
Santa Clara University
Scholar Commons

Computer Engineering Senior Theses Engineering Senior Theses

6-9-2016

TrusNet: Peer-to-Peer Cryptographic
Authentication
Adrian Bedard
Santa Clara University

Jonathan Bedard
Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_senior

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Computer Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Bedard, Adrian and Bedard, Jonathan, "TrusNet: Peer-to-Peer Cryptographic Authentication" (2016). Computer Engineering Senior
Theses. 71.
https://scholarcommons.scu.edu/cseng_senior/71

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior/71?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

TrusNet: Peer-to-Peer Cryptographic Authentication

by

Adrian Bedard
Jonathan Bedard

Submitted in partial fulfillment of the requirements
for the degree of

Bachelor of Science in Computer Science and Engineering
School of Engineering
Santa Clara University

Santa Clara, California
June 6, 2016

TrusNet: Peer-to-Peer Cryptographic Authentication

Adrian Bedard
Jonathan Bedard

Department of Computer Engineering
Santa Clara University

June 6, 2016

ABSTRACT

Originally, the Internet was meant as a general purpose communication protocol, transferring
primarily text documents between interested parties. Over time, documents expanded to include
pictures, videos and even web pages. Increasingly, the Internet is being used to transfer a new
kind of data which it was never designed for. In most ways, this new data type fits in naturally to
the Internet, taking advantage of the near limit-less expanse of the protocol. Hardware protocols,
unlike previous data types, provide a unique set security problem. Much like financial data, hardware
protocols extended across the Internet must be protected with authentication. Currently, systems
which do authenticate do so through a central server, utilizing a similar authentication model to the
HTTPS protocol. This hierarchical model is often at odds with the needs of hardware protocols,
particularly in ad-hoc networks where peer-to-peer communication is prioritized over a hierarchical
model. Our project attempts to implement a peer-to-peer cryptographic authentication protocol to be
used to protect hardware protocols extending over the Internet.

The TrusNet project uses public-key cryptography to authenticate nodes on a distributed network,
with each node locally managing a record of the public keys of nodes which it has encountered.
These keys are used to secure data transmission between nodes and to authenticate the identities of
nodes. TrusNet is designed to be used on multiple different types of network interfaces, but currently
only has explicit hooks for Internet Protocol connections.

As of June 2016, TrusNet has successfully achieved a basic authentication and communication
protocol on Windows 7, OSX, Linux 14 and the Intel Edison. TrusNet uses RC-4 as its stream cipher
and RSA as its public-key algorithm, although both of these are easily configurable. Along with the
library, TrusNet also enables the building of a unit testing suite, a simple UI application designed to
visualize the basics of the system and a build with hooks into the I/O pins of the Intel Edison allowing
for a basic demonstration of the system.

Table of Contents

1 Introduction 1
1.1 Overview . 1
1.2 Current Solutions . 1
1.3 Proposal . 2

2 Project Requirements 3
2.1 TrusNet Library . 3
2.2 Demonstration Application . 4
2.3 Design Constraints . 5

3 Use Cases 7
3.1 Normal API . 7
3.2 Hostile Interactions . 11
3.3 Demonstration . 15

4 Conceptual Model 19
4.1 Overview . 19
4.2 Connection Library . 19
4.3 Network Extension System . 19
4.4 Demonstration Project . 20

5 Component State Charts 22
5.1 Authentication . 22
5.2 Permissions . 24

6 System Sequence Diagram 28
6.1 Connection Security and Authentication . 28
6.2 Network Management . 34

7 Architectural Diagram 37

8 Technologies Used 38
8.1 Build . 38
8.2 Support . 38
8.3 Hardware . 39
8.4 Runtime . 39
8.5 Algorithms . 39

iv

9 Design Rationale 41
9.1 Build . 41
9.2 Support . 41
9.3 Hardware . 42
9.4 Runtime . 42
9.5 Algorithms . 43

10 Development Milestones 44

11 Project Problems 46
11.1 Software Problems . 46
11.2 Hardware Problems . 47
11.3 Team Problems . 47
11.4 Lessons Learned . 48

