the scalar differential between robots 2 and 3, as well
as between robots 4 and 5, from the same simulation run as Figures 2.3 and 2.4.

2.3 Saddle Point Navigation

A saddle point is a point at which the derivative is zero in both the x and y directions,

but is not a local maximum or minimum. They can occur in a variety of places, but

are often found between two local maximums, and/or at the intersection of ridge and

trench features. Figures 2.6 and 2.7 show two cluster paths, the green one using the

ridge controller to descend down into the saddle point, and the blue path using the

trench controller to go up into it.

Because of the differential control style used in both the ridge and trench controllers,

the cluster automatically settles at the saddle point. This removes the requirement for

a separate controller to hold the robot cluster on the point. As seen in Figure 2.7, the

two clusters sit on the point, but are oriented ninety degrees from one another. This

occurs because in one direction a saddle point has ridge-like features, and in the other

they are similar to a trench.

The results of the saddle point scenario can be represented using differentials as well.

Figure 2.8 shows how the differentials on all four sides change over time. In this case it is

for the path the robot cluster takes up a trench to a saddle point as shown in Figure 2.6.

As evidenced from the plot, the front and back differentials have only small transient

behaviors correlating with the time the cluster takes to snap onto the ridge and align.

This behavior is very similar to Figure 2.5. In contrast, the right and left differentials

have significant magnitudes during much of the travel time. This is what results in the

18

Student Version of MATLAB

Fig. 2.6: The blue cluster is the same set of robots from Figures 2.3, and 2.4, traveling
up a trench to the saddle point, and the green path is coming down a ridge into the
same point.

x̂c control equation commanding movement up the trench. Upon reaching the saddle

point these differentials become minimal, oscillating between −0.001 and +0.001 scalar

units. This behavior indicates the cluster has reached steady state on the saddle point.

These results confirm the behavior evidenced in Figures 2.6 and 2.7, which indicate that

the controllers go up a trench and reliably settle at a saddle point.

19

Y (Meters)

X
(M

et
er

s)

−20 0 20 40 60 80 100 120
50

100

150

200

0

10

20

30

40

50

Student Version of MATLAB

Fig. 2.7: The same paths from Figure 2.6 from a two dimensional overhead perspective

0 50 100 150 200 250 300 350
−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

M
ag

ni
tu

de
 D

iff
er

en
tia

l

Robots 2−3 Scalar Value Differential
Robots 4−5 Scalar Value Differential
Robots 3−5 Scalar Value Differential
Robots 2−4 Scalar Value Differential
Set Point

Student Version of MATLAB

Fig. 2.8: A time history plot of the scalar differentials between robots 2 and 3, 4 and 5,
2 and 4, and 3 and 5, as the cluster travels up a trench to a saddle point

20

2.4 Discussion

While the performance of these controllers is excellent, as seen from the time responses,

there are some additional considerations to be taken into account. For one, the simula-

tion does not model everything. The dynamics of the individual robots are not included,

and the scalar field is assumed to be continuous and without noise. Both of these factors

will have an impact on the performance of the navigation strategy. While required for

the final implementation, the inclusion of robot dynamics is unlikely to have too much of

a negative impact, as other formations have been successfully implemented in previous

work. That said, an adjustment of the speed of the robot cluster may be required to

account for maneuvering time. The impact of the scalar field on the navigation is a

more complex issue. This brings us to a second major point, the sizing of the cluster

relative to the field.

The sizing of the robot cluster effectively has upper and lower bounds, which are depen-

dent on mission requirements. The upper bound is designated by the features of interest

within the scalar field. The cluster needs to be sufficiently small relative to the features

in order to successfully navigate them. If it is too large, the navigation algorithm simply

won’t react to certain field features. This misrepresentation of the field is essentially

signal aliasing based upon spatial parameters, which implies that the maximum size of

the cluster should be half the size of the scalar feature, to comply with the Nyquist

criteria.

The minimum size is based upon sensor and spatial noise. We are familiar with sensor

noise, and in that scenario it clearly makes sense to keep the cluster large enough to

get distinct readings from the sensors, which allows the controller to established the

required differentials. We consider spatial noise to be anything naturally occurring in

the scalar field that is not relevant to the current mission. For example, if we are trying

to determine the overall trend of a system, we want to see large scale features, not local

changes. While spatial noise is from a different source, it is dealt with the same way.

Increasing the cluster size will effectively damp out this noise, the same way you change

sampling frequencies to attenuate signals that are not of interest.

21

Chapter 3

Adaptive Field Applications

While there are valid field applications for the individual control primitives, there are

many more that can be generated by using various combinations of these simpler con-

trollers. This chapter presents and discusses four such applications and their imple-

mentation details. Each application was devloped and demonstrated in a simulation

environment to explore the technique. As an initial study of the capability, many ide-

alizations were assumed. Future work is required to more rigorously evaluate these

strategies given real world effects such as noise, vehicle dynamics, complex fields, et

cetera.

3.1 Overview of Architecture

The application controllers are constructed with a standard state machine configura-

tion. There are a number of available states, which are each an implementation of an

adaptive navigation control primitive. For each application there is a set of transition

criteria, which is based upon the attributes of the scalar field and the position of the

robot cluster. The criteria for each state vary from application to application as re-

quired. Figure 3.1 displays the layered structure of the application control architecture.

State transitions within the state machine application controller are defined based upon

mission requirements, which makes use of the full set of adaptive navigation primitives.

The primitive used changes with the state of the system. The selected primitive gener-

ates cluster commands, which the cluster controller uses to generate commands for each

individual robot controller.

Although the control primitives can be executed with cluster of three or five robots, it

was unclear at the start of the project as to whether additional field samples would be

necessary to support more robust performance and/or switching between states. For this

reason, a nine-robot cluster was adopted, with the idea that a wider set of data points

22

Application State
Machine Controller

State Transition Criteria

Adaptive Nav. Primitive
Controller (changes

based on state)

Cluster Level Controller

n Robot Controllers

Fig. 3.1: Layers of the Adaptive Navigation Strategy, where solid lines represent com-
mands, and dashed lines represent environmental data

would be available for evaluation and use. This formation allows an instantaneous three

dimensional curvature estimate. The cluster was arranged in a three by three, equally

spaced grid, with the ability to hold formation perfectly, as in Figure 3.2.

Figure 3.2 shows how the nine robot cluster is defined. The cluster frame is positioned

on the center robot with the z vector pointing downward. d is the distance between one

robot and the next. The different applications use a different number of robots, and

each state within those controllers also uses a particular subset of the nine. That said,

some of these methods do use all nine to execute a particular task. Future versions of

these strategies may use other formations or techniques to acquire the necessary field

information with fewer robots.

There are a few idealizations and assumptions associated with this early version of

the technique. For example, the threshold values used for state transitions work with

the given scalar field but are not particularly robust. There are also particular features

required for the controllers to function, or that could result in the cluster getting trapped

on a contour. One can compensate for issues such as these using the current architecture

by adding additional transition conditions to avoid hazards. Finally, the simulations did

not take environmental or sensor noise into account, so a field version would have to be

adapted for the noise profile associated with the application.

23

7

4

1

8

5

2

9

6

3
x

y

{C}

x̂c

ŷc

(xc, yc)

d

Fig. 3.2: The nine-robot cluster used for the state level controllers

3.2 Ridge Controller with Recovery

A simple example of a state machine implementation is a variation of the ridge and

trench controller presented in Chapter 2 which is capable of recovering after it loses the

ridge, as well as finding a ridge from an unknown location. An overview of the state

controller is depicted in Figure 3.3.

1: Follow Ridge/Trenchstart

2: Recovery Mode

A: lost ridgeB: on ridge

Fig. 3.3: State diagram depicting the states required for the ridge following controller
with a recovery mode

There are two states required for this strategy. The first state, Follow Ridge/Trench, is

the standard controller presented in Chapter 2, where d = 1 for a ridge, and d = −1 for

a trench.

24

Table 3.1: Summary of Transition Criteria for Ridge Recovery

Transition Criteria

A: 1→ 2 z2 < z1 + zmar or z2 + zmar < z3

B: 2→ 1 z2 > z1 + zmar and z2 > z3i+ zmar

The recovery controller is very similar to the standard ridge controller. The only differ-

ence is that the controller for ẋc has the opposite sign, as in equation 3.1.

ẋc = −d× sign[(z2 + z3)− (z4 + z5)] (3.1)

As before, d = 1 for a ridge, and d = −1 for a trench. Changing the sign of ẋc effectively

makes the cluster go uphill in both the cluster x and cluster y directions, therefore it

will be heading toward a maximum. Following an upward trajectory will take it back

to the top of the ridge, and the unchanged θ̇c controller will align it when it is near

the ridgeline. At this point the controller will recognize that the cluster is straddling

the ridge, and the controller will return to the standard navigation state, to continue

down the ridge. The opposite is true for the equivalent trench controller. It will head

downward in the recovery state, until it again straddles the trenchline. This variation

of the controller is used in all of the state level controllers presented in this chapter.

Figures 3.4 and 3.5 display two paths, one of which seeks a ridge then follows it, and the

other does the same with a trench. In this case, the cluster begins far from the ridge,

but the controller is equally effective when faced with smaller deviations.

Figure 3.6 contains time history information for this controller. The first subplot indi-

cates the state of the system as it changes based upon the transition criteria from Table

3.1. For this particular controller, both transitions A and B are determined by whether

the scalar value of robot 2 exceeds the other two by a threshold value. The second

subplot displays the transition criteria by plotting the the scalar differential between

robots 2 and 1, and robots 2 and 3. If either of these lines is below the scalar threshold,

zmar, then the cluster is effectively off of the ridge, and the recovery controller activates.

From the response information displayed in Figure 3.6, we can confirm that the robot

cluster began off a ridge, and climbed until it reached one. The state transitioned just

as the ridge was attained, and remained constant as it traveled down. There is one

point in the response where state one is entered briefly before the ridge is reached due

25

Student Version of MATLAB

Start

Start

B

B

Fig. 3.4: Two robot clusters navigate a scalar surface, one of which seeks and tracks a
ridge, the other does the same with a trench

to the rotation of the cluster, however this lasts only a moment as the cluster properly

aligns itself. Only five robots are required for this controller. In the nine robot cluster,

we use robots 1, 2, 3, 7, and 9.

26

Y (Meters)

X
(M

et
er

s)

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

−20

−10

0

10

20

30

40

50

Student Version of MATLAB

Start

Start

B

B

Fig. 3.5: The same robot clusters from Figure 3.4 viewed from above

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

Time (s)

St
at

e

Controller State

0 50 100 150 200 250 300 350
−2

−1

0

1

2

Time (s)

Sc
al

ar
 U

ni
ts

Scalar Set Point
Differential between 2 and 3
Differential between 2 and 1

Student Version of MATLAB

B

Fig. 3.6: Time history plots of the states and transition criteria for the red path from
Figures 3.4 and 3.5

27

3.3 From Local Maximum to Local Maximum

The control primitive that finds a maximum in a scalar field is limited because it will find

a local maximum, and remain there. This application controller attempts to mitigate

this limitation, moving from one local maximum to another, while taking an efficient

path. The cluster first moves to a local maximum, then circles a contour until it finds

a ridge, follows that ridge to a saddle point, then moves up to a neighboring maximum.

These same methods can be used for moving from minimum to minimum, following

trenches instead of ridges. This particular controller uses three different control primi-

tives to accomplish its objective. Figure 3.7 is a state diagram presenting a high level

view of the required states and transitions, and Table 3.2 provides the criteria for these

transitions.

1: Patrolstart

2: To Max

3: Follow Contour4: Down Ridge

A: above min

B: at max

C: at ridge

D: at saddle

Fig. 3.7: State diagram for going from local maximum to local maximum

Table 3.2: Summary of Transition Criteria for Extrema Hopping

Transition Criteria

A: 1→ 2 zc > zcutoff

B: 2→ 3 z5 − zmar ≥ {z1, z2, z3, z4, z6, z7, z8, z9}
C: 3→ 4 ccurv = (c1 + c2)/d > cmin and |z5 − zcontour| < emax

D: 4→ 2 z5 − zmar > z4,6 and z5 + zmar < z2,8

The first state of the controller is a Patrol mode. It could be a search pattern appropriate

28

for the current application, a straight line, a lawn cut, et cetera. In the case of this

simulation, the cluster was traveling in a straight line, in the x direction of the cluster

frame. There are many viable options for the transition criteria; however, for simulation

purposes, it was set to transition when the scalar value at the center of the cluster passed

a threshold. This criteria is represented by Equation 3.2, where zc is the scalar value at

the center of the cluster, and zcutoff is the cut-off value for the transition. When this

inequality is true, the controller switches to the next state.

zc > zcutoff (3.2)

Future iterations of this patrol mode would likely have more strict criteria for transition,

incorporating gradient magnitude, spatial regions, et cetera.

To get to the first local maximum, the robot cluster enters the To Max state and utilizes

the technique described in Section 1.2.1 in order to travel up the gradient of the scalar

field. Robots 1, 3, and 8 are used to estimate the gradient. The robot cluster simply

follows the local gradient upward until it reaches a local maximum. It transitions to

the next state when it determines that it has arrived at a maximum when Equation 3.3

is true, where the z values are the scalar values sensed by each robot. This condition

indicates that the center robot is at a maximum. The margin zmar is an operator selected

value that should be significant enough to avoid a false positive due to sensor noise and

other environmental disturbances. Similar margins are used in for many transition

criteria to increase robustness.

z5 − zmar ≥ {z1, z2, z3, z4, z6, z7, z8, z9} (3.3)

In the third state, Follow Contour state, the contour controller described in Section

1.2.1, is used to find a ridge leading from a peak. Once again, robots 1, 3, and 8 are

used to estimate the local gradient. The controller follows a contour a preset value

below a peak. This value can be changed based on the characteristics of the field. The

transition to the next state occurs when a ridge in the field is located. The ridge is

identified based on the local curvature of the contour lines. Figure 3.8 is an example

of a cluster of robots navigating a contour line, and demonstrates how the contour

controller orients the robots with respect to the contour line.

The curvature of the contour line can be estimated using this information. The contour

29

7

4

1

8

5

2

9

6

3
x

y

{C}

x̂c

ŷc

(xc, yc)

d

Fig. 3.8: A robot cluster relative to a contour line (displayed in red).

line of interest is the one corresponding to the scalar value of the center robot, z5. We

know, by definition, that it passes through robot 5. To calculate the curvature, two

more points on the contour are required. To find one of these points, equation 3.4 is

used to interpolate the location of the point between robots 1 and 7. Equation 3.5 is

used to do the same between robots 3 and 9.

c1 = 2d
(z5 − z1)
(z7 − z1)

− d (3.4)

c2 = 2d
(z5 − z3)
(z9 − z3)

− d (3.5)

With these two interpolated points and the center of the cluster, there is enough infor-

mation for a curvature estimate using equation 3.6.

ccurv =
(c2 − 0)

d
− (0− c1)

d
=
c1 + c2
d

(3.6)

This calculated curvature value is used to determine whether the location meets the

criteria to be considered a viable ridge. A cut off value is assigned to determine whether

the requirement is met. This value is assigned based on the field in question. In addition

30

to the curvature requirement, the controller requires that the cluster has already reached

the desired contour level, by checking that |z5 − zcontour| < emax where emax is the

maximum allowable contour tracking error. If a suitable ridge is located while at the

correct contour level, the transition to the next state occurs. Because the contour was

being followed with the x̂c vector pointing downhill, the cluster will already be facing

the correct way to execute the ridge following algorithm.

The final state of this application controller is the navigation of down a ridge to a saddle

point. This state uses the method described in Chapter 2, using scalar values for robots

1, 2, 3, 7, and 9. For the purposes of this navigation strategy, the ridge navigation

strategy from section 3.2 was implemented to provide an extra level of robustness to

unknown conditions. As before, upon reaching a saddle point, the cluster holds position.

The cluster determines it has reached the saddle point by checking the relationship

between the scalar values of the robots in the cluster. Two checks are required to

confirm the cluster location. The first is that z5 − zmar is greater than z4 and z6.

Similarly, z5 + zmar must be less than z2 and z8. Once the cluster is confirmed to be on

the saddle, the controller returns to the ‘Go to Max’ state, to proceed up to the next

maximum.

Simulation results of this controller have been successful. Figure 3.9 is a demonstration

of the controller. The plot shows the cluster moving up to a maximum, down into a

saddle, and up to the next maximum as expected. There is some noticeable deviation

from the optimal path as the transition from the ridge controller to the extrema seek-

ing controller takes place due to a turning maneuver, but it still reaches the desired

destination.

Figure 3.10 contains the time history information for the cluster as it swtiches from

state to state to complete its objective. As expected, as soon as it reaches the scalar set

point it exits the patrol state. Each line on the third subplot is the difference between

the scalar value of each robot, and the center one. To meet the transition criteria, all of

these differentials need to be above the threshold point, which indicates that the cluster

is sitting on the maximum. The criteria for the next transition is twofold; the curvature

needs to reach the minimum value to identify a ridge, and the scalar value of the cluster

and the desired contour need to be the same within a certain margin. Both of these

criteria are represented on the fourth subplot. The final subplot represents the criteria

for identifying a saddle point. Once again scalar differentials between robots are used

to determine the shape of the local area.

31

Fig. 3.9: A robot cluster travels to one local max, then to another

As seen from the figures, each transition occurs at the intended point, and the cluster

makes it from one peak to the other, despite transient behaviors due to turning me-

chanics. All nine robots are used in this method. Nine are used to determine whether

an extrema is present, three for extrema finding and contour following, and five for the

ridge and saddle controller.

32

Fig. 3.10: The time response plots for the states and transition criteria throughout the
path displayed in Figure 3.9

33

3.4 Contour Mapping

The contour mapping strategy is an alternative to traditional mapping strategies. Rather

than exploring the area based on spatial criteria, this method explores the area based on

the scalar levels and contour lines. In this fashion, a topographic map can be generated

directly, as opposed to conducting a comprehensive sweep of the area. The controller

presented here centers the contour map around a local maximum; however, the same

methods could be used to map an area around a minimum. The controller begins by

ascending to a local maximum, dropping a fixed amount while aligning with a contour,

following that contour around past the starting point, and repeating the process until

the area has been sufficiently mapped. Figure 3.11 shows the state transitions required

to execute contour mapping, and Table 3.3 contains the required conditions for each of

these transitions to take place.

1: Patrolstart

2: To Max

3: Go to Contour4: Follow Contour

A: above min

B: at max

C: reached start

D: past start

Fig. 3.11: State diagram for mapping the contour lines around a peak

Table 3.3: Summary of Transition Criteria for Contour Mapping

Transition Criteria

A: 1→ 2 zc > zcutoff

B: 2→ 3 z5 − zmar ≥ {z1, z2, z3, z4, z6, z7, z8, z9}
C: 3→ 4 |z5 − zset| < zmar and |θ̇c| < θ̇mar

D: 4→ 2 φ > φo + φmar and r > ro ± rmar

34

Once again, the first state is a Patrol mode with an arbitrary termination condition. In

the simulation, the controller was set up such that the state transition occurred once the

cluster value exceeded a defined scalar value, as with the previous navigation strategy.

