Document Type


Publication Date



Scientific Research Publishing Inc.


The deficit of organ donors has fueled the need for advances in tissue engineering and regenerative medicine. Microencapsulation in alginate immuno-isolation membranes has been used to treat many disabling metabolic disorders, namely, phenylketonuria, kidney failure and diabetes mellitus. Systematic nutrient flux determinations are hindered by the lack of experimental data on alginate-based membrane topography and the pore size thus preventing the full therapeutic potential of the bio-membranes to be reached. In this study, samples of cross-linked alginate membranes were subjected to the following analytical characterization: 1) pore size characterization using atomic force microscopy operated in contact mode to detect and measure pore size; 2) differential scanning calorimetry to confirm biopolymer cross-linking; and 3) diffusivity measurements using spectrophotometry and fluorescence microscopy to confirm the presence of through pores and to calculate reflection coefficients. The pore sizes for the pre-clinical standard formulation of 1.5% (w/v) medium viscosity alginate cross-linked with 1.5% CaCl2 and 0.5% (w/v) alginate and chitosan cross-linked with 20% CaCl2 are 5.2 nm ± 0.9 nm and 7.0 nm ± 3.1 nm, respectively. An increase in the glass transition temperatures as a function of cross-linker concentration was observed. Diffusivity values obtained from the inward diffusivity of creatinine into macrocapsules (d = 1000 μm ± 75 μm) and the outward diffusivity of FITC dextrans from macrocapsules (d = 1000 μm ± 75 μm) and microcapsules (d = 40 μm ± 5 μm) were shown to correlate strongly (R2 = 0.9835) with the ratio of solute to pore sizes, confirming the presence of through pores. Reflection coefficients approaching and exceeding unity correlate with the lack of permeability of the membranes to MW markers that are 70 kDa and greater.


Copyright © 2013 Cheryl Simpliciano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.