
Santa Clara University
Scholar Commons

Applied Mathematics Master's Theses Engineering Master's Theses

9-2016

Takagi-Sugeno Fuzzy Model Based Discrete Time
Model Predictive Control for a Hypersonic Re-
Entry Vehicle
Ben Margolis
Santa Clara University

Follow this and additional works at: http://scholarcommons.scu.edu/amth_mstr

Part of the Applied Mathematics Commons

This Thesis is brought to you for free and open access by the Engineering Master's Theses at Scholar Commons. It has been accepted for inclusion in
Applied Mathematics Master's Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Margolis, Ben, "Takagi-Sugeno Fuzzy Model Based Discrete Time Model Predictive Control for a Hypersonic Re-Entry Vehicle"
(2016). Applied Mathematics Master's Theses. 2.
http://scholarcommons.scu.edu/amth_mstr/2

http://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Famth_mstr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/amth_mstr?utm_source=scholarcommons.scu.edu%2Famth_mstr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/eng_master_theses?utm_source=scholarcommons.scu.edu%2Famth_mstr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/amth_mstr?utm_source=scholarcommons.scu.edu%2Famth_mstr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholarcommons.scu.edu%2Famth_mstr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.scu.edu/amth_mstr/2?utm_source=scholarcommons.scu.edu%2Famth_mstr%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Takagi-Sugeno Fuzzy Model Based
Discrete Time Model Predictive

Control for a Hypersonic Re-Entry
Vehicle

Ben Margolis

September 2016

Santa Clara University
School of Engineering

Department of Applied Mathematics

Thesis submitted at Santa Clara University in partial fullment of the requirements for
the degree of Master of Science in Applied Mathematics

Mohammad A. Ayoubi, Thesis Adviser

Aaron Melman, Department Chair

Contents

Abstract 1

1. Introduction 2
1.1. Motivation . 2
1.2. Aerocapture Trajectory . 3

2. Mathematical Model 5
2.1. Base derivation . 5

2.1.1. Atmospheric density . 7
2.1.2. Acceleration due to gravity . 7

2.2. System Model . 8
2.2.1. Vertical Plane . 8
2.2.2. Augmentation . 8

3. Takagi-Sugeno Fuzzy Model 9
3.1. Overview . 9
3.2. Sector Nonlinearity Construction . 10
3.3. Time Discretization . 11

4. Discrete-Time Model Predictive Control 13
4.1. Model Prediction . 14
4.2. Control as Optimization Problem . 16

5. Simulation Results 18
5.1. Overview . 18
5.2. Varying parameters . 19

6. Conclusion 25

Acknowledgments 26

i

Contents Contents

A. Python Code 27

Bibliography 39

ii

Abstract

In this thesis, we present a control algorithm for a hypersonic re-entry vehicle during a
Martian aerocapture maneuver. The proposed algorithm utilizes a discrete-time model
predictive control technique with a Takagi-Sugeno fuzzy model of the vehicle to control
the re-entry vehicle along an arbitrary trajectory using bank angle modulation. Simula-
tions using model parameters and initial conditions from a Martian aerocapture mission
demonstrate the stability, performance, and robustness of the proposed controller.

1

1. Introduction

1.1. Motivation

Aerocapture is a maneuver to insert a vehicle into orbit around a planet by entering the
planet’s atmosphere and using aerodynamics to approach to the desired orbit plane at
an appropriate velocity. By using aerodynamic drag the aerocapture maneuver requires
signi�cantly less propellant to achieve the same orbit compared to an all-propulsive
method of orbit capture. This fuel savings allows for some combination of more frequent
scienti�c space missions and missions with larger scienti�c payloads.

As a speci�c type of aeroassisted orbital maneuver, a concept �rst proposed by London in
in 1961, aerocapture has a wealth of applicable guidance, navigation, and control (GN&C)
methods[Wal85, Mie96]. Much aerocapture speci�c work has been motivated by a Mars
surface sample return mission. The �rst proposal for the aerocapture on this mission
used a GN&C method based on the one used in the Apollo mission [Cru79]. More recent
aerocapture work has also incorporated the Apollo terminal logic, like the calculus-of-
variations derived Terminal Point Controller (TPC) method [RQ98]. Another controller
well-studied in the literature is the analytic predictor-corrector (APC) method, later
called the Hybrid Predictor-corrector Aerocapture Scheme (HYPAS), which has demon-
strated e�cient code, minimal pre�ight e�ort, and adaptability to di�erent missions[CG85,
MRFP00, MQ03]. Rousseau et al. have compared these two methods as well as energy
control (EC) and numeric predictor corrector (NPC) methods[RPG+02]. The study found
that APC demonstrated the highest accuracy, TPC demonstrated the strongest robust-
ness to dispersion, and that the EC struck a balance between the two. The mission-
focused motivation for aeroassisted orbital transfer generally, and aerocapture study
speci�cally, required the development of thorough evaluation methods and simulation
protocols[PB93, FPRS00]. Most of the aerocapture methods use bank angle modulation
to steer the vehicle through the desired trajectory, although some proposals have sug-
gested the use of angle-of-attack modulation to increase control authority[Que04, JW04].

2

1.2 Aerocapture Trajectory

Many other studies and iterative improvements have been presented for the APC and
TPC methods, such as tracking drag force itself rather than bank angle[CLWM08]. Stud-
ies on the optimality of aerocapture guidance algorithms have also been presented, for
example by Lu et al[LCTM15].

In this paper, we propose using a Takagi-Sugeno fuzzy model (TSFM) with Model Pre-
dictive Control (MPC) technique for controlling a re-entry vehicle along a given trajec-
tory during aerocapture. MPC is a method of optimal control in which a time-history
input pro�le is numerically generated to optimize a chosen metric for a �nite future
time-frame called a receding horizon. For a linear time-invariant discrete-time (LTI-DT)
system, the control optimization can be formulated as a quadratic programming (QP)
problem[Wan09]. However, for a general nonlinear system a QP problem formulation
cannot be guaranteed. To address this, a number of methods of discrete-time TSFM pre-
dictive control methods have been developed [ZFL07, MBAV04, RMBV99, NP99, SYLK09,
KEE10]. Here, we suggest adapting the QP based formulation for LTI-DT systems using
a TSFM such as presented by Mollov and Oviedo[MBAV04, OVW06]. Ultimately, the
proposed controller uses linearized dynamics along the given trajectory similar to Lu’s
receding horizon control of a time-varying linearized model[Lu99]. Since this controller
uses online QP to determine the control input, it inherently satis�es constraints on the
system inputs, states, and outputs. By using a TSFM, we are able to motivate the lin-
earization along the trajectory and the transformation of continuous-time dynamics to
discrete time.

This paper is organized as follows. First we describe the aerocapture trajectory and the
mathematical model of vehicle entering the atmosphere and subject to control. Then we
describe the TSFM construction process and show the TSFM model for the aerocapture
dynamics. Next, we describe the discrete-time TSFM based MPC optimization problem.
Then we present initial simulation results for the case of Martian aerocapture. Finally,
we conclude by discussing implications and future work.

1.2. Aerocapture Trajectory

The aerocapture maneuver consists of several key events, as illustrated in Figure 1.1:

1. Entry targeting - Following an elliptical approach to the target planet, the vehicle
performs �nal trajectory adjustment so the atmospheric entry angle is within the
acceptable entry corridor.

3

Chapter 1 Introduction

Figure 1.1.: Overview of Aerocapture Maneuver

2. Atmospheric entry interface - The vehicle enters the atmosphere and begins bank
angle modulation to steer through the desired trajectory.

3. Energy dissipation - The vehicle travels through the atmosphere and without leav-
ing the atmosphere, decelerating to achieve the desired exit velocity. Steering
through a lower altitude trajectory increases drag and energy dissipation (veloc-
ity reduction), while steering through a higher altitude reduces drag and energy
dissipation. Throughout this phase, the vehicle also implements a lateral control
system to approach the desired orbit plane.

