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ABSTRACT 

 

 Aerodynamic characteristics of a racing car are of significant interest in reducing 

car-racing accidents due to wind loading and in reducing the fuel consumption. At the 

present, modified car racing becomes more popular around the world. Sports cars are 

most commonly seen with spoilers, such as Ford Mustang, Subaru Impreza, and 

Chevrolet Corvette. Even though these vehicles typically have a more rigid chassis and a 

stiffer suspension to aid in high-speed maneuverability, a spoiler can still be beneficial. 

 

 One of the design goals of a spoiler is to reduce drag and increase fuel efficiency. 

Many vehicles have a fairly steep downward angle going from the rear edge of the roof 

down to the trunk or tail of the car. Air flowing across the roof tumbles over this edge at 

higher speeds, causing flow separation. The flow of air becomes turbulent and a low-

pressure zone is created, thus increases drag. Adding a spoiler at the very rear of the 

vehicle makes the air slice longer, gentler slope from the roof to the spoiler, which helps 

to reduce the flow separation. Reducing flow separation decreases drag, which increases 

fuel economy; it also helps keep the rear window clear because the air flows smoothly 

through the rear window.  

 

 The limitations of conventional wind tunnel experiment and rapid developments 

in computer hardware, considerable efforts have been invested in the last decade to study 

vehicle aerodynamics computationally. This thesis will present a numerical simulation of 

flow around racing car with spoiler positioned at the rear end using commercial fluid 

dynamic software ANSYS FLUENT®. The thesis will focus on CFD-based lift and drag 

prediction on the car body after the spoiler is mounted at the rear edge of the vehicle. A 

3D computer model of 4-door sedan car (which will be designed with commercial 

software SolidWorks®) will be used as the base model. Different spoilers, in different 

locations will be positioned at the rear end of vehicle and the simulation will be run in 

order to determine the aerodynamic effects of spoiler.
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1 AUTOMOBILE AERODYNAMICS 

1.1 WHAT IS AERODYNAMICS? 

Aerodynamics is the way objects move through air. The rules of aerodynamics 

explain how an airplane is able to fly. Anything that moves through air is affected by 

aerodynamics, from a rocket blasting off, to a kite flying. Since they are surrounded by 

air, even cars are affected by aerodynamics [15].  “Aerodynamics” is a branch of fluid 

dynamics concerned with studying the motion of air, particularly when it interacts with a 

moving object. Aerodynamics is also a subfield gas dynamics, with much theory shared 

with fluid dynamics. Aerodynamics has often used synonymously with gas dynamics, 

with the difference being that gas dynamics applies to compressible flows. Understanding 

the motion of air (often called a flow field) around an object enables the calculation of 

forces and moments acting on the object. Typical properties calculated for a flow field 

include velocity, pressure, density and temperature as a function of position and time. By 

defining a control volume around the flow field, equations for the conservation of mass, 

momentum, and energy can be defined and used to solve for the properties. The use of 

aerodynamics through mathematical analysis, empirical approximation and wind tunnel 

experimentation form the scientific basis.  

 

Aerodynamics can be divided into two sub-categories as external and internal 

aerodynamics. External aerodynamics is basically the study of flow around solid objects 

of various shapes. Evaluating the lift and drag on an airplane, the flow of air over a wind 

turbine blade or the shock waves that form in front of the nose of a rocket are examples 

of external aerodynamics. Internal aerodynamics on the other hand is the study of flow 

through passages in solid objects. For instance, internal aerodynamics encompasses the 

study of the airflow through a jet engine or through an air conditioning pipe. This thesis 

concentrates more on the external category of the aerodynamics related to vehicle with 

the domain geometry and grid display, vector plots, line and shaded contour plots, 2D 

and 3D surface plots, particle tracking and lastly XY plots and graphs of results. 
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1.2 SCOPE OF AERODYNAMICS 

The regulation of green house gases to control global warming and rapidly 

increasing fuel prices have given tremendous pressure on the design engineers to enhance 

the current designs of the automobile using minimal changes in the shapes. To fulfill the 

above requirements, design engineers have been using the concepts of aerodynamics to 

enhance the efficiency of automobiles [16].  

 

Although aerodynamics depends on so many factors, this thesis concentrates on 

external devices, which affect the flow around the automobile body to reduce the 

resistance of the vehicle in normal working conditions. 

 

 
Figure 1.1 Fuel energy usage at urban driving 
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Figure 1.2 Fuel energy usage at highway driving 

 

Figure 1.1 and Figure 1.2 show the description of the fuel energy used in a 

modern vehicle at urban driving and highway driving respectively. The shape of the 

vehicle uses about 3% of fuel to overcome the resistance in urban driving, while it takes 

11% of fuel for the highway driving. This considerable high value of fuel usage in 

highway driving attracts several design engineers to enhance the aerodynamics of the 

vehicle using minimal design changes. This brings the idea of using external devices, 

which could be attached to the present vehicle without changing the body. This thesis is 

based on the design, developments and numeral calculation of the effects of external 

device, which will be spoiler that mounted at the rear side of the vehicle to make the 

present vehicles more aerodynamically attractive. 

1.3 EXTERNAL FLOW PHENOMENA OF AUTOMOBILE 

 Figure 1.3 shows the streamline of an external flow around a stationary vehicle. 

When the vehicle is moving at a certain velocity, the viscous effects in the fluid are 

restricted to a thin layer called boundary layer. Outside the boundary layer is the inviscid 
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flow. This fluid flow imposes pressure force on the boundary layer. When the air reaches 

the rear part of the vehicle, the fluid gets detached. Within the boundary layer, the 

movement of the fluid is totally governed by the viscous effects of the fluid. 

 

 
Figure 1.3 Streamline of external flows around a stationary vehicle 

 

 The Reynolds number is dependent on the characteristic length of the vehicle, the 

kinematic viscosity and the speed of the vehicle. The fluid moving around the vehicle is 

dependent on the shape of the vehicle and the Reynolds number. There is another 

important phenomenon, which affects the flow of the car and the performance of the 

vehicle. This phenomenon is commonly known as ‘Wake’ of the vehicle. When the air 

moving over the vehicle is separated at the rear end, it leaves a large low-pressure 

turbulent region behind the vehicle known as the wake. This wake contributes to the 

formation of pressure drag, which is eventually reduces the vehicle performance. 
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1.4 FACTORS CONTRIBUTING TO FLOW FIELD AROUND VEHICLE 

 The major factors, which affect the flow field around the vehicle, are the 

boundary layers, separation of flow field, friction drag and lastly the pressure drag.  

