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ABSTRACT 

Diffraction based mathematical model is developed to address the issue of spatial 

resolution in thermoreflectance imaging at the scale of 1 and 10 μm. Thermoreflectance 

imaging provided non-contact temperature measurement at micro and nano scale but the 

spatial resolution is limited by diffraction. By virtue of this work mathematical model is 

developed for the analysis of thermoreflectance data. In the development of model both 

the diffraction occurring at sample and substrate is combined to calculate intensity of 

thermoreflectance signal. This model takes into account the effective optical distance, 

sample width, wavelength, signal phase shift and reflectance intensity. Model shows 

qualitative and quantitative agreement with experimental data for the two wavelengths 

under investigation, 470 nm and 535 nm. 
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1. INTRODUCTION 

1.1 Introduction: 

Miniaturization has become synonyms of semiconductor devices in the current era. 

The size of electronic devices and line in current ICs has shrunk to 24nm [1]. The 

reduced size of devices out perform in terms of switching speed and fabrication cost. 

However, the shrunk size of electronic devices gives new challenges to heat management 

design. The main barrier in the development of micro and nano scale devices is the 

resulting large current density and local heating. In the last twenty years it has become 

more challenging for designers to understand the heat transfer and thermal 

characterization at micro and nano scale due to small size of electronic devices. 

Temperature mapping at micro and nano scale is very important for safe and reliable 

operation of small scale electronic devices [2, 3]. With electronic devices in the range of 

size few nano meters to micrometers the conventional methods of temperature 

measurement like Infrared radiation thermometry and the micro-Raman methods is no 

more useful.  

Various methods of temperature measurement on the scale of current electronic and 

optoelectronic devices are surveyed by Christofferson et al. [4] and Wenjun et al. [5]. 

Table 1.1 present the summary of these methods: 

Table 1.1: Summary of popular high-resolution thermal measurement techniques in 

micrometer-nanometer range 

Method Principle Resolution Imaging

? Spatial 

(μm) 

Temperatu

re (K) 

Respons

e time 

(s) 

Micro-

thermocouple 

Seebeck effect 50 0.01 

0.02 

(if 

blackbody

) 

5 m 

10 μm 

(single 

point) 

No 
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Infrared 

thermography 

Planck blackbody 

emission 

3-10 -1 K -0.5 m 

(image) 

Yes 

Liquid crystal 

thermography 

Crystal phase transitions 

(change color) 

2-5 0.5 

(near 

phase 

transition) 

3 m Yes 

Thermo-

reflectance 

Temperature dependence 

of reflection 

0.3-0.5 0.01 0.006-

0.1 μm 

Yes 

Scanning 

Thermal 

microscopy 

(SThM) 

Atomic force microscope 

with thermocouple or Pt 

thermistor tip 

0.05 

(surface 

morphology) 

0.1 10-100 

μm 

Scan 

Fluorescence 

thermography 

Temperature dependence 

of quantum efficiency 

0.3 0.01 200 μm Scan 

Optical 

interferometry 

Thermal expansion, 

Michelson type 

0.5 0.0001 

(1 fm) 

0.006-

0.1 μm 

Scan 

Micro-Raman Shift in Raman frequency 

or ratio of Stokes/anti-

Stokes amplitudes 

0.5 1 1 μm Scan 

Near field 

probe 

(NSOM) 

Use near field to improve 

optical resolution 

0.05 0.1-1 (S/N 

dependent

) 

0.1-10 

μm 

Scan 

Built-in 

temperature 

sensors 

Fabricate a thermal sensor 

integrated into the device 

100s 0.0002-

0.01 

1 μm No 

 

All the methods summarized in Table 1.1 can be broadly classified into two 

categories: (1.) contact measurement and (2.) non-contact measurement. Following are 

some advantages offered by Non-contact methods over contact methods: 
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(i) Fast – allowing more measurements to take and therefore it is more convenient for large 

data acquisition    (Temperature mapping) 

(ii) Measurements can be taken of object surrounded by hazardous material 

(iii) Non-destructive measurement 

However, all the non-contact measurement methods are limited by onset of diffraction.  

The most promising techniques regarding spatial resolution are those involving 

contact probes [6], which are usually limited to the measurement of surface temperatures. 

In integrated circuits, mainly the heat is generated due to joule heating in metal thin films 

and contacts, those are often buried under a few hundreds of nanometers or several 

micrometers of encapsulation dielectric. Therefore, the use of thermocouples and in-built 

sensors, integrated within the circuit is good option. After calibration, they deliver high 

precision and high sensitivity temperature measurements but provide no spatial 

information [6]. Moreover, due to the presence of interfaces, strong temperature gradients 

can exist in integrated circuits, leading to discrepancies between the temperature of the 

active region and that measured by the sensor.  

 Infrared (IR) thermometry is one of the most widely used technique for temperature 

measurements of electronic devices, particularly ICs [4]. IR thermometry is based on 

determining the spatial distribution of IR thermal radiation emitted from the surface of a 

solid [4]. Based on Planck’s law of blackbody radiation, the maximum spectral power 

density of an ideal blackbody at thermal equilibrium will shift to lower wavelengths with 

increasing temperature. Since, in practice the surface of a device under study is not a 

blackbody and reflects some of the incident radiation, the blackbody law must be scaled 

by a material dependent factor known as the emissivity. Emissivity depends on the 

surface property and geometry, wavelength and temperature of the object, and must be 

known for each surface to obtain an accurate thermal profile. Silicon is largely 

transparent to near IR radiation, making IR thermography a valuable tool for thermal 

mapping of IC backplanes and hot spots. The thermal resolution of IR cameras can be 10-

20 mK [4], but their spatial resolution is mainly determined by the diffraction limit for 

the range of wavelengths to which the detector is sensitive. The most sensitive IR 

cameras work at 3 µm wavelength [4], which is not suited to the length scales of many 
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modern electronic and optoelectronic devices.  Apart from the sub-optimal spatial 

resolution of IR thermography, other drawbacks include inaccuracy due to the attenuation 

of radiation between the target and the detector, uncertainty in the emissivity of the 

device surface and background radiation [5]. Furthermore, material likes most metals 

with high reflectivity and the low emissivity limits the application of IR thermography. 

Liquid crystal thermography (LCT) and fluorescence microthermography (FMT) are 

semi-invasive thin coating methods. In the LCT technique [4, 5], the surface of the device 

under study is covered with a thin layer of liquid crystal and illuminated with white light. 

At different temperatures, the liquid crystal layer reflects different wavelengths of this 

incident light. The theoretical limit for the resolution of the method was estimated to be 

25 µm spatially and 0.1 K in temperature [5]. To improve the spatial resolution of the 

method, the nematic–isotropic phase transition of liquid crystal which occurs at the 

clearing point of the crystal is used [5]. It is stated by Wenjun & Yang [5], and the 

reference there in, “Below clearing point the liquid crystal is in the nematic phase which 

scatters light and rotates the plane of polarization of the light and appears bright under a 

polarizing microscope. Above clearing point, where the liquid crystal is in the isotropic 

phase, the plane of polarized light does not change and the image field appears dark. 

Taking advantage of the nematic–isotropic phase transition has given the LCT method a 

spatial resolution of 2–4 µm”. Due to semi-invasive nature of LCT technique the thermal 

conductivity and heat capacity of the liquid crystal coating can affect the device under 

test. In addition, the uniformity and thickness of the liquid crystal layer are important 

factors in the accuracy and resolution of the technique [4]. Fluorescent micro-

thermography (FMT) [4, 5] utilizes the temperature-dependent quantum efficiency of 

photoluminescent rare earth dyes. As mentioned by J. Christofferson et al [4], in FCT 

technique, “the sample surface is coated with a thin film of such dyes and is then 

illuminated by ultraviolet (UV) light”. FMT can be used for thermal imaging of 

electronic and bio sensing devices as well as hot spot detection and thermal mapping of 

ICs. A spatial resolution of 0.3 µm and a thermal resolution of 1 mK have been reported 

for FMT [4], although sample preparation and optical system design require special 
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consideration. Photon shot noise, UV bleaching, film dilution and film preparation can 

have a significant impact on the quality of FMT thermal images.  

Using micro-thermocouples as inexpensive point measurement contact probes can 

provide accurate temperature readings with a thermal resolution of 0.01 K [5]. However, 

as stated by Wenjun & Yang [5], the large size of the thermocouple wires (∼25-50 µm 

diameter) results in a poor spatial resolution. In addition, due to difficulties in 

maintaining good thermal contact between the micro thermocouple junction and the 

surface of a device results in faulty readings. Finally, as point-based measurement tools, 

micro-thermocouples cannot be used for imaging without implementing complicated 

translation stages [5]. Scanning Thermal Microscopy (SThM) is a contact thermometry 

technique with very high spatial resolution. SThM utilizes the mechanism behind atomic 

force microscopy (AFM) and scanning tunneling microscopy (STM). The SThM probe 

consists of a thermocouple fabricated on the tip of an AFM cantilever [6]. When the 

probe is scanned in contact mode over the surface of a sample, localized heat transfer 

between the sample surface and the probe tip leads to a change in the tip temperature that 

is measured by the thermocouple. In this way, both the tip–sample heat transfer across the 

entire surface and the sample topography can be obtained simultaneously with sub-

micrometre spatial resolution (∼0.05 µm) and a thermal resolution of 0.1K [4]. However, 

the roughness of the sample surface can cause variations in the tip-surface thermal 

contact, leading to noise in the thermal signal. Furthermore, the SThM experimental 

setup is complicated and expensive, and data acquisition can be time-consuming due to 

the required scanning methods [5]. A major limitation of SThM is the liquid meniscus 

that forms between the tip and the sample, which is intrinsic to contact measurements 

done in atmosphere and limits the resolution of the technique. Finally, SThM cannot be 

used easily on light emitting surfaces of optoelectronic devices such as vertical cavity 

surface emitting lasers (VCSELs), because the light is absorbed by the SThM 

thermocouple and causes errors in temperature measurement [6]. Raman spectroscopy is 

an optical measurement technique that is well suited for temperature measurements in 

microelectronic devices, especially made from silicon, due to its strong scattering cross-

section [5]. The Raman technique provides spatial resolutions on the order of 1 µm or 
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smaller considering far field diffraction limited optics [5]. In addition to the above-

mentioned techniques, other methods of thermography include acoustic thermography, 

near-field scanning optical microscopy (NSOM) adapted for temperature measurement, 

laser interferometry and thermoreflectance microscopy. This last thermography method is 

the focus of this research work and will be discussed in detail in the next sections. 

 

1.1 Thermoreflectance Method: 

Thermoreflectance (TR) temperature measurement belongs to the class of non-contact 

temperature measurements and uses an LED or filtered white light source and a CCD to acquire 

images. TR techniques offers direct access to the active areas under the transparent encapsulation 

layers. In the visible or near UV range, excellent spatial resolutions can be reached. It has been 

shown that the thermal and spatial resolutions of CCD-based thermoreflectance can be as low as 

10 mK and 250 nm, respectively [6], but the fundamental temperature limit has not been found 

yet. The major advantage of TR microscopy is: relatively short data acquisition times compared 

with other techniques and its suitability to a wide range of materials including metals and light 

emitting surfaces.  Thermoreflectance temperature measurement is based on the principle that a 

change in temperature of a given material produces a small change in the spectral reflectivity of 

the material's surface [6-9]. This small change can be linearized over a range of temperature. The 

linearized response of the normal reflectance with respect to the temperature of a sample allows 

the following approximation for the derivative of normal reflectance [8]  

 

( ) ( )T Tn nn 0

T T T
0

  


 
 

     (1) 

The normal reflectance intensity at a given temperature, In ( T ), can be calculated from the 

normal reflectance, ρn(T) and incoming illumination intensity I0 

 

     I T T In n 0
 

    
     (2) 
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The spectral thermoreflectance (TR) coefficient κ is defined by the normalization of the 

slope as a function of temperature with the reference quantity [8] 

 

   
1 1 In n

T TT I Tn n0 0






 
 

 
    

                                                             (3) 

   

During the experiment, it is necessary to calibrate the system and obtain the 

thermoreflectance coefficient for the specific sample. Following the calibration, one can 

determine the temperature difference developed during heating through rearrangement of 

the governing relationship with a measurement of the relative reflectance.  

 

 
   

 
1 I T I Tn n 0T T T

0 I Tn 0


 
    
 
      

     (4) 

 

The thermoreflectance coefficient is a material and surface property that depends on the 

illumination wavelength, temperature, microscope, material surface characteristics and in 

some cases also on the material processing [9].  For most metals and semiconductor 

materials of interest the value of the thermo-reflectance coefficient (κ) will be in the order 

of 10-2 to 10-5 K-1 [6-10].   κ (λ) can vary sharply within the spectral region of interest 

particularly in the visible spectrum, and therefore the choice of illumination wavelength 

determines not only the spatial resolution of the technique but also the sensitivity of 

method. It is essential to choose a wavelength for which the change in reflectivity is 

highest for given change in temperature and reflectivity has minimum value [10].  In 

addition, electronic and optoelectronic device analyzed with TR microscopy generally 

have layered structures that strongly modifies the TR coefficient. The protection layer of 

integrated circuits is made of dielectric material which is transparent to visible light. The 

optical interference which occurs in these layers strongly modifies the reflectivity and can 
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even forbid thermoreflectance measurements at some wavelengths. For each series of 

circuits, it is therefore necessary to determine the illumination wavelengths for which 

thermoreflectance will deliver optimal signals [10, 11]. As stated in [10], one way to 

calibrate thermoreflectance for range of spectrum is to use different LEDs as illumination 

sources, and measure the photothermal response at each LED wavelength. This has been 

demonstrated on a 45 nm thick NiCr oxide resistor deposited on a GaAs substrate with 

1.5μm thick Au Ohmic contacts and blanked coated with a Si3N4 passivation layer [10]. 