4. Controlled atmosphere exit - As the vehicle achieves the desired exit velocity, it be-
gins the exit out of atmosphere. As the vehicle altitude increases, control authority
through aerodynamic forces decreases until complete exit of the atmosphere.

5. Periapsis raise - At the periapsis radius, the vehicle performs a thrust maneuver
to impart the appropriate change in velocity to achieve orbit and prevent return
to the atmosphere.

6. Optional apoapsis adjustment maneuver (circularization) - An optional �nal ma-
neuver may be performed for �nal adjustment of the orbit, typically a circulariza-
tion thrust performed at apoapsis.

4

2. Mathematical Model

In this chapter, we describe the mathematical model for the hypersonic re-entry vehicle.

2.1. Base derivation

Figure 2.1.: Vehicle Position Relative to Planet

5

Chapter 2 Mathematical Model

Figure 2.2.: Vehicle Orientation Relative to Planet

The three-dimensional equations of motion for re-entry vehicle are given by[VBC80]

dr

dt
= V sin γ

dθ

dt
=
V cos γ cosψ

r cosφ
dφ

dt
=
V cos γ sinψ

r
dV

dt
= −ρ (r) S CD (α) V 2

2m
− g (r) sin γ

dγ

dt
=

1

V

[
ρ (r) S CL (α) V 2

2m
cosσ −

(
g (r)− V 2

r

)
cos γ

]
dψ

dt
=

1

V

[
ρ (r) S CL (α) V 2

2m cos γ
sinσ − V 2

r
cos γ cosψ tanφ

]

(2.1)

where t is time, r is the the distance from the center of the planet to the vehicle, θ and
φ are the vehicle’s longitude and latitude, V is the speed of the vehicle, γ is the pitch of
the vehicle measured positive upwards from horizontal, ψ is the heading angle about the
vertical axis measured from due East, ρ is the atmospheric density, S is the aerodynamic
reference area, CL and CD are the lift and drag coe�cients, g is the gravitational accel-
eration, m is the vehicle mass, α is the angle of attack, and σ is the bank or roll angle.

6

2.1 Base derivation

Visualizations for the quantities used in Equation 2.1 can be found in Figures 2.1 and 2.2.
Note that r is measured along the vertical axis, and the heading ψ and pitch γ angles
are determined by the direction of the velocity, ~V . The aerodynamic lift points away
from vertical by the bank angle σ rotated around ~V . Aerodynamic drag always resists
the velocity. The exact functional relationship between CL and CD are determined by
the geometries of the vehicle.

2.1.1. Atmospheric density

The atmospheric density is calculated from the radially dependent di�erential equation

dρ

ρ
= −

[
g (r) M

R?T
+

1

T

dT

dr

]
dr (2.2)

= β (r) dr

where g is the acceleration due to gravity, M is the mean molecular weight of the at-
mosphere, R? is the universal gas constant, T is the absolute temperature, and β (r) =
gM
R?T

+ 1
T
dT
dr

is a parameter called the scale height, which can itself be accurately approx-
imated by a linear interpolation. The solution to Equation 2.2 is then approximated by
exponential of the form

ρ (r) = ρ0e
−β(r−r0) (2.3)

2.1.2. Acceleration due to gravity

The acceleration due to gravity is governed by

g (r) =
µ

r2
(2.4)

where µ is the gravitational parameter of the planet.

7

Chapter 2 Mathematical Model

2.2. System Model

2.2.1. Vertical Plane

To simplify the control problem, we will consider the three states in the vertical plane,
V , γ, and r. The governing equations, when substituting in Eqs. (2.2), (2.3), and (2.4) and
simplifying, are given by

dV

dt
= −ρ0e

−β(r−r0) S CD (α) V 2

2m
− µ

r2
sin γ

dγ

dt
=
ρ0e
−β(r−r0) S CL (α) cos σ V

2m
−
(

µ

r2 V
− V

r

)
cos γ

dr

dt
= V sin γ

(2.5)

2.2.2. Augmentation

Finally, we will augment the system to represent it in control-a�ne form, with the com-
manded bank angle rate σ′ as the new input. This canonical form for control systems will
also simplify the fuzzy modeling as well as describe the bank angle integrator dynamics.
The state space form is given by

d

dt


V

γ

r

σ

 =


−ρ0e−β(r−r0) S CD(α)V 2

2m
− µ

r2
sin γ

ρ0e−β(r−r0) S CL(α) cosσ V
2m

−
(

µ
r2 V
− V

r

)
cos γ

V sin γ

0

+


0

0

0

1

σ′ (2.6)

In the next section, these governing equations will be modeled using a Takagi-Sugeno
Fuzzy Model.

8

3. Takagi-Sugeno Fuzzy Model

3.1. Overview

The main idea behind Takgai-Sugeno Fuzzy Model (TSFM) is to represent a nonlinear
system as the convex, but non-linear, combination of linear subsystems. The TSFM is
constructed by choosing p appropriate parameters in the system called premise variables,
approximating the nonlinear system around the selected values of the premise variables,
building membership functions in the universe of discourse about each value of each
premise variable, and creating r model rules corresponding to each point. Each of the r
rules is of the form

Model Rule i :

IF z1 (t) is about µi1 [z1 (t)] , . . . , zp is about µip [zp (t)]

THEN Σi :


d

dt
x (t) = Ai x (t) + Bi u (t)

y (t) = Ci x (t)

(i = 1, . . . , r)

(3.1)

The �ring strength of each rule hi can be determined using the T -norm product of the
corresponding membership functions µij ∈ [0, 1] such that

hi [z (x (t))] =

p∏
j=1

µij [zj (x (t))] (3.2)

9

Chapter 3 Takagi-Sugeno Fuzzy Model

The membership functions are constructed to be complementary so that
∑
hi [x (t)] =

1. The overall TSFM is de�ned as

ΣTS :


d

dt
x(t) =

r∑
i=1

hi [z (x (t))] [Ai x (t) + Bi u (t)]

y (t) =
r∑
i=1

hi [z (x (t))] [Ci x (t)]

(3.3)

This is the standard form of TSFM. For more examples and details, we refer the interested
reader to Tanaka and Wang[TW01].

3.2. Sector Nonlinearity Construction

An exact TSFM representation of the nonlinear system can be constructed using the
method of sector non-linearity. In this method, each of the p nonlinear terms of the sys-
tem dynamics are chosen as the premise variables. Sector non-linearity uses the upper
and lower bounds on the premise variables to construct the membership function for
each term, resulting in 2p rules of the form described above. For the model shown in Eq.
(2.6), the premise variables can be chosen as

z1 , −
S CD ρ0e

−β(r−r0) V

2m

z2 , −
µ

r2

sin γ

γ

z3 ,
S CL ρ0e

−β(r−r0) V cosσ

2m
−
(

µ

r2V 2
− 1

r

)
cos γ

z4 , sin γ

(3.4)

10

3.3 Time Discretization

giving 16 rules of the form

Model Rule i :

IF z1 (t) is about µi1 [z1 (t)] , . . . , z4 is about µi4 [z4 (t)]

THEN Σi :



d

dt


V

γ

r

σ

 =


zi1 zi2 0 0

zi3 0 0 0

zi4 0 0 0

0 0 0 0



V

γ

r

σ

+


0

0

0

1

σ′

y =


V

γ

r

σ



(i = 1, . . . , 16)

(3.5)

The values of interest for each of the zj premise variables are the upper and lower bounds
zj and zj from the system dynamics such that

zij =


zj if

⌊
i−1
2j

⌋
mod 2 = 0

zj if
⌊
i−1
2j

⌋
mod 2 = 1

The corresponding membership functions of each variable are of the form

µij (zj (x (t))) =


zj−zj
zj−zj

if
⌊
i−1
2j

⌋
mod 2 = 0

zj−zj
zj−zj

if
⌊
i−1
2j

⌋
mod 2 = 1

Each rule is simply a permutation of each premise variable’s two possible values.