12 Ethical Analysis 49
12.1 Overview . 49
12.2 Privacy verses Security . 49
12.3 TrusNet Capabilities . 50
12.4 History of Data-Protection . 52
12.5 Ethical Framing . 57
12.6 Conclusion . 60

13 Test Plan 61
13.1 Unit Testing . 61
13.2 Cross-Platform Testing . 62
13.3 Security Testing . 62
13.4 End-to-End Testing . 63
13.5 User Testing . 63

14 Test Results 64
14.1 Unit Testing Results . 64
14.2 Speed Testing Results . 64
14.3 Demonstration Testing Results . 65

15 User Manual 67
15.1 Headless Application . 67
15.2 UI Application . 68
15.3 Library Usage . 77

16 Documentation 80

A Gant Charts 85

B Risk Tables 87

I Datastructures Library 91

C Introduction 92

v

D File Index 93

E File Documentation 95

II Unit Test Library 136

F Introduction 137

G File Index 139

H File Documentation 141

III osMechanics Library 149

I Introduction 150

J File Index 151

K File Documentation 154

IV CryptoGateway Library 182

L Introduction 183

M File Index 184

N File Documentation 189

V TrusNet Library 239

O Introduction 240

P File Index 241

Q File Documentation 243

VI EdisonHAL Library 256

R Introduction 257

S File Index 258

T File Documentation 259

VII WifiRC Library 263

U Introduction 264

vi

V File Index 265

W File Documentation 267

VIII glGraphics Library 277

X Introduction 278

Y File Index 279

Z File Documentation 283

IX CryptoLogin Library 320

AAIntroduction 321

ABFile Index 322

ACFile Documentation 324

X RemoteMain Executable 332

ADIntroduction 333

AEFile Index 334

AF File Documentation 335

XI BaseForm Executable 337

AGIntroduction 338

AHFile Index 339

AI File Documentation 341

vii

List of Figures

3.1 Eavesdropping . 12
3.2 Node spoofing attack . 13
3.3 Denial of service attack . 14
3.4 Permission spamming attack . 15
3.5 Normal operation . 16
3.6 AD-HOC network . 16
3.7 Attempting to spoof a node . 17

4.1 Key management . 20
4.2 IP Address management . 21

5.1 TrusNet authentication states . 23
5.2 TrusNet permission status local tracking . 25

6.1 Securing and authenticating a connection . 29
6.2 Securing a connection . 33
6.3 Authenticating a connection . 34
6.4 TrusNet addressing . 35
6.5 Mesh network . 36

7.1 Overall design for a network . 37

12.1 Public key crypto-system . 55

14.1 256 bit RSA time profiling . 65

15.1 Basic login form . 69
15.2 Building a new user . 70
15.3 New user with mis-matching passwords . 70
15.4 Generating new RSA keys . 71
15.5 List of known users . 72
15.6 Password error pop-up . 72
15.7 Managing IP addresses . 73
15.8 Cryptographic management . 74
15.9 Connection list . 75
15.10Node interface: no connection . 75
15.11Node interface: joystick . 76
15.12Node interface: robot . 76

viii

16.1 Library dependencies . 82

A.1 Fall 2015 Gantt chart . 85
A.2 Winter 2016 Gantt chart . 85
A.3 Spring 2016 Gantt chart . 86

ix

List of Tables

5.1 TrusNet Permissions . 26

10.1 Key milestones . 45

14.1 Time Profiling . 65

B.1 Management Risks . 88
B.2 Design Risks . 88
B.3 Demonstration Risks . 89
B.4 Security Risks . 90

x

Chapter 1

Introduction

1.1 Overview

In the past 15 years, the Internet has transitioned from a method of exchanging simple text doc-

uments to an information super-highway, carrying images, video, files and embedded datagrams

around the world at unprecedented speeds. In the Internet’s early years, hierarchical security pro-

tocols were implemented for the exchange of sensitive financial data. These protocols have since

been extended to include many modern websites and server-client communication. However, as

embedded protocols are increasingly extended over IP, in what is known as the “Internet of Things,”

the hierarchical security model has begun to break down. Increasingly, Internet communications are

occurring between peers, extending old hardware protocols in insecure ways.