The cluster then eneters the To Max state, using the extrema controller to climb to the

local maximum. When the maximum is reached as defined by transition criteria B in

Table 3.3, the location of the point in the global frame is recorded for later reference,

then the controller transitions into the next state.

The purpose of the third state, Go To Contour, is to travel to the next contour line

from the previous location, and to align properly. To achieve this, the contour following

control primitive is used, and the desired contour level is set to a preset interval below

the previous location. As three robots are required to compute the gradient, the scalar

values from robots 1, 3, and 8 are used to make the calculation. The desired contour

level is compared to the scalar value of robot 5. The size of this interval is set prior

to the mission, and is selected to match the desired resolution of the contour map.

The controller transitions to the next state when it determines that the cluster is on

the appropriate contour, and aligned properly. There are multiple checks to determine

whether these conditions are met. The requirements are that the scalar level z5 is within

a preset margin of the desired level, and that the cluster is aligned with the contour

within a specific margin of error. Once the cluster is in the proper position relative to

the contour line, the controller transitions to the next state.

The fourth state, Follow Contour, is designed to follow the contour line around its

entire perimeter, and then go a little further to ensure complete coverage. The contour

following control primitive is used, once again using robots 1, 3, 8, and 5. When the

transition into this state occurs, a polar position is recorded with the maximum as the

origin. This means there is a known starting radius and angle. These values are used

as a reference when determining whether the robot cluster has passed through the start

point again. It is important to use both of these values, as depending on the shape of

the contour, the angle from the maximum (and certainly the radius) will repeat itself;

by combining the two, we ensure a unique position.

The transition back to the Go To Contour state occurs when the radius from the maxi-

mum to the cluster is within a preset margin of the starting radius, and the angle is past

the starting point by a preset value. Hysteresis is added to ensure that the transition

does not occur the first time around the contour.

35

The results of the contour mapping controller are positive, as seen in Figure 3.12, which

is an example of a successful mapping. As seen in the figure, the contours of interest

are an even distance apart and completely encircled, as desired. Figure 3.13 contains

time response plots for the state of the system and the transition criteria as the robots

map the contours of the field. From the response plot we can see that each transition is

successfully executed when the relevant condiditons are met.

Fig. 3.12: A robot cluster mapping contours around a maximum in the field

In this example, the first transition criteria is met when the scalar level of the center

robot passes 15 scalar units. As the cluster reaches the maximum all the scalar differen-

tials on the third subplot of Figure 3.13 are above the margin value, initiating the next

state. The fourth subplot demonstrates that the next transition occurs when the scalar

level of the center robot is close enough to the desired contour level, and the rotational

command is minimal. This is represented by plotting the rotational command, and the

difference between the scalar value of the cluster and that of the contour line. Finally,

the last plot compares the starting angle to the current angle, and the radius differen-

tial, indicating that the final transition occurs when the polar position is just past the

starting value.

The controller is most susceptible to error at the point at which it determines whether

it should switch to the next contour level, as the characteristics of the field can have

36

Fig. 3.13: Contour mapping time history containing state and transition information

a significant impact. Figure 3.14 is an example of a potential failure scenario. The

spacing between contour lines is such that the robot cluster gets stuck on a nearby

maximum instead of continuing downward. While only a small adjustment of the spacing

is required to avoid this scenario, it could still be difficult to avoid in the field, due to

unknown conditions. A final version of the controller may include additional measures

to make it more resistant to this failure mode. All nine robots were required to confirm

the presence of an extrema, however the rest of the application only requires three.

37

Fig. 3.14: A robot cluster gets stuck while mapping contours due to a secondary maxi-
mum

3.5 Maintaining Signal Strength

The objective of this controller is to keep the robot cluster above a particular scalar

value as it navigates to a predetermined destination. This makes it a little different

from previous techniques, as instead of navigating to an unknown destination, the end

point is known, and it is the path that is adaptive. Remaining above a set sensor value

has a variety of applications, including staying above safe thresholds. One example of

great interest is maintaining a particular radio control signal strength, which would allow

robots to complete their mission without fear of losing signal from the base of operations.

The controller attempts to take a straight path to the destination, and when the cluster

drops below a set scalar value, it switches to following the contour until the straight

path is close enough to the direction of the gradient. Figure 3.5 displays the states and

transitions required for this controller, and Table 3.4 presents the associated transition

criteria.

The Toward Destination state simply takes a direct path to a predetermined destination.

The associated cluster velocites are calculated using Equation 3.7, where xtar and ytar

are the coordinates of the destination.

38

Toward Destinationstart

Follow Contour

at min signalviable path

Fig. 3.15: State diagram for navigating to a point while maintaining signal strength

Table 3.4: Summary of Transition Criteria for Extrema Hopping

Transition Criteria

A: 1→ 2 zc > zmin

B: 2→ 1 θalign = cos−1(v̂tar · ĝ)

vtar =

[
ẋ

ẏ

]
=

[
cos θc sin(θc)

− sin(θc) cos(θc)

][
sign(xtar − xc)
sign(ytar − yc)

]
(3.7)

If the whole path were above the threshold, the robot cluster would simply follow a

straight line all the way there. That said, if the scalar readings drop too low, the

controller will change to the next state to avoid falling below the desired threshold.

The second state uses the contour following control primitive, with scalar values from

robots 1, 3, 8, and 5. Upon entering this state, it determines whether to follow it

clockwise or counter-clockwise by selecting the direction that is best aligned with a

direct path to the target location. This is implemented by setting ẏc to the same

direction as it was in the previous state.

This contour following controller continues until the direct path to the objective and

the gradient of the scalar field are somewhat aligned. This alignment is calculated using

Equation 3.8, which simply finds the angle between the gradient and the heading using

the unit vecotors indicating the directions of the gradient and the target point.

θalign = cos−1(v̂tar · ĝ) (3.8)

When the desired direction of travel and the gradient are aligned, this indicates that

39

there is a viable path to the desired location that travels up the scalar surface, and will

therefore provide a path that will take the robots above the desired scalar value. Once

the criteria is met, the controller switches back into the first state.

The simulation demonstrated that the controller successfully kept the cluster above the

threshold level, as seen in Figure 3.16. This path is a clear example of the cluster

taking a straight path, then following the contour around until it finds a clear route to

the destination, just as we would expect. Figure 3.17 contains time history plots with

state and transition criteria information. From this data we can see that transitions are

ocurring as we would expect them to based upon the relevent scalar field information.

Fig. 3.16: A robot cluster navigating to x = 75, y = −75, using a state controller to
remain above a scalar threshold

The first transition takes place when the scalar value for the cluster drops below the

minimum allowed value, which is confirmed by the second subplot of Figure 3.17. The

third plot displays the angle between the desired bearing and the gradient. As expected,

the transition occurs when it reaches the set point.

While this is an example of success, there are certainly situations in which the controller

would fail. A simple but significant example would be a scenario in which there isn’t

40

Fig. 3.17: Time response containing state and transition information for maintaing
scalar magnitude

a viable path to the desired destination. Some of these scenarios will be discussed in

section 3.6. While the simulation environment contained nine robots, this controller

only made use of three of them.

3.6 Discussion

While these state-level controllers have been demonstrated to be functional in a sim-

ulated environment, there are several potential pitfalls associated with these methods.

The largest causes for concern are the unknown nature of the field, and the potential

for repetition.

41

3.6.1 Unknown Features

All of the controllers in this chapter make some assumptions of the field which is being

navigated. First, there is the same assumption that is made for the individual feature

controllers, which is that the field is continuous, and the feature size is navigable by

the robots available. As before, this issue is largely a matter of sizing the cluster and

tuning the controller to compensate for any gains introduced by the scalar field. The

second assumption is that the feature set of interest is actually present. This second

assumption poses a particular challenge for controlling robot clusters at the state-level,

as each controller assumes a different set of field features is present, and that they meet

a particular criteria.

3.6.2 Unwanted Repetition

As stated previously, the controllers do not store any data about the field. This means

that the controller does not take into account where the cluster has been, and therefore

would not know if it had been there before. This could lead to the cluster just traveling

back and forth between two points, instead of continuing to explore the field. Similarly,

as in Figure 3.14, there are situations were the cluster could be continuously following

the same contour in a circle, and the controller would have no way of knowing. There

are also a number of transitions between states that could be improved if there was

more thorough knowledge of the areas that had already been traveled.

42

Chapter 4

Conclusion

4.1 Summary

The work presented in this thesis accomplished two primary objectives. First, the base

set of primitive scalar field navigation controllers were completed, and second, they were

combined to perform complex tasks.

The addition of the ridge, trench, and saddle navigation capabilities was an essential step

toward expanding the adaptive navigation technique. Unlike the previous controllers,

these primitives use differential sensing to generate the necessary information about the

scalar field. This gives the cluster the ability to navigate with respect to the particular

feature, rather than with respect to the field gradient. The performance of the controllers

was successfully verified using a Matlab simulation. This additional information came

at the cost of additional robots, as it requires five instead of three within a cluster.

When added to extrema seeking and contour following, all the key features of interest

within a scalar field can be navigated. To our knowledge, we are the first to propose

such a comprehensive suite of primitive scalar field controllers [24].

While the individual primitive controllers perform valuable functions, it is possible to

sequence them in order to create an enhanced set of capabilities. The first step in cre-

ating these enchanced capabilites was developing a state machine architecture to switch

between the primitive controllers. Based on the application, this state machine switches

between the individual control primitives using a defined set of criteria. Methods for

moving from one extrema to another, mapping contours, and maintaining a magnitude

were all implemented successfully in simulation. Primitive sequences and transition

criteria were determined based upon the objectives of each application.

43

4.2 Future Work

While the work covered in this thesis represents a significant contribution to the capabil-

ities of the adaptive navigation technique, there are many oportunities for establishing

improved performance, enabling enhanced capabilities, verifying performance, et cetera.

Three broad categories of work are adding memory to the state level exploration strate-

gies, improving the effectiveness of the primitive controllers, and performing a series of

field tests to verify the techniques in a uncontrolled environment.

4.2.1 Exploration with Memory

Adding memory to the adaptive navigation process can improve both the performance

and the capabilities of the technique given that controllers could exploit knowledge about

portions of the field through which the cluster has already navigated. The addition

of memory to the controller can be used to prevent repetition/backtracking and to

characterize the spatial characteristics of the field. The research and implementation

of such techniques will require methods for efficient storage of field data and filtering

algorithms appropriate to how previously measured field data can be exploited.

4.2.2 Adaptive Cluster Sizing

The size of the robot cluster relative to spatial characteristics of the field has a significant

impact on the performance of the adaptive navigation controllers, both for estimating

gradients and taking differential measurements. The aperture of the sensor distribution

determines which spatial frequencies are attenuated, allowing execution of the primitive

controllers to be tuned to spatial frequencies of interest. Up until now, we have as-

sumed that the operators deploying the robot cluster have some idea of the frequencies

of interest, and that they specify the cluster’s size accordingly. This strategy is effec-

tive when there is some prior knowledge of the environment of interest; however, if an

adaptive sizing policy is adopted, the cluster can actively optimize itself for the region

it is currently traversing.

The ability to adaptively size the cluster would be beneficial for many applications. For

instance, we could actively tune out spatial frequencies that are not of interest within

current mission parameters, reducing the effective noise in the system. Varying the size

44

can also reveal previously unknown features. For example, the cluster may register as

being on a flat surface, but as the size increases, it may become apparent that the flatter

region was a part of a feature that was too large to detect with the original aperture

size. For yet another example, if the cluster is seeking an extrema in a region, it may

be beneficial to start with a low resolution configuration, and progressively increase

resolution as the search progresses.

4.2.3 Additional Field Testing

Last but not least, all of these methods need to be fully verified in a field setting. The

Robotic Systems Laboratory has multiple test platforms for multi-robot applications,

all of which would be suitable for testing the results of both the research presented in

this thesis and future adaptive navigation work. The first step will be to verify the

ridge, trench and saddle controller, as it is required for the more complex exploration

strategies. Based on the equipment available, it would make sense for the scalar field

of interest to be bathymetric, a temperature distribution, or a radio frequency field

generated by a designated antenna. The radio frequency field would be the simplest

test environment for the ridge controller, as it is fairly simple to generate a ridge shape

with a patch antenna [25].

Testing the exploration strategies would be more logistically difficult, as more complex

fields would be required, with several key features. This would require the operators to

locate a suitable naturally occurring field, or develop a method or medium for customiz-

ing an artificial scalar field. While conducting these tests will be more challenging, they

will be an excellent verification of the techniques employed. This additional testing will

aid in the refinement of the controllers, providing better performance in the future.

45

Bibliography

[1] C. Kitts and M. Egerstedt, “Design, control, and applications of real-world multi-

robot systems [from the guest editors],” Robotics & Automation Magazine, IEEE,

vol. 15, pp. 8–8, March 2008. 1

[2] S. Jeon and J. Lee, “Multi-robot multi-task allocation for hospital logistics.,” 2016

18th International Conference on Advanced Communication Technology (ICACT),

p. 339, 2016. 1

[3] M. A. Neumann and C. A. Kitts, “A hybrid multirobot control architecture for

object transport,” IEEE/ASME Transactions on Mechatronics, vol. 21, pp. 2983–

2988, Dec 2016. 1

[4] Y. Pei and M. W. Mutka, “Stars: Static relays for remote sensing in multirobot

real-time search and monitoring,” IEEE Transactions on Parallel and Distributed

Systems, vol. 24, pp. 2079–2089, Oct 2013. 1

[5] X. Dai, H. Zhang, and Y. Shi, “Autonomous navigation for wheeled mobile robots-a

survey,” in Second International Conference on Innovative Computing, Information

and Control (ICICIC 2007), pp. 551–551, Sept 2007. 1

[6] y. Yun-Won Choi1, k. Kee-Koo Kwon1, s. Soo-In Lee1, c. Jeong-Won Choi2, and

s. Suk-Gyu Lee3, “Multi-robot mapping using omnidirectional-vision slam based on

fisheye images.,” ETRI Journal, vol. 36, no. 6, pp. 913 – 923, 2014. 1

[7] B. C. Akdeniz and H. I. Bozma, “Exploration and topological map building in

unknown environments,” in 2015 IEEE International Conference on Robotics and

Automation (ICRA), pp. 1079–1084, May 2015. 1

[8] A. Melingui, T. Chettibi, R. Merzouki, and J. B. Mbede,“Adaptive navigation of an

omni-drive autonomous mobile robot in unstructured dynamic environments.,”2013

IEEE International Conference on Robotics and Biomimetics (ROBIO), p. 1924,

2013. 1

46

[9] S. Sharma and R. Tiwari, “A survey on multi robots area exploration techniques

and algorithms,” in 2016 International Conference on Computational Techniques

in Information and Communication Technologies (ICCTICT), pp. 151–158, March

2016. 1

[10] C. A. Kitts and I. Mas,“Cluster space specification and control of mobile multirobot

systems,”Mechatronics, IEEE/ASME Transactions on, vol. 14, pp. 207–218, April

2009. 2, 3

[11] T. Adamek, C. Kitts, and I. Mas, “Gradient-based cluster space navigation for

autonomous surface vessels,”Mechatronics, IEEE/ASME Transactions on, vol. 20,

no. 1, pp. 506–518, 2015. vii, 2, 4, 6, 8, 9

[12] A. Mahacek,“Autonomous cluster control of two robots in three dimensional space,”

Master’s thesis, Santa Clara University, June 2014. 2

[13] I. Mas, S. Li, J. Acain, and C. Kitts, “Entrapment/escorting and patrolling missions

in multi-robot cluster space control,” Intelligent Robots and Systems. IEEE/RSJ

International Conference on, pp. 5855–5861, Oct 2009. 2

[14] J. Shepherd, A Framework for Collaborative Multi-Task, Multi-Robot Missions.

Doctoral Thesis, Santa Clara University, Santa Clara, California, 2016. 2

[15] E. Burian, D. Yoerger, A. Bradley, and H. Singh,“Gradient search with autonomous

underwater vehicle using scalar measurements,” in Proceedings of the IEEE OES

AUV conference, 1996. 4

[16] C. Zhang, A. Siranosian, and M. Krstic, “Extremum seeking for moderately unsta-

ble systems and for autonomous vehicle target tracking without position measure-

ments.,” AUTOMATICA, vol. 43, no. 10, pp. 1832 – 1839, n.d. 4

[17] H. Ishida, T. Nakamoto, T. Moriizumi, T. Kikas, and J. Janata, “Plume-tracking

robots: A new application of chemical sensors.,” Biological Bulletin, no. 2, p. 222,

2001. 4

[18] P. Ogren, E. Fiorelli, and N. Leonard, “Cooperative control of mobile sensor net-

works: Adaptive gradient climbing in a distributed environment.,” IEEE TRANS-

ACTIONS ON AUTOMATIC CONTROL, vol. 49, no. 8, pp. 1292 – 1302, n.d.

4

47

[19] E. Biyik and M. Arcak, “Gradient climbing in formation via extremum seeking and

passivity-based coordination rules.,” ASIAN JOURNAL OF CONTROL, vol. 10,

no. 2, pp. 201 – 211, n.d. 4

[20] R. Bachmayer and N. E. Leonard, “Vehicle networks for gradient descent in a

sampled environment,” in Proceedings of the 41st IEEE Conference on Decision

and Control, vol. 1, pp. 112–117, Dec 2002. 4

[21] E. Fiorelli, N. Leonard, P. Bhatta, D. Paley, R. Bachmayer, and D. Fratantoni,

“Multi-auv control and adaptive sampling in monterey bay,” Oceanic Engineering,

IEEE Journal of, vol. 31, no. 4, pp. 935–948, 2006. 4

[22] E. Fiorelli, P. Bhatta, N. Leonard, and I. Shulman, “Adaptive sampling using feed-

back control of an autonomous underwater gliderfleet,” in Proc. Symp. Unmanned

Untethered Submersible Technology, pp. 1–16, 2003. 4

[23] J. Acain, C. Kitts, T. Adamek, K. Ebadi, and M. Rasay, “A multi-robot testbed

for adaptive sampling experimentation via radio frequency fields,” ASME/IEEE

International Conference on Mechatronic and Embedded Systems and Applications,

vol. 9, no. 1, 2015. 8

[24] C. Kitts, R. McDonald, and M. Neumann, “Adaptive navigation primitives for

multirobot clusters: Extrema finding, contour following, ridge/trench following,

and saddle point station keeping,” Submitted to IEEE Access, 2017. 43

[25] A. Mulcahy, “Radio frequency testbed for adaptive navigation,” MS Capstone Re-

port, 2016. 45

48

Appendix A: Simulink Diagrams

Fig. 1: Simulink block diagram used for all simulations.

Fig. 2: This diagram is a subsection of Figure 4, and calls a ‘.m’ file that changes based
upon which controller is in use.