3.3. Time Discretization

In the next section, a discrete-time TSFM based MPC controller is described. In order to
discretize our continuous time TSFM, we discretize the linear dynamics for each fuzzy

11

Chapter 3 Takagi-Sugeno Fuzzy Model

rule using a generalized bi-linear transform. The resulting rules have the form

Model Rule i :

IF z1 (t) is about µi1 [z1 (t)] , . . . , zp is about µip [zp (t)]

THEN Σi :

{
x (k + 1) = Ai,Ts x (k) + Bi,Ts u (k)

y (k) = Ci,Ts x (k)

(i = 1, . . . , r)

(3.6)

giving a discrete-time TSFM of the form

ΣTS :


d

dt
x(t) =

r∑
i=1

hi [z (x (t))] [Ai,Ts x (t) + Bi,Ts u (t)]

y (t) =
r∑
i=1

hi [z (x (t))] [Ci,Ts x (t)]

(3.7)

where the membership functions µij and �ring strength hi are the same correspond-
ing rule of the continuous-time TSFM. The matrices Ai,Ts , Bi,Ts , and Ci,Ts are the time
discretized state, input, and output matrices of each of the TSFM subsystems using a
general bi-linear tansformation with time interval Ts

Ai,Ts = I + TsAi

Bi,Ts = TsBi

Ci,Ts = Ci

(3.8)

12

4. Discrete-Time Model Predictive
Control

Figure 4.1.: Illustration of the Model Predictive Control Concept

Model predictive control (MPC) is the constrained optimization of a control trajectory
to minimize a cost function based on predicted system dynamics from the current state
over a �nite time span known as the prediction horizon (denoted byHp time intervals for
a discrete time system.) Typically, only the �rst control interval of the optimal control
trajectory is applied to the system. The control input for the next interval comes from
repeating the optimization process. For each optimization process, the prediction hori-
zon recedes to the current time and initial conditions for the predicted dynamics come
from the current state of the actual system dynamics. We also note that the duration
of the control trajectory subject to optimization (called the control horizon, denoted by
Hc time intervals for a discrete time system) is not necessarily equal to the prediction
horizon. A schematic illustrating the process is shown in Figure 4.1.

13

Chapter 4 Discrete-Time Model Predictive Control

4.1. Model Prediction

For linear time-invariant, discrete-time models, the MPC optimization problem can be
formulated as constrained quadratic programming problem by formulating the predic-
tion of the system dynamics using a prediction matrix equation. To formulate the pre-
diction, the system is augmented to take as input a control increment yielding the aug-
mented system

xa (k + 1) =

Aa︷ ︸︸ ︷[
A B

0 I

] xa(k)︷ ︸︸ ︷[
x (k)

u (k − 1)

]
+

Ba︷︸︸︷[
B

I

]
∆u (k)

ya (k) =
[
C 0

]
︸ ︷︷ ︸

Ca

xa (k)

(4.1)

where the control increment is de�ned as ∆u (k) = u (k)− u (k − 1). Then the output
prediction vector over the prediction horizon of Hp time intervals

Y =
[
yT (k + 1 | k) yT (k + 2 | k) · · · yT (k +Hp | k)

]T
due to the input increment vector over applied over the control horizon of Hc intervals

∆U =
[
∆uT (k) ∆uT (k + 1) · · · ∆uT (k +Hc − 1)

]T
is given by

Y = Rx xa (k) + Ru ∆U

where Rx is the free response prediction matrix given by

Rx =


CaAa

CaA
2
a

...
CaA

Hp
a



14

4.1 Model Prediction

and Ru is the forced response prediction matrix given by

Ru =



CaBa 0 0 · · · 0

CaAaBa CaBa 0 · · · 0

CaA
2
aBa CaAaBa CaBa · · · 0

...
CaA

Hp−1
a Ba CaA

Hp−2
a Ba CaA

Hp−3
a Ba · · · CaA

Hp−Hc
a Ba


The states of a nonlinear dynamical system can similarly be calculated using the total
TSFM system from Eq. (3.3) at each time instant following the reference trajectory ~r (k).
Then the block-index de�nition for the two prediction matrices are given by

(Rx)i = Ca (k + i)
1∏

n=i−1

Aa (k + n)

for i = 1, . . . , Hp

(Ru)ij = Ca (k + i)

(
j−1∏
n=i−j

Aa (k + n)

)
Ba (k + j − 1)

for j = 1, . . . , Hc ≤ i = 1, . . . , Hp

Here, we will determine the fuzzy-basis of Eq. (3.2) using the value of the premise vari-
ables evaluated at the reference trajectory to determine the state and input matrices, so
the state, input, and output matrices of the total TSFM at any time interval k used for
constructing the prediction matrices are given by

A (k) =
r∑
i=1

hi [z (ry (k))]Ai,Ts

B (k) =
r∑
i=1

hi [z (ry (k))]Bi,Ts

C (k) =
r∑
i=1

hi [z (ry (k))]Ci,Ts

where Ai,Ts , Bi,Ts , and Ci,Ts is the time discretized state, input, and output matrices of
each of the TSFM subsystems using a general bi-linear tansformation with time interval
Ts described by Eq. (3.8). We note that in our particular model, the input and output
matrices for each TSFM subsystem are the same so Ba (k) and Ca (k) are constant, but

15

Chapter 4 Discrete-Time Model Predictive Control

for the sake of generality keep the time index in the sequel.

4.2. Control as Optimization Problem

Then a quadratic cost function of the form

J =

Hp∑
k=0

(ya (k)− ry (k))T P (ya (k)− ry (k)) + ∆yTa (k) ∆P∆ya (k)

+ (u (k)− ru (k))T Q (u (k)− ru (k)) + ∆uT (k) ∆Q∆u (k)

with state and control references ry (k) and ru (k), weighting matrices P, Q, ∆P, and
∆Q can be expressed as the quadratic

J =
1

2
∆UT H∆U + f ∆U

where the hessian H and gradient f are given by

H = 2
{
RT
u · P̄ ·Ru + (Ru −Ru2)T ·∆P̄ · (Ru −Ru2)

+ IT∆u · Q̄ · I∆u + ∆Q̄
}

f = 2
{(

Rx · Ā (k) · xa (k)−Ry

)T · P̄ ·Ru

+ (Iu · u (k)−Ru)
T Q̄I∆u

+
(
Rx · Ā · xa (k)−Rx · xa (k)

)T ·∆P̄ (Ru −Ru2)
}

where Ry and Ru are the reference vectors

Ry =
[
rTy (k + 1) rTy (k + 2) · · · rTy (k +Hp)

]T
Ru =

[
rTu (k + 1) rTu (k + 2) · · · rTu (k +Hp)

]T
and P̄, Q̄, ∆P̄, and ∆Q̄ is the block-diagonal cost matrix composed of repetitions of
the weighting matrices P, Q, ∆P, and ∆Q. The matrix Ru2 is a shifted forced response
prediction matrix. The remaining terms will be described along with the constraints.

Constraints for the optimization problem can be formulated as follows:

1. Input amplitude constraints come from the integration of ∆u and can be expressed

16

4.2 Control as Optimization Problem

as [
−I∆u

I∆u

]
∆U <

[
Iu (−umin + u (k − 1))

Iu (umax − u (k − 1))

]

where Iu is a block column vector composed ofm×m identity matrices (generally
noted by Im). I∆u is a block lower-diagonal matrix composed of Im’s.