It is observed by G. Tessier et al [10], that red LEDs (λ = 615 and 660 nm) exhibited low 

response for both bare and passivated Au, while an orange LED (λ = 598 nm), was shown 

to be suitable for thermal imaging of passivated NiCr and Au. Further they found “green 

illumination (λ = 511 nm) gave a large signal for Si3N4-coated GaAs and a small signal 

for passivated Au”. Therefore, it is possible to measure the thermal behavior of a selected 

material within a complex structure by careful choice of the illumination wavelength. 

This method is very time consuming and therefore subject to drifts. To improve the 

calibration method G. Tessier et al. [11] has developed a CCD camera-based 

thermoreflectance microscope coupled to a grating which disperses white light directly 

onto the CCD. This instrument gives the complete spectra of the reflection coefficient 

and its temperature dependence, reflectivity and the ratio of change in reflectivity with 

respect to change in temperature can be measured on one or several materials with only 

one acquisition. The optimal wavelength for thermoreflectance measurements can 

therefore be measured within minutes on any sample. A model considering multiple 

reflections and the thermal expansion of the encapsulation layer has been also developed 

in this work [11] to explain the spectra and variation of TR coefficient for given spectra 

on encapsulated circuits. This model can be used to predict qualitatively the optimal 

working wavelength. Alternatively, Peltier element control of the whole package 

temperature in order to obtain calibration coefficients simultaneously on several materials 

visible on the surface of the circuit is proposed [12]. Under high magnifications, 

movements associated with thermal expansion are corrected using a piezo electric 

displacement and a software image shift. In this work [12] the temperature obtained by 

thermoreflectance have been compared with those obtained by two sensors, a thermistor 
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and a diode junction. The agreement with thermoreflectance and simulation is very good, 

with a standard deviation of the order of 2.3%. As it is mentioned in [4-6], while 

thermoreflectance is a very sensitive and high resolution tool for temperature mapping, 

its precision is still two orders of magnitude lower than its thermal resolution, mainly due 

to the complexity of calibration procedures. Efforts remain to be made to make precision 

and temperature resolution comparable. Noninvasive method for thermoreflectance 

coefficient calibration ideally suited for in-chamber, and thus high temperature has been 

developed in [13].  Thermoreflectance coefficients for three commonly encountered 

metals in electronic devices: gold, platinum, and aluminum is explained in this work [13]. 

The effect of passivation on these metals is also examined, and it is demonstrated the 

signal to noise ratio of a thermoreflectance measurement can be improved with informed 

selection of the dielectric layer thickness. For gold, the behavior of TR coefficient is 

analyzed under 455, 470, and 530 nm illumination in the measurement chamber from 

room temperature to 500 K. For the given ΔT inside the thermostat, bare gold illuminated 

at 530 nm has the highest thermoreflectance response, followed by 470 nm and then 455 

nm. Further, the reflectivity signal is significantly enhanced in the passivated region at 

530 nm, but is slightly diminished at 470 nm with almost no change at 455 nm [13], 

relative to bare gold metal. The average rate of change in the TR coefficient of bare gold 

metal is measured of 0.30×10-4 per 100K temperature [13].  

Frequency-Domain measurement techniques, lock-in method of thermoreflectance 

microscopy has proven effective in obtaining thermal images of active electronic and 

optoelectronic devices with submicron spatial resolution and 10-50mK temperature 

resolution [6]. Thermoreflectance systems that use a lock-in method capture the steady 

state thermal signal but provide limited information about the thermal transient. 

However, it is often desirable to observe how devices thermally evolve in time. Due to 

the size of typical electronic and optoelectronic devices, thermal effects can occur on a 

millisecond or microsecond time scale or faster [6]. Thermoreflectance methods based on 

time domain analysis can characterize fast transient heating effects such as the thermal 

rise time by reconstructing the time varying reflectance signal. Burzo et al [14] has 

demonstrated first experimental system capable of noninvasively and nondestructively 
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scanning the transient surface temperature of pulsed microelectronic devices with 

submicron spatial and sub-microsecond temporal resolutions. Burzo et al [14] have used 

the experimental set-up to scan the active area of typical MOSFET devices of differing 

gate widths and lengths. Both quasi steady-state and transient temperature measurement 

results are obtained with overall random uncertainty of the results to be less than 13% 

[14]. In order to partially overcome the slow frame rates associated with CCDs, Maize et 

al [15] have used a pulsed LED and a CCD camera to acquire transient thermal images 

almost 100 times faster than single point TTR, without the need for a laser and scanning 

translation stage. Their technique utilizes a pulsed boxcar averaging scheme in which the 

boxcar average is combined with a short duration LED pulse (∼10 ns) synchronized with 

device excitation. For each exposure of the CCD, there is one LED pulse, effectively 

reducing the camera exposure to the time duration of the LED pulse width. For the next 

integration period of the CCD, the phase between the LED pulse and the device 

excitation is advanced by a small, known amount, and the in-between data points are 

filled in by combining multiple boxcar averages. By stepping the light pulse in regular 

increments, the CCD thus records the full thermal transient of the device with time 

resolution limited by the pulse width. This method has been used to demonstrate transient 

thermal imaging of a micro-heater with millisecond and microsecond time resolution, 

comparing rapid heat diffusion in the device metal to slower diffusion into the substrate 

[15]. An example of transient thermal imaging on a test chip is studied in [16]. This work 

[16] discusses the relationship of spatial resolution and time resolution considering the 

‘time constant’ component of chip. Spatial resolution for thermoreflectance is limited by 

the diffraction of the illuminating light, time resolution is limited by the high speed 

electrical signal management, and temperature resolution is limited by the signal-to-noise 

ratio [16]. In the current work issue of spatial resolution is addressed and detail 

explanation is given in next sections. 

Application of frequency-domain thermoreflectance is extended to the 

characterization of thin metals films on low thermal diffusivity substrates [17].  

It is seen, how a single noncontact measurement can yield both the thickness and thermal 

conductivity of a thin metal film with high accuracy. Results are presented from 
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measurements of gold and aluminum films 20–100 nm thick on fused silica substrate. 

The thickness measurements are verified independently with atomic force microscope 

cross sections, and the thermal conductivity measurements are verified through electrical 

conductivity measurements via the Wiedemann–Franz law. The thermoreflectance 

thermal conductivity values were in good agreement with the Wiedemann–Franz results 

for all the films at least 30 nm thick, indicating that presented method can be used to 

estimate electrical conductivity along with thermal conductivity for sufficiently thick 

films.   

Thermoreflectance measurement system can provide exact thermal information to 

identify defects in a device that are hardly perceptible with the IR thermography system 

and the conventional widefield microscope system [18]. By determining the 

thermoreflectance calibration coefficient experimentally, quantitative temperature 

distribution of polysilicon micro-resistors was obtained in [18]. Using their proposed 

thermoreflectance measurement system on a polysilicon micro-resistor, a high thermal 

resolution of up to ~13 mK was achieved in 50,000 iterations by using a high bit-depth 

CCD camera, and a high spatial resolution of ~670 nm was realized with a 100× (0.5 NA) 

objective lens and visible light source (635.9 nm).  The obtained thermoreflectance 

calibration coefficient of polysilicon was -1.71×10-3 with illumination light at λ=635.9 

nm and a 20× (0.42 NA) objective lens [18]. 

The application of thermoreflectance CCD imaging in power microelectronics is 

demonstrated in [19]. Thermoreflectance imaging with submicrometer spatial resolution 

and 50 mK temperature   was used to study self-heating temperature distribution in 

LDMOS silicon power transistor arrays under dc operation. Thermoreflectance images 

revealed highly nonuniform spatial self-heating distribution in the active power arrays. 

The major drawback of Thermoreflectance measurement technique are: sensitivity of method 

to illumination wavelength and the diffraction limited spatial resolution. The problem of 

diffraction is discussed by Grauby et al., but no suggestions was given to handle this issue [20]. 

Recently A. Ziabari et. al. [21], came up with idea of numerical simulation and analytical model 

to address the issue of diffraction in thermoreflectance imaging. They have developed analytical 

model based on Bessel’s function and found thermoreflectance coefficient for sample and 
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substrate. Further did simulation using ANSYS APDL and then combine results with analytical 

model to obtain final temperature profile. 

 

1.2 Diffraction: 

Diffraction effects are consequence of the wave nature of light. Diffraction means any 

deviation of light rays from rectilinear that cannot be interpreted as reflection or 

refraction [22], was long back first reported by Grimaldi in 1665. When some obstruction 

is present in the path of light wave, resulting pattern on the other side of obstacle can be 

explained with diffraction theory. The obstacle need not to be opaque but if causes local 

variations in the amplitude or phase of the wavefront of light such effects are observed. 

Because the diffraction cause the blurring at edges of any optical images, diffraction 

phenomenon leads to fundamental limitation in instrument resolution. Rayleigh criterion 

along with lens maker equation estimates the limit of resolution and it is approximately 

half of wavelength of light reflected from surface. Due to this resolution limitation set by 

diffraction abundant work is done to understand theory of diffraction and thereby to 

improve the resolution.  

As mentioned in section 1.2 non-contact thermal measurements has spatial resolution 

limitation due to diffraction. Infrared Thermography has spatial resolution in the range of 3-10 

μm due to use of infrared range light source in imaging. Thermoreflectance Imaging temperature 

measurement also has spatial resolution limit due to diffraction. In the prior work, 

thermoreflectance was used to measure the temperature of thin gold films that modeled electrical 

interconnects.  The modeled interconnects were 1 to 10 μm in width and tens of μm long.  In this 

work a mathematical model is developed for better analysis of the thermo-reflectance 

experimental data. The main purpose of this work is to understand the impact of diffraction and 

the parameters that govern the signal. 

The model developed in the course of this thesis is based on Rayleigh-Sommerfeld 

diffraction formula that is the reformulation of Kirchoff’s diffraction formula with 

Dirichlet green’s function (i.e., one that vanishes on the boundary surface). A one-

dimensional Fresnel diffraction formula is used to estimate diffracted field from the 

observed sample and the background. The mathematical model further takes into account 
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the incoherent nature of the illumination source by averaging over the wavelengths of the 

light source. The remaining unknown parameters of the experiments are treated as free 

parameters and are determined by a comparison to the experimental data. Detailed 

explanation about diffraction theory and the mathematical model are discussed in Chapter 

- 2.  

Experimental data used here for comparison are taken from the Master’s thesis of Cardenas 

[9] and briefly summarized here. The thermoreflectance technique was used to measure 

temperature and determine thermal contact resistance for gold thin film structures used as model 

electrical interconnects [8, 9]. The observed sample consists of the gold thin film interconnects as 

seen in Fig. 1.1.  

 

The test interconnect consists of two gold pads, thin film leads and a narrow test line 

connecting the two leads [23, 24]. The gold film is deposited on an amorphous SiO2 substrate 

grown on a silicon wafer. There is thin adhesion layer of  titanium between gold and SiO2. This 
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technique was extended to analyzing thermoreflectance data from 150 nm wide carbon 

nanofibers (CNFs) undergoing current stressing [25].  

The thermoreflectance experiment was performed in two stages: i) Calibration: to 

obtain the thermoreflectance coefficient the entire sample was uniformly heated using a 

heater and the normal reflectance intensity was measured by using a microscope and 

CCD; and ii) Temperature Measurement: the TR coefficient was then used to measure 

temperature distribution of the thin gold structure undergoing Joule heating. In prior 

experiments, the calibrated TR coefficient shows good experiment with the work of 

Beran [26].  However, the calibrated TR coefficients under the illumination wavelengths 

of 470 and 530 nm yielding different values [8]. Whereas a temperature measurement 

from Joule heating was possible at 530 nm, the 470 nm data for the small interconnect 

lines were strongly influenced by diffraction.   In both cases, but more pronounced at 470 nm, the 

size of the measurement sample affects the quality of the result. The combined effects of 

vibration and diffraction cause spatial averaging and convolution (blurring) and lead to 

mixing of the reflectance intensity of the gold film and substrate.  The amount of diffraction 

depends upon the wavelength, the size of the sample, and the interaction with background. When 

measuring on the gold pads (10 μm wide) the thermal profiles obtained from the experiment 

for the wavelengths 470 and 530 nm match. The disagreement in the calibration and the 

measurement signal exists over the narrow interconnect (1 μm wide) samples motivates 

the development of a diffraction based model.  We are not aware of any previous work that 

has investigated methods to use thermoreflectance on very narrow lines where diffraction 

has taken place.  

The present work develops a model to characterize the diffraction, based on the size 

of the sample, the wavelength of the illumination, the phase shift of the signal from the 

background, strength of the reflectance, and the apparent distance of the image. From 

fitting the model with the experimental data the unknown parameters of the experiments 

are quantified. The parameters are optical distance between the specimen and the CCD, 

and the phase shift between the signals resulting from the difference in the thickness of 

the gold line and the substrate. Results are discussed in detail in Chapter-3 of thesis. 
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2. MATHEMATICAL MODEL 

2.1 Diffraction Theory: 

Diffraction is defined by Sommerfeld as any deviation of light from rectilinear path that 

cannot be interpreted as reflection or refraction [27]. But before that there is fascinating 

history associated with the discovery and explanation of diffraction effect. The first 

accurate description of this phenomenon was given by Grimaldi in 1665 in his book. 

Then in 1678 Huygens expressed the principle that if each point on the wavefront of 

disturbance were considered to be a new source of a “secondary” spherical disturbance, 

then the wavefront at a later instant could be found by constructing the “envelope” of the 

secondary wavelets. Then there was no significant progress on further understanding this 

phenomenon during 18th century. In 1804, Young introduced the concept of 

“interference” and there by strengthened the wave theory of light.  In 1818, Fresnel first 

time calculated distribution of light in diffraction patterns by combining Huygens and 

Young’s explanation and making some arbitrary assumptions. After the Maxwell’s 

discovery of light as an electromagnetic wave in 1860, in 1882 the ideas of Huygens and 

Fresnel were put on a firmer mathematical formulation by Kirchhoff, who successfully 

showed that phase and amplitudes described for secondary wavelet by Fresnel is indeed 

logical sequence of wave nature of light. However two main assumption on boundary 

conditions made by Kirchhoff was later proved inconsistent by Poincare in 1892 and 

Sommerfeld in 1894. And therefore the Kirchhoff’s theory is known as first 

approximation of diffraction theory. The Kirchhoff’s theory then modified by 

Sommerfeld by eliminating one of the inconsistent assumption regarding the light 

amplitude at the boundary. Rayleigh Sommerfeld used theory of Green’s Function. In the 

development of the mathematical model for the thermoreflectance data Rayleigh-

Sommerfeld theory is used. 



16 

 

The basic diffraction problem requires finding a solution to the Helmholtz equation for 

propagating wave encountering partial obscuring planar screen [27, 28]. The Helmholtz 

equation is 

(∇2 + 𝑘2)𝐸(𝑟) = 0               (1) 

where 𝑘 = 2𝜋/𝜆 , the wave number and E is scalar field. 

The boundary condition imposed on the solution to this differential equation is the effect 

of a diffracting screen in the 𝑧 = 0 plane (Fig. 2.1). 

 

Fig. 2.1: Diffraction field for Rayleigh-Sommerfeld diffraction Integral 

The Rayleigh-Sommerfeld diffraction integral is given as [29]: 

𝐸 (𝑟) ∬ = 2 ∬ 𝐸(𝑟0)
𝜕𝐺

𝜕𝑧
𝑑𝑆

𝑆
              (2) 
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where G is the Green’s function for the Helmholtz equation. 

𝐺(𝑟 − 𝑟0) =
𝑒−𝑗𝑘|𝑟−𝑟0|

4𝜋|𝑟−𝑟0|
       or    𝐺(𝑟01) =

𝑒−𝑗𝑘𝑅

4𝜋𝑅
       and                                                 (3) 

𝜕𝐺

𝜕𝑧
|

𝑧=0
=

𝑧

𝑅
 (𝑗𝑘 +  

1

𝑅
)

𝑒−𝑗𝑘𝑅

4𝜋𝑅
                                                                                         (4)                                                                       

Substituting value of indicated derivative in equation (2) 

𝐸 (𝑟) = ∬ 𝐸(𝑟0)
2𝑧

𝑅
 (𝑗𝑘 +  

1

𝑅
)

𝑒−𝑗𝑘𝑅

4𝜋𝑅
𝑑𝑆

𝑆
                                                                    (5) 

In this equation 𝑅 = |𝑟 − 𝑟0| = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + 𝑧2                                 (6) 

Now if we assume that diffracting aperture has dimension ‘𝑎’ so that  𝑥0
2 + 𝑦0

2 ≪  𝑎2 and 

further if we assume that z is large enough that Fresnel number (𝑁𝑓) =
𝑎2

𝜆𝑧
 is small enough 

then equation (5) simplifies to  

𝐸(𝑥, 𝑦, 𝑧) =
𝑗𝑘

2𝜋𝑧
𝑒−𝑗𝑘𝑧 ∬ 𝐸(𝑥0, 𝑦0, 0)𝑒−𝑗𝑘|(𝑥−𝑥0)+(𝑦−𝑦0)|2 2𝑧⁄ 𝑑𝑥0𝑑𝑦0                              (7) 

The above mentioned approximation is called Fresnel approximation. 

In the special case when the aperture field 𝐸(𝑥0,𝑦0,0) depends only one transverse 

coordinate, say, 𝐸(𝑥0,0) the dependence of equation (7) on the y direction can be 

integrated out using the integral 

√
𝑗𝑘

2𝜋𝑧
∫ 𝑒−𝑗𝑘(𝑦−𝑦0)2 2𝑧⁄∞

−∞
𝑑𝑦0 = 1                                                                                     (8) 

and we obtain the following one-dimensional Fresnel formula: 

𝐸(𝑥, 𝑧) = √
𝑗𝑘

2𝜋𝑧
𝑒−𝑗𝑘𝑧 ∫ 𝐸(𝑥0, 0)𝑒−𝑗𝑘(𝑥−𝑥0)2 2𝑧⁄∞

−∞
 𝑑𝑥0                                                    (9) 
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2.2 Diffraction by Single slit:  

The incident field is uniform plane wave,𝐸𝑖𝑛𝑐(𝑥, 𝑧) = 𝐸0 exp(−𝑗𝑘𝑧), whose value on slit 

is (𝑥0, 0) = 𝐸0 . 

The diffracted field at distance ‘z’ from equation (9) 

𝐸(𝑥, 𝑧) =
√𝑗𝑘

2𝜋𝑧
𝑒−𝑗𝑘𝑧 ∫ 𝐸(𝑥0, 0) exp (−

𝑗𝑘(𝑥 − 𝑥0)2

2𝑧
) 𝑑𝑥0

∞

−∞

 

 

= 𝐸0
√𝑗𝑘

2𝜋𝑧
𝑒−𝑗𝑘𝑧 ∫ exp (−

𝑗𝑘(𝑥−𝑥0)2

2𝑧
) 𝑑𝑥0

𝑎

−𝑎
                                                                    (10) 

where ‘a’ is the half-width of the slit. The integral can be reduced to Fresnel Integral by 

changing variable as follows: 

√
𝑘

2𝑧
 (𝑥 − 𝑥0) = √

𝜋

2
𝑢        &             𝑣± =√

𝑘

𝜋𝑧
(±𝑎 − 𝑥)                                                  (11)                  

With this substitution equation (10) reduces to 

√𝑗𝑘

2𝜋𝑧
∫ exp (−

𝑗𝑘(𝑥 − 𝑥0)2

2𝑧
) 𝑑𝑥0 = √

𝑗

2
  

𝑎

−𝑎

∫ exp (−
𝑗𝜋𝑢2

2
) 𝑑𝑢

𝑣+

𝑣−

 

 

=
𝐹(𝑣+) − 𝐹(𝑣−)

1 − 𝑗
                                                                                                                         (12) 

 Thus 𝐸(𝑥, 𝑧) = exp(−𝑗𝑘𝑧) 𝐷(𝑥, 𝑧),     

where,  
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𝐷 =
𝐹(𝑣+) − 𝐹(𝑣−)

1 − 𝑗
                                                                                                                   (13) 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐼) = 𝐸×𝐸 ∗                                                                                                (14) 

 

 

Figure 2.2 Effect of distance z on diffracted field intensity (a) slit (b) strip for different 

image plane distances from the sample 

The normalized intensity for the slit at different ‘z’ values are plotted in Fig. 2.2 (a). As 

we can see from plot the effect of diffraction is more profound in the near field i.e. when 

z = a. The effect of diffraction is very blur in the far filed region when z = 100*a. 

2.3 Diffraction by Strip: 
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For the case of strip limits of integration are changed 

√
𝑗𝑘

2𝜋𝑧
(∫ + ∫

−𝑎

−∞

∞

𝑎

) exp (−
𝑗𝑘(𝑥 − 𝑥0)2

2𝑧
) 𝑑𝑥0 

=
𝐹(∞) − 𝐹(𝑣+) + 𝐹(𝑣−) − 𝐹(−∞)

1 − 𝑗
      = 1 − 𝐷(𝑥, 𝑧)            (15) 

Where we used 𝐹(∞) = −𝐹(−∞)  =  (1 − 𝑗)/2 

Thus, the diffracted field in case of strip 

𝐸(𝑥, 𝑧) = 𝑒𝑥𝑝(−𝑗𝑘/𝑧)[1 − 𝐷(𝑥, 𝑧)]               (16) 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐼) = 𝐸×𝐸∗                                                                                                (17) 

The normalized intensity for the strip is plotted in Fig 2.2 (b) for different values of ‘z’ 

2.4 Mathematical Model: 

The total reflected intensity imaged by CCD is coming from two different surfaces with 

different reflectivity, the gold film and substrate.  Accordingly, the mathematical model consists 

of two parts (Fig 2.3): the reflectance intensity coming from the metallic gold film and the 

reflectance intensity coming from the background substrate. The two intensities are combined to 

yield the total reflected intensity. Light coming from the gold film is treated as diffraction through 

a slit due to the high reflectivity of gold. In the latter case, the reflected light coming from the 

substrate is obstructed by gold thin film on its way to the microscope. Hence the reflection 

coming from the substrate is treated as diffraction past a strip.  
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Figure 2.3 Mathematical model set-up composed of reflection from the sample and 

substrate based on two simple diffraction model (a) The diffracted field for the gold 

line, where gold line is treated as slit (b) The diffracted field for the substrate, where 

gold line is treated as a strip blocking the light reflected from the substrate. 

For the first part Eq. 13-14 is used while for the second part Eq. 16-17 needs to be modified to 

take into account the difference in the distance traveled by the light before coming to CCD. The 

signal coming from the substrate is travelling a longer distance 2∙  as compared to the signal 

originating from the gold line which results in a phase shift between the two signals.  The longer 

distance travelled accounts for the transparent silicon-dioxide layer between the gold film and the 

reflective silicon substrate. 

 

In the case of the strip,  

( ) ( ) ( ) ( )
( , 2 ) exp( ( ))

12

v v
E x z j kz

j
 

 
 
  

       


 F F F F
        (18) 

           

The total diffracted field can be obtained as 

 E E E
1 2total

              (19)           
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where Γ is the ratio of the reflectivity of gold and the substrate material. 

Then the total reflected intensity 

 
* I E E

total total total
              (20)  

In the experiment the intensity measured by CCD is in arbitrary units. The model 

quantified total intensity in physical units. To compare the model with the experimental 

data, the total reflected intensity obtained from model is multiplied by the gain factor   

 I I
model total

              (21) 
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3. RESULTS & ANALYSIS 

The two-dimensional Joule-heating data for the sample were taken using the 

experimental setup for the wavelengths of 470  and 530 nm. For a single wavelength, the results 

are repeatable for increasing and decreasing current; however, for the same sample the 

temperature distribution under two different LED wavelengths resulted in inconsistency.  

In calculations the following two unknowns in the experiment are considered as 

fitting parameters: optical distance z , the distance between the observed specimen and 

the imaged plane, and phase shift , the shift in phase between the signal coming from 

the gold line and the substrate.  The optical distance is dependent on the overall imaging 

of the microscope and is treated as a fitting parameter.  The phase shift is dependent on 

the thickness of the oxide layer which is an increase in path length for the light to travel 

before reflecting off the silicon substrate.  While treated as a fitting parameter, the phase 

shift must fall within a range consistent with this added path length.  The effect of 

different z values is shown on each of the two components, in chapter-2 Fig. 2.2(a) for 

the slit 4a    and Fig. 2b for the same size strip. As can be seen from these figures the 

effect of diffraction is profound in the near field when z = a, whereas it is more blurred 

for the far field when z = 50a. The Fresnel number (F = a2/λ z) in our cases spans the 

range 0.1 to 3.5 which is on the order of 1.  The Fraunhofer approximation is the limiting 

case when the optical distance z is large and F << 1.   The Fresnel approximation is a 

partial series solution that is accurate in the limit F >> 1, but can also be applied in the 

range F ~ 1 with lower accuracy due to the truncated terms in the series [27, 29].   For a 

consistent approach we have used the Fresnel calculation. The optical distance z is an 

unknown in the experiment and is used as a fitting parameter when the model is 

compared to the data. 

To fit the model parameters with experimental data least squares minimization is 

used to determine the best values for z and φ, starting from initial estimates of their 

values.  This procedure is implemented in MATLAB.   Since the experimental data are 

given in terms of averages of images from a CCD camera the least squares procedure also 

normalizes the absolute image strength with a gain parameter and accounts for the 
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difference in reflectivity of the gold and the silicon substrate which is consistent with 

published reflectivity for the two materials.   

The other two fitting parameters, reflectance ratio Γ and gain parameter  , are for 

normalizing the overall intensity in the model with experimental data.  The total 

reflectance intensity comes from two different surfaces, gold line and substrate, with 

different reflectivities.  Further, to consider the optical absorption and the intensity of 

light source, the two diffracted field intensities are combined in the model with the help 

of the reflectance ratio Γ. The values of the material's reflectivity at ambient temperature 

of 25 C
o  depend upon the wavelength and are available in literature [30]. The last fitting 

parameter is  a gain parameter that converts the normalized intensity signal to the range 

on the CCD.  

During the experiment the combined effects of vibration and noise smooth out the 

data, and result in an intensity profile that lacks small scale intensity signal variation seen 

in the model. This real filtering is due to the integration over the CCD pixels, physical 

vibration in the system, and diffraction in the optics. Therefore some additional spatial 

average is applied to the model data. The spatial average is performed by calculating 

moving average over a window of 11 pixels where each pixel is 0.0539 μm in width. As 

the LEDs used in the experiment are not monochromatic the diffracted field and hence 

the reflectance intensity calculated with the mathematical model is integrated over the 

spectral width and strength of the LEDs. An attempt was made to take into account the 

incoherent nature of LEDs by performing phase average. Accounting for this wavelength 

variation did not significantly changes the nature of the intensity profile. 

In Fig. 3.1. The model is compared with the experimental data at the wide section 

for wavelength of 535 nm. The parameters used to generate this figures are summarized 

in Table 3.1.  Although not an exact match, the model shows very good qualitative 

agreement with the experimental data. At the edge of the gold line the model both 

underestimate and overestimates, the intensity. This is caused mainly by the edge 

diffraction effect and limited experimental data available for the substrate signal. This 

small scale oscillatory behavior is smoothed in the experimental data because of 
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averaging in the CCD, vibration in the system, variation in the coherence of the light, and 

diffraction due to thermal gradient in the air above the sample. 

  In Fig. 3.1b the model data are compared with the experimental data at the same 

wide section but for a different illumination wavelength, 470 nm. Similar matching of the 

model and the experiment is observed. As the wavelength of illumination changes the 

reflectance, optical distance and phase shift should change. The new values of these 

parameters for the fitting is obtained from the algorithm confirmed the theoretical values. 

The values are summarized in Table 1. 

Table 3.1: Summary of Fitting parameters 

Wavelength 
(nm) 

a 
(μm) 

z 
(μm) 

  
(rad) 

Г  

 
  
 

535 
5 20 2.2 0.64 3700 

0.5 3.75 2.2 0.64 3400 

470 
5 15 2.12 0.9 2068 

0.5 5.75 2.12 0.9 1068 
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Fig. 3.1 Plot of experimental data and model for 10 μm wide gold interconnect for (a.) 

λ = 535nm at section a-a of Fig. 1.1 (c) and (b.) λ = 470 nm at section a-a of Fi. 1.1 (c) 

Fig. 3.2 (a) shows the fit for the narrow-field at wavelength of 530 nm. When 

moving from wide-section to narrow section for the same wavelength the optical distance 

should change and as result the phase shift. The values of these two parameters are varied 
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to fit the model data to the experimental data. As can be seen the model data fits with the 

experimental data except at the edge; again the model overestimates the experiment 

peaks.  

Fig. 3.2 (b) shows the comparison of model and experimental data at narrow-

section for the wavelength of 470 nm. The overall reflectivity of gold at 470 and 530nm is 

very different, around 0.4 to 0.6 and combined with the temperature dependence of the 

reflectivity, the diffraction patterns of both wavelengths along the gold line are different.  By 

varying the optical distance z  same amount as done for 530 nm the model doesn't 

provide a good fit with the experimental data. Different values of z  were tested and the 

values listed in Table 2 give qualitative good fit for the data.  
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Fig. 3.2 Plot of experimental data and model for 1 μm wide gold interconnect for (a) 

λ _ 535 nm at Section b-b of Fig. 1.1(c) and (b) λ _ 470 nm at Section b-b of Fig. 

1.1(c). 

The use of thermoreflectance for temperature measurement has been well established based on 

its ability to generate a full field measurement, but there is an increasing desire to apply this 

technique to smaller spatial scales.  As a result there is a need to understand the impact of optical 

limits on the signal generated.  This is the first known work applying a diffraction model to 

understand the thermoreflectance signal and it will be useful in extending the technique to smaller 



29 

 

scales. The diffraction model considers the reflection signal produced from samples of thin films 

on and from the substrate. 

Four parameters are used in the model for fitting with experimental data.  The results show 

good agreement between calculated and measured values. The overall reflectivity of gold at 470 

and 530 nm changes significantly from 0.4 to 0.6 and this change is captured by the model. The 

diffraction patterns for 470 and 530 nm produce different data profiles.  Furthermore, 

the thermoreflectance signal at each wavelength over the narrow line, one micron is 

significantly different than the wide-field due to the impact of the diffraction. 
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4. Conclusions & Future work 

The use of thermoreflectance for temperature measurement has been well established based 

on its ability to generate a full field measurement, but there is continuous demand to improve the 

spatial resolution to keep up the pace with the size of current optoelectronic and electronic 

devices.  As the spatial resolution is limited by onset of optical diffraction, it is necessary to better 

understand the limit impose by diffraction and propose solutions to overcome this barrier. This is 

the first work applying a diffraction model to understand the thermoreflectance signal. In most of 

electronic and optoelectronic applications thin metal film is protected by dielectric layer. The 

reflectance signals coming from the metal film is interfered by the diffused signal coming from 

the dielectric substrate. Due to this interference, the calibration procedure or in other words to find 

the thermoreflectance coefficient for the given metal is very complex experimental methodology.  

In current work model is developed considering the optical interference coming from dielectric -

substrate layer along with the reflectance coming from the thin metal film.  

Four parameters are used in the model for fitting with experimental data. The results show 

good agreement between results calculated using the developed model and experimental data. 

The overall reflectivity of gold at 470 nm and 530 nm changes significantly from 0.4 to 0.6, and 

this change in reflectivity is reproduced in model calculated values. During the experiment the 

temperature profile mapped with illumination wavelength of 470 and 530 nm are quite different. 

As well as, the diffraction pattern for each wavelength is significantly different for the narrow (1 

µm wide) line as compared to the wider (10 µm wide) line.  All these experimental observations 

are well captured by the model. This model will help to improve the spatial resolution of the 

thermoreflectance method and further will lead to simplify the calibration method in the given 

spectral range of illumination wavelength. 

When this work is done thermoreflectance method is limited to the visible range of 

wavelength. The model is developed considering the two illumination wavelengths only. This 

work can be further extent to the other wavelength in the visible range and even to go for 

nanometers spatial resolution UV range. This model is developed for gold thin film on based of 

theory of diffraction by slit and strip. In future to understand the thermoreflectance signals 

coming from Carbon Nano Fibers (CNFs), nanorods and nanodots model can be extent with 

diffraction by circular aperture. 
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APPENDICES: 

A.1 Experimental Details: 

The experimental setup to perform normal reflectance intensity analysis as a function of sample 

temperature is shown in Fig. A.1. It consists of an LED illumination source, CCD, optical 

microscope, sample holder and acquisition equipment. A modified Meiji Techno microscope 

Series MC-50T is used as the central component of the system. A beam splitter is placed at the core 

of the microscope to guide collimated incident rays and an aperture constrains the illumination 

beam onto the surface of the samples. Reflected light is transferred through the beam splitter to the 

CCD. A 12-bit A/D Prosilica GE1380 CCD camera is used to capture the reflectance intensity 

images. Illumination is generated from Luxeon® Star/O series LEDs. The spectral characteristics, 

as mentioned by manufacturer, of the two LEDs used in this research is enlisted in Table A.1. A 

custom designed heater microscopy stage assembly is used to support samples while providing 

thermal control over a temperature range from ambient 20 to 250 C
o  [8].  

 

Table A.1. Spectral characteristics of LEDs 

 

Color λmin 

(nm) 

λpeak 

(nm) 

λmax 

(nm) 

Spectral 

Half 

Width 

Δ λ1/2  

(nm) 

Blue 460 470 490 25 

Green 520 530 550 35 

 

The TR calibration coefficient is acquired prior to performing the measurements. Calibrations 

were performed for the two LEDs of central wavelengths 470 and 535 nm. Measurements of the 

sample temperature, T, and the normal reflectance intensity In(T) over sufficiently large regions of 

the material were used to compute  . Under LED illumination with a peak wavelength of 535 nm, 

the average value of the calibration coefficient was -1.71×10-4  1

C
o  with a standard deviation of 

0.19×10-4 1

C
o  . Under LED illumination with 470 nm, the average value of the calibration 
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coefficient was 1.76×10-4 1

C
o   with a standard deviation of 2.1×10-5 1

C
o  . These values demonstrate 

good agreement with the previous results of Beran for gold  [26]. 

 

The second mode of the experiment is to acquire two-dimensional TR images of the calibrated 

structure during Joule heating. During this mode of operation, a function generator, amplification 

circuitry and a delay generator are used to create a delay locked loop tuned to acquire images of the 

periodically heated sample during the quasi-steady heating and relaxation regimes. A reflectance 

intensity image of the sample acquired under illumination at λpeak = 530 nm is shown in Fig. 1c. 

Following the acquisition of the heated and relaxed state images, processing was done for the 

computation of the temperature difference using TR coefficient and Eq. 2 and 3. During Joule 

heating experiments adequate manual correction of positioning with superposition of a reference 

image and a focal metric calculation are performed to correct for displacements due to the thermal 

expansion. The thermal expansion of the system is estimated to be 0.3% and does not result in a 

significant change in system size relative to the wavelengths considered.  Due to high optical 

absorption of gold in the visible range it was assumed during experiment that the surface reflection 

is dominant and the film is sufficiently thick to be considered optically opaque.  At 100 nm the film 

thickness is 4.6 times the material’s absorption coefficient which governs the exponential decay of 

the electromagnetic wave in the gold.  TR response has been shown to be linear over the calibration 

temperature range of 20-200 ˚C.  
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Fig.  A.1 Schematic of Thermoreflectance temperature measurement experimental 

set-up 

A.2 MATLAB Code 

1. To generate the figure:  
I_530=figure_1(0.530,5,20,0.64,3700,(3*pi)/4); 
I_470=figure_470(0.470,4.73,5,0.9,555,2.22); 
load 530Rows 
I_Exp_1=avgrW(:,1); 
subplot(2,1,1); 
plot(xs(1:8:end),I_Exp_1(1:8:end),'k--o',xs,I_530,'k-','LineWidth',2); 
line1=get(gca,'Children'); 
set(gca,'FontSize',12,'FontName','Times New Roman') 

  
hold on 
%%plot(xs(1:10:end),I_Exp(1:10:end),'k-

o','LineWidth',2);set(gca,'FontSize',12,'FontName','Times New Roman') 

  
set(findall(gcf,'type','text'),'FontSize',12,'FontName','Times New 

Roman') 
%%xlabel('x(µm)');  
ylabel('Intensity(A.U.)'); 
xlim([-8,8]); 
%%title('Comparison of Model data and Experimental data at wide section 

for wavelength lambda=530'); 
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title('\lambda=530nm'); 
%%grid on 
load 470Rows 
I_Exp_2=avgrW(:,1); 
subplot(2,1,2); 
plot(xs(1:8:end),I_Exp_2(1:8:end),'k--o',xs,I_470,'k-','LineWidth',2); 
line2 = get(gca,'Children'); 
set(gca,'FontSize',12,'FontName','Times New Roman') 
set(findall(gcf,'type','text'),'FontSize',12,'FontName','Times New 

Roman') 
xlabel('x(µm)'); ylabel('Intensity(A.U.)'); 
xlim([-7,7]); 
title('\lambda=470nm'); 
h = [line1;line2]; 
%legend(h,'Model data','Experimental data','location','NorthOutside') 
legend('Experimental Data','Model Data'); 
%%grid on 

 

Functions: 

function [ I_new ] = figure_1(lambda,a,z,c,g,p) 
k=(2*pi)/lambda; N_F=(a^2)/(lambda*z); 
load 530Rows % ** 
w=sqrt(2*N_F); 
v1=w*N_F.*(1-(xs/a));   % ** 
v2=w*N_F.*(1+(xs/a));   % ** 
F1=fcs(v1); 
F2=fcs(v2); 
D=(F1+F2)./(1-j);% ** 
E1=exp(j*k*z).*D; 
I1=E1.*conj(E1); 
E2=exp(j*(k*z-p)).*(1-D); 
I2=E2.*conj(E2); 
E=E1+c.*E2; 
II=E.*conj(E); 
I=g.*II; 
I_new=moving_average(I,13); 
end 

  

 
function [ I_new ] = figure_470( l,a,z,c,g,p ) 
k=(2*pi)/l; 
load 470Rows; 
w=sqrt(k/pi/z); 
v1=w.*(a-xs);   % ** 
v2=w.*(-a-xs);   % ** 
F1=fcs(v1); 
F2=fcs(v2); 
D=(F1-F2)./(1-1i)+ (F1 + (1-1i)/2 - F2);% ** 
E1=exp(-1i*k*z).*D; 
I1=E1.*conj(E1); 
E2=c.*exp(-1i*(k*z-p)).*(1-D); 
I2=E2.*conj(E2); 
E=E1+ E2; 
II=E.*conj(E); 
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I=(g.* II); 
I_new=moving_average(I,13); 

  
end 

  

 

Fraunhoffer diffraction code: 

function F = fcs(x) 

  
if nargin==0, help fcs; return; end 

  
F = zeros(size(x));         % defines the size of F 

  
F = fcs2(pi*x.^2/2); 

  
i = find(x<0);  
F(i) = -F(i);               % F(x) is an odd function 

  

 
function F = fcs2(x) 

  
if nargin==0, help fcs2; return; end 

  
a = [ 1.595769140, -0.000001702, -6.808568854, -0.000576361,  

6.920691902, -0.016898657,... 
     -3.050485660, -0.075752419,  0.850663781, -0.025639041, -

0.150230960,  0.034404779]; 

  
b = [-0.000000033,  4.255387524, -0.000092810, -7.780020400, -

0.009520895,  5.075161298,... 
     -0.138341947, -1.363729124, -0.403349276,  0.702222016, -

0.216195929,  0.019547031]; 

  
c = [ 0,           -0.024933975,  0.000003936,  0.005770956,  

0.000689892, -0.009497136,... 
      0.011948809, -0.006748873,  0.000246420,  0.002102967, -

0.001217930,  0.000233939]; 

  
d = [ 0.199471140,  0.000000023, -0.009351341,  0.000023006,  

0.004851466,  0.001903218,... 
     -0.017122914,  0.029064067, -0.027928955,  0.016497308, -

0.005598515,  0.000838386]; 

  
A = fliplr(a+j*b); 
C = fliplr(c+j*d); 

  
x = abs(x); 

  
F = zeros(size(x)); 

  
m = find(x<=4);  
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n = find(x>4); 

  
F(m) = exp(-j*x(m)) .* sqrt(x(m)/4)  .* polyval(A, x(m)/4); 
F(n) = exp(-j*x(n)) .* sqrt(4./x(n)) .* polyval(C, 4./x(n)) + (1-j)/2; 
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ABSTRACT 

Diffraction based mathematical model is developed to address the issue of spatial 

resolution in thermoreflectance imaging at the scale of 1 and 10 μm. Thermoreflectance 

imaging provided non-contact temperature measurement at micro and nano scale but the 

spatial resolution is limited by diffraction. By virtue of this work mathematical model is 

developed for the analysis of thermoreflectance data. In the development of model both 

the diffraction occurring at sample and substrate is combined to calculate intensity of 

thermoreflectance signal. This model takes into account the effective optical distance, 

sample width, wavelength, signal phase shift and reflectance intensity. Model shows 

qualitative and quantitative agreement with experimental data for the two wavelengths 

under investigation, 470 nm and 535 nm. 
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1. INTRODUCTION 

1.1 Introduction: 

Miniaturization has become synonyms of semiconductor devices in the current era. 

The size of electronic devices and line in current ICs has shrunk to 24nm [1]. The 

reduced size of devices out perform in terms of switching speed and fabrication cost. 

However, the shrunk size of electronic devices gives new challenges to heat management 

design. The main barrier in the development of micro and nano scale devices is the 

resulting large current density and local heating. In the last twenty years it has become 

more challenging for designers to understand the heat transfer and thermal 

characterization at micro and nano scale due to small size of electronic devices. 

Temperature mapping at micro and nano scale is very important for safe and reliable 

operation of small scale electronic devices [2, 3]. With electronic devices in the range of 

size few nano meters to micrometers the conventional methods of temperature 

measurement like Infrared radiation thermometry and the micro-Raman methods is no 

more useful.  

Various methods of temperature measurement on the scale of current electronic and 

optoelectronic devices are surveyed by Christofferson et al. [4] and Wenjun et al. [5]. 

Table 1.1 present the summary of these methods: 

Table 1.1: Summary of popular high-resolution thermal measurement techniques in 

micrometer-nanometer range 

Method Principle Resolution Imaging

? Spatial 

(μm) 

Temperatu

re (K) 

Respons

e time 

(s) 

Micro-

thermocouple 

Seebeck effect 50 0.01 

0.02 

(if 

blackbody

) 

5 m 

10 μm 

(single 

point) 

No 
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Infrared 

thermography 

Planck blackbody 

emission 

3-10 -1 K -0.5 m 

(image) 

Yes 

Liquid crystal 

thermography 

Crystal phase transitions 

(change color) 

2-5 0.5 

(near 

phase 

transition) 

3 m Yes 

Thermo-

reflectance 

Temperature dependence 

of reflection 

0.3-0.5 0.01 0.006-

0.1 μm 

Yes 

Scanning 

Thermal 

microscopy 

(SThM) 

Atomic force microscope 

with thermocouple or Pt 

thermistor tip 

0.05 

(surface 

morphology) 

0.1 10-100 

μm 

Scan 

Fluorescence 

thermography 

Temperature dependence 

of quantum efficiency 

0.3 0.01 200 μm Scan 

Optical 

interferometry 

Thermal expansion, 

Michelson type 

0.5 0.0001 

(1 fm) 

0.006-

0.1 μm 

Scan 

Micro-Raman Shift in Raman frequency 

or ratio of Stokes/anti-

Stokes amplitudes 

0.5 1 1 μm Scan 

Near field 

probe 

(NSOM) 

Use near field to improve 

optical resolution 

0.05 0.1-1 (S/N 

dependent

) 

0.1-10 

μm 

Scan 

Built-in 

temperature 

sensors 

Fabricate a thermal sensor 

integrated into the device 

100s 0.0002-

0.01 

1 μm No 

 

All the methods summarized in Table 1.1 can be broadly classified into two 

categories: (1.) contact measurement and (2.) non-contact measurement. Following are 

some advantages offered by Non-contact methods over contact methods: 
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(i) Fast – allowing more measurements to take and therefore it is more convenient for large 

data acquisition    (Temperature mapping) 

(ii) Measurements can be taken of object surrounded by hazardous material 

(iii) Non-destructive measurement 

However, all the non-contact measurement methods are limited by onset of diffraction.  

The most promising techniques regarding spatial resolution are those involving 

contact probes [6], which are usually limited to the measurement of surface temperatures. 

In integrated circuits, mainly the heat is generated due to joule heating in metal thin films 

and contacts, those are often buried under a few hundreds of nanometers or several 

micrometers of encapsulation dielectric. Therefore, the use of thermocouples and in-built 

sensors, integrated within the circuit is good option. After calibration, they deliver high 

precision and high sensitivity temperature measurements but provide no spatial 

information [6]. Moreover, due to the presence of interfaces, strong temperature gradients 

can exist in integrated circuits, leading to discrepancies between the temperature of the 

active region and that measured by the sensor.  

 Infrared (IR) thermometry is one of the most widely used technique for temperature 

measurements of electronic devices, particularly ICs [4]. IR thermometry is based on 

determining the spatial distribution of IR thermal radiation emitted from the surface of a 

solid [4]. Based on Planck’s law of blackbody radiation, the maximum spectral power 

density of an ideal blackbody at thermal equilibrium will shift to lower wavelengths with 

increasing temperature. Since, in practice the surface of a device under study is not a 

blackbody and reflects some of the incident radiation, the blackbody law must be scaled 

by a material dependent factor known as the emissivity. Emissivity depends on the 

surface property and geometry, wavelength and temperature of the object, and must be 

known for each surface to obtain an accurate thermal profile. Silicon is largely 

transparent to near IR radiation, making IR thermography a valuable tool for thermal 

mapping of IC backplanes and hot spots. The thermal resolution of IR cameras can be 10-

20 mK [4], but their spatial resolution is mainly determined by the diffraction limit for 

the range of wavelengths to which the detector is sensitive. The most sensitive IR 

cameras work at 3 µm wavelength [4], which is not suited to the length scales of many 
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modern electronic and optoelectronic devices.  Apart from the sub-optimal spatial 

resolution of IR thermography, other drawbacks include inaccuracy due to the attenuation 

of radiation between the target and the detector, uncertainty in the emissivity of the 

device surface and background radiation [5]. Furthermore, material likes most metals 

with high reflectivity and the low emissivity limits the application of IR thermography. 

Liquid crystal thermography (LCT) and fluorescence microthermography (FMT) are 

semi-invasive thin coating methods. In the LCT technique [4, 5], the surface of the device 

under study is covered with a thin layer of liquid crystal and illuminated with white light. 

At different temperatures, the liquid crystal layer reflects different wavelengths of this 

incident light. The theoretical limit for the resolution of the method was estimated to be 

25 µm spatially and 0.1 K in temperature [5]. To improve the spatial resolution of the 

method, the nematic–isotropic phase transition of liquid crystal which occurs at the 

clearing point of the crystal is used [5]. It is stated by Wenjun & Yang [5], and the 

reference there in, “Below clearing point the liquid crystal is in the nematic phase which 

scatters light and rotates the plane of polarization of the light and appears bright under a 

polarizing microscope. Above clearing point, where the liquid crystal is in the isotropic 

phase, the plane of polarized light does not change and the image field appears dark. 

Taking advantage of the nematic–isotropic phase transition has given the LCT method a 

spatial resolution of 2–4 µm”. Due to semi-invasive nature of LCT technique the thermal 

conductivity and heat capacity of the liquid crystal coating can affect the device under 

test. In addition, the uniformity and thickness of the liquid crystal layer are important 

factors in the accuracy and resolution of the technique [4]. Fluorescent micro-

thermography (FMT) [4, 5] utilizes the temperature-dependent quantum efficiency of 

photoluminescent rare earth dyes. As mentioned by J. Christofferson et al [4], in FCT 

technique, “the sample surface is coated with a thin film of such dyes and is then 

illuminated by ultraviolet (UV) light”. FMT can be used for thermal imaging of 

electronic and bio sensing devices as well as hot spot detection and thermal mapping of 

ICs. A spatial resolution of 0.3 µm and a thermal resolution of 1 mK have been reported 

for FMT [4], although sample preparation and optical system design require special 
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consideration. Photon shot noise, UV bleaching, film dilution and film preparation can 

have a significant impact on the quality of FMT thermal images.  

Using micro-thermocouples as inexpensive point measurement contact probes can 

provide accurate temperature readings with a thermal resolution of 0.01 K [5]. However, 

as stated by Wenjun & Yang [5], the large size of the thermocouple wires (∼25-50 µm 

diameter) results in a poor spatial resolution. In addition, due to difficulties in 

maintaining good thermal contact between the micro thermocouple junction and the 

surface of a device results in faulty readings. Finally, as point-based measurement tools, 

micro-thermocouples cannot be used for imaging without implementing complicated 

translation stages [5]. Scanning Thermal Microscopy (SThM) is a contact thermometry 

technique with very high spatial resolution. SThM utilizes the mechanism behind atomic 

force microscopy (AFM) and scanning tunneling microscopy (STM). The SThM probe 

consists of a thermocouple fabricated on the tip of an AFM cantilever [6]. When the 

probe is scanned in contact mode over the surface of a sample, localized heat transfer 

between the sample surface and the probe tip leads to a change in the tip temperature that 

is measured by the thermocouple. In this way, both the tip–sample heat transfer across the 

entire surface and the sample topography can be obtained simultaneously with sub-

micrometre spatial resolution (∼0.05 µm) and a thermal resolution of 0.1K [4]. However, 

the roughness of the sample surface can cause variations in the tip-surface thermal 

contact, leading to noise in the thermal signal. Furthermore, the SThM experimental 

setup is complicated and expensive, and data acquisition can be time-consuming due to 

the required scanning methods [5]. A major limitation of SThM is the liquid meniscus 

that forms between the tip and the sample, which is intrinsic to contact measurements 

done in atmosphere and limits the resolution of the technique. Finally, SThM cannot be 

used easily on light emitting surfaces of optoelectronic devices such as vertical cavity 

surface emitting lasers (VCSELs), because the light is absorbed by the SThM 

thermocouple and causes errors in temperature measurement [6]. Raman spectroscopy is 

an optical measurement technique that is well suited for temperature measurements in 

microelectronic devices, especially made from silicon, due to its strong scattering cross-

section [5]. The Raman technique provides spatial resolutions on the order of 1 µm or 
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smaller considering far field diffraction limited optics [5]. In addition to the above-

mentioned techniques, other methods of thermography include acoustic thermography, 

near-field scanning optical microscopy (NSOM) adapted for temperature measurement, 

laser interferometry and thermoreflectance microscopy. This last thermography method is 

the focus of this research work and will be discussed in detail in the next sections. 

 

1.1 Thermoreflectance Method: 

Thermoreflectance (TR) temperature measurement belongs to the class of non-contact 

temperature measurements and uses an LED or filtered white light source and a CCD to acquire 

images. TR techniques offers direct access to the active areas under the transparent encapsulation 

layers. In the visible or near UV range, excellent spatial resolutions can be reached. It has been 

shown that the thermal and spatial resolutions of CCD-based thermoreflectance can be as low as 

10 mK and 250 nm, respectively [6], but the fundamental temperature limit has not been found 

yet. The major advantage of TR microscopy is: relatively short data acquisition times compared 

with other techniques and its suitability to a wide range of materials including metals and light 

emitting surfaces.  Thermoreflectance temperature measurement is based on the principle that a 

change in temperature of a given material produces a small change in the spectral reflectivity of 

the material's surface [6-9]. This small change can be linearized over a range of temperature. The 

linearized response of the normal reflectance with respect to the temperature of a sample allows 

the following approximation for the derivative of normal reflectance [8]  

 

( ) ( )T Tn nn 0

T T T
0

  


 
 

     (1) 

The normal reflectance intensity at a given temperature, In ( T ), can be calculated from the 

normal reflectance, ρn(T) and incoming illumination intensity I0 

 

     I T T In n 0
 

    
     (2) 
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The spectral thermoreflectance (TR) coefficient κ is defined by the normalization of the 

slope as a function of temperature with the reference quantity [8] 

 

   
1 1 In n

T TT I Tn n0 0






 
 

 
    

                                                             (3) 

   

During the experiment, it is necessary to calibrate the system and obtain the 

thermoreflectance coefficient for the specific sample. Following the calibration, one can 

determine the temperature difference developed during heating through rearrangement of 

the governing relationship with a measurement of the relative reflectance.  

 

 
   

 
1 I T I Tn n 0T T T

0 I Tn 0


 
    
 
      

     (4) 

 

The thermoreflectance coefficient is a material and surface property that depends on the 

illumination wavelength, temperature, microscope, material surface characteristics and in 

some cases also on the material processing [9].  For most metals and semiconductor 

materials of interest the value of the thermo-reflectance coefficient (κ) will be in the order 

of 10-2 to 10-5 K-1 [6-10].   κ (λ) can vary sharply within the spectral region of interest 

particularly in the visible spectrum, and therefore the choice of illumination wavelength 

determines not only the spatial resolution of the technique but also the sensitivity of 

method. It is essential to choose a wavelength for which the change in reflectivity is 

highest for given change in temperature and reflectivity has minimum value [10].  In 

addition, electronic and optoelectronic device analyzed with TR microscopy generally 

have layered structures that strongly modifies the TR coefficient. The protection layer of 

integrated circuits is made of dielectric material which is transparent to visible light. The 

optical interference which occurs in these layers strongly modifies the reflectivity and can 
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even forbid thermoreflectance measurements at some wavelengths. For each series of 

circuits, it is therefore necessary to determine the illumination wavelengths for which 

thermoreflectance will deliver optimal signals [10, 11]. As stated in [10], one way to 

calibrate thermoreflectance for range of spectrum is to use different LEDs as illumination 

sources, and measure the photothermal response at each LED wavelength. This has been 

demonstrated on a 45 nm thick NiCr oxide resistor deposited on a GaAs substrate with 

1.5μm thick Au Ohmic contacts and blanked coated with a Si3N4 passivation layer [10]. 

It is observed by G. Tessier et al [10], that red LEDs (λ = 615 and 660 nm) exhibited low 

response for both bare and passivated Au, while an orange LED (λ = 598 nm), was shown 

to be suitable for thermal imaging of passivated NiCr and Au. Further they found “green 

illumination (λ = 511 nm) gave a large signal for Si3N4-coated GaAs and a small signal 

for passivated Au”. Therefore, it is possible to measure the thermal behavior of a selected 

material within a complex structure by careful choice of the illumination wavelength. 

This method is very time consuming and therefore subject to drifts. To improve the 

calibration method G. Tessier et al. [11] has developed a CCD camera-based 

thermoreflectance microscope coupled to a grating which disperses white light directly 

onto the CCD. This instrument gives the complete spectra of the reflection coefficient 

and its temperature dependence, reflectivity and the ratio of change in reflectivity with 

respect to change in temperature can be measured on one or several materials with only 

one acquisition. The optimal wavelength for thermoreflectance measurements can 

therefore be measured within minutes on any sample. A model considering multiple 

reflections and the thermal expansion of the encapsulation layer has been also developed 

in this work [11] to explain the spectra and variation of TR coefficient for given spectra 

on encapsulated circuits. This model can be used to predict qualitatively the optimal 

working wavelength. Alternatively, Peltier element control of the whole package 

temperature in order to obtain calibration coefficients simultaneously on several materials 

visible on the surface of the circuit is proposed [12]. Under high magnifications, 

movements associated with thermal expansion are corrected using a piezo electric 

displacement and a software image shift. In this work [12] the temperature obtained by 

thermoreflectance have been compared with those obtained by two sensors, a thermistor 
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and a diode junction. The agreement with thermoreflectance and simulation is very good, 

with a standard deviation of the order of 2.3%. As it is mentioned in [4-6], while 

thermoreflectance is a very sensitive and high resolution tool for temperature mapping, 

its precision is still two orders of magnitude lower than its thermal resolution, mainly due 

to the complexity of calibration procedures. Efforts remain to be made to make precision 

and temperature resolution comparable. Noninvasive method for thermoreflectance 

coefficient calibration ideally suited for in-chamber, and thus high temperature has been 

developed in [13].  Thermoreflectance coefficients for three commonly encountered 

metals in electronic devices: gold, platinum, and aluminum is explained in this work [13]. 

The effect of passivation on these metals is also examined, and it is demonstrated the 

signal to noise ratio of a thermoreflectance measurement can be improved with informed 

selection of the dielectric layer thickness. For gold, the behavior of TR coefficient is 

analyzed under 455, 470, and 530 nm illumination in the measurement chamber from 

room temperature to 500 K. For the given ΔT inside the thermostat, bare gold illuminated 

at 530 nm has the highest thermoreflectance response, followed by 470 nm and then 455 

nm. Further, the reflectivity signal is significantly enhanced in the passivated region at 

530 nm, but is slightly diminished at 470 nm with almost no change at 455 nm [13], 

relative to bare gold metal. The average rate of change in the TR coefficient of bare gold 

metal is measured of 0.30×10-4 per 100K temperature [13].  

Frequency-Domain measurement techniques, lock-in method of thermoreflectance 

microscopy has proven effective in obtaining thermal images of active electronic and 

optoelectronic devices with submicron spatial resolution and 10-50mK temperature 

resolution [6]. Thermoreflectance systems that use a lock-in method capture the steady 

state thermal signal but provide limited information about the thermal transient. 

However, it is often desirable to observe how devices thermally evolve in time. Due to 

the size of typical electronic and optoelectronic devices, thermal effects can occur on a 

millisecond or microsecond time scale or faster [6]. Thermoreflectance methods based on 

time domain analysis can characterize fast transient heating effects such as the thermal 

rise time by reconstructing the time varying reflectance signal. Burzo et al [14] has 

demonstrated first experimental system capable of noninvasively and nondestructively 
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scanning the transient surface temperature of pulsed microelectronic devices with 

submicron spatial and sub-microsecond temporal resolutions. Burzo et al [14] have used 

the experimental set-up to scan the active area of typical MOSFET devices of differing 

gate widths and lengths. Both quasi steady-state and transient temperature measurement 

results are obtained with overall random uncertainty of the results to be less than 13% 

[14]. In order to partially overcome the slow frame rates associated with CCDs, Maize et 

al [15] have used a pulsed LED and a CCD camera to acquire transient thermal images 

almost 100 times faster than single point TTR, without the need for a laser and scanning 

translation stage. Their technique utilizes a pulsed boxcar averaging scheme in which the 

boxcar average is combined with a short duration LED pulse (∼10 ns) synchronized with 

device excitation. For each exposure of the CCD, there is one LED pulse, effectively 

reducing the camera exposure to the time duration of the LED pulse width. For the next 

integration period of the CCD, the phase between the LED pulse and the device 

excitation is advanced by a small, known amount, and the in-between data points are 

filled in by combining multiple boxcar averages. By stepping the light pulse in regular 

increments, the CCD thus records the full thermal transient of the device with time 

resolution limited by the pulse width. This method has been used to demonstrate transient 

thermal imaging of a micro-heater with millisecond and microsecond time resolution, 

comparing rapid heat diffusion in the device metal to slower diffusion into the substrate 

[15]. An example of transient thermal imaging on a test chip is studied in [16]. This work 

[16] discusses the relationship of spatial resolution and time resolution considering the 

‘time constant’ component of chip. Spatial resolution for thermoreflectance is limited by 

the diffraction of the illuminating light, time resolution is limited by the high speed 

electrical signal management, and temperature resolution is limited by the signal-to-noise 

ratio [16]. In the current work issue of spatial resolution is addressed and detail 

explanation is given in next sections. 

Application of frequency-domain thermoreflectance is extended to the 

characterization of thin metals films on low thermal diffusivity substrates [17].  

It is seen, how a single noncontact measurement can yield both the thickness and thermal 

conductivity of a thin metal film with high accuracy. Results are presented from 
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measurements of gold and aluminum films 20–100 nm thick on fused silica substrate. 

The thickness measurements are verified independently with atomic force microscope 

cross sections, and the thermal conductivity measurements are verified through electrical 

conductivity measurements via the Wiedemann–Franz law. The thermoreflectance 

thermal conductivity values were in good agreement with the Wiedemann–Franz results 

for all the films at least 30 nm thick, indicating that presented method can be used to 

estimate electrical conductivity along with thermal conductivity for sufficiently thick 

films.   

Thermoreflectance measurement system can provide exact thermal information to 

identify defects in a device that are hardly perceptible with the IR thermography system 

and the conventional widefield microscope system [18]. By determining the 

thermoreflectance calibration coefficient experimentally, quantitative temperature 

distribution of polysilicon micro-resistors was obtained in [18]. Using their proposed 

thermoreflectance measurement system on a polysilicon micro-resistor, a high thermal 

resolution of up to ~13 mK was achieved in 50,000 iterations by using a high bit-depth 

CCD camera, and a high spatial resolution of ~670 nm was realized with a 100× (0.5 NA) 

objective lens and visible light source (635.9 nm).  The obtained thermoreflectance 

calibration coefficient of polysilicon was -1.71×10-3 with illumination light at λ=635.9 

nm and a 20× (0.42 NA) objective lens [18]. 

The application of thermoreflectance CCD imaging in power microelectronics is 

demonstrated in [19]. Thermoreflectance imaging with submicrometer spatial resolution 

and 50 mK temperature   was used to study self-heating temperature distribution in 

LDMOS silicon power transistor arrays under dc operation. Thermoreflectance images 

revealed highly nonuniform spatial self-heating distribution in the active power arrays. 

The major drawback of Thermoreflectance measurement technique are: sensitivity of method 

to illumination wavelength and the diffraction limited spatial resolution. The problem of 

diffraction is discussed by Grauby et al., but no suggestions was given to handle this issue [20]. 

Recently A. Ziabari et. al. [21], came up with idea of numerical simulation and analytical model 

to address the issue of diffraction in thermoreflectance imaging. They have developed analytical 

model based on Bessel’s function and found thermoreflectance coefficient for sample and 
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substrate. Further did simulation using ANSYS APDL and then combine results with analytical 

model to obtain final temperature profile. 

 

1.2 Diffraction: 

Diffraction effects are consequence of the wave nature of light. Diffraction means any 

deviation of light rays from rectilinear that cannot be interpreted as reflection or 

refraction [22], was long back first reported by Grimaldi in 1665. When some obstruction 

is present in the path of light wave, resulting pattern on the other side of obstacle can be 

explained with diffraction theory. The obstacle need not to be opaque but if causes local 

variations in the amplitude or phase of the wavefront of light such effects are observed. 

Because the diffraction cause the blurring at edges of any optical images, diffraction 

phenomenon leads to fundamental limitation in instrument resolution. Rayleigh criterion 

along with lens maker equation estimates the limit of resolution and it is approximately 

half of wavelength of light reflected from surface. Due to this resolution limitation set by 

diffraction abundant work is done to understand theory of diffraction and thereby to 

improve the resolution.  

As mentioned in section 1.2 non-contact thermal measurements has spatial resolution 

limitation due to diffraction. Infrared Thermography has spatial resolution in the range of 3-10 

μm due to use of infrared range light source in imaging. Thermoreflectance Imaging temperature 

measurement also has spatial resolution limit due to diffraction. In the prior work, 

thermoreflectance was used to measure the temperature of thin gold films that modeled electrical 

interconnects.  The modeled interconnects were 1 to 10 μm in width and tens of μm long.  In this 

work a mathematical model is developed for better analysis of the thermo-reflectance 

experimental data. The main purpose of this work is to understand the impact of diffraction and 

the parameters that govern the signal. 

The model developed in the course of this thesis is based on Rayleigh-Sommerfeld 

diffraction formula that is the reformulation of Kirchoff’s diffraction formula with 

Dirichlet green’s function (i.e., one that vanishes on the boundary surface). A one-

dimensional Fresnel diffraction formula is used to estimate diffracted field from the 

observed sample and the background. The mathematical model further takes into account 
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the incoherent nature of the illumination source by averaging over the wavelengths of the 

light source. The remaining unknown parameters of the experiments are treated as free 

parameters and are determined by a comparison to the experimental data. Detailed 

explanation about diffraction theory and the mathematical model are discussed in Chapter 

- 2.  

Experimental data used here for comparison are taken from the Master’s thesis of Cardenas 

[9] and briefly summarized here. The thermoreflectance technique was used to measure 

temperature and determine thermal contact resistance for gold thin film structures used as model 

electrical interconnects [8, 9]. The observed sample consists of the gold thin film interconnects as 

seen in Fig. 1.1.  

 

The test interconnect consists of two gold pads, thin film leads and a narrow test line 

connecting the two leads [23, 24]. The gold film is deposited on an amorphous SiO2 substrate 

grown on a silicon wafer. There is thin adhesion layer of  titanium between gold and SiO2. This 
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technique was extended to analyzing thermoreflectance data from 150 nm wide carbon 

nanofibers (CNFs) undergoing current stressing [25].  

The thermoreflectance experiment was performed in two stages: i) Calibration: to 

obtain the thermoreflectance coefficient the entire sample was uniformly heated using a 

heater and the normal reflectance intensity was measured by using a microscope and 

CCD; and ii) Temperature Measurement: the TR coefficient was then used to measure 

temperature distribution of the thin gold structure undergoing Joule heating. In prior 

experiments, the calibrated TR coefficient shows good experiment with the work of 

Beran [26].  However, the calibrated TR coefficients under the illumination wavelengths 

of 470 and 530 nm yielding different values [8]. Whereas a temperature measurement 

from Joule heating was possible at 530 nm, the 470 nm data for the small interconnect 

lines were strongly influenced by diffraction.   In both cases, but more pronounced at 470 nm, the 

size of the measurement sample affects the quality of the result. The combined effects of 

vibration and diffraction cause spatial averaging and convolution (blurring) and lead to 

mixing of the reflectance intensity of the gold film and substrate.  The amount of diffraction 

depends upon the wavelength, the size of the sample, and the interaction with background. When 

measuring on the gold pads (10 μm wide) the thermal profiles obtained from the experiment 

for the wavelengths 470 and 530 nm match. The disagreement in the calibration and the 

measurement signal exists over the narrow interconnect (1 μm wide) samples motivates 

the development of a diffraction based model.  We are not aware of any previous work that 

has investigated methods to use thermoreflectance on very narrow lines where diffraction 

has taken place.  

The present work develops a model to characterize the diffraction, based on the size 

of the sample, the wavelength of the illumination, the phase shift of the signal from the 

background, strength of the reflectance, and the apparent distance of the image. From 

fitting the model with the experimental data the unknown parameters of the experiments 

are quantified. The parameters are optical distance between the specimen and the CCD, 

and the phase shift between the signals resulting from the difference in the thickness of 

the gold line and the substrate. Results are discussed in detail in Chapter-3 of thesis. 
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2. MATHEMATICAL MODEL 

2.1 Diffraction Theory: 

Diffraction is defined by Sommerfeld as any deviation of light from rectilinear path that 

cannot be interpreted as reflection or refraction [27]. But before that there is fascinating 

history associated with the discovery and explanation of diffraction effect. The first 

accurate description of this phenomenon was given by Grimaldi in 1665 in his book. 

Then in 1678 Huygens expressed the principle that if each point on the wavefront of 

disturbance were considered to be a new source of a “secondary” spherical disturbance, 

then the wavefront at a later instant could be found by constructing the “envelope” of the 

secondary wavelets. Then there was no significant progress on further understanding this 

phenomenon during 18th century. In 1804, Young introduced the concept of 

“interference” and there by strengthened the wave theory of light.  In 1818, Fresnel first 

time calculated distribution of light in diffraction patterns by combining Huygens and 

Young’s explanation and making some arbitrary assumptions. After the Maxwell’s 

discovery of light as an electromagnetic wave in 1860, in 1882 the ideas of Huygens and 

Fresnel were put on a firmer mathematical formulation by Kirchhoff, who successfully 

showed that phase and amplitudes described for secondary wavelet by Fresnel is indeed 

logical sequence of wave nature of light. However two main assumption on boundary 

conditions made by Kirchhoff was later proved inconsistent by Poincare in 1892 and 

Sommerfeld in 1894. And therefore the Kirchhoff’s theory is known as first 

approximation of diffraction theory. The Kirchhoff’s theory then modified by 

Sommerfeld by eliminating one of the inconsistent assumption regarding the light 

amplitude at the boundary. Rayleigh Sommerfeld used theory of Green’s Function. In the 

development of the mathematical model for the thermoreflectance data Rayleigh-

Sommerfeld theory is used. 
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The basic diffraction problem requires finding a solution to the Helmholtz equation for 

propagating wave encountering partial obscuring planar screen [27, 28]. The Helmholtz 

equation is 

(∇2 + 𝑘2)𝐸(𝑟) = 0               (1) 

where 𝑘 = 2𝜋/𝜆 , the wave number and E is scalar field. 

The boundary condition imposed on the solution to this differential equation is the effect 

of a diffracting screen in the 𝑧 = 0 plane (Fig. 2.1). 

 

Fig. 2.1: Diffraction field for Rayleigh-Sommerfeld diffraction Integral 

The Rayleigh-Sommerfeld diffraction integral is given as [29]: 

𝐸 (𝑟) ∬ = 2 ∬ 𝐸(𝑟0)
𝜕𝐺

𝜕𝑧
𝑑𝑆

𝑆
              (2) 
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where G is the Green’s function for the Helmholtz equation. 

𝐺(𝑟 − 𝑟0) =
𝑒−𝑗𝑘|𝑟−𝑟0|

4𝜋|𝑟−𝑟0|
       or    𝐺(𝑟01) =

𝑒−𝑗𝑘𝑅

4𝜋𝑅
       and                                                 (3) 

𝜕𝐺

𝜕𝑧
|

𝑧=0
=

𝑧

𝑅
 (𝑗𝑘 +  

1

𝑅
)

𝑒−𝑗𝑘𝑅

4𝜋𝑅
                                                                                         (4)                                                                       

Substituting value of indicated derivative in equation (2) 

𝐸 (𝑟) = ∬ 𝐸(𝑟0)
2𝑧

𝑅
 (𝑗𝑘 +  

1

𝑅
)

𝑒−𝑗𝑘𝑅

4𝜋𝑅
𝑑𝑆

𝑆
                                                                    (5) 

In this equation 𝑅 = |𝑟 − 𝑟0| = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + 𝑧2                                 (6) 

Now if we assume that diffracting aperture has dimension ‘𝑎’ so that  𝑥0
2 + 𝑦0

2 ≪  𝑎2 and 

further if we assume that z is large enough that Fresnel number (𝑁𝑓) =
𝑎2

𝜆𝑧
 is small enough 

then equation (5) simplifies to  

𝐸(𝑥, 𝑦, 𝑧) =
𝑗𝑘

2𝜋𝑧
𝑒−𝑗𝑘𝑧 ∬ 𝐸(𝑥0, 𝑦0, 0)𝑒−𝑗𝑘|(𝑥−𝑥0)+(𝑦−𝑦0)|2 2𝑧⁄ 𝑑𝑥0𝑑𝑦0                              (7) 

The above mentioned approximation is called Fresnel approximation. 

In the special case when the aperture field 𝐸(𝑥0,𝑦0,0) depends only one transverse 

coordinate, say, 𝐸(𝑥0,0) the dependence of equation (7) on the y direction can be 

integrated out using the integral 

√
𝑗𝑘

2𝜋𝑧
∫ 𝑒−𝑗𝑘(𝑦−𝑦0)2 2𝑧⁄∞

−∞
𝑑𝑦0 = 1                                                                                     (8) 

and we obtain the following one-dimensional Fresnel formula: 

𝐸(𝑥, 𝑧) = √
𝑗𝑘

2𝜋𝑧
𝑒−𝑗𝑘𝑧 ∫ 𝐸(𝑥0, 0)𝑒−𝑗𝑘(𝑥−𝑥0)2 2𝑧⁄∞

−∞
 𝑑𝑥0                                                    (9) 



18 

 

2.2 Diffraction by Single slit:  

The incident field is uniform plane wave,𝐸𝑖𝑛𝑐(𝑥, 𝑧) = 𝐸0 exp(−𝑗𝑘𝑧), whose value on slit 

is (𝑥0, 0) = 𝐸0 . 

The diffracted field at distance ‘z’ from equation (9) 

𝐸(𝑥, 𝑧) =
√𝑗𝑘

2𝜋𝑧
𝑒−𝑗𝑘𝑧 ∫ 𝐸(𝑥0, 0) exp (−

𝑗𝑘(𝑥 − 𝑥0)2

2𝑧
) 𝑑𝑥0

∞

−∞

 

 

= 𝐸0
√𝑗𝑘

2𝜋𝑧
𝑒−𝑗𝑘𝑧 ∫ exp (−

𝑗𝑘(𝑥−𝑥0)2

2𝑧
) 𝑑𝑥0

𝑎

−𝑎
                                                                    (10) 

where ‘a’ is the half-width of the slit. The integral can be reduced to Fresnel Integral by 

changing variable as follows: 

√
𝑘

2𝑧
 (𝑥 − 𝑥0) = √

𝜋

2
𝑢        &             𝑣± =√

𝑘

𝜋𝑧
(±𝑎 − 𝑥)                                                  (11)                  

With this substitution equation (10) reduces to 

√𝑗𝑘

2𝜋𝑧
∫ exp (−

𝑗𝑘(𝑥 − 𝑥0)2

2𝑧
) 𝑑𝑥0 = √

𝑗

2
  

𝑎

−𝑎

∫ exp (−
𝑗𝜋𝑢2

2
) 𝑑𝑢

𝑣+

𝑣−

 

 

=
𝐹(𝑣+) − 𝐹(𝑣−)

1 − 𝑗
                                                                                                                         (12) 

 Thus 𝐸(𝑥, 𝑧) = exp(−𝑗𝑘𝑧) 𝐷(𝑥, 𝑧),     

where,  
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𝐷 =
𝐹(𝑣+) − 𝐹(𝑣−)

1 − 𝑗
                                                                                                                   (13) 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐼) = 𝐸×𝐸 ∗                                                                                                (14) 

 

 

Figure 2.2 Effect of distance z on diffracted field intensity (a) slit (b) strip for different 

image plane distances from the sample 

The normalized intensity for the slit at different ‘z’ values are plotted in Fig. 2.2 (a). As 

we can see from plot the effect of diffraction is more profound in the near field i.e. when 

z = a. The effect of diffraction is very blur in the far filed region when z = 100*a. 

2.3 Diffraction by Strip: 
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For the case of strip limits of integration are changed 

√
𝑗𝑘

2𝜋𝑧
(∫ + ∫

−𝑎

−∞

∞

𝑎

) exp (−
𝑗𝑘(𝑥 − 𝑥0)2

2𝑧
) 𝑑𝑥0 

=
𝐹(∞) − 𝐹(𝑣+) + 𝐹(𝑣−) − 𝐹(−∞)

1 − 𝑗
      = 1 − 𝐷(𝑥, 𝑧)            (15) 

Where we used 𝐹(∞) = −𝐹(−∞)  =  (1 − 𝑗)/2 

Thus, the diffracted field in case of strip 

𝐸(𝑥, 𝑧) = 𝑒𝑥𝑝(−𝑗𝑘/𝑧)[1 − 𝐷(𝑥, 𝑧)]               (16) 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐼) = 𝐸×𝐸∗                                                                                                (17) 

The normalized intensity for the strip is plotted in Fig 2.2 (b) for different values of ‘z’ 

2.4 Mathematical Model: 

The total reflected intensity imaged by CCD is coming from two different surfaces with 

different reflectivity, the gold film and substrate.  Accordingly, the mathematical model consists 

of two parts (Fig 2.3): the reflectance intensity coming from the metallic gold film and the 

reflectance intensity coming from the background substrate. The two intensities are combined to 

yield the total reflected intensity. Light coming from the gold film is treated as diffraction through 

a slit due to the high reflectivity of gold. In the latter case, the reflected light coming from the 

substrate is obstructed by gold thin film on its way to the microscope. Hence the reflection 

coming from the substrate is treated as diffraction past a strip.  
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Figure 2.3 Mathematical model set-up composed of reflection from the sample and 

substrate based on two simple diffraction model (a) The diffracted field for the gold 

line, where gold line is treated as slit (b) The diffracted field for the substrate, where 

gold line is treated as a strip blocking the light reflected from the substrate. 

For the first part Eq. 13-14 is used while for the second part Eq. 16-17 needs to be modified to 

take into account the difference in the distance traveled by the light before coming to CCD. The 

signal coming from the substrate is travelling a longer distance 2∙  as compared to the signal 

originating from the gold line which results in a phase shift between the two signals.  The longer 

distance travelled accounts for the transparent silicon-dioxide layer between the gold film and the 

reflective silicon substrate. 

 

In the case of the strip,  

( ) ( ) ( ) ( )
( , 2 ) exp( ( ))

12

v v
E x z j kz

j
 

 
 
  

       


 F F F F
        (18) 

           

The total diffracted field can be obtained as 

 E E E
1 2total

              (19)           



22 

 

where Γ is the ratio of the reflectivity of gold and the substrate material. 

Then the total reflected intensity 

 
* I E E

total total total
              (20)  

In the experiment the intensity measured by CCD is in arbitrary units. The model 

quantified total intensity in physical units. To compare the model with the experimental 

data, the total reflected intensity obtained from model is multiplied by the gain factor   

 I I
model total

              (21) 
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3. RESULTS & ANALYSIS 

The two-dimensional Joule-heating data for the sample were taken using the 

experimental setup for the wavelengths of 470  and 530 nm. For a single wavelength, the results 

are repeatable for increasing and decreasing current; however, for the same sample the 

temperature distribution under two different LED wavelengths resulted in inconsistency.  

In calculations the following two unknowns in the experiment are considered as 

fitting parameters: optical distance z , the distance between the observed specimen and 

the imaged plane, and phase shift , the shift in phase between the signal coming from 

the gold line and the substrate.  The optical distance is dependent on the overall imaging 

of the microscope and is treated as a fitting parameter.  The phase shift is dependent on 

the thickness of the oxide layer which is an increase in path length for the light to travel 

before reflecting off the silicon substrate.  While treated as a fitting parameter, the phase 

shift must fall within a range consistent with this added path length.  The effect of 

different z values is shown on each of the two components, in chapter-2 Fig. 2.2(a) for 

the slit 4a    and Fig. 2b for the same size strip. As can be seen from these figures the 

effect of diffraction is profound in the near field when z = a, whereas it is more blurred 

for the far field when z = 50a. The Fresnel number (F = a2/λ z) in our cases spans the 

range 0.1 to 3.5 which is on the order of 1.  The Fraunhofer approximation is the limiting 

case when the optical distance z is large and F << 1.   The Fresnel approximation is a 

partial series solution that is accurate in the limit F >> 1, but can also be applied in the 

range F ~ 1 with lower accuracy due to the truncated terms in the series [27, 29].   For a 

consistent approach we have used the Fresnel calculation. The optical distance z is an 

unknown in the experiment and is used as a fitting parameter when the model is 

compared to the data. 

To fit the model parameters with experimental data least squares minimization is 

used to determine the best values for z and φ, starting from initial estimates of their 

values.  This procedure is implemented in MATLAB.   Since the experimental data are 

given in terms of averages of images from a CCD camera the least squares procedure also 

normalizes the absolute image strength with a gain parameter and accounts for the 
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difference in reflectivity of the gold and the silicon substrate which is consistent with 

published reflectivity for the two materials.   

The other two fitting parameters, reflectance ratio Γ and gain parameter  , are for 

normalizing the overall intensity in the model with experimental data.  The total 

reflectance intensity comes from two different surfaces, gold line and substrate, with 

different reflectivities.  Further, to consider the optical absorption and the intensity of 

light source, the two diffracted field intensities are combined in the model with the help 

of the reflectance ratio Γ. The values of the material's reflectivity at ambient temperature 

of 25 C
o  depend upon the wavelength and are available in literature [30]. The last fitting 

parameter is  a gain parameter that converts the normalized intensity signal to the range 

on the CCD.  

During the experiment the combined effects of vibration and noise smooth out the 

data, and result in an intensity profile that lacks small scale intensity signal variation seen 

in the model. This real filtering is due to the integration over the CCD pixels, physical 

vibration in the system, and diffraction in the optics. Therefore some additional spatial 

average is applied to the model data. The spatial average is performed by calculating 

moving average over a window of 11 pixels where each pixel is 0.0539 μm in width. As 

the LEDs used in the experiment are not monochromatic the diffracted field and hence 

the reflectance intensity calculated with the mathematical model is integrated over the 

spectral width and strength of the LEDs. An attempt was made to take into account the 

incoherent nature of LEDs by performing phase average. Accounting for this wavelength 

variation did not significantly changes the nature of the intensity profile. 

In Fig. 3.1. The model is compared with the experimental data at the wide section 

for wavelength of 535 nm. The parameters used to generate this figures are summarized 

in Table 3.1.  Although not an exact match, the model shows very good qualitative 

agreement with the experimental data. At the edge of the gold line the model both 

underestimate and overestimates, the intensity. This is caused mainly by the edge 

diffraction effect and limited experimental data available for the substrate signal. This 

small scale oscillatory behavior is smoothed in the experimental data because of 
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averaging in the CCD, vibration in the system, variation in the coherence of the light, and 

diffraction due to thermal gradient in the air above the sample. 

  In Fig. 3.1b the model data are compared with the experimental data at the same 

wide section but for a different illumination wavelength, 470 nm. Similar matching of the 

model and the experiment is observed. As the wavelength of illumination changes the 

reflectance, optical distance and phase shift should change. The new values of these 

parameters for the fitting is obtained from the algorithm confirmed the theoretical values. 

The values are summarized in Table 1. 

Table 3.1: Summary of Fitting parameters 

Wavelength 
(nm) 

a 
(μm) 

z 
(μm) 

  
(rad) 

Г  

 
  
 

535 
5 20 2.2 0.64 3700 

0.5 3.75 2.2 0.64 3400 

470 
5 15 2.12 0.9 2068 

0.5 5.75 2.12 0.9 1068 
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Fig. 3.1 Plot of experimental data and model for 10 μm wide gold interconnect for (a.) 

λ = 535nm at section a-a of Fig. 1.1 (c) and (b.) λ = 470 nm at section a-a of Fi. 1.1 (c) 

Fig. 3.2 (a) shows the fit for the narrow-field at wavelength of 530 nm. When 

moving from wide-section to narrow section for the same wavelength the optical distance 

should change and as result the phase shift. The values of these two parameters are varied 
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to fit the model data to the experimental data. As can be seen the model data fits with the 

experimental data except at the edge; again the model overestimates the experiment 

peaks.  

Fig. 3.2 (b) shows the comparison of model and experimental data at narrow-

section for the wavelength of 470 nm. The overall reflectivity of gold at 470 and 530nm is 

very different, around 0.4 to 0.6 and combined with the temperature dependence of the 

reflectivity, the diffraction patterns of both wavelengths along the gold line are different.  By 

varying the optical distance z  same amount as done for 530 nm the model doesn't 

provide a good fit with the experimental data. Different values of z  were tested and the 

values listed in Table 2 give qualitative good fit for the data.  
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Fig. 3.2 Plot of experimental data and model for 1 μm wide gold interconnect for (a) 

λ _ 535 nm at Section b-b of Fig. 1.1(c) and (b) λ _ 470 nm at Section b-b of Fig. 

1.1(c). 

The use of thermoreflectance for temperature measurement has been well established based on 

its ability to generate a full field measurement, but there is an increasing desire to apply this 

technique to smaller spatial scales.  As a result there is a need to understand the impact of optical 

limits on the signal generated.  This is the first known work applying a diffraction model to 

understand the thermoreflectance signal and it will be useful in extending the technique to smaller 
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scales. The diffraction model considers the reflection signal produced from samples of thin films 

on and from the substrate. 

Four parameters are used in the model for fitting with experimental data.  The results show 

good agreement between calculated and measured values. The overall reflectivity of gold at 470 

and 530 nm changes significantly from 0.4 to 0.6 and this change is captured by the model. The 

diffraction patterns for 470 and 530 nm produce different data profiles.  Furthermore, 

the thermoreflectance signal at each wavelength over the narrow line, one micron is 

significantly different than the wide-field due to the impact of the diffraction. 
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4. Conclusions & Future work 

The use of thermoreflectance for temperature measurement has been well established based 

on its ability to generate a full field measurement, but there is continuous demand to improve the 

spatial resolution to keep up the pace with the size of current optoelectronic and electronic 

devices.  As the spatial resolution is limited by onset of optical diffraction, it is necessary to better 

understand the limit impose by diffraction and propose solutions to overcome this barrier. This is 

the first work applying a diffraction model to understand the thermoreflectance signal. In most of 

electronic and optoelectronic applications thin metal film is protected by dielectric layer. The 

reflectance signals coming from the metal film is interfered by the diffused signal coming from 

the dielectric substrate. Due to this interference, the calibration procedure or in other words to find 

the thermoreflectance coefficient for the given metal is very complex experimental methodology.  

In current work model is developed considering the optical interference coming from dielectric -

substrate layer along with the reflectance coming from the thin metal film.  

Four parameters are used in the model for fitting with experimental data. The results show 

good agreement between results calculated using the developed model and experimental data. 

The overall reflectivity of gold at 470 nm and 530 nm changes significantly from 0.4 to 0.6, and 

this change in reflectivity is reproduced in model calculated values. During the experiment the 

temperature profile mapped with illumination wavelength of 470 and 530 nm are quite different. 

As well as, the diffraction pattern for each wavelength is significantly different for the narrow (1 

µm wide) line as compared to the wider (10 µm wide) line.  All these experimental observations 

are well captured by the model. This model will help to improve the spatial resolution of the 

thermoreflectance method and further will lead to simplify the calibration method in the given 

spectral range of illumination wavelength. 

When this work is done thermoreflectance method is limited to the visible range of 

wavelength. The model is developed considering the two illumination wavelengths only. This 

work can be further extent to the other wavelength in the visible range and even to go for 

nanometers spatial resolution UV range. This model is developed for gold thin film on based of 

theory of diffraction by slit and strip. In future to understand the thermoreflectance signals 

coming from Carbon Nano Fibers (CNFs), nanorods and nanodots model can be extent with 

diffraction by circular aperture. 
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APPENDICES: 

A.1 Experimental Details: 

The experimental setup to perform normal reflectance intensity analysis as a function of sample 

temperature is shown in Fig. A.1. It consists of an LED illumination source, CCD, optical 

microscope, sample holder and acquisition equipment. A modified Meiji Techno microscope 

Series MC-50T is used as the central component of the system. A beam splitter is placed at the core 

of the microscope to guide collimated incident rays and an aperture constrains the illumination 

beam onto the surface of the samples. Reflected light is transferred through the beam splitter to the 

CCD. A 12-bit A/D Prosilica GE1380 CCD camera is used to capture the reflectance intensity 

images. Illumination is generated from Luxeon® Star/O series LEDs. The spectral characteristics, 

as mentioned by manufacturer, of the two LEDs used in this research is enlisted in Table A.1. A 

custom designed heater microscopy stage assembly is used to support samples while providing 

thermal control over a temperature range from ambient 20 to 250 C
o  [8].  

 

Table A.1. Spectral characteristics of LEDs 

 

Color λmin 

(nm) 

λpeak 

(nm) 

λmax 

(nm) 

Spectral 

Half 

Width 

Δ λ1/2  

(nm) 

Blue 460 470 490 25 

Green 520 530 550 35 

 

The TR calibration coefficient is acquired prior to performing the measurements. Calibrations 

were performed for the two LEDs of central wavelengths 470 and 535 nm. Measurements of the 

sample temperature, T, and the normal reflectance intensity In(T) over sufficiently large regions of 

the material were used to compute  . Under LED illumination with a peak wavelength of 535 nm, 

the average value of the calibration coefficient was -1.71×10-4  1

C
o  with a standard deviation of 

0.19×10-4 1

C
o  . Under LED illumination with 470 nm, the average value of the calibration 
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coefficient was 1.76×10-4 1

C
o   with a standard deviation of 2.1×10-5 1

C
o  . These values demonstrate 

good agreement with the previous results of Beran for gold  [26]. 

 

The second mode of the experiment is to acquire two-dimensional TR images of the calibrated 

structure during Joule heating. During this mode of operation, a function generator, amplification 

circuitry and a delay generator are used to create a delay locked loop tuned to acquire images of the 

periodically heated sample during the quasi-steady heating and relaxation regimes. A reflectance 

intensity image of the sample acquired under illumination at λpeak = 530 nm is shown in Fig. 1c. 

Following the acquisition of the heated and relaxed state images, processing was done for the 

computation of the temperature difference using TR coefficient and Eq. 2 and 3. During Joule 

heating experiments adequate manual correction of positioning with superposition of a reference 

image and a focal metric calculation are performed to correct for displacements due to the thermal 

expansion. The thermal expansion of the system is estimated to be 0.3% and does not result in a 

significant change in system size relative to the wavelengths considered.  Due to high optical 

absorption of gold in the visible range it was assumed during experiment that the surface reflection 

is dominant and the film is sufficiently thick to be considered optically opaque.  At 100 nm the film 

thickness is 4.6 times the material’s absorption coefficient which governs the exponential decay of 

the electromagnetic wave in the gold.  TR response has been shown to be linear over the calibration 

temperature range of 20-200 ˚C.  
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Fig.  A.1 Schematic of Thermoreflectance temperature measurement experimental 

set-up 

A.2 MATLAB Code 

1. To generate the figure:  
I_530=figure_1(0.530,5,20,0.64,3700,(3*pi)/4); 
I_470=figure_470(0.470,4.73,5,0.9,555,2.22); 
load 530Rows 
I_Exp_1=avgrW(:,1); 
subplot(2,1,1); 
plot(xs(1:8:end),I_Exp_1(1:8:end),'k--o',xs,I_530,'k-','LineWidth',2); 
line1=get(gca,'Children'); 
set(gca,'FontSize',12,'FontName','Times New Roman') 

  
hold on 
%%plot(xs(1:10:end),I_Exp(1:10:end),'k-

o','LineWidth',2);set(gca,'FontSize',12,'FontName','Times New Roman') 

  
set(findall(gcf,'type','text'),'FontSize',12,'FontName','Times New 

Roman') 
%%xlabel('x(µm)');  
ylabel('Intensity(A.U.)'); 
xlim([-8,8]); 
%%title('Comparison of Model data and Experimental data at wide section 

for wavelength lambda=530'); 
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title('\lambda=530nm'); 
%%grid on 
load 470Rows 
I_Exp_2=avgrW(:,1); 
subplot(2,1,2); 
plot(xs(1:8:end),I_Exp_2(1:8:end),'k--o',xs,I_470,'k-','LineWidth',2); 
line2 = get(gca,'Children'); 
set(gca,'FontSize',12,'FontName','Times New Roman') 
set(findall(gcf,'type','text'),'FontSize',12,'FontName','Times New 

Roman') 
xlabel('x(µm)'); ylabel('Intensity(A.U.)'); 
xlim([-7,7]); 
title('\lambda=470nm'); 
h = [line1;line2]; 
%legend(h,'Model data','Experimental data','location','NorthOutside') 
legend('Experimental Data','Model Data'); 
%%grid on 

 

Functions: 

function [ I_new ] = figure_1(lambda,a,z,c,g,p) 
k=(2*pi)/lambda; N_F=(a^2)/(lambda*z); 
load 530Rows % ** 
w=sqrt(2*N_F); 
v1=w*N_F.*(1-(xs/a));   % ** 
v2=w*N_F.*(1+(xs/a));   % ** 
F1=fcs(v1); 
F2=fcs(v2); 
D=(F1+F2)./(1-j);% ** 
E1=exp(j*k*z).*D; 
I1=E1.*conj(E1); 
E2=exp(j*(k*z-p)).*(1-D); 
I2=E2.*conj(E2); 
E=E1+c.*E2; 
II=E.*conj(E); 
I=g.*II; 
I_new=moving_average(I,13); 
end 

  

 
function [ I_new ] = figure_470( l,a,z,c,g,p ) 
k=(2*pi)/l; 
load 470Rows; 
w=sqrt(k/pi/z); 
v1=w.*(a-xs);   % ** 
v2=w.*(-a-xs);   % ** 
F1=fcs(v1); 
F2=fcs(v2); 
D=(F1-F2)./(1-1i)+ (F1 + (1-1i)/2 - F2);% ** 
E1=exp(-1i*k*z).*D; 
I1=E1.*conj(E1); 
E2=c.*exp(-1i*(k*z-p)).*(1-D); 
I2=E2.*conj(E2); 
E=E1+ E2; 
II=E.*conj(E); 
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I=(g.* II); 
I_new=moving_average(I,13); 

  
end 

  

 

Fraunhoffer diffraction code: 

function F = fcs(x) 

  
if nargin==0, help fcs; return; end 

  
F = zeros(size(x));         % defines the size of F 

  
F = fcs2(pi*x.^2/2); 

  
i = find(x<0);  
F(i) = -F(i);               % F(x) is an odd function 

  

 
function F = fcs2(x) 

  
if nargin==0, help fcs2; return; end 

  
a = [ 1.595769140, -0.000001702, -6.808568854, -0.000576361,  

6.920691902, -0.016898657,... 
     -3.050485660, -0.075752419,  0.850663781, -0.025639041, -

0.150230960,  0.034404779]; 

  
b = [-0.000000033,  4.255387524, -0.000092810, -7.780020400, -

0.009520895,  5.075161298,... 
     -0.138341947, -1.363729124, -0.403349276,  0.702222016, -

0.216195929,  0.019547031]; 

  
c = [ 0,           -0.024933975,  0.000003936,  0.005770956,  

0.000689892, -0.009497136,... 
      0.011948809, -0.006748873,  0.000246420,  0.002102967, -

0.001217930,  0.000233939]; 

  
d = [ 0.199471140,  0.000000023, -0.009351341,  0.000023006,  

0.004851466,  0.001903218,... 
     -0.017122914,  0.029064067, -0.027928955,  0.016497308, -

0.005598515,  0.000838386]; 

  
A = fliplr(a+j*b); 
C = fliplr(c+j*d); 

  
x = abs(x); 

  
F = zeros(size(x)); 

  
m = find(x<=4);  
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n = find(x>4); 

  
F(m) = exp(-j*x(m)) .* sqrt(x(m)/4)  .* polyval(A, x(m)/4); 
F(n) = exp(-j*x(n)) .* sqrt(4./x(n)) .* polyval(C, 4./x(n)) + (1-j)/2; 
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