A1

Fig. 3: This Simulink diagram is inside the kinematics block in Figure 4.

Fig. 4: This Simulink diagram is inside the transfer function block in Figure 3.

A2

Appendix B: Matlab Functions

Ridge/Trench Matlab Function

f unc t i on [Vcmd] = f ive_bot (p o s i t i o n)

%FIVE_BOT

%Takes in the po s i t i o n and o r i e n t a t i o n o f the c l u s t e r c en te r and uses the

%in format ion to determine where i nd i v i dua l robots would be , f i nd s c a l a r

%values , and generate the de s i r ed c l u s t e r v e l o c i t i e s . These c l u s t e r va lue s

%are then transformed in to the g l oba l v e l o c i t i e s , which are f ed out to the

%s imul ink model .

%

%State mode : This c on t r o l method uses a d i f f e r e n t i a l d r i v e

%s t r a t egy to stay on the r i dg e whi l e moving down i t .

%I f the c l u s t e r d e t e c t s that i t has l e f t the r idge , i t sw i t che s in to a

%d i f f e r e n t mode and c l imbs back up un t i l i t i s on the r i dge aga in .

xc = po s i t i o n (1) ;

yc = po s i t i o n (2) ;

theta_c = po s i t i o n (3) ;

d = po s i t i o n (4) ;

time = po s i t i o n (5) ;

f i e l d_sh i f t_ r a t e = [0 0 0 0] ;

f i e l d_ s h i f t = f i e l d_sh i f t_ r a t e * time ;

%From c l u s t e r to g l o b a l .

Rgc = [cos (theta_c) , - s i n (theta_c) ;

s i n (theta_c) , cos (theta_c)] ;

%Clus te r format ion

% 1 2 3

%

B1

% 4 5

%%Clus te r 1 Var iab l e s (downhi l l c l u s t e r)%%

d1 = 5 ; %Distance from c l u s t e r c en t e r to bot

d2 = 5 ;

vmax = 2 ;

%Robot p o s i t i o n s in g l oba l frame

r1_pos = Rgc * [0 ; d1] + [xc ; yc] ;

r2_pos = Rgc * [0 ; 0] + [xc ; yc] ;

r3_pos = Rgc * [0 ; - d1] + [xc ; yc] ;

r4_pos = Rgc * [d2 ; d1] + [xc ; yc] ;

r5_pos = Rgc * [d2 ; - d1] + [xc ; yc] ;

%Sca la r va lue

s c a l a r 1 = sca l a r_su r f a c e (r1_pos (2) , r1_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 2 = sca l a r_su r f a c e (r2_pos (2) , r2_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 3 = sca l a r_su r f a c e (r3_pos (2) , r3_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 4 = sca l a r_su r f a c e (r4_pos (2) , r4_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 5 = sca l a r_su r f a c e (r5_pos (2) , r5_pos (1) , f i e l d_ s h i f t) ;

%Robot ve c to r s i n c l ud ing s c a l a r va lue s

R1 = [r1_pos ; s c a l a r 1] ;

R2 = [r2_pos ; s c a l a r 2] ;

R3 = [r3_pos ; s c a l a r 3] ;

R4 = [r4_pos ; s c a l a r 4] ;

R5 = [r5_pos ; s c a l a r 5] ;

%Gradient c a l c s (NOT USED IN THIS VERSION)

g1 = grad_calc (R1 , R3 , R4) ;

g4 = grad_calc (R4 , R1 , R2) ;

g2 = grad_calc (R2 , R4 , R3) ;

g3 = grad_calc (R3 , R2 , R1) ;

%Angles between g rad i en t s (NOT USED FOR THIS VERSION)

crab = 0 ;

B2

d_dot = 0 ; %Can be adjusted f o r adapt ive s i z i n g (other changes r equ i r ed ...

as we l l

%%CONTROL EQUATIONS%%

v2 = s c a l a r 1 - s c a l a r 3 ;

v1 = s c a l a r 4 - s c a l a r 5 ;

%%fo r r i dg e%%

%thetac_dot = -1*vmax/d2* s i gn (v2 - v1) ;

% %%fo r trench%%

thetac_dot = 1*vmax/d2* s i gn (v2 - v1) ;

% %%ON RIDGE%%

% i f (s c a l a r 2 > s c a l a r 3 + .01) && (s c a l a r 2 > s c a l a r 1 + .01)

% xc_dot = s i gn (s c a l a r 1 + s c a l a r 3 - s c a l a r 4 - s c a l a r 5) ;

% yc_dot = s i gn (s c a l a r 1 - s c a l a r 3 + s c a l a r 4 - s c a l a r 5) ;

%

% %%OFF RIDGE%%

% e l s e

% xc_dot = -1* s i gn (s c a l a r 1 + s c a l a r 3 - s c a l a r 4 - s c a l a r 5) ;

% yc_dot = 1* s i gn (s c a l a r 1 - s c a l a r 3 + s c a l a r 4 - s c a l a r 5) ;

%

% end

%%ON Trench%%

i f (s c a l a r 2 < s c a l a r 3 - . 01) && (s c a l a r 2 < s c a l a r 1 - . 01)

xc_dot = - s i gn (s c a l a r 1 + s c a l a r 3 - s c a l a r 4 - s c a l a r 5) ;

yc_dot = - s i gn (s c a l a r 1 - s c a l a r 3 + s c a l a r 4 - s c a l a r 5) ;

%%OFF Trench%%

e l s e

xc_dot = 1* s i gn (s c a l a r 1 + s c a l a r 3 - s c a l a r 4 - s c a l a r 5) ;

yc_dot = -1* s i gn (s c a l a r 1 - s c a l a r 3 + s c a l a r 4 - s c a l a r 5) ;

end

%Transformation in to g l oba l frame

vg_dot = Rgc * ([xc_dot yc_dot] ') ;

xg_dot = vg_dot (1) ;

yg_dot = vg_dot (2) ;

B3

rad iu s = sq r t (xc^2 + yc^2) ; %was f o r performance t e s t i n g

%Var iab le numbers can be used to p l o t the appropr ia t e va lue s

Vcmd = [xg_dot ; %1

yg_dot ; %2

thetac_dot ; %3

d_dot ; %4

f i e l d_sh i f t_ r a t e (1) ; %5

f i e l d_sh i f t_ r a t e (2) ; %6

f i e l d_sh i f t_ r a t e (3) ; %7

f i e l d_sh i f t_ r a t e (4) ; %8

xc ; %9

yc ; %10

theta_c ; %11

d ; %12

r1_pos (1) ; %13

r1_pos (2) ; %14

r2_pos (1) ; %15

r2_pos (2) ; %16

r3_pos (1) ; %17

r3_pos (2) ; %18

r4_pos (1) ; %19

r4_pos (2) ; %20

r5_pos (1) ; %21

r5_pos (2) ; %22

rad iu s ; %23 %Messed up the f i r s t one to make room

g2 (2) ; %24

g3 (1) ; %25

g3 (2) ; %26

g4 (1) ; %27

g4 (2) ; %28

crab ; %29

f i e l d_ s h i f t (1) ; %30

f i e l d_ s h i f t (2) ; %31

f i e l d_ s h i f t (3) ; %32

f i e l d_ s h i f t (4) ; %33

] ;

Vcmd = Vcmd ' ;

end

B4

Function for Moving from Extrema to Extrema

f unc t i on [Vcmd] = nine_bot (p o s i t i o n)

%NINE_BOT gene ra t e s c l u s t e r commands that a l low a v i r t u a l c l u s t e r o f

%nine robots to cl imb up to a maximum, t r a v e l down a r idge in to a saddle ,

%then cl imb to reach another max

xc = po s i t i o n (1) ;

yc = po s i t i o n (2) ;

theta_c = po s i t i o n (3) ;

d = po s i t i o n (4) ;

time = po s i t i o n (5) ;

des_leve l = po s i t i o n (6) ;

s t a t e = po s i t i o n (7) ;

prev_state = po s i t i o n (8) ;

sens = .01 ;

start_time = 0 ;

f i e l d_sh i f t_ r a t e = [0 0 0 0] ;

f i e l d_ s h i f t = f i e l d_sh i f t_ r a t e * time ;

%From c l u s t e r to g l o b a l .

Rgc = [cos (theta_c) , - s i n (theta_c) ;

s i n (theta_c) , cos (theta_c)] ;

%Clus te r format ion

% 1 2 3

% 4 5 6

% 7 8 9

%%Clus te r 1 Var iab l e s (downhi l l c l u s t e r)%%

d1 = 5 ; %Distance from c l u s t e r c en t e r to bot

vmax = 2 ;

%Robot p o s i t i o n s in g l oba l frame

r1_pos = Rgc * [- d1 ; d1] + [xc ; yc] ;

r2_pos = Rgc * [- d1 ; 0] + [xc ; yc] ;

r3_pos = Rgc * [- d1 ; - d1] + [xc ; yc] ;

B5

r4_pos = Rgc * [0 ; d1] + [xc ; yc] ;

r5_pos = Rgc * [0 ; 0] + [xc ; yc] ;

r6_pos = Rgc * [0 ; - d1] + [xc ; yc] ;

r7_pos = Rgc * [d1 ; - d1] + [xc ; yc] ;

r8_pos = Rgc * [d1 ; 0] + [xc ; yc] ;

r9_pos = Rgc * [d1 ; d1] + [xc ; yc] ;

%Sca la r va lue

s c a l a r 1 = sca la r_sur face_o ld (r1_pos (2) , r1_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 2 = sca la r_sur face_o ld (r2_pos (2) , r2_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 3 = sca la r_sur face_o ld (r3_pos (2) , r3_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 4 = sca la r_sur face_o ld (r4_pos (2) , r4_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 5 = sca la r_sur face_o ld (r5_pos (2) , r5_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 6 = sca la r_sur face_o ld (r6_pos (2) , r6_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 7 = sca la r_sur face_o ld (r7_pos (2) , r7_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 8 = sca la r_sur face_o ld (r8_pos (2) , r8_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 9 = sca la r_sur face_o ld (r9_pos (2) , r9_pos (1) , f i e l d_ s h i f t) ;

R1 = [r1_pos ; s c a l a r 1] ;

R2 = [r2_pos ; s c a l a r 2] ;

R3 = [r3_pos ; s c a l a r 3] ;

R4 = [r4_pos ; s c a l a r 4] ;

R5 = [r5_pos ; s c a l a r 5] ;

R6 = [r6_pos ; s c a l a r 6] ;

R7 = [r7_pos ; s c a l a r 7] ;

R8 = [r8_pos ; s c a l a r 8] ;

R9 = [r9_pos ; s c a l a r 9] ;

g1 = - grad_calc (R8 , R3 , R1) ;

g1_unit = g1/norm(g1) ;

d_dot = 0 ; %Can be adjusted f o r adapt ive s i z i n g

c1 = -d1 + 2*d1 *(R5(3) - R1(3)) /(R7(3) - R1(3)) ;

c2 = -d1 + 2*d1 *(R5(3) - R3(3)) /(R9(3) - R3(3)) ;

cc = (c2 - 0) /d1 - (0 - c1) /d1 ;

i f time < 1

s t a t e = 0 ;

prev_state = 0 ;

end

B6

i f s c a l a r 5 > s c a l a r 1 + sens && s ca l a r 5 > s c a l a r 2 + sens && s ca l a r 5 > ...

s c a l a r 3 + sens && s ca l a r 5 > s c a l a r 4 + sens && s ca l a r 5 > s c a l a r 6 + ...

s ens && s ca l a r 5 > s c a l a r 7 + sens && s ca l a r 5 > s c a l a r 8 + sens && ...

s c a l a r 5 > s c a l a r 9 + sens

on_max = true ;

e l s e

on_max = f a l s e ;

end

i f s t a t e == 0

%%'Pat ro l l i ng ' s t a t e . S t r a i gh t l i n e f o r now.%%

xc_dot = 1 ;

yc_dot = 0 ;

thetac_dot = 0 ;

i f s c a l a r 5 > 10

prev_state = s t a t e ;

s t a t e = 1 ;

end

e l s e i f s t a t e == 1

%%Climbing s t a t e%%

des_theta = atan2 (g1_unit (2) , g1_unit (1)) ;

thetac_dot = s i gn (des_theta - theta_c) ;

d_dot = 0 ; %Can be used to change the s i z e o f the c l u s t e r

yc_dot = 0 ;

xc_dot = 1 ;

i f on_max == true && prev_state == 0

des_leve l = s c a l a r 5 - 1 ;

prev_state = s t a t e ;

s t a t e = 2 ;

start_time = time ;

end

e l s e i f s t a t e == 2

%%Fol lowing contour to f i nd r i dge%%

des_theta = atan2 (g1_unit (2) , g1_unit (1)) ;

thetac_dot = (des_theta - theta_c) ;

d_dot = 0 ; %Used to change c l u s t e r s i z e over time

%xc_dot = - s i gn (des_leve l - (R2(3) + R7(3) + R9(3)) /3) ;

xc_dot = s i gn (des_leve l - R5(3)) ;

yc_dot = 1 ;

B7

%i f (abs (cc) > 4 && abs (cc) < 100) && xc_dot < .01 && time - ...

start_time > 200

i f (abs (cc) > 4 && abs (cc) < 100) && abs (des_leve l - R5(3)) < .01 ...

%&& time - start_time > 200

prev_state = s t a t e ;

s t a t e = 3 ;

end

e l s e i f s t a t e == 3

%%Fol lowing r i dg e un t i l sadd le i s reached%%

v2 = s c a l a r 1 - s c a l a r 3 ;

v1 = s c a l a r 7 - s c a l a r 9 ;

thetac_dot = -1*vmax/d1* s i gn (v2 - v1) ;

i f (s c a l a r 2 > s c a l a r 3 + .01) && (s c a l a r 2 > s c a l a r 1 + .01)

xc_dot = s i gn (s c a l a r 1 + s c a l a r 3 - s c a l a r 7 - s c a l a r 9) ;

yc_dot = - s i gn (s c a l a r 1 - s c a l a r 3 + s c a l a r 7 - s c a l a r 9) ;

e l s e

xc_dot = -1* s i gn (s c a l a r 1 + s c a l a r 3 - s c a l a r 4 - s c a l a r 5) ;

yc_dot = -1* s i gn (s c a l a r 1 - s c a l a r 3 + s c a l a r 7 - s c a l a r 9) ;

end

i f s c a l a r 5 > s c a l a r 4 + .01 && sca l a r 5 > s c a l a r 6 + .01 && sca l a r 5 + ...

. 01 < s c a l a r 2 && s ca l a r 5 + .01 < s c a l a r 8

prev_state = s t a t e ;

s t a t e = 1 ;

end

e l s e

%%Just t e l l s everyth ing to stop i f we are in an unknown s t a t e .%%

xc_dot = 0 ;

yc_dot = 0 ;

thetac_dot = 0 ;

end

%Transformation in to g l oba l frame

vg_dot = Rgc * ([xc_dot yc_dot] ') ;

xg_dot = vg_dot (1) ;

yg_dot = vg_dot (2) ;

%Var iab le numbers can be used to p l o t the appropr ia t e va lue s

Vcmd = [xg_dot ; %1

B8

yg_dot ; %2

thetac_dot ; %3

d_dot ; %4

f i e l d_sh i f t_ r a t e (1) ; %5

f i e l d_sh i f t_ r a t e (2) ; %6

f i e l d_sh i f t_ r a t e (3) ; %7

f i e l d_sh i f t_ r a t e (4) ; %8

xc ; %9

yc ; %10

theta_c ; %11

r1_pos (1) ; %12

r1_pos (2) ; %13

r2_pos (1) ; %14

r2_pos (2) ; %15

r3_pos (1) ; %16

r3_pos (2) ; %17

r4_pos (1) ; %18

r4_pos (2) ; %19

r5_pos (1) ; %20

r5_pos (2) ; %21

r6_pos (1) ; %22

r6_pos (2) ; %23

r7_pos (1) ; %24

r7_pos (2) ; %25

r8_pos (1) ; %26

r8_pos (2) ; %27

r9_pos (1) ; %28

r9_pos (2) ; %29

cc ; %30

des_leve l ; %31

s t a t e ; %32

prev_state ; %33

] ;

Vcmd = Vcmd ' ;

end

B9

Function for Staying Above a Given Magnitude

f unc t i on [Vcmd] = s igna l_st r ength (p o s i t i o n)

xc = po s i t i o n (1) ;

yc = po s i t i o n (2) ;

theta_c = po s i t i o n (3) ;

d = po s i t i o n (4) ;

time = po s i t i o n (5) ;

des_leve l = po s i t i o n (6) ;

s t a t e = po s i t i o n (7) ;

prev_state = po s i t i o n (8) ;

prev_heading_x = po s i t i o n (9) ;

prev_heading_y = po s i t i o n (10) ;

start_time = po s i t i o n (11) ;

ang le = po s i t i o n (12) ;

passed_once = po s i t i o n (13) ;

x_peak = po s i t i o n (14) ;

y_peak = po s i t i o n (15) ;

prev_heading = [prev_heading_x ; prev_heading_y] ;

sens = .01 ;

leve l_drop = 5 ;

dest inat ion_x = 75 ;

dest inat ion_y = -75 ;

s i gna l_ l im i t = 30 ;

f i e l d_sh i f t_ r a t e = [0 0 0 0] ;

f i e l d_ s h i f t = f i e l d_sh i f t_ r a t e * time ;

%From c l u s t e r to g l o b a l .

Rgc = [cos (theta_c) , - s i n (theta_c) ;

s i n (theta_c) , cos (theta_c)] ;

%Clus te r format ion

B10

% 1 2 3

% 4 5 6

% 7 8 9

%%Supe r c l u s t e r Var iab l e s%%

dc = 5 ; %Distance from c l u s t e r c en t e r to s up e r c l u s t e r c en t e r

%%Clus te r 1 Var iab l e s (downhi l l c l u s t e r)%%

d1 = 5 ; %Distance from c l u s t e r c en t e r to bot

vmax = 2 ;

%%Clus te r 2 Var iab l e s (u ph i l l c l u s t e r)%%

%d2 = 5 ; %Distance from c l u s t e r c en te r to bot

%Robot p o s i t i o n s in g l oba l frame

r1_pos = Rgc * [- d1 ; d1] + [xc ; yc] ;

r2_pos = Rgc * [- d1 ; 0] + [xc ; yc] ;

r3_pos = Rgc * [- d1 ; - d1] + [xc ; yc] ;

r4_pos = Rgc * [0 ; d1] + [xc ; yc] ;

r5_pos = Rgc * [0 ; 0] + [xc ; yc] ;

r6_pos = Rgc * [0 ; - d1] + [xc ; yc] ;

r7_pos = Rgc * [d1 ; - d1] + [xc ; yc] ;

r8_pos = Rgc * [d1 ; 0] + [xc ; yc] ;

r9_pos = Rgc * [d1 ; d1] + [xc ; yc] ;

%Sca la r va lue

s c a l a r 1 = sca l a r_su r f a c e (r1_pos (2) , r1_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 2 = sca l a r_su r f a c e (r2_pos (2) , r2_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 3 = sca l a r_su r f a c e (r3_pos (2) , r3_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 4 = sca l a r_su r f a c e (r4_pos (2) , r4_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 5 = sca l a r_su r f a c e (r5_pos (2) , r5_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 6 = sca l a r_su r f a c e (r6_pos (2) , r6_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 7 = sca l a r_su r f a c e (r7_pos (2) , r7_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 8 = sca l a r_su r f a c e (r8_pos (2) , r8_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 9 = sca l a r_su r f a c e (r9_pos (2) , r9_pos (1) , f i e l d_ s h i f t) ;

R1 = [r1_pos ; s c a l a r 1] ;

R2 = [r2_pos ; s c a l a r 2] ;

R3 = [r3_pos ; s c a l a r 3] ;

B11

R4 = [r4_pos ; s c a l a r 4] ;

R5 = [r5_pos ; s c a l a r 5] ;

R6 = [r6_pos ; s c a l a r 6] ;

R7 = [r7_pos ; s c a l a r 7] ;

R8 = [r8_pos ; s c a l a r 8] ;

R9 = [r9_pos ; s c a l a r 9] ;

%g1 = - grad_calc (R2 , R7 , R9) ;

g1 = - grad_calc (R8 , R3 , R1) ;

g1_unit = g1/norm(g1) ;

d_dot = 0 ; %Can be adjusted f o r adapt ive s i z i n g

c1 = -d1 + 2*d1 *(R5(3) - R1(3)) /(R7(3) - R1(3)) ;

c2 = -d1 + 2*d1 *(R5(3) - R3(3)) /(R9(3) - R3(3)) ;

cc = (c2 - 0) - (0 - c1) ;

i f time < 1

s t a t e = 0 ;

prev_state = 0 ;

x_start = 1 ;

y_start = 1 ;

end

i f s c a l a r 5 > s c a l a r 1 + sens && s ca l a r 5 > s c a l a r 2 + sens && s ca l a r 5 > ...

s c a l a r 3 + sens && s ca l a r 5 > s c a l a r 4 + sens && s ca l a r 5 > s c a l a r 6 + ...

s ens && s ca l a r 5 > s c a l a r 7 + sens && s ca l a r 5 > s c a l a r 8 + sens && ...

s c a l a r 5 > s c a l a r 9 + sens

on_max = true ;

e l s e

on_max = f a l s e ;

end

i f s t a t e == 0

%%Heading f o r d e s t i n a t i o n .%%

ve l = Rgc^(-1) * ([s i gn (dest inat ion_x - xc) , s i gn (dest inat ion_y - ...

yc)] ') ;

%xc_dot = s i gn (dest inat ion_x - xc) ;

%yc_dot = s i gn (dest inat ion_y - yc) ;

B12

xc_dot = s i gn (ve l (1)) ;

yc_dot = s i gn (ve l (2)) ;

thetac_dot = 0 ;

i f s c a l a r 5 < s i gna l_ l im i t

prev_heading = [s i gn (dest inat ion_x - xc) , s i gn (dest inat ion_y - ...

yc)] ' ;

prev_state = s t a t e ;

s t a t e = 2 ;

end

e l s e i f s t a t e == 1

%%Climbing s t a t e%%

des_theta = atan2 (g1_unit (2) , g1_unit (1)) ;

thetac_dot = s i gn (des_theta - theta_c) ;

d_dot = 0 ; %Can be used to change the s i z e o f the c l u s t e r

yc_dot = 0 ;

xc_dot = 1 ;

des_leve l = s c a l a r 5 - 1 ;

i f on_max == true && prev_state == 0

des_leve l = s c a l a r 5 - leve l_drop ;

x_peak = xc ;

y_peak = yc ;

prev_state = s t a t e ;

s t a t e = 2 ;

start_time = time ;

end

e l s e i f s t a t e == 2

%%Fol lowing contour to f i nd a route%%

ve l = Rgc^(-1) *(prev_heading) ;

des_theta = atan2 (g1_unit (2) , g1_unit (1)) ;

thetac_dot = (des_theta - theta_c) ;

d_dot = 0 ; %Used to change c l u s t e r s i z e over time

xc_dot = s i gn (s i gna l_ l im i t - R5(3)) ;

yc_dot = s i gn (ve l (2)) ;

dest_vector = [(dest inat ion_x - xc) , (dest inat ion_y - ...

yc)] / norm ([(dest inat ion_x - xc) , (dest inat ion_y - yc)]) ;

CosTheta = dot (dest_vector , [g1_unit (1) , g1_unit (2)]) ;

ang le = acos (CosTheta) ;

i f abs (ang le) < pi /4

s t a t e = 0 ;

end

B13

e l s e i f s t a t e == 3

%%Fol lowing contour%%

des_theta = atan2 (g1_unit (2) , g1_unit (1)) ;

thetac_dot = (des_theta - theta_c) ;

d_dot = 0 ; %Used to change c l u s t e r s i z e over time

xc_dot = s i gn (des_leve l - R5(3)) ;

yc_dot = -1 ;

%i f (xc > x_start - 20) && (xc < x_start + 20) && (yc < y_start + ...

20) && (yc > y_start - 20) && (time - start_time > 10)

v = [xc - x_peak , yc - y_peak] ;

ang le = atan2 (v (2) , v (1)) ;

r ad iu s = norm(v) ;

%i f v_unit (1) < x_comp + .1 && v_unit (1) > x_comp - . 1 && v_unit (2) ...

< y_comp + .1 && v_unit (2) > y_comp - . 1 && (time - start_time > ...

10) &&(xc > x_start - 20) && (xc < x_start + 20) && (yc < ...

y_start + 20) && (yc > y_start - 20)

i f ang le > star t_ang le + .7

passed_once = true ;

end

i f r ad iu s < sta r t_rad ius + 25 && rad iu s > sta r t_rad ius - 25 && ...

ang le > start_ang le + .2 && (time - start_time > 200) %&& ...

passed_once == true

des_leve l = des_leve l - leve l_drop ;

passed_once = f a l s e ;

prev_state = s t a t e ;

s t a t e = 2 ;

end

e l s e i f s t a t e == 4

%%Fol lowing r i dg e un t i l sadd le i s reached%%

v2 = s c a l a r 1 - s c a l a r 3 ;

v1 = s c a l a r 7 - s c a l a r 9 ;

thetac_dot = -1*vmax/d1* s i gn (v2 - v1) ;

i f (s c a l a r 2 > s c a l a r 3 + .01) && (s c a l a r 2 > s c a l a r 1 + .01)

xc_dot = s i gn (s c a l a r 1 + s c a l a r 3 - s c a l a r 7 - s c a l a r 9) ;

yc_dot = - s i gn (s c a l a r 1 - s c a l a r 3 + s c a l a r 7 - s c a l a r 9) ;

e l s e

xc_dot = -1* s i gn (s c a l a r 1 + s c a l a r 3 - s c a l a r 4 - s c a l a r 5) ;

B14

yc_dot = -1* s i gn (s c a l a r 1 - s c a l a r 3 + s c a l a r 7 - s c a l a r 9) ;

end

i f s c a l a r 5 > s c a l a r 4 + .01 && sca l a r 5 > s c a l a r 6 + .01 && sca l a r 5 + ...

. 01 < s c a l a r 2 && s ca l a r 5 + .01 < s c a l a r 8 + .01

prev_state = s t a t e ;

s t a t e = 1 ;

end

e l s e

%%Just t e l l s everyth ing to stop i f we are in an unknown s t a t e .%%

xc_dot = 0 ;

yc_dot = 0 ;

thetac_dot = 0 ;

end

%Transformation in to g l oba l frame

vg_dot = Rgc * ([xc_dot yc_dot] ') ;

xg_dot = vg_dot (1) ;

yg_dot = vg_dot (2) ;

%Var iab le numbers can be used to p l o t the appropr ia t e va lue s

Vcmd = [xg_dot ; %1

yg_dot ; %2

thetac_dot ; %3

d_dot ; %4

f i e l d_sh i f t_ r a t e (1) ; %5

f i e l d_sh i f t_ r a t e (2) ; %6

f i e l d_sh i f t_ r a t e (3) ; %7

f i e l d_sh i f t_ r a t e (4) ; %8

xc ; %9

yc ; %10

theta_c ; %11

r1_pos (1) ; %12

r1_pos (2) ; %13

r2_pos (1) ; %14

r2_pos (2) ; %15

r3_pos (1) ; %16

r3_pos (2) ; %17

B15

r4_pos (1) ; %18

r4_pos (2) ; %19

r5_pos (1) ; %20

r5_pos (2) ; %21

r6_pos (1) ; %22

x_peak ; %23

y_peak (1) ; %24

ang le ; %25

passed_once ; %26

start_time ; %27

prev_heading (1) ;%28

prev_heading (2) ; %29

cc ; %30

des_leve l ; %31

s t a t e ; %32

prev_state ; %33

] ;

Vcmd = Vcmd ' ;

end

B16

Function for Mapping the Contours Around an Ex-

trema

f unc t i on [Vcmd] = contour_mapping (p o s i t i o n)

xc = po s i t i o n (1) ;

yc = po s i t i o n (2) ;

theta_c = po s i t i o n (3) ;

d = po s i t i o n (4) ;

time = po s i t i o n (5) ;

des_leve l = po s i t i o n (6) ;

s t a t e = po s i t i o n (7) ;

prev_state = po s i t i o n (8) ;

s tar t_ang le = po s i t i o n (9) ;

s ta r t_rad ius = po s i t i o n (10) ;

start_time = po s i t i o n (11) ;

ang le = po s i t i o n (12) ;

passed_once = po s i t i o n (13) ;

x_peak = po s i t i o n (14) ;

y_peak = po s i t i o n (15) ;

sens = .01 ;

leve l_drop = 10 ;

f i e l d_sh i f t_ r a t e = [0 0 0 0] ;

f i e l d_ s h i f t = f i e l d_sh i f t_ r a t e * time ;

%From c l u s t e r to g l o b a l .

Rgc = [cos (theta_c) , - s i n (theta_c) ;

s i n (theta_c) , cos (theta_c)] ;

%Clus te r format ion

% 1 2 3

% 4 5 6

% 7 8 9

%%Clus te r 1 Var iab l e s (downhi l l c l u s t e r)%%

d1 = 5 ; %Distance from c l u s t e r c en t e r to bot

%Robot p o s i t i o n s in g l oba l frame

B17

r1_pos = Rgc * [- d1 ; d1] + [xc ; yc] ;

r2_pos = Rgc * [- d1 ; 0] + [xc ; yc] ;

r3_pos = Rgc * [- d1 ; - d1] + [xc ; yc] ;

r4_pos = Rgc * [0 ; d1] + [xc ; yc] ;

r5_pos = Rgc * [0 ; 0] + [xc ; yc] ;

r6_pos = Rgc * [0 ; - d1] + [xc ; yc] ;

r7_pos = Rgc * [d1 ; - d1] + [xc ; yc] ;

r8_pos = Rgc * [d1 ; 0] + [xc ; yc] ;

r9_pos = Rgc * [d1 ; d1] + [xc ; yc] ;

%Sca la r va lue

s c a l a r 1 = sca lar_sur face_old (r1_pos (2) , r1_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 2 = sca lar_sur face_old (r2_pos (2) , r2_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 3 = sca lar_sur face_old (r3_pos (2) , r3_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 4 = sca lar_sur face_old (r4_pos (2) , r4_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 5 = sca lar_sur face_old (r5_pos (2) , r5_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 6 = sca lar_sur face_old (r6_pos (2) , r6_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 7 = sca lar_sur face_old (r7_pos (2) , r7_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 8 = sca lar_sur face_old (r8_pos (2) , r8_pos (1) , f i e l d_ s h i f t) ;

s c a l a r 9 = sca lar_sur face_old (r9_pos (2) , r9_pos (1) , f i e l d_ s h i f t) ;

R1 = [r1_pos ; s c a l a r 1] ;

R2 = [r2_pos ; s c a l a r 2] ;

R3 = [r3_pos ; s c a l a r 3] ;

R4 = [r4_pos ; s c a l a r 4] ;

R5 = [r5_pos ; s c a l a r 5] ;

R6 = [r6_pos ; s c a l a r 6] ;

R7 = [r7_pos ; s c a l a r 7] ;

R8 = [r8_pos ; s c a l a r 8] ;

R9 = [r9_pos ; s c a l a r 9] ;

%g1 = - grad_calc (R2 , R7 , R9) ;

g1 = - grad_calc (R8 , R3 , R1) ;

g1_unit = g1/norm(g1) ;

d_dot = 0 ; %Can be adjusted f o r adapt ive s i z i n g

c1 = -d1 + 2*d1 *(R5(3) - R1(3)) /(R7(3) - R1(3)) ;

c2 = -d1 + 2*d1 *(R5(3) - R3(3)) /(R9(3) - R3(3)) ;

cc = (c2 - 0) - (0 - c1) ;

B18

i f time < 1

s t a t e = 0 ;

prev_state = 0 ;

end

i f s c a l a r 5 > s c a l a r 1 + sens && s ca l a r 5 > s c a l a r 2 + sens && s ca l a r 5 > ...

s c a l a r 3 + sens && s ca l a r 5 > s c a l a r 4 + sens && s ca l a r 5 > s c a l a r 6 + ...

s ens && s ca l a r 5 > s c a l a r 7 + sens && s ca l a r 5 > s c a l a r 8 + sens && ...

s c a l a r 5 > s c a l a r 9 + sens

on_max = true ;

e l s e

on_max = f a l s e ;

end

i f s t a t e == 0

%%'Pat ro l l i ng ' s t a t e . S t r a i gh t l i n e f o r now.%%

xc_dot = 1 ;

yc_dot = 0 ;

thetac_dot = 0 ;

i f s c a l a r 5 > 20

prev_state = s t a t e ;

s t a t e = 1 ;

end

e l s e i f s t a t e == 1

%%Climbing s t a t e%%

des_theta = atan2 (g1_unit (2) , g1_unit (1)) ;

thetac_dot = s i gn (des_theta - theta_c) ;

d_dot = 0 ; %Can be used to change the s i z e o f the c l u s t e r

yc_dot = 0 ;

xc_dot = 1 ;

des_leve l = s c a l a r 5 - 1 ;

i f on_max == true && prev_state == 0

des_leve l = s c a l a r 5 - leve l_drop ;

x_peak = xc ;

y_peak = yc ;

prev_state = s t a t e ;

s t a t e = 2 ;

start_time = time ;

end

B19

e l s e i f s t a t e == 2

%%Descending to c o r r e c t contour%%

des_theta = atan2 (g1_unit (2) , g1_unit (1)) ;

thetac_dot = (des_theta - theta_c) ;

d_dot = 0 ; %Used to change c l u s t e r s i z e over time

xc_dot = s i gn (des_leve l - R5(3)) ;

yc_dot = -1 ;

i f abs (des_leve l - s c a l a r 5) < .1 && time - start_time > 100 && ...

abs (thetac_dot) < .1

v = [xc - x_peak , yc - y_peak] ;

s tar t_ang le = atan2 (v (2) , v (1)) ;

s ta r t_rad ius = norm(v) ;

start_time = time ;

prev_state = s t a t e ;

s t a t e = 3 ;

end

e l s e i f s t a t e == 3

%%Fol lowing contour%%

des_theta = atan2 (g1_unit (2) , g1_unit (1)) ;

thetac_dot = (des_theta - theta_c) ;

d_dot = 0 ; %Used to change c l u s t e r s i z e over time

xc_dot = s i gn (des_leve l - R5(3)) ;

yc_dot = -1 ;

v = [xc - x_peak , yc - y_peak] ;

ang le = atan2 (v (2) , v (1)) ;

r ad iu s = norm(v) ;

i f ang le > star t_ang le + .7

passed_once = true ;

end

i f r ad iu s < sta r t_rad ius + 25 && rad iu s > sta r t_rad ius - 25 && ...

ang le > start_ang le + .2 && (time - start_time > 200) %&& ...

passed_once == true

des_leve l = des_leve l - leve l_drop ;

passed_once = f a l s e ;

prev_state = s t a t e ;

s t a t e = 2 ;

end

e l s e

B20

%%Just t e l l s everyth ing to stop i f we are in an unknown s t a t e .%%

xc_dot = 0 ;

yc_dot = 0 ;

thetac_dot = 0 ;

end

%Transformation in to g l oba l frame

vg_dot = Rgc * ([xc_dot yc_dot] ') ;

xg_dot = vg_dot (1) ;

yg_dot = vg_dot (2) ;

%Var iab le numbers can be used to p l o t the appropr ia t e va lue s

Vcmd = [xg_dot ; %1

yg_dot ; %2

thetac_dot ; %3

d_dot ; %4

f i e l d_sh i f t_ r a t e (1) ; %5

f i e l d_sh i f t_ r a t e (2) ; %6

f i e l d_sh i f t_ r a t e (3) ; %7

f i e l d_sh i f t_ r a t e (4) ; %8

xc ; %9

yc ; %10

theta_c ; %11

r1_pos (1) ; %12

r1_pos (2) ; %13

r2_pos (1) ; %14

r2_pos (2) ; %15

r3_pos (1) ; %16

r3_pos (2) ; %17

r4_pos (1) ; %18

r4_pos (2) ; %19

r5_pos (1) ; %20

r5_pos (2) ; %21

r6_pos (1) ; %22

x_peak ; %23

y_peak (1) ; %24

ang le ; %25

passed_once ; %26

B21

start_time ; %27

star t_ang le ;%28

s ta r t_rad ius ; %29

cc ; %30

des_leve l ; %31

s t a t e ; %32

prev_state ; %33

] ;

Vcmd = Vcmd ' ;

end

B22

	Santa Clara University
	Scholar Commons
	3-29-2017

	Techniques for Adaptive Navigation of Multi-Robot Clusters
	Robert McDonald

	Abstract
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Cluster Control
	1.2 Adaptive Navigation
	1.2.1 Previous Adaptive Navigation Work
	1.2.2 Extending the Strategy

	1.3 Project Statement

	2 Ridge, Trench, and Saddle Navigation
	2.1 Cluster Definition and Simulation
	2.2 Ridge and Trench Navigation
	2.2.1 Control Strategy

	2.3 Saddle Point Navigation
	2.4 Discussion

	3 Adaptive Field Applications
	3.1 Overview of Architecture
	3.2 Ridge Controller with Recovery
	3.3 From Local Maximum to Local Maximum
	3.4 Contour Mapping
	3.5 Maintaining Signal Strength
	3.6 Discussion
	3.6.1 Unknown Features
	3.6.2 Unwanted Repetition

	4 Conclusion
	4.1 Summary
	4.2 Future Work
	4.2.1 Exploration with Memory
	4.2.2 Adaptive Cluster Sizing
	4.2.3 Additional Field Testing

	Bibliography
	Appendices