2. Input rate constraints simply require each element in ∆U to be less than or greater
than the min or max constraint, expressed in matrix form as[

−IHcm
IHcm

]
∆U <

[
−IHcm∆umin

IHcm∆umax

]

3. Output amplitude constraints (via prediction matrices) are expressed as[
−Ru

Ru

]
∆U <

[
−IHpnymin + RxAa (k)xa (k)

IHpnymax −RxAa (k)xa (k)

]

4. State rate constraints can also be expressed via di�erential prediction matrices, as
−Ca (k + 1)Ba (k)

Ca (k + 1)Ba (k)

−∆Ru

∆Ru

∆U <


−∆ymin + Ca (k + 1)Aa (k)xa (k)− ya (k)

∆ymax −Ca (k + 1)Aa (k)xa (k) + ya (k)

−I(Hp−1)n∆ymin + ∆RxAa (k)xa (k)

I(Hp−1)n∆ymax −∆RxAa (k)xa (k)


where the di�erence prediction matrices are de�ned as

(∆Rx)i = (Rx)i+1 − (Rx)i

(∆Ru)i = (Ru)i+1 − (Ru)i

For more details on the derivation, we refer the reader to Oviedo or Mollov[OVW06,
MBAV04].

17

5. Simulation Results

5.1. Overview

We simulated the system with the described controller using Python. For these simu-
lations, constant values come from nominal Martian parameters with initial conditions
and vehicle parameters from the Mars sample return orbiter[PB93, MRFP00], as shown
in Table 5.1. When evaluating the MPC controller, an arbitrary reference is used mim-
icking a doublet maneuver. As a baseline, the cost matrix for following the reference
states normalized by setting corresponding diagonal element equal to the reciprocal of
the expected maximum such as the initial condition, i.e.

P =


1

V (t0)
0 0 0

0 1
π

0 0

0 0 1
r(t0)

0

0 0 0 1
π

 Q =

[
1

maxt σ′ (t)

]

Similarly, we set the cost for error in tracking the reference input equal to the reciprocal
of the maximum input. For initial tuning, we set each element in ∆P to 0. We will
consider the how the sampling time, horizon length, and cost of varying the input ∆Q

a�ects the controller.

Table 5.1.: Constant Values Used for Simulation

Parameter Symbol Value
reference radius r0 3389.5× 103 m

scale height β 9.009 m−1

gravitational constant µ 42828× 109 km3s−2

reference area S 14.29 m2

coe�cient of drag CD 1.53
coe�cient of lift CL 0.45

vehicle mass m 1179.34 kg

18

5.2 Varying parameters

5.2. Varying parameters

In order to test this TSFM based MPC scheme, we discretized the continuous time TSFM.
In Figure 5.1, we show a comparison of the model agreement between the original non-
linear dynamics and the discretized TSFM for an open-loop control σ′ = 0. As to be
expected, the faster sampling rate increases the agreement with the original non-linear
model. When applied to the discrete-time MPC, we mainly see the e�ects of the sam-
pling rate in the control input as shown in Figure 5.2. The slower sampled models cause
the controller to change the input so the discrete-time model states can match the refer-
ence. However, this model doesn’t agree with the non-linear system, causing oscillation
and overshoot in the control input. Due to the slow response of the system dynamics,
the oscillations and overshoot in control input do not cause the states to deviate greatly
from the reference trajectory.

The e�ect of varying the horizon length and change in input cost are shown in Figures
5.3, 5.4, and 5.5. In most MPC analysis, the horizon time is treated as tuning parameter
that increases controller performance along with the burden of computation cost. In
cases where the discrete time model has su�cient agreement with the continuous time
model, this is true as shown in Figure 5.3. However, in the case where the discrete time
model does not su�ciently agree with the non-linear model, such as when the sampling
rate is too slow, a short prediction horizon actually improves tracking of the reference
input as shown in Figure 5.4. Finally we note that by increasing the cost of varying
the input ∆Q, it is possible to dampen the oscillations and overshoot caused by the
disagreement between the discrete-time model and continuous-time nonlinear system.

19

Chapter 5 Simulation Results

1

2

3

4

5

6

7

V
(m

/s
)

×103 Discretization of Fuzzy System

continuous

TS = 2.5 s

TS = 10 s

TS = 25 s

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

γ
(r

a
d

)

×10−1

3.42
3.44
3.46
3.48
3.50
3.52
3.54
3.56
3.58

r
(m

)

×106

0 50 100 150 200 250 300 350 400

time (s)

−6

−4

−2

0

2

4

6

σ
(r

a
d

)

×10−2

Figure 5.1.: A comparison of the open loop response with the discretized fuzzy model.

20

5.2 Varying parameters

3.5
4.0
4.5
5.0
5.5
6.0
6.5

V
(m

/s
)

×103 Effect of Ts on controller with Hp = 10, ∆Q = 100 Ts

reference

Ts = 1.25 s

Ts = 2.5 s

Ts = 5 s

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0

γ
(r

a
d

)

×10−1

3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53

r
(m

)

×106

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

σ
(r

a
d

)

0 50 100 150 200 250 300 350 400

time (s)

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

d d
t
σ

(r
a
d

/s
)

×10−1

Figure 5.2.: A comparison of the MPC controller results with varying sampling rate.

21

Chapter 5 Simulation Results

3.5
4.0
4.5
5.0
5.5
6.0
6.5

V
(m

/s
)

×103 Effect of Hp on controller with Ts = 2.5 s, ∆Q = 50

reference

Hp = 5

Hp = 10

Hp = 20

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0

γ
(r

a
d

)

×10−1

3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53

r
(m

)

×106

−0.5

0.0

0.5

1.0

1.5

2.0

σ
(r

a
d

)

0 50 100 150 200 250 300 350 400

time (s)

−5
−4
−3
−2
−1
0
1
2
3
4

d d
t
σ

(r
a
d

/s
)

×10−1

Figure 5.3.: A comparison of the MPC controller results with varying horizon length
with a fast sampling rate.

22

5.2 Varying parameters

3.5
4.0
4.5
5.0
5.5
6.0
6.5

V
(m

/s
)

×103 Effect of Hp on controller with Ts = 5 s, ∆Q = 700

reference

Hp = 5

Hp = 10

Hp = 15

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0

γ
(r

a
d

)

×10−1

3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53

r
(m

)

×106

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

σ
(r

a
d

)

0 50 100 150 200 250 300 350 400

time (s)

−3

−2

−1

0

1

2

d d
t
σ

(r
a
d

/s
)

×10−2

Figure 5.4.: A comparison of the MPC controller results with varying horizon length
with a slow sampling rate.

23

Chapter 5 Simulation Results

3.5
4.0
4.5
5.0
5.5
6.0
6.5

V
(m

/s
)

×103 Effect of ∆Q on controller with Ts = 5 s, Hp = 10

reference

∆Q = 500

∆Q = 525

∆Q = 550

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0

γ
(r

a
d

)

×10−1

3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53

r
(m

)

×106

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

σ
(r

a
d

)

0 50 100 150 200 250 300 350 400

time (s)

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

d d
t
σ

(r
a
d

/s
)

×10−1

Figure 5.5.: A comparison of the MPC controller results with varying input rate cost.

24

6. Conclusion

In this paper we described the dynamics of a re-entry vehicle in atmosphere while per-
forming the aerocapture maneuver, used a TSFM with a discrete time MPC scheme, and
evaluated the tuning parameters of when following an arbitrary reference. By using a
TSFM, we are able to formulate a linear discrete time approximation to the nonlinear
model to implement a linear MPC formulation. We found that even without distur-
bances or model uncertainty, the tuning parameters must be designed to avoid excessive
oscillation and overshoot in the control input. In the future, we hope to formulate a con-
tinuous time fuzzy-based controller using optimal feed-back gains to compare to this
discrete time controller.

25

Acknowledgments

This material is based upon work supported by the National Science Foundation Grad-
uate Research Fellowship under Grant No. DGE-1135384 and the support of the Santa
Clara University Department of Mechanical Engineering.