1.4.1 BOUNDARY LAYER 

 Ludwig Prandtl first defined the aerodynamic boundary layer in a paper presented 

on August 12, 1904 at the third International Congress of Mathematicians in Heidelberg, 

Germany. This allows aerodynamicists to simplify the equations of fluid flow by dividing 

the flow field into two areas: one inside the boundary layer and the one outside the 

boundary layer. In this boundary layer around the vehicle, the viscosity is dominant and it 

plays a major role in drag of the vehicle. The viscosity is neglected in the fluid regions 

outside this boundary layer since it does not have significant effect on the solution. In the 

design of the body shape, the boundary layer is given high attention to reduce drag [9, 15, 

16]. There are two reasons why designers consider the boundary layer as a major factor in 

aerodynamic drag. The first is that the boundary layer adds to the effective thickness of 

the body, through the displacement thickness, hence increasing the pressure drag. The 

second reason is that the shear forces at the surface of the vehicle causes skin friction 

drag, which arises from the friction of the fluid against the skin of the object that is 

moving through it [9]. 

1.4.2 FLOW SEPARATION 

 During the flow over the surface of the vehicle, there are some points when the 

change in velocity comes to stall and the fluid starts flowing in reverse direction. This 

phenomenon is called ‘Separation’ of the fluid flow. This usually occurs at the rear part 

of the vehicle. This separation is mostly dependent on the pressure distribution, which is 

imposed by the outer layer of the flow [15]. This separation causes the flow to change its 

behavior behind the vehicle and thereby affects the flow field around the vehicle. This 

phenomenon is the major factor to be considered while studying the wake of the vehicle. 
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Flow separation is bad because it leads to a larger wake and less pressure on the rear 

surface which reducing pressure recovery. To avoid bad flow separation, the transitions 

of the airflows from roof to the rear window need to be smoothed [15]. The bad 

separation also can create more drag. The aerodynamic will be more effective if the flows 

working in clean air (laminar flow). By improving the aerodynamic of the car can reduce 

the boundary layer thickness thus avoids worst flow separations. 

 

 
Figure 1.4 Flow Separation at the rear of vehicle 
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Figure 1.5 Flow Separation at the rear of vehicle with rear spoiler 

1.4.3 FRICTION DRAG 

 Every material or wall has a distinct friction, which resists the flow of fluids. Due 

to molecular friction, a stress acts on every surface of the vehicle. The integration of the 

corresponding force component in the free stream direction leads to a friction drag. If the 

separation does not occur, then friction drag is one of the main reasons to cause overall 

drag. 

1.4.4 PRESSURE DRAG 

 Behind the vehicles, there is a steep pressure gradient, which leads to the 

separation of the flow separation in viscous flow. The front part of the flow field shows 

high-pressure value, whereas on the rear part flow separates leading to a high suction in 

the area. As we integrate the force component created by such high change in pressure, 

the resultant is called as ‘Pressure Drag’. This factor is affected by the height of the 

vehicle as well as the separation of the flow field. 
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1.5 FORCES AND MOMENT ON VEHICLE 

 When the vehicle is moving at a considerable speed, there are several forces are 

applied to vehicle in different directions. Figure 1.5 shows the details sketch view of the 

various forces acting on the vehicle body. As shown in the free body diagram below, 

there are six forces acting on the vehicle:  

 Rolling Resistance 

 Drag 

 Lift 

 Gravity 

 Normal 

 Motor 

 

 
Figure 1.6 Forces On Vehicle Body 

 

 Rolling resistance force is due the tires deforming when contacting the surface of 

a road and varies depending on the surface being driven on. The normal force is the force 

exerted by the road on the vehicle's tires. Because the vehicle is not moving up or down 
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(relative to the road), the magnitude of the normal forces equals the magnitude of the 

force due to gravity in the direction normal to the road.  

 

 Lift force acting on the vehicle body vertically. This force causes the vehicle to 

get lifted in air as applied in the positive direction, whereas it can result in excessive 

wheel down force if it is applied in negative direction. Engineers try to keep this value to 

a required limit to avoid excess down force or lift. The formula usually used to define this 

force is written as: 

 

 

𝐶! =
𝐿

1
2𝜌𝑉

!𝐴
 

[1.1] 

 

Where; 

𝐿  : Lift force 

𝐶!   : Lift coefficient 

A : Frontal area of the vehicle 

𝜌 : Air density 

𝑉 : Vehicle velocity 

 

 Aerodynamic drag force is the force acting on the vehicle body resisting its 

forward motion. This force is an important force to be considered while designing the 

external body of the vehicle, since it covers about 65% of the total force acting on the 

complete body. The Aerodynamic drag force is calculated by the following formula: 
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𝐶! =
𝐷

1
2𝜌𝑉

!𝐴
 

[1.2] 

 

Where; 

𝐷  : Drag force 

𝐶!   : Drag coefficient 

A : Frontal area of the vehicle 

𝜌 : Air density 

𝑉 : Vehicle velocity 

 

2 CFD (COMPUTATIONAL FLUID DYNAMICS) 

2.1 WHAT IS CFD? 

According to Oleg Zikanov [3] CFD can be defined as: 

 

“CFD (Computational fluid dynamics) is a set of numerical methods 

applied to obtain approximate solution of problems of fluid dynamics and 

heat transfer.” 

 

 According to this definition, CFD is not a science by itself but a way to apply 

methods of one discipline (numerical analysis) to another (heat and mass transfer). In 

retrospect, it is integrating not only the disciplines of fluid mechanics with mathematics 

but also with computer science as illustrated in Figure 2.1. The physical characteristics 

of the fluid motion can usually be described through fundamental mathematical 

equations, usually in partial differential form, which govern a process of interest and are 

often called governing equations in CFD. Jiyuan Tu, Guan Heng Yeoh and Chaoqun Liu 

[2] has discussed how to solve mathematical equations with using CFD: 



 

 11 
 

“In order to solve mathematical equations, computer scientists convert 

them by using high-level computer programming languages into computer 

programs or software packages. The computational part simply means the 

study of the fluid flow through numerical simulations, which involves 

employing computer programs or software packages performed on high-

speed digital computers to attain the numerical solutions. Another question 

arises "Do we actually require the expertise of three specific people from 

each discipline -fluids engineering, mathematics, and computer science- to 

come together for the development of CFD programs or even to conduct 

CFD simulations?” The answer is obviously no, and more likely it is 

expected that this field demands a person who will proficiently obtain some 

subsets of the knowledge from each discipline.” 

 

 
Figure 2.1 The different disciplines contained within computational fluid dynamics 

[2] 

 

 CFD has also become one of the three basic methods or approaches that can be 

employed to solve problems in fluid dynamics and heat transfer. As demonstrated in 

Figure 2.2, each approach is strongly interlinked and does not lie in isolation.  

Computa)onal	  
Fluid	  Dynamics	  

(CFD)	  

Engineering	  
(Fluid	  

Dynamics)	  

Mathema7cs	  Computer	  
Science	  
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Figure 2.2 The three basic approaches to solve problems in fluid dynamics and heat 

transfer. [2] 

2.2 ADVANTAGES OF COMPUTATIONAL FLUID DYNAMICS 

 With the rapid advancement of digital computers, CFD is poised to remain at the 

forefront of cutting edge research in the sciences of fluid dynamics and heat transfer. 

Also, the emergence of CFD as a practical tool in modern engineering practice is steadily 

attracting much interest and appeal.  

 

 There are many advantages in considering CFD. The theoretical development of 

the computational sciences focuses on the construction and solution of the governing 

equations and the study of various approximations to these equations [2]. CFD 

complements experimental and analytical approaches by providing an alternative cost-

effective means of simulating real fluid flows. Particularly, CFD substantially reduces 

lead times and costs in designs and production compared to experimental-based approach 

and offers the ability to solve a range of complicated flow problems where the analytical 

approach is lacking [2]. CFD has the capacity of simulating flow conditions that are not 

Computa7onal	  
Fluid	  Dynamics	  

Analy7cal	  Fluid	  
Dynamics	  

Experimental	  
Fluid	  Dynamics	  
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reproducible in experimental tests found in geophysical and biological fluid dynamics, 

such as nuclear accident scenarios or scenarios that are too huge or too remote to be 

simulated experimentally (e.g., Indonesian Tsunami of 2004). Furthermore, CFD can 

provide rather detailed, visualized, and comprehensive information when compared to 

analytical and experimental fluid dynamics [3]. Although CFD is advantageous, it cannot 

easily replace experimental testing as a method to gather information for design purposes. 

Despite its many advantages, the researcher must consider the inherent limitations of 

applying CFD. Numerical errors occur during computations; therefore, there will be 

differences between the computed results and reality [18]. 

2.3 NUMERICAL METHOD 

 CFD codes are structured around the numerical algorithms that can handle fluid 

flow problems. All the CFD commercial packages available in the market have three 

basic elements, which divide the complete analysis of the numerical experiment to be 

performed on the specific domain or geometry. The three basic elements are  

i. Pre-processor  

ii. Solver  

iii. Post-Process 
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Figure 2.3 The inter-connectivity functions of the three main elements within a CFD 

analysis framework. [2] 

2.3.1 PRE-PROCESSOR 

 Pre-processor consists of input of a flow problem by means of a user-friendly 

interface and subsequent transformation of this input into form of suitable for the use by 

the solver. The pre-processor is the link between the user and the solver.  

Pre-processor 

• Creation of geometry 
• Mesh generation 
• Material properties 
• Boundary conditions 

Governing equations solve on a mesh 

• X-Y graphs 
• Contour 
• Velocity vectors 
• Others 

Post-processor 

Transport Equations 
 
• Mass 
• Momentum 
• Energy 
• Other transport variables 
• Equation of state 
• Supporting physical 

models 

Physical Models 
 
• Turbulence 
• Combustion 
• Radiation 
• Other Process 

Solver Settings 
 
• Initialization 
• Solution control 
• Monitoring solution 
• Convergence criteria 

Solver 
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2.3.1.1 CREATION OF GEOMTRY 

 This process involves several computer aided design (CAD) software like 

CATIA®, Solidworks®, Pro-E® and many more. The help of CAD software defines the 

topology of the fluid flow region of interest. This software plays a major part of the 

design and optimization process in research analysis. 

2.3.1.2 MESH GENERATION 

 Mesh generation constitutes one of the most important steps during the pre-

process stage after the definition of the domain geometry. CFD requires the subdivision 

of the domain into a number of smaller, non overlapping subdomains in order to solve the 

flow physics within the domain geometry that has been created; this results in the 

generation of a mesh (or grid) of cells (elements or control volumes) overlaying the 

whole domain geometry. The essential fluid flows that are described in each of these cells 

are usually solved numerically so that the discrete values of the flow properties such as 

the velocity, pressure, temperature, and other transport parameters of interest are 

determined. This yields the CFD solution to the flow problem that is being solved. The 

accuracy of a CFD solution is governed by the number of cells in the mesh within the 

computational domain. In general, the provision of a large number of cells leads to the 

attainment of an accurate solution. However, the accuracy of a solution is strongly 

dependent on the imposed limitations dominated by the computational costs and 

calculation turnover times. 

2.3.1.3 DEFINITION OF FLUID PROPERTIES 

 Every surface or fluid domain has its own distinct property. The properties of the 

fluid used in the CFD domain are defined at this stage of the CFD Process.  
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2.3.1.4 BOUNDARY CONDITIONS 

 The complex nature of many fluid flow behaviors has important implications in 

which boundary conditions are prescribed for the flow problem. A CFD user needs to 

define appropriate conditions that mimic the real physical representation of the fluid flow 

into a solvable CFD problem. Every different setup of the CFD domain needs to have an 

initialization, which is fulfilled by the boundary conditions input [2]. The CFD code 

usually has this facility to define the boundary conditions of the CFD problem, where 

each cells at specific boundary are given finite values. 

2.3.2 NUMERICAL SOLVER 

 The appropriate usage of either an in-house or a commercial CFD code 

commands the core understanding of the underlying numerical aspects inside the CFD 

solver. This section focuses on the treatment of the solver element. A CFD solver can 

usually be described and envisaged by the solution procedure presented in Figure 2.4 
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Figure 2.4 An overview of the solution procedure [2] 

 

 In the current market, the solvers usually use three distinct ways of calculating the 

solutions, namely, the finite difference method, finite element method and the finite 

volume method. The finite difference and finite element method are usually suitable for 

stress and structure analysis. On the other hand the finite volume method is the most 

suitable method for the CFD process. As the name implies, finite volume method is the 

numerical algorithm calculation process involving the use of finite volume cells. The 

steps involved in this solving process are usually carried out in the following sequence:  

 

i. Formal integration of the governing equations of fluid flow over all the 

control volumes or finite volumes of the solution domain.  

ii. The conversion of the integral forms of the equations into a system of 

algebraic equations.  

iii. Calculations of the algebraic equations by an iterative method. 

Ini7aliza7on	  

Solu7on	  control	  

Monitoring	  Solu7on	  

CFD	  calcula7on	  

Check	  for	  
convergence	  

No	   Modify	  solu7on	  
parameters	  or	  mesh	  

Yes	   STOP	  
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2.3.3 POST PROCESSOR 

 Commercial CFD codes such as ANSYS® Inc., CFX®, ANSYS Fluent®, STAR-

CD®, and others often incorporate impressive visualization tools within their user-

friendly GUIs to allow users to graphically view the results of a CFD calculation at the 

end of a computational simulation. Those data visualization tools of the CFD solver to 

observe the following results of the simulation: 

 

i. Domain geometry and Grid display 

ii. Vector plots 

iii. Line and shaded contour plots 

iv. 2D and 3D surface plots 

v. Particle tracking 

vi. XY plots and graphs of results 

 

3 VEHICLE AND THE SPOILER 

3.1 INTRODUCTION TO SPOILER 

 A spoiler is an automotive aerodynamic device whose intended design function is 

to “spoil” unfavorable air movement across a body of a vehicle in motion, usually 

described as drag. Spoilers on the front of a vehicle are often called air dams, because in 

addition to directing airflow they also reduce the amount of air flowing underneath the 

vehicle, which generally reduces aerodynamic lift and drag. Spoilers are often fitted to 

race and high-performance sports cars, although they have become common on passenger 

vehicles as well. Some spoilers are added to cars primarily for styling purposes and have 

either little aerodynamic benefit or even make the aerodynamics worse.   

 

 The goal of many spoilers used in passenger vehicles is to reduce drag and 

increase fuel efficiency. Passenger vehicles can be equipped with front and rear spoilers. 

Front spoilers, found beneath the bumper, are mainly used to decrease the amount of air 
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going underneath the vehicle to reduce the drag coefficient and lift.  Sports cars are most 

commonly seen with front and rear spoilers. Even though these vehicles typically have a 

more rigid chassis and a stiffer suspension to aid in high-speed maneuverability, a spoiler 

can still be beneficial. This is because many vehicles have a fairly steep downward angle 

going from the rear edge of the roof down to the trunk or tail of the car, which may cause 

airflow separation. The flow of air becomes turbulent and a low-pressure zone is created, 

increasing drag and instability. Adding a rear spoiler could be considered as making the 

air "see" a longer, gentler slope from the roof to the spoiler, which helps to delay flow 

separation and the higher pressure in front of the spoiler can help reduce the lift on the 

car by creating down force. This may reduce drag in certain instances and will generally 

increase high-speed stability due to the reduced rear lift.  Due to their association with 

racing, consumers often view spoilers as “sporty”. 

3.2 GENERIC MODELS 

3.2.1 VEHICLE GENERIC MODELS AND DIMENSIONS 

 The Generic model of the vehicle is shown in Figure 3.1 and Figure 3.2 below 

with relevant dimensions. The length of the model is 479 cm, the width of the model is 

191 cm, and the height of the model is 159 cm.  
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Figure 3.1 Dimensions of the generic vehicle model [side-view] 

 

  
Figure 3.2 Dimensions of the generic vehicle model [back-view] 



 

 21 
 

3.2.2 SPOILER GENERIC MODELS AND DIMENSIONS 

 In the numerical analyze, two different spoiler styles have been used. The first 

spoiler was a “wing” style spoiler, which was mounted 23 cm above the surface of the 

vehicle’s rear-end, on the other hand the second spoiler was mounted edge of the rear 

side of the vehicle without leaving a gap between spoiler and the surface of vehicle. The 

generic model of the first spoilers is shown in Figure 3.3 below, while the generic model 

of second spoilers is shown in Figure 3.4, with relevant dimensions.  

 

  
Figure 3.3 Generic model and dimensions of first spoiler (dimensions are in meters) 
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Figure 3.4 Generic model and dimensions of second spoiler 

4  NUMERICAL SIMULATION 

 

 Numerical simulations have been performed on the vehicle (with/without spoiler) 

3D CAD models using the CFD techniques. The software used for the numerical analysis 

was ANSYS FLUENT®.     

4.1 CAD MODELS 

 The models of both vehicle and two different spoilers have been 3D printed using 

the software called SolidWorks® to CAD format for numerical analysis. 
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Figure 4.1 Vehicle 3D CAD model 

 

 

 
Figure 4.2 First spoiler 3D CAD model 
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Figure 4.3 Second spoiler 3D CAD model 

 

 Spoilers were mounted in a rear portion of a vehicle with using “assembly” 

functionality of SolidWorks®. These assembled models are now ready to use for numeral 

analysis. 

 

 
Figure 4.4 Assembly 3D CAD model of vehicle and first spoiler 
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Figure 4.5 Assembly 3D CAD model of vehicle and second spoiler 

4.2 VIRTUAL WIND TUNNEL AND VEHICLE ORIENTATION 

 The vehicle itself (Figure 4.1), vehicle with first spoiler (Figure 4.4) and vehicle 

with second spoiler (Figure 4.5) 3D CAD models shown above have been orientated in 

the virtual wind tunnel one-by one to performed three cases, benchmark #1, benchmark 

#2 and benchmark #3. A virtual air-box has been created around the 3D CAD model 

(Figure 4.6), which represents the wind tunnel in the real life. Since we are more 

interested in the rear side of vehicle, which is where the “wake of vehicle” phenomenon 

occurs, more space has been left in the rear side of the vehicle model to capture the flow 

behavior mostly behind the vehicle. 
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Figure 4.6 Virtual wind tunnel and the vehicle orientation 

 

 Due to the complexity of the simulation with limited computer resources and 

time, the complete domain was divided to half using a symmetry plane (YZ plane), which 

means, the simulation would be calculated for just the one side of the vehicle and since 

the other side is symmetric and YZ plane has been defined as symmetric boundary in the 

solver to make the boundary condition as “a slip wall with zero shear forces”; the 

simulation results would be valid for full model as well. All 6 surfaces of the virtual wind 

tunnel (air-box) have been named (Figure 4.7) so the numerical solver of ANSYS 

FLUENT® would recognize them and apply the appropriate boundary conditions 

automatically.  
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a) Velocity-inlet 

 

 
b) Symmetry 
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c) Symmetry-top 

 

 
d) Symmetry-side 
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e) Pressure-outlet 

 

 
f) Wall 

Figure 4.7 Virtual wind tunnel surface labeling for automatic appropriate boundary 

conditions. a) Velocity-inlet, b) Symmetry, c) symmetry-top, d) symmetry-side, e) 

pressure-outlet, f) wall 

 

 Since the right and top surfaces of the car-box was way far away from the vehicle 

and has no influence on the vehicle at all; they were named as “symmetry-top” and 
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“symmetry-side” which was for not because they were symmetric but to give them the 

same boundary conditions as symmetric surface (which is slip wall with zero shear 

forces)  

4.3 MESH GENERAION 

4.3.1 MESH SIZING AND INFLATION 

 The triangular shape surface mesh was used due to its proximity to changing 

curves and bends. These elements easily adjust to the complex bodies used in automobile 

and aerospace bodies. With the default settings for mesh generation, ANSYS Meshing® 

has generated the meshes as seen in Figure 4.8. This coarse meshing with the standard 

settings was used to run benchmark #1 which will be discussed in the next chapter. 

 

 
Figure 4.8 Mesh generation with standard settings. 

  

 With the global mesh sizing settings, ANSYS Meshing® recognized that there 

were some curvatures around the vehicle body. But the meshing was very coarse and it 

was only the initial guess by the software. In order to capture more accurate data through 

solver we needed to improve the mesh. The first thing to do was changing the mesh 

sizing parameters. All meshing sizing parameters that have been altered are given in the 
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Table 4-a. As seen in Figure 4.9 ANSYS Meshing® has generated the meshes with the 

new sizing parameters that are given in the Table 4-a.  

 

 
Figure 4.9 Mesh generation with modified sizing settings. 

 

 

 The new mesh looked more decent but still it was lack of inflation layer around 

the vehicle body. The inflation layer has been enabled and “Automatic inflation: Program 

Controlled” has been set to capture the boundary effects of the flow around the body 

more accurately. The vehicle body itself and the road have been included to “program 

controlled inflation” while the other named selections (velocity-inlet, pressure-outlet, 

symmetry etc.) are excluded. Based on what is advised for vehicle external aerodynamics 

with ANSYS FLUENT® by Marco Lanfrit [7] guideline, the inflation option has been set 

as “First Aspect Ratio” instead of “Smooth Transition” (which was the default value).  



 

 32 
 

  
Figure 4.10 Mesh generation with the inflation layers  

 

 Figure 4.10 shows the new mesh after the automatic inflation has been enabled as 

“program controlled” and the inflation option has been selected as “first aspect ratio”. 

Another recommendation from the guideline by Fluent Germany [7] is to create a new 

volume control box around the body where the elements can be limited to a certain size; 

just like how the standard meshing sizes were limited to minimum 17.823 mm and 

maximum 500 mm through the entire domain. The advantage of using a control volume 

and limiting the mesh sizing within the control volume only, lets us to improve the 

meshing quality only within in the area where we need high resolution mesh; instead of 

having fine mesh in the entire domain which would eliminate the time consumption to 
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run the simulation and leads us to get decent results quickly. There are several ways 

doing this, one of them is to create a “sphere of influence”, but this method is used 

usually for helicopter or airplane simulation mostly when there is no wall (or road) 

involved. Another way of doing this is to create a virtual box around the vehicle that is 

2.5 times longer in the z-direction, and 1.5 times longer in the x and y-directions. The 

orientation of this virtual box (which was called as “car-box”) can bee seen in Figure 

4.11. 

 

 
Figure 4.11 Virtual car-box orientation 

 

 The virtual car-box was orientated as seen in Figure 4.11 and it can be noticeable 

in the figure that there is more space at the backside than the front side of the vehicle. It is 

because we are more interested in behavior of the airflow at the backside of vehicle after 

it passes the vehicle. Once the virtual car-box was generated and its mesh sizing was 

limited to 80mm with the “body sizing” functionality in the software, the new mesh 

became very detailed and ready to run in the solver. The final meshing can be seen in 

Figure 4.12. The same procedure to create high resolution meshing has been followed for 

all cases (Case #1:Vehicle itself, Case #2:Vehicle with first spoiler, Case #3:Vehicle with 

second spoiler) exactly the same.  
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Figure 4.12 The final mesh 

 

  



 

 35 
 

 

 Case #1, Case #2, Case #3, 

Benchmark #3 

Benchmark 

#1 

Benchmark 

#2 

Global Mesh Sizing Settings 

Use Adv. Size Fun. On: Proximity and Curvature On: Curvature 

Relevance Center Coarse Coarse 

Initial Size Speed Active Assembly Active Assembly 

Smoothing High Medium 

Transition Slow Slow 

Span Angle Center Fine Fine 

Curvature Nor. Angle 12.0o 18.0o 12.0o 

Proximity Accuracy 0.5 - 

Minimum Size 17.823mm 17.823mm 

Maximum Size 500mm 3,564mm 

Growth Rate 1.20 (20%) 

Inflation 

Use Automatic 

Inflation 

Program Controlled - Program 

Controlled 

Inflation Option First Aspect Ratio - First Aspect 

Ratio 

First Aspect Ratio 5 - 5 

Maximum Layers 5 - 5 

Growth Rate 1.2 (20%) 

Virtual Car-Box (body sizing) 

Type Body of Influence - - 

Element Size 80mm - - 

Figures Figure 4.12 Figure 5.12 Figure 5.16 

Table 4-a Mesh sizing parameters 
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4.4 VALIDATION PROCEDURE 

 Good engineering practice suggests that prior to using an analysis technique on a 

new configuration, one should benchmark the technique against a known (respected) 

initial case or test case similar to the new configuration. The validation assessments of a 

CFD simulation that have been used in this thesis can be summarized as 

  

 Examine iterative convergence 

 Validation assessment requires that a simulation demonstrate iterative 

convergence.  

 

 Examine grid convergence 

 The examination of the spatial convergence of a simulation is a straightforward 

method for determining the ordered discretization error in a CFD simulation. The method 

involves performing the simulation on two or more successively finer grids. The term 

grid convergence study is equivalent to the commonly used term grid refinement study. I 

wanted to determine the error band for the engineering quantities obtained from the finest 

grid solution. However, if the CFD simulations are part of a design study that may 

require tens or hundreds of simulations, which is the case of this thesis, then one of the 

coarser grids should be used. Thus I also wanted to be able to determine the error on the 

coarser grid. The benchmark #1 has been performed to compare the results between fine 

resolution grids and coarse resolution grids while the benchmark #2 has been performed 

to find out how the resolution is effective in terms of getting decent results and to find out 

how the solutions vary depends on the grid resolution. 

 

 

 Compare CFD results to experimental data 

Experimental data is the observation of the “real world” in some controlled manner. By 

comparing the CFD results to experimental data, one hopes that there is a good 

agreement, which increases confidence that the physical models and the code represents 

the "real world" for this class of simulations. However, no (trusted) experimental data has 
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been found to compare the CFD simulation results, so this validation assessment doesn’t 

work for this thesis at all. 

 

 Examine model uncertainties 

The physical models in the CFD code contain uncertainties due to a lack of complete 

understanding or knowledge of the physical processes. One of the models with the most 

uncertainty is the turbulence model. The uncertainty can be examined by running a 

number of simulations with the various turbulence models and examine the affect on the 

results. The benchmark #3 has been performed for comparing the results of using 

different turbulence models. 

4.5 SOLVER SETTINGS 

 The problem of vehicle external flow numerical analysis required the solver 

settings to be completed before starting the simulations. The solver setting includes type 

of solver (3D or 2D), the viscous model, boundary conditions and solution controls. The 

inlet of the wind tunnel was indicated by the term “velocity-inlet”, while the outlet of the 

wind tunnel was termed as “pressure-outlet”.  The solver settings and boundary condition 

for all the cases and benchmarks are shown in the tables below (Table 4-b, Table 4-c and 

Table 4-d). 
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 Case 

#1 

Case  

#2 

Case  

#3 

Benchmark 

#1 

Benchmark 

#2 

Benchmark  

#3 

Simulation 3d, pbns, rke 3d, pbns, sstkw 

Pressure-Velocity Coupling 

Scheme Coupled 

Solver 

Gradient Least Squares Cell Based 

Iteration First Order Upwind for the first 100 iterations;  

Second Order Upwind until converged 

Flow Courant 

Number 

50 

Explicit Relaxation Factors 

Pressure 0.25 

Momentum 0.25 

Under-Relaxation Factors 

Tur. Kin. En. 0.8 

Tur. Dis. Rate 0.8 

Tur. Viscosity 0.8 for the first 100 iterations, then 0.95 until converged 

Table 4-b Solver settings 
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 Case 

#1 

Case  

#2 

Case  

#3 

Benchmark 

#1 

Benchmark  

#2 

Benchmark  

#3 

Viscous Model 

Tur. Model 𝑘 − 𝜀 (2 eqn) 𝑘 − 𝜔 (2 eqn) 

𝑘 − 𝜀 Model Realizable - 

𝑘 − 𝜔 Model - Shear Stress 

Transport (SST) 

Near-wall 

Treatment 

Non-Equilibrium Wall Functions - 

Table 4-c Viscous model and turbulence model settings 

 

Boundary Conditions (for all cases and benchmarks) 

Velocity Inlet Magnitude and Direction 30m/s   (Positive Z-direction) 

Turbulence Specification Method Intensity and Viscosity Ratio 

Turbulence Intensity 1.00% 

Turbulent Viscosity Ratio 10 

Pressure 

Outlet 

Gauge Pressure magnitude 0 Pascal 

Gauge Pressure direction Normal to boundary 

Turbulence Specification Method Intensity and Viscosity Ratio 

Backflow Turbulence Intensity 10% 

Backflow Turbulent Viscosity Ratio 10 

Wall Zones No Slip 

Symmetry No Slip 

Fluid 

Properties 

Fluid Type Air 

Density 𝜌 = 1.175   𝑘𝑔 𝑚! 

Kinematic viscosity 𝜈 = 1.8247𝑥10!! 𝑘𝑔 𝑚 ∙ 𝑠 

Table 4-d Boundary condition settings 
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5 SIMULATION RESULTS 

5.1 SIMULATION RESULTS OF CASE #1, CASE #2 AND CASE #3   

 A 3D steady state, incompressible solution of the Navier-Stokes equations was 

performed using ANSYS FLUENT®. Turbulence modeling was done with the realizable 

k-ε model using non- equilibrium wall functions. The computational results for the 

following cases are presented and discussed:  

 

 Case #1: Vehicle model without rear-spoiler  

 Case #2: Vehicle model with the first rear-spoiler design  

 Case #3: Vehicle model with the second rear-spoiler design 

 

 All the results for different cases were obtained with the same meshing resolution, 

the same k − ε turbulence model, and also the same boundary conditions. The free stream 

velocity was set to be 30m/s (~65mph, which is the speed limit in highways). For the first 

100 iterations, a first order upwind discretization was used to accelerate the convergence 

then after 100 iterations second order upwind scheme has been applied and iterations 

have continued until it reached to the convergence criteria. The convergence criteria were 

having all residuals below 1e-3. The plots of residuals for all 3 different cases are given 

in Figure 5.1, Figure 5.2 and Figure 5.3 respectively. 
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Figure 5.1 The scaled residuals convergence history for case #1 

 

 
Figure 5.2  The scaled residuals convergence history for case #2 
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Figure 5.3 The scaled residuals convergence history for case #3 

 

 As seen in the Figure 5.1, Figure 5.2 and Figure 5.3 residuals are jumped off at 

the 101st iteration because the scheme has been changed from first order upwind to 

second order upwind in order to reach convergence much faster. 

 

 Figure 5.4 shows the convergence history of drag coefficient of case #1 and case 

#2. In both cases, the drag coefficient has converged very quickly and changed only by 1-

2% after the 200th iteration (which is 100 iterations more after the second order upwind 

scheme was applied). 
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Figure 5.4 Drag coefficient (CD) convergence histories of case #1 and case #2 

 

 There was significant change in terms of drag force, and same thing happened in 

down-force (negative lift-force) over the vehicle body by having a spoiler at rear-end 

although the case #3 didn’t give the as big effect as case #2 - drag coefficient has dropped 

down to 0.217 only. Since Case #2 and Case #3 have exactly same meshing resolution, 

the same k − ε turbulence model, and also the same boundary conditions, it has been 

found that the drag reduction by having spoiler at the rear end of the vehicle is very much 

dependent on the shape (design) of the spoiler. On the other hand, case #3 generated 

significant down-force (negative lift-force); the lift coefficient with the help of the second 

spoiler (case #3) has reduced to -0.268 while it was reduced to -0.239 with the help of the 
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first spoiler (case #2). The vehicle itself without any spoiler had -0.222 lift coefficient, 

which was our reference point. Drag and lift coefficients for all three cases are presented 

in Table 5-a.  

 

Model CD CL 

Case #1  

(Vehicle only) 

0.232 -0.222 

Case #2 

(Vehicle + First spoiler) 

0.192 -0.239 

Case #3 

(Vehicle + Second spoiler) 

0.217 -0.268 

Table 5-a Drag and list coefficients for 3 cases 

 The results for case #2 and case #3 (which were the cases when the two different 

spoilers attached at the rear end of vehicle) were compared with the results with case 

#1(vehicle without spoiler).  

 

 
Figure 5.5 Velocity distribution of flow in the symmetry plane for case #1 (maximum 

velocity: 39.59 m/s) 
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Figure 5.6 Velocity distribution of flow in the symmetry plane for case #2 (maximum 

velocity: 41.45 m/s) 

 

 
Figure 5.7 Velocity distribution of flow in the symmetry plane for case #3 (maximum 

velocity: 39.54 m/s) 

 

 Contours of velocity for a high-speed vehicle at the symmetry plane for all 3 cases 

are shown in Figure 5.5, Figure 5.6 and Figure 5.7 respectively. The vehicles with rear 

spoiler (case #2 and case #3) had large and double air swirls at the rear end. It has been 

found that there were recirculation zones behind the rear end of the vehicle. By 

comparing the cases in figures, the recirculation zone behind the rear end of vehicle with 

spoiler situations (case #2 and case #3) were clearly larger.   
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Figure 5.8 Velocity streamlines of flow in the symmetry plane for case #1 

 

 
Figure 5.9 Velocity streamlines of flow in the symmetry plane for case #2 
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 As we see in the Figure 5.8 there were two different recirculation zones at the 

rear end of the vehicle (one behind the vehicle, and one above the rear window). By 

comparing Figure 5.8 and Figure 5.9 it has been seen that; the recirculation zone above 

the rear window was almost gone by using spoiler. The air slopes gently above the rear 

window, which helps keeping the rear window cleaner. It has been found that keeping the 

rear window cleaner is one of the advantages of using spoiler. 

 

 
Figure 5.10 Velocity vectors of flow in the symmetry plane for case #1 
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Figure 5.11 Velocity vectors of flow in the symmetry plane for case #2  

 

 By comparing velocity vectors and velocity streamlines of with/without spoiler 

situations; (Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11) it has been seen that 

the recirculation zone behind the rear end of vehicle with spoiler is clearly larger. 

 

5.2 SIMULATION RESULTS OF BENCHMARK #1, BENCHMARK #2 AND 

BENCHMARK #3  

 The benchmark #1 and benchmark #2 have been performed to understand the 

differences between fine resolution grids and coarse resolution grids while benchmark #3 

has been performed to compare the results of using different turbulence models. For this 

purpose, the case#2 and its geometry, its convergence history and its simulation results 

were taken as reference points for all benchmarks and the results were compared based 

on taking the case #2 as reference point. The solver settings, viscous model and the 

turbulence model settings that were used for benchmark #1, benchmark #2 and 
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benchmark #3 have been declared in Table 4-b and Table 4-c and mesh sizing settings 

has been declared in the Table 4-a previously.  

5.2.1 BENCMARK #1: EXAMINE GRID CONVERGENCE 

 By following the mesh sizing settings that were declared in the Table 4-a (which 

were actually the default settings in ANSYS Meshing®) the mesh we got is shown in 

Figure 5.12. 

 
Figure 5.12 The coarse mesh that used in benchmark #1 

 

 After creating the coarse mesh, the next to do is to proceed straight forward to 

ANSYS FLUENT® Solver setup. The solver settings in the Table 4-b were used. Since 

the meshing is very coarse, 340 iterations took only less than half an hour, while 350 

iterations in case #1, case #2 and case #3 took more than 4-5 hours. The criteria to 

converge were the same, which were having all residuals below 1e-3. The same 

procedure has been followed which was starting the calculation with first order upwind 

for the first 100 iterations and switching to second order upwind scheme until it 

converged. It has been found that, the CD and CL is almost the same in 100th iteration 

(which was when the scheme was changed to second order upwind) and in 340th iteration 

(which was when the solution was converged with second order upwind). Figure 5.13 
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shows the scaled residual convergence history of benchmark #1 while Figure 5.14 and 

Figure 5.15 shows the drag coefficient and lift coefficient convergence histories 

respectively. 

 

 
Figure 5.13 Scaled residuals convergence history of benchmark #1 

 

 
Figure 5.14 CL convergence history of benchmark #1 
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Figure 5.15 CD convergence history of benchmark #1 

 

 The calculated CD and CL were 0.229 and -0.368. The CD was close (only 12% 

difference) to what we have calculated in case #2 but the CL was way different (35% 

difference). If we rebuild the Table 5-a by adding the benchmark #1 results, the table 

would become as seen in Table 5-b. 

 

 

Model CD CL 

Case #1  

(Vehicle only + Fine meshing) 

0.232 -0.222 

Case #2 

(Vehicle + First spoiler + Fine meshing) 

0.192 -0.239 

Case #3 

(Vehicle + Second spoiler + Fine meshing) 

0.217 -0.268 

Benchmark #1 

(Vehicle + First spoiler + Coarse meshing) 

0.229 -0.368 

Table 5-b Drag and list coefficients for 3 cases + benchmark #1 
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5.2.2 BENCMARK #2: EXAMINE GRID CONVERGENCE 

 The drag and lift coefficients that we have found in benchmark #1 were relatively 

different than what we have found through case #2, for better understanding the 

difference between coarse and fine meshing, a new benchmark should have been 

performed with using medium resolution meshing. In benchmark #2 medium resolution 

meshing has been used and also the program controlled inflation layers has been applied. 

We were expecting to get relatively close drag and lift coefficients values in this 

benchmark #2. By following the mesh sizing settings for benchmark #2 that were 

declared in the Table 4-a the mesh we got is shown in Figure 5.16 

 

 
Figure 5.16 The medium mesh that used in benchmark #2 

 

 After creating the mesh, the next to do was to proceed straight forward to ANSYS 

FLUENT® Solver setup. The solver settings in the Table 4-b were used. The criteria to 

converge remained the same, which were having all residuals below 1e-3. And the same 

procedure has been followed which was starting the calculation for the first 100 iterations 
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with first order upwind and then continuing until it converged with second order upwind. 

Figure 5.17 shows the scaled residual convergence history of benchmark #2 and Figure 

5.18 and Figure 5.19 show the drag coefficient and lift coefficient convergence histories 

respectively. 

 

 
Figure 5.17 Scaled residuals convergence history of benchmark #2 

 

 
Figure 5.18 CD convergence history of benchmark #2 
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Figure 5.19 CL convergence history of benchmark #2 

 

 The calculated CD and CL are 0.206 and -0.266. The CD was only 6% different 

while the CL was only 10% different than what we have calculated in case #2. It has been 

found by performing benchmark #2 that, higher meshing resolution leads to get more 

accurate results. If we rebuild the Table 5-b by adding the benchmark #2 results, the table 

would become as seen in Table 5-c. 

 

 

Model CD CL 

Case #1  

(Vehicle only) 

0.232 -0.222 

Case #2 

(Vehicle + First spoiler + Fine meshing) 

0.192 -0.239 

Case #3 

(Vehicle + Second spoiler + Fine meshing) 

0.217 -0.268 

Benchmark #1 

(Vehicle + First spoiler + Coarse meshing) 

0.229 -0.368 

Benchmark #2 

(Vehicle + First spoiler + Medium meshing) 

0.206 -0.266 

Table 5-c Drag and list coefficients for 3 cases + benchmark #1 + benchmark #2 



 

 55 
 

5.2.3 BENCMARK #3: EXAMINE MODEL UNCERTAINTIES 

 The uncertainty in the turbulence models can be examined by running a number 

of simulations with the various turbulence models and examines the affect on the results. 

The benchmark #3 has been performed for comparing the results of using different 

turbulence models. For this purpose, the case #2 and its geometry, its meshing settings 

were carried exactly the same but the turbulence models were changed to k-𝜔. The new 

settings for turbulence models and solver settings that used in benchmark #3 have been 

declared in Table 4-b and Table 4-c. The results would be compared with what we have 

gotten from case #2. And also the Table 5-c was recreated by adding the new CD and CL 

values that we got from benchmark #3 for better understanding the difference. Since we 

didn’t touch the meshing settings at all, the mesh that we are going to use would be same 

as Figure 4.12. (Only this time it includes the spoiler at the rear end since case #2 that 

we are going to take as reference, is model of vehicle with the first spoiler) 

 

 The same procedure has been followed. The solution has started with first order 

upwind for the first 100 iterations to accelerate the convergence and then continued with 

second order upwind scheme. But k-𝜔 turbulence model refused to converge. The 

“continuity” residual was 4.83e-3 at the 280th iteration and it went up and down little bit 

but it became 4.81e-3 at 345th and 415th iterations then even it became 5.19e-3 at 430th 

iteration. From that point it tended to go up to 6e-3. Which showed us that it would never 

converge. Having all residuals below 1e-3 was our convergence criteria. Also it has been 

seen that time consumed for each iteration has also increased comparing to k-e turbulence 

model. Due to the lack of computer resources and time, the calculation has stopped at 

440th iteration. The convergence history of residual for benchmark #3 can be seen in 

Figure 5.20.  
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Figure 5.20 Scaled residuals convergence history of benchmark #3 

 

 As it is seen in Figure 5.21 and Figure 5.22 the drag coefficient and lift 

coefficient are still varying. Since the solution refused to converge, and the coefficients 

tended to change; it was not possible to get a stable drag and lift coefficients.   

 

 

 
Figure 5.21 CL convergence history of benchmark #3 
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Figure 5.22 CD convergence history of benchmark #3 

 

 The calculated CD and CL at 400th iteration were 0.247 and -0.216, which were 

way different than what we got with the solution from case #2. The solution of 

benchmark #3 indicates that having a spoiler at the rear end increase the drag and 

decrease the down-force. Which negatively effects to both forces; then there would be no 

point to use the spoiler. If we rebuild the Table 5-c and add the benchmark #3 results, the 

table would become as seen in Table 5-d 
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Model CD CL 

Case #1  

(Vehicle only + Fine meshing) 

0.232 -0.222 

Case #2 

(Vehicle + First spoiler + Fine meshing) 

0.192 -0.239 

Case #3 

(Vehicle + Second spoiler + Fine meshing) 

0.217 -0.268 

Benchmark #1 

(Vehicle + First spoiler + Coarse meshing) 

0.229 -0.368 

Benchmark #2 

(Vehicle + First spoiler + Medium meshing) 

0.206 -0.266 

Benchmark #3 

(Vehicle + First spoiler + Fine meshing + k-𝜔 

turbulence model) 

0.247 -0.216 

Table 5-d Drag and list coefficients for 3 cases + benchmark #1 + benchmark #2 + 

benchmark #3 

 

6 CONCLUSION 

 

 The aerodynamic lift, drag and flow characteristics of a high-speed (~65 mph) 

generic sedan passenger vehicle with a spoiler and without a spoiler situations were 

numerically investigated. Due to lack of converged solution, time and CPU consuming 

for each iteration and lack of having constant CD and CL values; benchmark #3 has 

showed that the most appropriate turbulence model for external flows around the car 

body is 𝑘 − 𝜀 model. Benchmark #1 and benchmark #2 have showed us that we might 

face some not appropriate results if the meshing resolution is not fine enough.  
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 Performing benchmark #1 and benchmark #2 have also showed us that higher 

resolution mesh leads to more accurate results. Drag and lift coefficients that have been 

obtained through benchmark #2 were closer to case #2 than what have been obtained 

through benchmark #1. For instance, drag coefficients difference between benchmark #1 

and case #2 was 12%, while it was only 6% between benchmark #2 and case #2. 

 The numerical analyze of high-speed passenger car with first rear spoiler design 

(case #2, which was a wing style spoiler) has showed that the aerodynamic drag is 

reduced from 0.232 to 0.192, which is 17% drag reduction, and it also increases negative 

lift by reducing the lift coefficient from -0.222 to -0.239, which is 7% lift reduction. By 

comparing Figure 5.8 and Figure 5.9 it has been found that; the recirculation zone above 

the rear window was almost gone by using wing style spoiler (first spoiler). The air 

sloped gently above the rear window, which helps keeping the rear window cleaner. 

Numerical analysis has showed us that the second spoiler design (case #1, which was 

mounted to the edge of rear-end of the vehicle without leaving any gap between spoiler 

surface and vehicle surface) provided more negative lift force than the first spoiler shape 

did but provided less drag reduction. It provided 6% drag reduction (dropped the drag 

coefficient from 0.232 to 0.217) but the negative lift force has been increased by 17% 

(dropped the lift coefficient from -0.222 to -0.268). It is known that having down force 

(negative lift force) generates the following advantages:  

 

 Increases tires capability to produce cornering force  

 Stabilizes vehicles at high speed 

 Improves braking performance  

 Gives better traction  

 

 Having more negative force than having less drag can be more important for 

passenger cars since driving safely is always number one priority. This fact should be 

kept in mind that; achieving the benefits of a rear spoiler are usually only realized at high 

speeds. In most cases, a spoiler may actually negatively impact the performance of a car, 

usually at low speeds. Automobile industry have been working on these side effects and 

companies have come up with some solutions to eliminate the negative effects of spoiler 
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in low driving speeds, more about these researches and examples will be discussed in the 

next chapter, which is “future works”. It is a known fact that every time spoiler generates 

down force it tends to generate drag. Very high performance sports cars, like Le Mans or 

F1, have a ratio called the “lift/drag ratio”. The car designers have been trying and 

maximizing this so that the car has just enough force to get around the corners, but not so 

much that they are too slow. Indy cars, and ones that are designed like that can have 

down force in the order of 3G's, at 200mph. That means they could hang completely 

upside down on the track, and as long as they kept going fast enough, they would still 

stick to the road. 

7 FUTURE WORKS 

 

 Companies such as Porsche, Bugatti or Mercedes have been using different 

technologies for spoilers and trying to maximizing the efficiency of it by eliminating the 

side effects in low speeds and increasing the advantages on high speeds. One of the most 

commonly used features is to have a hydraulic wing style spoiler at the rear end of 

vehicle that raises or lower at certain speeds to maintain down force on the backside of 

vehicle or to create air brake. This feature has been used mostly for safe driving. Spoiler 

deployment operation is usually automatic. The software operates the spoiler and fixes it 

in the certain height depends on the vehicle speed but the driver through a button in the 

cabin can also operate it. For instance, hydraulic spoiler that has been used in Bugatti 

Veyron comes up at high speeds to hold the car on the road better by creating down force. 

When the car reaches 220 km/h (140 mph), small hydraulic spoiler deploys from the rear 

bodywork and a wing extends about a foot. This configuration produces substantial down 

force, provides up to 330 pounds in front and 440 in the rear [16], which helps holding 

the car to the road in extreme speeds. 
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