1.2 Current Solutions

Current solutions fall into two broad camps; hierarchical and Peer-to-Peer. Often, the hierarchical

model is re-adapted for the Internet of Things. CoAP (Constrained Application Protocol) offers secure

networking for the Internet of Things. CoAP uses an authentication system similar to HTTPS, in which

public key cryptography is used to exchange symmetric keys and sign message hashes to establish

identity. Additionally, CoAP targets cheap systems with limited CPU and RAM. However, CoAP is

hierarchical, thus it does not offer Peer-to-Peer authentication. Nodes authenticate with the server,

but not each-other (Bormann 2015).

1

1.2.1 Peer-to-Peer

Peer-to-Peer technologies, such as ZigBee, 6LoWPAN, and Bluetooth, allow for easy connection

between peers. Such communication is often encrypted to prevent eavesdropping, but both ZigBee

and Bluetooth are notorious for having issues with authentication and spoofing (Patel 2015, Niem

2002). Even Wifi has historically had problems with authentication and spoofing. This is especially

relevant as Wifi nodes are increasingly used as local access points, such as Parrot’s fleet of drones.

1.2.2 Hierarchical

Hierarchical protocols require connection to a server over IP to authenticate. This limitation forces

many Internet of Things applications to use un-authenticated short-range protocols instead because

hierarchical authentication protocols cannot work over such patch-work ad-hoc networks. Peer-to-

Peer technologies, however, have the opposite problem. Peer-to-Peer technologies allow local con-

nection, without the burden of sending packets to the server. However, Peer-to-Peer protocols do not

authenticate, leaving them open to spoofing and impersonation. Such attacks are extremely common

in Peer-to-Peer connections, and are the source of many security breaches in the emerging Internet

of Things.

1.3 Proposal

Our project has secured these peer-to-peer communications through a novel form of peer authenti-

cation, which allows the expanding Internet of Things to communicate robustly and securely across

networks of all types. We have leveraged existing authentication technology at the Peer-to-Peer level

preventing both spoofing and impersonation attacks. Unlike Client-Server protocols, our protocol

does not require a connection to IP for authentication, allowing for extension over ad-hoc networks.

2

Chapter 2

Project Requirements

Requirements are a set of statements which describe the needs and desires of the entities using

the system. In the case of this project, a set of requirements for the underlying networking library,

TrusNet, has been separated from a set of requirements for the demonstration application. The

demonstration application will be used to visualize and demonstrate the networking protocol on em-

bedded systems, and will actually consist of a suite of related applications communicating together.

2.1 TrusNet Library

The TrusNet Library is the core of the project, and provides the structural solution to the authenti-

cation problem in peer-to-peer networks. This library is designed to be linked and utilized by other

applications, including the Demonstration Application.

2.1.1 Functional Requirements

The Functional Requirements of the TrusNet Library describe what the library must be and be ca-

pable of. These requirements serve as the primary description of the unique core capabilities of the

TrusNet library.

• API for expansion

– Adds new methods of hardware communication such as Bluetooth or ZigBee

• Prevent Active Attacks

– Man-in-the-Middle

3

– Node Spoofing

• Peer-to-Peer

– No hierarchy required

– Locally managed security

• Integrates with WiFi

2.1.2 Non-Functional Requirements

The Non-Functional Requirements of the TrusNet Library describe qualities the library will have.

These qualities help determine the types of systems and applications where TrusNet will be the

best-suited networking solution.

• Light-weight

– Minimal outside dependencies

– Low memory usage

• Simple to set up

• Runtime-stable

• Fast after authentication

• Smooth inter-platform communication

2.2 Demonstration Application

The Demonstration Application links to TrusNet and provides a visual representation of the library in

action. This application will consist of multiple different nodes allowing for clear execution common

use cases in the TrusNet Library.

4

2.2.1 Functional Requirements

The Functional Requirements of the Demonstration Application describe what the suite of applica-

tions must be and do. Since the Demonstration Application contains TrusNet, it adopts most of the

Functional Requirements of TrusNet as well, with the exception of the expansion API.

• Utilize the TrusNet Library

• Peer-to-Peer Protocol

– Bluetooth

– ZigBee

• Multiple Nodes

– UI Integrated Node

– Headless Nodes

• Multi-platform

2.2.2 Non-Functional Requirements

The Non-Functional Requirements of the Demonstration Application describe qualities the applica-

tion suite will have. Similarly, the Demonstration Application implicitly adopts all of the Non-Functional

Requirements of the TrusNet Library.

• Demonstrate the core features of TrusNet

• Intuitive UI

• Simple set-up

• Engaging

2.3 Design Constraints

The Design Constraints describe the limitations on design that the developers have determined as

a design choice. The Design Constraints apply to both the TrusNet library and the Demonstration

Application.

5

• Written in C++

• Run on 32 and 64 bit architecture

• Cross Platform

– Windows

– Unix

* Ubuntu

* Mac OSX

* Yocto (Headless)

6

Chapter 3

Use Cases

A use case describes how a type of user will experience the system. This section is separated into

the use cases for normal functionality, hostile interaction and demonstration cases.

3.1 Normal API

Use cases in this section come from the TrusNet library itself. Many of the more complicated uses

cases rely off of a combination of use cases from this section.

3.1.1 Set-Up

The set-up use case initializes the TrusNet library. All subsequent cases rely off of each node legally

setting up the TrusNet library.

• Actor: Each node

• Goal: Prepare code for the use of the TrusNet API.

• Preconditions:

1. API is available

• Postconditions:

1. API can be used

• Steps:

7

1. Load API into build path

2. Include headers

3. Generate keys

3.1.2 Authentication

The authentication case gives TrusNet its security. Each node must authenticate its connection with

all other nodes it intends to transmit data to, or receive data from.

• Actor: TrusNet API

• Goal: Authenticate a node

• Preconditions:

1. Unauthenticated node

• Postconditions:

1. Node is authenticated

• Steps:

1. Exchange keys

2. Reference keys against internal and external key libraries

3. Verify node

• Exceptions:

1. Note is rejected

3.1.3 Transmit

All data is exchanged using this case, with the exception of the messages exchanged for authentica-

tion. Even network meta-data is exchanged through the transmit case.

• Actor: TrusNet API call

• Goal: Send a piece of data to another node

8

• Preconditions:

1. Receiver node authenticated

• Postconditions:

1. Data transmitted

• Steps:

1. Call transmit function in code

2. Data is encrypted and transmitted to given node

• Exceptions:

1. Receiver node is not known

3.1.4 Receive

This case pairs with the "Transmit" case. As with "Transmit," all data is received through this case,

except for authentication data.

• Actor: TrusNet API

• Goal: Receive and verify data

• Preconditions:

1. Data has been received

• Postconditions:

1. Data is provided to a program

• Steps:

1. Authenticate received data

2. Decrypt data

3. Provide data to user program

9

• Exceptions:

1. Data is invalid

2. Sender node is unauthorized

3.1.5 Shut-down

This case prevents nodes from attempting to communicate with a node no longer attached to the

network. Note that connections will time out if a node shutting down does not notify the network.

• Actor: User

• Goal: Let other nodes know that this node is no longer available

• Preconditions:

1. Call shut-down

• Postconditions:

1. Node is shut down and no longer assigned data

• Steps:

1. End all broadcasts

2. Broadcast shut-down signal to adjacent nodes

3.1.6 Permission Shifting

In the TrusNet system, some nodes are headless. This means that headless nodes must allow their

permissions and network settings to be modified by another node.

• Actor: User Node

• Goal: Change permissions of headless node

• Preconditions:

1. Authenticated connection

10

2. User node has appropriate permission

• Postconditions:

1. Headless node permission changes

• Steps:

1. User node specifies permission through UI

2. Permission change order sent

3. Headless node changes permission

• Exceptions:

1. User node lacks permission status

3.1.7 Rebuild-Key

Over time, public-keys are at risk for compromise. Because of this, it is recommended that every

6-12 months, each node re-generates their key pair.

• Actor: User

• Goal: Regenerate verification keys

• Postconditions:

1. Keys are regenerated

• Steps:

1. Call key regenerate

2. Save old key

3.2 Hostile Interactions

Because the TrusNet library is a security library, some users and use cases are hostile. This section

of use cases outlines some common uses cases where a user is hostile.

11

3.2.1 Eavesdropping

If a hostile node is eavesdropping, it attempts to read messages passing between two nodes com-

municating through the TrusNet protocol. Figure 3.1 visualizes this attack.

Figure 3.1 Eavesdropping

• Actor: Externally controlled node

• Goal: Demonstrate TrusNet’s eavesdropping protections

• Preconditions:

1. Network is operational

• Postconditions:

1. Network integrity is demonstrated

• Steps:

1. Begin eavesdropping

2. Attempt to decrypt messages

3.2.2 Node Spoofing

During a node-spoofing attack, a hostile actor attempts to impersonate a node on the TrusNet net-

work. Figure 3.2 demonstrates this attack. When a man-in-the-middle attack essentially combines a

spoofing attack with an eavesdropping attack.

12

Figure 3.2 Node spoofing attack

• Actor: Externally controlled node

• Goal: Demonstrate TrusNet’s spoofing protections

• Preconditions:

1. Network is active

• Postconditions:

1. Network integrity is demonstrated

• Steps:

1. Activate spoofing

2. Attempt to decrypt

3. Attempt to fake data transmission

3.2.3 DOS Attack

A denial of service attack aims to flood TrusNet with bogus messages, preventing the exchange of

legitimate messages. Figure 3.3 outlines this particular use case.

13

Figure 3.3 Denial of service attack

• Actor: Externally controlled node

• Goal: Demonstrate TrusNet’s DOS protections

• Preconditions:

1. Network is active

• Postconditions:

1. Network integrity is demonstrated

• Steps:

1. Spam network with data

2. Note how other nodes ignore and reroute around DOS node

3.2.4 Permission Spamming

Permission spamming is an attempt to subvert the security demanded by the permission shifting use

case. Figure 3.4 outlines how this attack works.

14

Figure 3.4 Permission spamming attack

• Actor: Externally controlled node

• Goal: Demonstrate TrusNet’s permission spamming protections

• Preconditions:

1. Network is active

• Postconditions:

1. Network integrity is demonstrated

• Steps:

1. Spam network with fake permission data

2. Observe how the fake data is ignored by other nodes

3.3 Demonstration

The demonstration use cases are the cases which will visualize the underlying functionality of the

library. The use cases depend heavily off of the Normal API use cases, and implicitly demonstrate

the Hostile Interaction use cases.

15

3.3.1 Normal Operation

During normal operation, the demonstration platform will control an external robotics platform through

the TrusNet library. Figure 3.5 visualizes this use case.

Figure 3.5 Normal operation

• Actor: Demonstrator

• Goal: Operate robot

• Preconditions:

1. System is set-up

• Postconditions:

1. System is demonstrated

• Steps:

1. Operate joystick

2. Observe robot react

3.3.2 Ad-Hoc Demonstration

This use case demonstrates the ad-hoc meshing abilities of the TrusNet library. This use case is

outlined in Figure 3.6.

Figure 3.6 AD-HOC network

• Actor: Demonstrator

16

• Goal: Demonstrate ad-hoc nature of network

• Preconditions:

1. System is operational

• Postconditions:

1. Network adaptability demonstrated

• Steps:

1. Deactivate part of joystick node

2. Note how control remains as TrusNet reroutes signal through other nodes

3.3.3 Node Spoofing

In order to demonstrate the security of the system, this use case will attempt to spoof the identity of a

valid node in the network, as shown in Figure 3.7. In order for this use case to succeed, the spoofed

node must be rejected.

Figure 3.7 Attempting to spoof a node

• Actor: Demonstrator

• Goal: Demonstrate spoofing protections

• Preconditions:

1. Network is operational

• Postconditions:

1. Network integrity is demonstrated

17

• Steps:

1. Activate spoof node as an intermediate node

2. Note how signal is still broadcast despite spoofed node

18

Chapter 4

Conceptual Model

4.1 Overview

Our solution will consist of two Primary systems: the connection library and the network extension

system. The connection library will allow a developer to connect a variety of devices. Any device

running this library will also act as an additional node to further strengthen the surrounding network.