26

A. Python Code

The code listed below implements the Takagi-Sugeno Fuzzy Model based discrete-time
Model Predictive Control and runs the simulations generating the data presented in
Chapter 5.

�le ’dtfmpc.py’
import numpy as np
import cvxopt
from NDMS.Systems import DynamicalSystem
from NDMS.utils import process_vector_args
from FuzzyControl.FuzzyModel import TakagiSugenoFuzzyModel as TSFM, FuzzyMatrix

a helper class for matrix_mul_list that inherits its dimensions from the
other multiplicant
class DeferredIdentity (object):

def __rmul__(self , other):
return other . copy()

def __imul__(self , other):
return other . copy()

def __mul__(self , other):
return other . copy()

a helper function for multiplying a list of matrices in place
def matrix_mul_list (matrices):

result = DeferredIdentity () # np.eye(matrices [0]. shape)
for matrix in matrices :

result ∗= matrix
return result

def generate_dtfmpc(
system, reference ,
P, Delta_P, Q, Delta_Q,
u_min, u_max, Delta_u_min, Delta_u_max,
y_min, y_max, Delta_y_min, Delta_y_max):
"""
A function to generate a discrete −time fuzzy model predictive control

27

Chapter A Python Code

system − a dt Takagi−Sugeno fuzzy model. Assumes direct access to states

reference − callable that returns matrix/2D array of states (output) and
inputs over their respective horizons .

P, Delta_P , Q, Delta_Q − are the weighting matrices

the remaining arguments are the constraints

returns a controller usable in BlockDiagrams and

"""
system dimensions
m = system.n_inputs
n = system. n_states
nbar = m+n

reserve space in memory for matrices
Abar_holder = np.matrix(np.eye(n+m))
Bbar_holder = np.matrix(np.empty((n+m,m)))
Bbar_holder[n:n+m,0:m] = np.eye(m)
Cbar_holder = np.matrix(

np.concatenate ((np.eye(n,n), np.zeros ((n,m))), axis =1))

discrete time MPC controller
def controller (∗ args , as_sys=False):

if used as a system in a block diagram, it will be passed more args
expand the args into the correct variables
if as_sys :

if len(args) == 3:
t ,x ,u = args

elif len(args) == 2:
t ,x = args

else :
t , x , result = args

extract the current control input , state , and output
u_k = np.matrix(x[−m:]).reshape ((−1,1))
x_k = np.matrix(x [:]). reshape ((−1,1))
y_k = x_k[:−m].copy()

get the reference , determine the prediction and control horizons
based on what is returned
ref_y , ref_u = reference (t)
H_p = ref_y . shape[0] −1
H_c = ref_u . shape[0] −1

if the prediction horizon is zero (or negative), use 0 control e�ort
if H_p <= 0:

28

Python Code

return np.zeros ((m,1))

helper functions to evaluate the system matrices over the reference
def Abar(k):

Abar_holder[0:n ,0: n] = system.A(system.h(k, ref_y[k]))
Abar_holder[0:n,n:n+m] = system.B(system.h(k, ref_y[k]))
return Abar_holder.copy()

def Bbar(k):
Bbar_holder[0:n ,0: m] = system.B(system.h(k, ref_y[k]))
return Bbar_holder.copy()

def Cbar(k=0):
return Cbar_holder.copy()

reserve space for free and forced prediction matrices R_x and R_u
R_x = np.asmatrix(np.zeros ((n∗H_p,nbar)))
R_u = np.asmatrix(np.zeros ((n∗H_p,m∗(H_c))))

compute R_u and R_x using block matrix construction
for i in range(H_p):

R_x[i∗n :(i +1)∗n ,:] = Cbar(i+1) ∗ matrix_mul_list ([
Abar(a) for a in range(i ,0,−1)

])

for i in range(H_p):
for j in range(0,min(H_c,i+1)):

R_u[i∗n :(i +1)∗n, j ∗m:(j +1)∗m] = Cbar(i+1) ∗ matrix_mul_list ([
Abar(a) for a in range(i , j ,−1)

]) ∗ Bbar(j)

Compute helper matrices used in QP formulation
R_u2 = np.asmatrix(np.empty_like(R_u))
R_u2[:n ,:] = np. zeros_like (R_u[:n ,:])
R_u2[n :,:] = R_u[:−n ,:]. copy()

dR_x1 = Cbar(1)
dR_u1 = np.asmatrix(np.zeros ((n,m∗H_c)))
dR_u1 [:,: m] = Cbar (1)∗Bbar(0)

dR_x = np.asmatrix(np.empty_like(R_x[n :,:]))
dR_x [:,:] = R_x[n :,:] − R_x[:−n,:]

dR_u = np.asmatrix(np.empty_like(R_u[n :,:]))
dR_u [:,:] = R_u[n :,:] − R_u[:−n,:]

I_m = np.asmatrix(np.eye(m))

I_u = np.asmatrix(np. tile (I_m,(H_c ,1)))

I_Delta_u = np. tril (np. tile (I_m, (H_c,H_c)), k=0)

29

Chapter A Python Code

I_Hc_m = np.asmatrix(np.eye(H_c∗m))

build the matrix used for inequality constraints
inequality_matrix = cvxopt.matrix(np.concatenate ((
−I_Delta_u,
I_Delta_u ,
−I_Hc_m,
I_Hc_m,
−R_u,
R_u,
−dR_u1,
dR_u1,
−dR_u,
dR_u,

), axis =0))

build the vector used for inequality constraints
inequality_vector = cvxopt.matrix(np.concatenate ((

I_u∗(−u_min + u_k),
I_u ∗(u_max − u_k),
−I_Hc_m∗np.tile(Delta_u_min,(H_c ,1)),
I_Hc_m∗np.tile (Delta_u_max,(H_c ,1)),
−np. tile (y_min,(H_p,1))+R_x∗Abar(0)∗x_k,
np. tile (y_max,(H_p,1))−R_x∗Abar(0)∗x_k,
−Delta_y_min+dR_x1∗Abar(0)∗x_k−y_k,
Delta_y_max−dR_x1∗Abar(0)∗x_k+y_k,
−np. tile (Delta_y_min,(H_p−1,1))+dR_x∗Abar(0)∗x_k,
np. tile (Delta_y_max,(H_p−1,1))−dR_x∗Abar(0)∗x_k,

), axis=0))

build block matrices for the QP cost
Pbar = np.asmatrix(np.zeros ((n∗H_p ,)∗2))
DeltaPbar = np.asmatrix(np.zeros ((n∗H_p ,)∗2))
for i in range(H_p):

Pbar[i ∗n :(i +1)∗n, i ∗n :(i +1)∗n] = P
DeltaPbar[i ∗n :(i +1)∗n, i ∗n :(i +1)∗n] = Delta_P

Qbar = np.asmatrix(np.zeros ((m∗(H_c),)∗2))
DeltaQbar = np.asmatrix(np.zeros ((m∗(H_c),)∗2))
for j in range(H_c):

Qbar[j∗m:(j +1)∗m,j∗m:(j +1)∗m] = Q
DeltaQbar[j ∗m:(j +1)∗m,j∗m:(j +1)∗m] = Delta_Q

QP hessian matrix
hessian = cvxopt.matrix(

2∗(
R_u.T∗Pbar∗R_u
+ I_Delta_u .T∗Qbar∗I_Delta_u
+ (R_u−R_u2).T∗DeltaPbar∗(R_u−R_u2)
+ DeltaQbar

)

30

Python Code

)

QP gradient
gradient = cvxopt.matrix(

2∗(
(R_x∗Abar(0)∗x_k − ref_y [1:,:]. reshape ((−1,1))). T∗Pbar∗R_u [:,:]
+ (I_u∗u_k − ref_u [:−1,:]. reshape ((−1,1))). T ∗ Qbar∗I_Delta_u
+ (R_x∗ Abar(0)∗x_k − R_x∗x_k).T∗DeltaPbar∗(R_u−R_u2)

). T
)

try :
try to solve QP using MOSEK
opt_result = cvxopt. solvers .qp(hessian , gradient ,

inequality_matrix , inequality_vector , solver=’mosek’)
except:

if solver fails , return NAN
return np.nan∗np.ones((m,1))

if solver succeeds but does not solve , return NAN
if opt_result [’x’] is None:

return np.nan∗np.ones((m,1))

if solver succeeds , extract result and return it
Delta_u = np.matrix(opt_result [’x’])
u_out = Delta_u [: m]
return u_out

use the controller function to construct a " block " usable in simulation
controller . dt = system.dt
control_sys = DynamicalSystem(dt=system.dt)
control_sys . n_states = 0
control_sys .n_outputs = system.n_inputs
control_sys .n_inputs = system. n_states + system.n_inputs
control_sys . state_equation_function = lambda t, x: x
control_sys . output_equation_function = lambda ∗args: controller (∗ args ,

as_sys=True)

return controller , control_sys

script to execute
import numpy as np, sympy as sp, matplotlib . pyplot as plt , numpy.matlib as ml, pandas as pd
from NDMS.Systems import DynamicalSystem, SystemFromCallable
from NDMS.BlockDiagram import BlockDiagram
from NDMS.utils import sinc, augment_inputs, process_vector_args , callable_from_trajectory
from sympy.physics.mechanics import dynamicsymbols
from scipy.optimize import minimize_scalar, root as �nd_zero

from FuzzyControl.FuzzyModel import TakagiSugenoFuzzyModel as TSFM, FuzzyMatrix, \
SectorNonlinearityFromPremiseVariables , FuzzyC2D

31

Chapter A Python Code

import importlib

import cvxopt, mosek

from sympy. utilities . lambdify import lambdify, implemented_function

from sympy import symbols, sin, cos , S , exp, tan

from datetime import datetime
from scipy. io import savemat, loadmat
import os, re , itertools

de�ne environmental settings
sp . init_printing ()
plt . ion ()
plt . rc (’ font ’ , family=’ serif ’)
plt . rc (’ text ’ , usetex=True)
simulation_parameters={ ’ atol ’ : 1E−15, ’ rtol ’ : 1E−9, ’nsteps ’ :1000}

try :
os . chdir (’ .\\ Projects \\ HypersonicReEntry\\TO_SUBMIT’)

except:
pass

import dtfmpc

VERBOSE = False

if VERBOSE:
cvxopt. solvers . options[’MOSEK’] = {mosek.iparam.log: 1}

else :
cvxopt. solvers . options[’MOSEK’] = {mosek.iparam.log: 0}

de�ne symbols
tvar = dynamicsymbols._t
svar = sp .symbols(’s ’)
V, r , gamma, sigma = dynamicsymbols(’V␣r␣gamma␣sigma’)
sigma_p_input = dynamicsymbols(’sigmaprime’)
C_D, C_L, m, mu, beta , r0 , rho0 = symbols(’C_D␣C_L␣m␣mu␣beta␣r0␣rho0’)
D,L = dynamicsymbols(’D␣L’)
rho, g = symbols(’rho␣g’ , cls =sp.Function)
tF_sym = sp .symbols(’ t_F ’)

constant values
SA = 14.29 # reference surface area in m^2
constants = {

beta : 1/(11.1 E3), # scale height in m^−1
rho0: 0.02, # reference density in kg/m^3
r0 : 3389.5E3, # reference radius (surface) in m (3389.5 km)

32

Python Code

C_D: 1.53 ∗ SA,
C_L: 0.45 ∗ SA,
m: 1179.34, # vehicle mass in kg; 2600 lb
mu: 42828E9, # reference gravity constant in km^3 ∗ s^−2,

}
V_ic = 6E3 # initial velocity , 6 km/s
r_ic = 3522E3 # atmospheric interface radius , in m
sigma_ic = 0 # initial bank angle , in rad
gamma_ic = −10.5∗np.pi/180 # initial �ight path angle , in rad (−10.5 deg)
tF_value = 435 # seconds to simulate
u_rate = 1∗np.pi/180 # bank angle acceleration rate

de�nitions which can be used to simulate over a range of initial conditions
g_di� = 0
V_di� = 0
gs_to_test = np. linspace (0,0,1)
Vs_to_test = np. linspace (0,0,1)

Vg_ic_error_to_iter = [test
for test in itertools .product(Vs_to_test , gs_to_test)]

De�ne the P and Q cost matrices
DEFAULT_STATE_COST = np.diag�at(1/np.array([V_ic, r_ic, np.pi , np.pi]))
DEFAULT_INPUT_COST = np.matrix([1/u_rate])

de�ne dynamics for control−a�ne model
rho_expr = rho0∗sp . functions .exp(−beta∗(r−r0))
g_expr = mu/r∗∗2
dV_dt = −C_D∗V∗∗2∗rho(r)/(2∗m) − mu∗sin(gamma)/r∗∗2
dg_dt = C_L∗V∗rho(r)∗cos(sigma)/(2∗ m) − mu∗cos(gamma)/(V∗r∗∗2) + V∗cos(gamma)/r
dr_dt = V∗sin(gamma)

de�ne the control−a�ne model
physical_state = sp .Matrix([V,r ,gamma,sigma])
physical_state_equation = (sp .Matrix([dV_dt, dr_dt , dg_dt, sigma_p_input])

. subs(rho(r), rho_expr))
physical_input = sp .Matrix([sigma_p_input])
physical_output_equation = physical_state

physical_sys = DynamicalSystem(
physical_state_equation ,
physical_state ,
physical_input ,
physical_output_equation ,
constants_values=constants

)
physical_x0 = np.matrix ([V_ic , r_ic , gamma_ic, sigma_ic]). T
physical_sys . initial_condition = physical_x0

de�ne open loop control (no input)
def open_loop_ctr(t):

33

Chapter A Python Code

return np.matrix ([0])
open_loop_ctr_sys = SystemFromCallable(open_loop_ctr ,0,1)

de�ne arbitrary reference control (doublet maneuver)
tint = 75
t_switch_ref_control = np.array ([

0,
0.5,
1.5,
2.5,
3,
4,
5, tF_value / tint

])∗ tint

def ref_control (t):
if t<= t_switch_ref_control [1]:

u=0
elif t<= t_switch_ref_control [2]:

u = (t−t_switch_ref_control [1])∗ u_rate/ tint
elif t<= t_switch_ref_control [3]:

u = u_rate+(t_switch_ref_control [2]−t)∗ u_rate/ tint
elif t<= t_switch_ref_control [4]:

u = 0
elif t<= t_switch_ref_control [5]:

u = (t_switch_ref_control [4]−t)∗ u_rate/ tint
elif t<= t_switch_ref_control [6]:

u = (t−t_switch_ref_control [5])∗ u_rate/ tint −u_rate
else :

u = 0
return np.matrix ([u])

ref_ctr_sys_dimful = SystemFromCallable(ref_control ,0,1)

de�ne block diagram with reference control of physical system
dimful_BD = BlockDiagram(physical_sys, ref_ctr_sys_dimful)
dimful_BD.connect(ref_ctr_sys_dimful , physical_sys)

simulate block diagram piecewise over to increase numerical accuracy
dimful_ref_reses = []
old_tswitch = 0
physical_sys . initial_condition = physical_x0
for tswitch in t_switch_ref_control [1:]:

dimful_ref_reses .append(
dimful_BD.simulate([old_tswitch , tswitch],
integrator_options =simulation_parameters)

)
old_tswitch = tswitch
physical_sys . initial_condition = np.matrix(dimful_ref_reses [−1].x [−1,:]). T

combine piecewise simulation results
dimful_res__y = np.concatenate (

34

Python Code

[dimful_res .y for dimful_res in dimful_ref_reses], axis=0)
dimful_res__t = np.concatenate (

[dimful_res . t for dimful_res in dimful_ref_reses])
dimful_PD = pd.DataFrame(index=dimful_res__t, data=dimful_res__y,

columns=[st for st in physical_state]+[inp for inp in physical_input])

create interpolation callable of simulation results
dimful_res_unique_t , dimful_res_unique_t_idx = np.unique(dimful_res__t ,

return_index=True)
dimful_ref_callable = callable_from_trajectory (dimful_res_unique_t ,

dimful_res__y[dimful_res_unique_t_idx ,:])
dimful_ref_sys = SystemFromCallable(dimful_ref_callable , 0, 5)

�nd min and max values of state from simulation
ref_tF_value = �nd_zero (lambda t: dimful_ref_callable (t)[1] − r_ic ,

300)[’x’][0]
Vf_ref , gf_ref = dimful_ref_callable (ref_tF_value)[[0,2]]

V_min = Vf_ref
V_max = −minimize_scalar(lambda t: −dimful_ref_callable (t)[0],

bounds=[0, ref_tF_value], method=’Bounded’).fun

r_min = minimize_scalar (lambda t: dimful_ref_callable (t)[1],
bounds=[0, ref_tF_value], method=’Bounded’).fun

r_max = r_ic

g_min = gamma_ic
g_max = gf_ref

s_min = sigma_ic
s_max = −minimize_scalar(lambda t: − dimful_ref_callable (t)[3],

[0, ref_tF_value], [0, ref_tF_value])[’fun’]

V_scale_factor = V_max − V_min
g_scale_factor = g_max − g_min
r_scale_factor = r_max − r_min
s_scale_factor = s_max − s_min

create TSFM
symbols for premise variables
z = symbols(’z1 :5 ’)
z1 , z2 , z3 , z4 = z
z_to_nl = {}
z_to_nl [z1] = rho_expr∗V
z_to_nl[z2] = −mu∗sinc(gamma)/(r∗∗2)
z_to_nl [z3] = C_L∗rho_expr∗cos(sigma)/(2∗m)−(mu/(V∗∗2∗r∗∗2)−1/r)∗cos(gamma)
z_to_nl [z4] = sin (gamma)

fuzzy rule state and input matrix structure
sub_A = sp.Matrix([[−C_D∗z1/(2∗m),0, z2 ,0],[z4 ,0,0,0],[z3 ,0,0,0],[0,0,0,0]])
sub_B = sp .Matrix ([0, 0, 0, 1])

35

Chapter A Python Code

extreme state used for sector nonlinearity
extreme_states = {V: (S(1E3), S(8E3),),

r : (300E3 + constants [r0], constants [r0],),
gamma: (np.pi /2, −np.pi/2, 0,),
sigma: (0, np.pi /2, np.pi ,)

}

construct fuzzy matrices and TSFM from structure and extreme values
(fuzzy_A,fuzzy_B),h = SectorNonlinearityFromPremiseVariables (

(sub_A, sub_B), z_to_nl , physical_state , extreme_states , constants)
fuzzy_ct = TSFM(h,fuzzy_A,fuzzy_B,None)

augmented physical system to control
augmented_physical_sys = augment_inputs(physical_sys)
augmented_physical_sys.output_equations = augmented_physical_sys. states
augmented_physical_sys. initial_condition = np.concatenate (

(physical_x0 , np.matrix ([0])), axis=0)
system_for_control = augmented_physical_sys

de�ne input , state , and increment constraints
u_constr = np.asmatrix (20∗np.pi /180) # roll −rate 20 degrees / s
DU_constr = np.asmatrix (6.8∗ np.pi /180) # bank accell 6.8 degrees / s^2
y_min_constr = np.asmatrix ([0, constants [r0], −np.pi/2, −1∗np.pi]). T
y_max_constr = np.asmatrix ([12E3, 1.1∗ r_ic , np.pi /2, 1∗np.pi]). T
DY_constr = (y_max_constr−y_min_constr)

simulate reference trajectory with dt TSFM
Tses = (2.5, 10, 25)
list_of_simulation_data = []
list_of_ids = []

output_symbols = (sp . �atten (physical_sys . output_equations . tolist ())
+ [physical_sys . inputs [0]])

for ctr_sys in [open_loop_ctr_sys]: # open_loop_ctr_sys]: # ref_ctr_sys_dimful
for Ts in Tses :

dt_sys = FuzzyC2D(fuzzy_ct, Ts , method=’gbt’,alpha =0.0)

dt_sys . initial_condition = physical_x0
BD = BlockDiagram(dt_sys, ctr_sys)
BD.connect(ctr_sys , dt_sys)

DT_ID = str(Ts)
sim_start_time = datetime .now()
print(" \n\nsimulating" ,

DT_ID," starting ␣ at " , sim_start_time .__format__(’%H:%M:%S’)
)
ctr_res = BD.simulate(tF_value ,

integrator_options =simulation_parameters
)
print(" simulation ␣completed␣at " ,

datetime .now().__format__(’%H:%M:%S’),"taking␣approximately" ,

36

Python Code

(datetime .now() − sim_start_time)
)
ctr_res_PD = pd.DataFrame(

index=ctr_res . t ,
data=ctr_res .y [:,:],
columns=[st for st in output_symbols]

)
list_of_simulation_data .append(ctr_res_PD)
list_of_ids .append(DT_ID)

simulate MPC with di�erent parameters
list of tuples of sample rate , prediction horizon , and input increment cost
compare_array = [(1,15,100)]

matrices for state and input cost
PP = DEFAULT_STATE_COST
QQ = DEFAULT_INPUT_COST

list_of_simulation_data = []
list_of_ids = []

output_symbols = (sp . �atten (augmented_physical_sys.output_equations. tolist ())
+ [augmented_physical_sys.inputs [0]]

)
for Ts, HH, DQ in compare_array:

for dt_type in (’ j ’): # ,’ f ’):
augmentedDFS = dtfmpc.augment_system(fuzzy_dt)
T_ref_gen = np.arange (0, tF_value+Ts, Ts)
ref_gen = dimful_ref_callable (T_ref_gen)[[0,1,2,3,−1],:]. T

augmented_x0 = ref_gen [0,:]
def genned_reference(t):

if np.isnan(t):
return

k = np. �oor (t /Ts)
j = min(k+HH, len(T_ref_gen))
if VERBOSE:

print(t ,k, j)
return ref_gen[k: j ,:−1], ref_gen[k: j ,−1]. reshape(−1,1)

dt_sys = FuzzyC2D(fuzzy_ct, Ts , method=’gbt’,alpha =0.0)

fdtmpc_controller , ctr_sys = dtfmpc.generate_dtfmpc(dt_sys , genned_reference,
np.asmatrix(PP), # P
np.asmatrix(np.eye(len(physical_state))∗0.0), # Delta_P
np.asmatrix(QQ), # Q
np.asmatrix(DQ), # Delta_Q
−u_constr∗Ts, # u_min
u_constr∗Ts, # u_max

37

Chapter A Python Code

−DU_constr∗Ts, # Delta_u_min,
DU_constr∗Ts, # Delta_u_max,
y_min_constr, # y_min,
y_max_constr, # y_max,
−DY_constr∗Ts, # DY_min
DY_constr∗Ts, # DY_max
)

BD = BlockDiagram(system_for_control, ctr_sys)
BD.connect(ctr_sys , system_for_control)
BD.connect(system_for_control , ctr_sys)
BD.connect(system_for_control , ctr_sys)

for V_to_test , g_to_test in Vg_ic_error_to_iter :

system_for_control . initial_condition [0] = V_to_test + V_ic
system_for_control . initial_condition [2] = g_to_test + gamma_ic

MPC_ID = "MPC_%.0f_%d_%d" % (Ts, HH, DQ)
sim_start_time = datetime .now()
print(" \n\nsimulating" ,MPC_ID,"with␣IC␣error" ,

V_to_test , g_to_test ,
" starting ␣ at " ,
sim_start_time .__format__(’%H:%M:%S’)

)
ctr_res = BD.simulate(tF_value ,

integrator_options =simulation_parameters)
print(" simulation ␣completed␣at " ,

datetime .now().__format__(’%H:%M:%S’),
" taking ␣approximately" ,(datetime .now() − sim_start_time)

)
ctr_res_PD = pd.DataFrame(index=ctr_res . t , data=ctr_res .y [:,:],

columns=[st for st in output_symbols])

list_of_simulation_data .append(ctr_res_PD)
list_of_ids .append(DT_ID)

38

Bibliography

[CG85] C. Cerimele and J. Gamble. A simpli�ed guidance algorithm for lift-
ing aeroassist orbital transfer vehicles. In Aerospace Sciences Meet-
ings. American Institute of Aeronautics and Astronautics, January 1985,
http://dx.doi.org/10.2514/6.1985-348.

[CLWM08] Jordi Casoliva, Daniel T Lyons, Aron A Wolf, and Kenneth D Mease. Ro-
bust guidance via a predictor-corrector algorithm with drag tracking for
aero-gravity assist maneuvers. In Guidance, Navigation, and Control and
Co-located Conferences. American Institute of Aeronautics and Astronautics,
August 2008, http://dx.doi.org/10.2514/6.2008-6816.

[Cru79] MI Cruz. The aerocapture vehicle mission design concept. In Confer-
ence on Advanced Technology for Future Space Systems, Hampton, VA, pages
195–201. American Institute of Aeronautics and Astronautics, May 1979,
http://dx.doi.org/10.2514/6.1979-893.

[FPRS00] H Fraysse, R Powell, Striepe Rousseau, and S Striepe. Cnes-nasa studies of
the mars sample return orbiter aerocapture phase. January 2000.

[JW04] Roman Y. Jits and Gerald D. Walberg. Blended control, predictor–corrector
guidance algorithm: an enabling technology for mars aerocapture. Acta
astronautica, 54(6): 385–398, 2004.

[KEE10] Mohamed Khairy, Abdel-Latif Elshafei, and Hassan M Emara. Lmi based de-
sign of constrained fuzzy predictive control. Fuzzy Sets and Systems, 161(6):
893–918, 2010.

[LCTM15] Ping Lu, Christopher J. Cerimele, Michael A. Tigges, and Daniel A. Matz.
Optimal aerocapture guidance. InAIAA SciTech. American Institute of Aero-
nautics and Astronautics, January 2015.

[Lu99] Ping Lu. Regulation about time-varying trajectories: Precision entry guid-

39

Bibliography

ance illustrated. Journal of Guidance, Control, and Dynamics, 22(6): 784–790,
November 1999, http://dx.doi.org/10.2514/2.4479.

[MBAV04] Stanimir Mollov, Robert Babuška, Janos Abonyi, and Henk B Verbruggen.
E�ective optimization for fuzzy model predictive control. Fuzzy Systems,
IEEE Transactions on, 12(5): 661–675, 2004.

[Mie96] A Miele. The 1st john v. breakwell memorial lecture: Recent advances in
the optimization and guidance of aeroassisted orbital transfers. Acta astro-
nautica, 38(10): 747–768, 1996.

[MQ03] James Masciarelli and Eric Queen. Guidance algorithms for aerocapture at
titan. 4822, July 2003, http://dx.doi.org/10.2514/6.2003-4804.

[MRFP00] James Masciarelli, Stephane Rousseau, Hubert Fraysse, and Etienne Perot.
An analytic aerocapture guidance algorithm for the mars sample return or-
biter. InGuidance, Navigation, and Control and Co-located Conferences, pages
14–18. American Institute of Aeronautics and Astronautics, August 2000,
http://dx.doi.org/10.2514/6.2000-4116.

[NP99] Hazem N Nounou and Kevin M Passino. Fuzzy model predictive control:
techniques, stability issues, and examples. In Intelligent Control/Intelligent
Systems and Semiotics, 1999. Proceedings of the 1999 IEEE International Sym-
posium on, pages 423–428. IEEE, 1999.

[OVW06] Jairo Jose Espinosa Oviedo, Joos PL Vandewalle, and Vincent Wertz. Fuzzy
logic, identi�cation and predictive control. Springer Science & Business Me-
dia, 2006.

[PB93] Richard W. Powell and Robert D. Braun. Six-degree-of-freedom guid-
ance and control analysis of mars aerocapture. Journal of Guid-
ance, Control, and Dynamics, 16(6): 1038–1044, November 1993,
http://dx.doi.org/10.2514/3.21125.

[Que04] Eric M Queen. Angle-of-attack-modulated terminal point control for nep-
tune aerocapture. February 2004.

[RMBV99] Johannes A Roubos, Stanimir Mollov, R Babuška, and Henk B Verbruggen.
Fuzzy model-based predictive control using takagi–sugeno models. Inter-
national Journal of Approximate Reasoning, 22(1): 3–30, 1999.

[RPG+02] Stephane Rousseau, Etienne Perot, Claude Graves, James Masciarelli, and

40

Bibliography

Eric Queen. Aerocapture guidance algorithm comparison campaign. August
2002, http://dx.doi.org/10.2514/6.2002-4822.

[RQ98] Theodore Ro and Eric Queen. Study of martian aerocapture terminal point
guidance. In Guidance, Navigation, and Control and Co-located Conferences.
American Institute of Aeronautics and Astronautics, August 1998.

[SYLK09] Chonghui Song, Jinchun Ye, Derong Liu, and Qi Kang. Generalized reced-
ing horizon control of fuzzy systems based on numerical optimization algo-
rithm. Fuzzy Systems, IEEE Transactions on, 17(6): 1336–1352, 2009.

[TW01] Kazuo Tanaka and Hua O. Wang. Fuzzy Control Systems Design and Analysis.
John Wiley & Sons, Inc., 2001.

[VBC80] Nguyen X Vinh, Adolf Busemann, and Robert D Culp. Hypersonic and plan-
etary entry �ight mechanics. University of Michigan Press, 1980.

[Wal85] G. D. Walberg. A survey of aeroassisted orbit transfer. Journal of Spacecraft
and Rockets, 22(1): 3–18, January 1985, http://dx.doi.org/10.2514/3.25704.

[Wan09] Liuping Wang. Model predictive control system design and implementation
using MATLAB®. Springer Science & Business Media, 2009.

[ZFL07] Tiejun Zhang, Gang Feng, and Jianhong Lu. Fuzzy constrained min-max
model predictive control based on piecewise lyapunov functions. Fuzzy
Systems, IEEE Transactions on, 15(4): 686–698, 2007.

41

	Santa Clara University
	Scholar Commons
	9-2016

	Takagi-Sugeno Fuzzy Model Based Discrete Time Model Predictive Control for a Hypersonic Re-Entry Vehicle
	Ben Margolis
	Recommended Citation

	Contents
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Aerocapture Trajectory

	2 Mathematical Model
	2.1 Base derivation
	2.1.1 Atmospheric density
	2.1.2 Acceleration due to gravity

	2.2 System Model
	2.2.1 Vertical Plane
	2.2.2 Augmentation

	3 Takagi-Sugeno Fuzzy Model
	3.1 Overview
	3.2 Sector Nonlinearity Construction
	3.3 Time Discretization

	4 Discrete-Time Model Predictive Control
	4.1 Model Prediction
	4.2 Control as Optimization Problem

	5 Simulation Results
	5.1 Overview
	5.2 Varying parameters

	6 Conclusion
	Acknowledgments
	A Python Code
	Bibliography

