Document Type


Publication Date



American Geophysical Union / John Wiley & Sons, Inc.


The old and useful paradigm used by water resource engineers, that hydrology in a given place is stationary, and hence it is sufficient to look into the past to plan for the future, does not hold anymore, according to climate change projections. This becomes especially true in snow-dominated regions like California, where not only the magnitude but also the timing of streamflow could be affected by changes in precipitation and temperature. To plan and operate water resources systems at the basin scale, it is necessary to develop new tools that are suited for this nonstationary world. In this paper we develop an optimization algorithm that can be used for different studies related to climate change and water resources management. Three applications of this algorithm are developed for the Merced River basin. The first of these gives an assessment of the climate change effects on the operations of this basin considering an adaptive management strategy embedded in the optimization algorithm. In a second application we explore different long-term adaptation strategies intended to mitigate the effects of climate change. A final application is developed to determine how beneficial it is to build a new reservoir considering explicitly the uncertainty about future climate projections.


Copyright © 2010 by the American Geophysical Union. AGU allows final articles to be placed in an institutional repository 6 months after publication.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.