The network extension system allows the user to add an additional method of communication as an

available connection type.

4.2 Connection Library

The connection library is a general purpose networking library, allowing for communication across

multiple hardware mediums with fantastic security. In terms of usability, the system will function

similar to TCP/IP packet transmission. This ensures that other programmers using our code will

experience an easy transition. The library will be written in C++, for C++. As such, including the

library will be a case of including a header file. This is the primary product of our overall project.

4.3 Network Extension System

The network extension system allows a user to add fundamentally new communication methods to

the system. This helps to future proof the standard. Additionally, this allows for devices to commu-

nicate with other devices even if two given devices to not share a single hardware medium. In order

to implement this, there will be a set of functions which must be implemented in C++. Once imple-

19

mented, this new hardware option can be duplicated and shared, allowing for further optimization

and refinement. This is a secondary element in the overall project.

4.4 Demonstration Project

The demonstration project is a simple system of nodes and devices designed to help visualize the

function of our network. The demonstration involved a windows computer, an OSX computer, and

two Edisons. Both Edisons were robot mounted. We demonstrated indirect communication, low la-

tency, and network flexibility. Additionally, this helped us to better explain the unique advantages our

system provides. The robot and nodes themselves do not represent a significant innovation beyond

simply demonstrating other project developments.

Figure 4.1 Key management

The demonstration project will visualize the operation of the TrusNet library. Figure 4.1 shows an

example of the interface used to visualize the management of keys facilitated through the TrusNet

library. Similarly, Figure 4.2 demonstrates how IP addresses are managed through the demonstration

user interface. This user interface allows a user to see all connections for a given node and the status

20

of said connections.

Figure 4.2 IP Address management

21

Chapter 5

Component State Charts

The component state charts describe the various states that the system can be in. In the TrusNet

library, each state determines the functionality TrusNet will make available to a given node. TrusNet

has two large classifications of state: Authentication states and permission states.

5.1 Authentication

Node authentication is the primary purpose of the TrusNet library. Connections between nodes have

5 authentication states:

• NULL State

• Disconnected

• Connected

• Secured

• Authenticated

The relationship between these states is shown, at a high level, in Figure 5.1. These states

describe how each node tracks its connection with any other node in the network. The specific

nature of each state will be over-viewed in the sub-sections below.

5.1.1 NULL State

The NULL state is the implicit state for the connection between any two nodes members of the

same network, if they have no record of each-other. The NULL state is never explicitly specified,

22

Figure 5.1 TrusNet authentication states

the moment nodes become aware of the existence of another node, the connection pair enters into

either the disconnected or connected state.

5.1.2 Disconnected

In this state, two nodes are aware of the existence of each-other, and have previous record of a con-

nection. The disconnected state implies that, at some point, the two nodes who are members of the

connection state have been connected. The disconnected state does not imply that the connection

between the two member nodes was ever secured or authenticated, meaning the saved public keys

could be spoofed.

5.1.3 Connected

Two nodes enter into the connection state after they trade ping messages. A ping message contains

the public key and name of the source node, the required information to enter the secure state. If an

error occurs, or the connection times out, the node pair returns to the disconnected state.

5.1.4 Secured

The secured connection state guarantees the connection between two nodes is immune to eaves-

dropping. This is achieved by exchanging a stream-cipher seed through the public keys of each

23

node, and using the stream-cipher to encrypt all futures messages passed between the node pair. If

this stream is broken, or the connection times out, the node pair will return to the disconnected state.

5.1.5 Authenticated

After a secured stream is established, the pair request a signature from the other, confirming that

both nodes have the private key pair to the advertised public key. Once this state is achieved,

the connecting between the two nodes is considered both secure and authentic. It is only in the

authenticated state that the TrusNet library will be able to send messages to a node and receive

messages from it. If the authentication fails, the secured stream is broken or the connection times

out, the node pair will return to the disconnected state.

5.2 Permissions

Permissions determine how much control a given node has over another given node. Each node

keeps track locally of its own permission status on connected nodes, as well as record of the permis-

sion status of connected nodes with itself. These tracked permissions are functional permissions,

nodes also keep local record of desired permissions as well, see Figure 5.2 for details.

24

Figure 5.2 TrusNet permission status local tracking

5.2.1 Desired and Functional Permissions

Functional permissions are how nodes track the current state of node permissions in all connection

pairs involving themselves. Desired permissions are the permission state which a node requests

connected nodes to place it in. The functional permission of a node can never be higher than the

desired permission, although functional permissions are frequently lower than a node’s desired per-

mission.

5.2.2 Permission Levels

Permission levels are tiered, with each successively higher level increasing the amount of control a

given node has over the node which has granted the permission. Because of this tiered model, higher

level permissions retain control granted at lower levels. For example, a node which is a member of

a connection which grants it "Sudo" state retains the abilities of the "Master" and "Parent" state as

well. Likewise, a node in the "Child" state will not allow modification of attributes outside of TrusNet,

as "Servant" was already granted control of such modification.

Permissions often have a reciprocal permission, although these reciprocal permissions are in-

25

Table 5.1 TrusNet Permissions

Category Permission Description Reciprocal

Admin
Sudo

Can modify all attributes of partner, even those outside
the scope of the TrusNet system.

Slave

Master
Permitted to modify all attributes which are within the
scope of the TrusNet system, most notably the desired
permission of a connected node.

Servant

Parent
Controls the permission state of nodes which are con-
nected to a connected node.

Child

Sibling
Director

Suggests permission states for nodes connected to a
connected node, these suggestions are echoed from
those received by a Parent node.

Relay

Peer
Connected nodes have the same permission state,
and neither can modify the settings of the other

Peer

Relay
Allows a connected node to suggest permission states
for connected nodes

Director

Remote
Child

Allows a connected node to determine the permission
state of all connected nodes.

Parent

Servant
Permits its own TrusNet attributes, most notably the its
desired permission, to be modified

Master

Slave
Allows all of its own attributes, including those outside
the scope of the TrusNet system, to be modified by a
partner who is granted Sudo permissions.

Sudo

Rejected
Unknown

Given no authority to modify its partner, although
is permitted to forward messages over the partner
through the network mesh.

—

Suspicious
Network discovery and message-forwarding are dis-
abled, the node is still permitted to retain its current
connection.

—

Hostile
All attempted connections will be immediately rejected.
IP address or other network identifier will be temporar-
ily blacklisted.

—

clusive, meaning that a connection pair need not take advantage of all of the permissions provided.

As an example, two "Slave" nodes may connect to each-other, both granting each-other "Slave" per-

missions, even though neither node can actually modify the attributes of its partner because neither

node has "Sudo" permissions. Table 5.1 contains a more detailed description of the functionality

provided by each permission level.

The permissions defined in Table 5.1 are made available outside of the TrusNet library, and can

be utilized by applications using the TrusNet library. When using the TrusNet library, an application

can define which permissions a node begins with, along with how to treat newly connected nodes.

26

Note that these permissions essentially define the level of security that the TrusNet library defines, if

a node sets its default permission state too loosely, the authentication provided may be moot.

27

Chapter 6

System Sequence Diagram

The diagrams in this section describe how the system transfers between states. The sequences

described form the foundation for the function of the TrusNet library. This chapter focuses on the

TrusNet library, as the demonstration application will merely be an implementation of the more gen-

eral library.

6.1 Connection Security and Authentication

The end-to-end security and authentication model is over-viewed, at a high level, in Figure 6.1. The

security and authentication process used in TrusNet provides the basic authenticity assumptions

used when interacting with a TrusNet mesh network. As such, the security and authentication model

provides the primary functionality of the TrusNet library.

28

Figure 6.1 Securing and authenticating a connection

6.1.1 Key Generation

In the TrusNet library, nodes generate their own public-private key pairs. This is because the TrusNet

library is designed to be peer-to-peer, and any central key repository would be hierarchical. Depend-

ing on the public key algorithm used, the key space will be of a different size. The purpose of this

section is to demonstrate that randomly generating public keys provides sufficient security. Gener-

ally, public key pairs are comprised of two prime numbers or prime number derivatives combined

together. In order to generalize key generation we will use the notation:

29

Keyp = