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ABSTRACT

In this study, a novel Atrial Fibrillation (AFib) detection algorithm is presented
based on Electrocardiography (ECG) signals. In particular, the spectrogram of ECG
signal is used as an input to a Convolutional Neural Network (CNN) to classify nor-
mal and AFib ECG signals. This model is shown to perform well with an accuracy
of 92.91% and a value of 0.9789 for the area under the ROC curve (AUC). This
study demonstrated the potential of using image classification methods and CNN
model to detect abnormal biosignals with noise.
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Glossary of Terms

1. Biological
1. AFib: Atrial Fibrillation.

2. ECG: Electrocardiogram.

3. AV: AtrioVentricular

2. Signal Processing
1. CNN: Convolutional Neural Network.

2. FFT: Fast Fourier Transform.

3. MATLAB: A multi-paradigm numerical computing environment and propri-
etary programming language developed by MathWorks.

4. IIR: Infinite Impulse Response.

5. GPU: Graphics Processing Unit.

6. GeForce GTX 1080: A GPU with pascal architecture, 8 GB GDDR5X Frame
Buffer, and 10GBps memory speed.

7. ROC curve: Receiver Operating Characteristic curve.

8. AUROC: Area Under ROC curve.
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Chapter 1

Introduction

1.1 Background and Motivation

Computational Biology is a research area that uses data generated from previ-

ous biological experiments and computational models to find patterns of biological

systems. Some common biological data used in computational biology research

includes biosignals, neuroimages, and genomics and proteomics data. The main

computational models used in such research are statistical machine learning models

and deep learning models, thanks to the huge advance in Artificial Intelligence re-

search. Statistical machine learning techniques like Support Vector Machine (SVM)

and decision trees are widely used in biosignal processing and pattern recognition

in genomics. Deep learning is a set of machine learning methods based on artifi-

cial neural networks that use multiple layers to extract high-level features from raw

input. It is extensively used in computer vision and natural language processing,

which makes it a good candidate for computational biology research in bioimage

processing and pattern recognition in genomics and proteomics.

Atrial Fibrillation (AFib) is a supraventricular tachyarrhythmia with uncoordi-

nated atrial activation and consequently ineffective atrial contraction [1] and is the
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most common of the serious cardiac rhythm disturbances [2]. AFib has a signif-

icant impact on longevity, increasing all-cause and cardiovascular mortality rates

[3] [4] and can lead to blood clots, stroke [5], heart failure and other heart-related

complications. It is estimated that 2.7 to 6.1 million people in the United States

have AFib with an expectation to increase, where 2% of people under age of 65 and

9% of people above age of 65 have AFib [1]. AFib costs the United States about

6 billion dollar each year and 8,705 dollar more for each AFib patient than other

patients without AFib [1] [6].

With more and more biological data and health record generated everyday, there

is a rising need to properly analyze these data and find hidden patterns that could

potentially provide more insight in human diseases and help design more diagno-

sis tools and treatment options for complex diseases. AFib is among one of such

diseases. Over 10% patients with hypertension but no AFib history were detected

atrial tachyarrhythmias, which were associated with an increased risk of clinical

atrial fibrillation [7]. Early detection of AFib could reduce the medical cost and

even save life.

1.2 Current Technology and Problems

In the current medical practice, an AFib is determined by a medical doctor from

a 12-lead Electrocardiogram (ECG) graph with the patterns of irregular R-R inter-

vals (when atrioventricular (AV) conduction is present), absence of distinct repeat-

ing P waves, and irregular atrial activity [1].

However, many work has been done for automatic detection of AFib from ECG

signal without the presence of doctors, and some of such algorithms are embedded
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in pacemakers to detect AFib events. Verberk, et.al showed a 0.98 sensitivity and

0.92 specificity of AFib detection using blood pressure monitor [8]. Rincon, et.al

show a 0.96 sensitivity and 0.93 specificity using a real-time detection method from

a wearable wireless sensor platform [9]. Hong, et.al achieved 0.84 F1 score using

expert features and Deep Neural Networks [10]. All of these methods show promis-

ing results, but a deeper and higher-level features from ECG signals are not used in

their detection methods.

1.3 Goals and Contributions

In this study, a novel AFib detection algorithm is developed. It combines sig-

nal processing and computer vision techniques to achieve high detection accuracy.

Specifically, the spectrogram of ECG signals and a Convolutional Neural Network

(CNN) are used to predict whether an ECG signal is from an AFib patient or a nor-

mal patient. The contribution of this study is to provide a useful algorithm for AFib

detection as well as to show the potential of using image classification methods to

reveal deep features in signal processing and classification tasks.

3



Chapter 2

System Level Overview

2.1 Data Source

As a supervised machine learning project, the accuracy of data label is very

important to train a model with high accuracy. In the field of computational biology,

it is widely believed that labels made by professional medical doctors are golden

standard to compare different models, as we are at the stage where machine learning

models serve as a secondary opinion to help doctors make accurate judgment on

diseases. For the success of this research, picking a reliable data and label source is

the critical first step.

In this study, I use an ECG data package for AFib Classification from Phys-

ioNet Challenge 2017 [11]. PhysioNet is an NIH research resource for complex

physiologic signals and is supported by National Institute of General Medical Sci-

ences (NIGMS) and National Institute of Biomedical Imaging and Bioengineering

(NIBIB). The ECG data is collected by a single-channel ECG device and is stored

as 300 Hz, 16-bit data with bandwidth 0.5 to 40 Hz with +/- 5 mV dynamic range. I

use the publicly available training set, which contains 8,528 ECG recordings ranged

from 9 seconds to over 60 seconds. I will utilize the 5,076 normal samples and 758
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AFib samples for training and testing purpose, ignoring other irrelevant data entries.

The label is provided from one expert in this field and I consider it as the ground

truth in the scope of this research.

Sample signals of both normal and AFib patients are plotted in Fig.2.1. The

normal ECG, despite some noise in the first 10 seconds, has almost constant dis-

tance between the spikes, which represents the R-R interval. The AFib ECG, on

the other hand, has inconstant R-R interval, which is a significant characteristics of

AFib.
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Figure 2.1: Sample signals of both normal (top) and AFib (bottom).

2.2 Architecture

This study is divided into three steps. The first step is to use different signal pro-

cessing techniques to pre-process the ECG signals from PhysioNet database. This

pre-processing process cancels noise from different sources and prepares the signal

for further analysis. The second step is to convert ECG signals into 2-dimensional
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images with information from both time and frequency domain. This step reveals

ECG patterns in both domain simultaneously and makes it possible to use computer

vision and image processing techniques to perform further analysis. The last step is

to use Convolutional Neural Network (CNN) to find higher level patterns of AFib

from time and frequency domain in ECG signal and perform classification tasks.

2.3 Expected Result

The primary goal for this study is to achieve high accuracy on AFib detection.

A secondary goal is to achieve high efficiency and robustness
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Chapter 3

Methods

3.1 Filter

3.1.1 Introduction

To better prepare the signal for analysis purpose, it is common to perform some

filtering techniques to remove noise. In ECG signal processing, the source of noise

has a large range from baseline wander and power line interference to muscle move-

ment and poor skin conductivity. Baseline wander is a low-frequency noise which

is caused by respiration and body movement. It could be removed by applying a

high-pass filter at a cut-off frequency lower than heartbeat. Power line interference

is a 60 HZ noise from power source, which could be removed by applying a low-

pass filter. Muscle movement and poor skin conductivity noise is rather harder to

remove as the noise frequency varies a lot with time and almost impossible to be re-

moved by narrow band filtering. It’s spectral content also overlap with the PQRST

complex of ECG, which may cover some information in the ECG signal.

7



3.1.2 Options

To remove baseline wander and power line interference noise, a high-pass filter

and a low-pass filter need to be implemented, which can be combined into one band-

pass filter. The cut-off frequencies are determined by respiratory rate, heartbeat, and

power line frequency. As for the muscle noise and other form of noise overlapping

with normal ECG frequency, it is hard to remove without distracting the original

ECG pattern, and therefore remained unfiltered in this task of classification. The

later steps of CNN classification will extract higher-level patterns and will tolerate

some random noise from the dataset.

3.1.3 Design Description

The first step is to use Fourier transform to check the frequency component in

a sample signal. FFT (Fast Fourier Transform) is used to generate a Fourier Spec-

trum, which shows frequency magnitude in dB or 20*log10(magnitude). Fig.3.1

and Fig.3.2 show Fourier Spectrum of the sample normal and AFib signals. The

sample signals are divided into three equal length before performing the FFT in

order to cancel random noise in the signal. The Fourier Spectrum is then generated

with the average of FFT from these three pieces. In Fig.3.1, the heartbeat is mea-

sured to be at 1.3 HZ with strong second and third harmonics shown in red box.

The blue box shows the low frequency noise that might be caused by respiration or

body movement at 0.4 HZ and 0.6 HZ. In Fig.3.2, multiple heartbeat rate is detected

with the red box and low frequency noise is again shown in blue box. The peak at

around 4 HZ should be a harmonic of the regular heartbeat.

From the Fourier Spectrum, it is clear that ECG signal has less pattern at higher
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Figure 3.1: Fourier Spectrum of a sample normal signal. The red boxes repre-
sent the heartbeats and their harmonics and the blue boxes represent low frequency
noise.
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Figure 3.2: Fourier Spectrum of a sample AFib signal. The red boxes represent the
heartbeats and the blue boxes represent low frequency noise.

frequency over 10 HZ. A bandpass filter of 0.5 HZ to 10 HZ is then designed to

filter these ECG signals. With a built-in function ‘bandpass’ from MATLAB, a
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bandpass filter with infinite impulse response (IIR), steepness of 0.95, and stopband

attenuation at 60 dB is generated to filter all signals from the database.

3.1.4 Analysis and Test Result

The filtered signal from bandpass filter is plotted in Fig.3.3. The low frequency

noise from respiration and high frequency noise from power line is eliminated from

raw signal, which makes it easier for further analysis and classification.
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Figure 3.3: Sample signals filtered by bandpass filter.

3.2 Hilbert Diagram

3.2.1 Introduction

Hilbert Transform is a useful tool in signal processing as it can help analyze

nonlinear systems and non-stationary signals. It defines instantaneous frequency

and amplitude and construct an analytic complex time signal from signal in real
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time. A phase plot can then be generated from this complex time signal to poten-

tially reveal some pattern in ECG signal. Some previous researches have shown

that Hilbert Transform could be used for ECG analysis in QRS complex detection

[12] and de-noising [13].

3.2.2 Options

Yan et.al [14] showed previously that a phase plot of Hilbert Transform of the

vocal-fold vibration signal could be useful to classify vocal-fold pathology. Simi-

lar methodology is applied here to potentially show some pattern of ECG signals.

However, the vocal fold signal is much more periodic than ECG signal, and there-

fore could generate a clearer phase plot. The parameters need to be fine tuned to

show a pattern in the ECG phase plot. Hilbert Transform is a linear operator given

by convolution with function 1/(πt):

H(u)(t) =
1
π
∗

∫ ∞

−∞

u(τ)
(t − τ)

d(τ) (3.1)

which convert a real time signal u(t) into a complex time signal H(u)(t).

3.2.3 Design Description

In MATLAB, the Hilbert transform in completed by a function called ‘hilbert’,

which approximated the analytic signal by calculating the FFT of the original sig-

nal, replacing coefficients of negative frequencies to zero, and performing inverse

FFT. The complex time signal generated from Hilbert Transform is then normal-

ized between -1 and 1 and a phase plot with real part of the signal on x axis and

imaginary part of the signal on y axis is then generated to show the some patterns.
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3.2.4 Analysis and Test Result

Fig.3.4 shows sample phase plot from Hilbert Transformation of normal and

AFib ECG signals. For a normal ECG, a dominant frequency of heartbeat or R-

R interval should be detected and a thicker line composed by high density of dots

should be visible on phase plot. On the other hand, an AFib ECG signal has incon-

stant heartbeat and R-R interval, which results a phase plot with dots spread more

uniformly within the square. These patterns could be potentially recognized by a

CNN in later steps.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Normal Signal

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
AFib Signal

Figure 3.4: A phase plot of normal (left) and AFib (right) ECG signals

3.3 Spectrogram

3.3.1 Introduction

A Spectrogram is a visual representation of a signal where the spectrum of fre-

quencies varies with time. It could show both temporal and frequency information

in a same plot with some compromise for both information. A spectrogram is com-

monly displayed in an image with one axis representing time and the other repre-
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senting the frequency. The intensity fo signal for any frequency component at any

time instant is pseudo-color-mapped. It is widely used in signal processing for its

ability to present both temporal and frequency information at same time.

3.3.2 Options

In MATLAB, a spectrogram is generated with short-time Fourier transform. It

allows users to change some parameters. The window size is adjusted to divide the

signal into segments of certain length, and larger window size compromise more

temporal information for more accurate frequency information. The number of

overlapped samples sets the overlapping period between each segment. Higher

overlapping rate means smoother transition between each data point.

3.3.3 Design Description

For most of signals provided in this dataset, the length is 30 seconds and the

sampling frequency is kept at 300 HZ, which means 9,000 data points is collected

in one sample. Therefore, I choose to use a 2,000 window size and a 1,900 overlap

length between adjoining segments. This setting is optimal to present a clear R-R

interval band and its harmonics for normal samples and an oscillating pattern in

AFib samples.

3.3.4 Analysis and Test Result

Fig.3.5 shows a sample spectrogram of normal ECG. The strong yellow bands

represent constant-rate heartbeats and their harmonics as predicted previously. Fig.3.6

shows a sample spectrogram of AFib ECG. The high intensity lines are random and

have no pattern to follow, which is caused by inconstant R-R interval from ECG.
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The title, axis names, and color bar will be suppressed for the spectrograms gener-

ated for training and testing purpose in later steps.
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Figure 3.5: A sample spectrogram of normal ECG

3.4 CNN

3.4.1 Introduction

CNN is inspired by biological processes in that the connectivity pattern between

neurons and it resembles the organization of the animal visual cortex. It requires

less data preprocessing compared to other image classification algorithms. CNN

has a large range of applications in image and video recognition, recommend sys-

tems, image classification, medical image analysis, and natural language processing

(NLP). CNN has advantage in extracting high level features from input using con-

volution and therefore is an ideal tool to use in this study.
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AFib Spectrogram
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Figure 3.6: A sample spectrogram of AFib ECG

3.4.2 Options

A typical CNN architecture consists of several layers, including convolutional

layers, activation layers, normalization layers, pooling layers, and a fully connected

layer. The convolutional layers can be altered with different filter size, number of

filters, and padding size. The activation layers could be chosen from a ReLU layer, a

Sigmoid layer, or a TanH layer. For the normalization layers, a batch normalization

or a dropout normalization is commonly used. Max pooling and average pooling

are used for pooling layers.

3.4.3 Design Description

For this study, a simple CNN architecture is designed to classify the images gen-

erated previously into two categories. A simplified layer graph is shown in Fig.3.7,
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where conv stands for convolutional layers, BN stands for batch normalization lay-

ers, ReLU stands for ReLU layers, MP stands for max pooling layers, and FC stands

for fully connected layers.

input

conv_1

BN_1

ReLU_1
MP_1

conv_2

BN_2

ReLU_2
MP_2

conv_3

BN_3

ReLU_3
FC

softmax
ClassOutput

Figure 3.7: A simplified CNN layer graph

3.4.4 Analysis and Test Result

The CNN is applied to classify the Hilbert phase plot and spectrogram of normal

and AFib ECG signals. Fig.3.8 shows the training progress of Hilbert phase plot and

it reaches above 60% accuracy. Fig.3.9 shows the training progress of spectrogram

and it reaches 85.92% accuracy. The spectrogram has better performance than the

Hilbert phase plot. Some potential reasons could be that the signals contain too

16



much noise and the CNN is not optimized for this task.

Figure 3.8: The classification result for Hilbert phase plot using a simple CNN

Figure 3.9: The classification result for spectrogram using a simple CNN
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3.5 Transfer Learning

3.5.1 Introduction

Transfer learning is a machine learning method where a previously developed

model is used as the starting point model for another task. The advantage of this

machine learning method is that researchers could use a model that has been fine-

tuned by professionals to perform classification tasks on a separate task in their own

area. With a limited dataset size, one can hardly train a complex CNN from scratch,

and thus using a pretrained model is recommended for a classification task like the

one in this study.

3.5.2 Options

There are several famous pretrained CNN models that could be chosen to use

in this study. LeNet is one of the earliest successful architectures of CNNs devel-

oped by Yann Lecun and was originally used to read digits in images [15]. AlexNet

is one the the first popular CNNs in computer vision and was developed by Alex

Krizhevsky, Ilya Sutskever and Geoffrey Hinton [16]. GoogLeNet was developed

by Christian Szegedy and his team at Google, and has 22 layers with an inception

module built by convolutional layers [17]. ResNet was trained on very deep net-

works (up to 1,200 layers) with all reformulated as learning residual functions with

reference to the layer inputs [18].

3.5.3 Design Description

In this study, GoogLeNet Inception 1 was used to classify normal and AFib

ECG signals. Fig.3.10 shows a detailed structure of this CNN architecture. All
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image inputs generated from previous steps, including the Hilbert phase plot and

spectrograms, are resized to 224 × 224 × 3, where each image has 224 × 224 pixels

and 3 color layers of red, green, and blue.
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Figure 3.10: A detailed structure of GoogLeNet Inception 1

3.5.4 Analysis and Test Result

This CNN architecture was tested on the spectrogram images. The learning

rate was set to be 0.0003 with 20 epochs trained. It took 6 minute and 17 seconds

to finish on a single GPU of GeForce GTX 1080 from NVIDIA. A detaied training

process is shown in Fig.3.11. It reaches 93.58% accuracy on the independent testing

set and 100% accuracy on the training set, which presents an overfitting problem.

Fig.3.12 shows some randomly chose testing sample and the predictions made by

this network. It also shows the confidence level for making such decisions.
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Figure 3.11: The classification result for GoogLeNet Inception 1

Figure 3.12: A sample classification output for GoogLeNet Inception 1. Nnew
stands for normal and A stands for AFib. The percentage next the Nnew or A is the
confidence of making the decision

3.6 Data Augmentation

3.6.1 introduction

Data augmentation is a technique used in machine learning to prevent overfitting

problem by artificially creating new training data from existing training dataset.
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3.6.2 Options

There are several data augmentation techniques available for this study. The

image could be reflected among x axis or y axis. It could be also rotated for certain

degrees. The image could be scaled uniformly, along x axis, or along y axis. The

image could also be sheared or translated horizontally or vertically.

3.6.3 Design Description

In this study, two data augmentation techniques are chosen. The first one is

reflection among x axis. It could reflect random noise signal in spectrograms hori-

zontally, which reduces the importance of noisy patterns in the training process. The

other techniques used in this study is vertical scaling, which stretches the image on

y axis and results in a change of peak frequency from R-R interval. The scaling

operation helps reduce the effect of heart rate variation on the training process.

3.6.4 Analysis and Test Result

The augmentation step is added before training the CNN. A random reflec-

tion on x axis with 50% probability and a vertical scaling of a factor picked ran-

domly from a continuous uniform distribution of [0.9,1.1] are applied to the training

dataset. In other words, the scaling factor is chosen from 1± 10% The learning rate

is set to be 0.0003 with 20 epochs trained. It takes 6 minute and 48 seconds to finish

on a single GPU of GeForce GTX 1080 from NVIDIA. A detaied training process

is shown in Fig.3.13. It reaches 91.89% accuracy on the independent testing set

without overfitting problem. Some oscillation is observed in the training progress.

Fig.3.14 shows some randomly chose testing sample and the predictions made by

21



this network. It also shows the confidence level for making such decisions.

Figure 3.13: The classification result for GoogLeNet Inception 1 with data augmen-
tation

Figure 3.14: A sample classification output for GoogLeNet Inception 1 with data
augmentation. Nnew stands for normal and A stands for AFib. The percentage next
the Nnew or A is the confidence of making the decision
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Chapter 4

Results

4.1 Protocol

From the previous testing in different methods, a protocol of training and testing

in AFib detection from ECG signals is created. For this study, all 758 AFib ECG

signals and 758 randomly chosen ECG signals from 5,076 normal ECG signals are

used to train and test. The testing dataset consists of 20% of all signals and is chosen

randomly.

4.1.1 Training

1. The signals from training dataset go through a bandpass IIR filter of 0.5 HZ

to 10 HZ with a steepness of 0.95 and stopband attenuation at 60 dB.

2. Using short-time Fourier transform, the signals are represented into spectro-

grams with window size of 2,000 and overlapping size of 1,900. This setting

could be changed base on signal length.

3. The spectrograms are then augmented with vertical reflection and scaling.

The scaling factor is set to 1 ± 10%. This step creates more data for training
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purpose.

4. All training images are rescaled to 224 × 224 × 3 for training purpose.

5. The training dataset is fed to GoogLeNet Inception 1 to training. The learning

rate is set to be 0.0001 and epoch is set to be 40.

4.1.2 Testing

1. The signals from testing dataset go through a bandpass IIR filter of 0.5 HZ to

10 HZ with a steepness of 0.95 and stopband attenuation at 60 dB.

2. Using short-time Fourier transform, the signals are represented into spectro-

grams with window size of 2,000 and overlapping size of 1,900. This setting

should match the setting of training set.

3. All testing images are rescaled to 224 × 224 × 3 for testing purpose.

4. The testing dataset is fed to GoogLeNet Inception 1 to classify.

4.2 Results

The final result of the whole classification algorithm is shown in Fig.4.1. The

training environment is using a single GPU NVIDIA GeForce GTX 1080. The total

training time is 14 minutes and 12 seconds. The final accuracy on the independent

testing dataset is 92.91%, where the testing dataset is randomly chosen from the

PhysioNet challenge dataset and consists 20% of it. The receiver operating char-

acteristic (ROC) curve is also generated for this model, which is shown in Fig.4.2.

The AUROC (area under ROC curve) is measured to be 0.9789.
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Figure 4.1: The training progress plot for classification

Figure 4.2: The ROC curve for classification

4.3 Discussion

In this study, the training accuracy is still oscillating as shown in Fig.4.1. This

could be caused by insufficient training epochs. Some artificial noise and muscle
25



noise from the original dataset has still influenced in the trained model, which low-

ers the accuracy.

The dataset used in this study contains only 758 AFib ECG signal, which is

not a large number for CNN training and image classification tasks. The label is

created by a single expert, which may be biased and not accurate. These factors all

negatively impact the result and may be improved by further study.
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Chapter 5

Conclusion

In this thesis study, a novel algorithm was presented for the detection of AFib

using ECG signals, and the algorithm was shown to achieve a high detection accu-

racy. The methodology used in this study, which utilize image classification meth-

ods (e.g. CNN) for signal classification, also has great potential in applying to other

areas for computational biology.

There are several future directions this project can head for, which include us-

ing a larger dataset to train the CNN model in order to achieve further improved

performance. In addition, the parameters of the Hilbert transform-based phase plot

and the spectrogram could be varied to generate more data for the CNN training.

Finally, a better CNN architecture or other pre-trained models could be used for this

classification task to improve either accuracy or/and efficiency.

From this thesis study, I learned a lot of professional knowledge in biology and

machine learning, as well as the skills to conduct a research project. With more and

more cutting-edge and interdisciplinary research coming in the future, I am sure

that this knowledge and skills will become useful and handy.
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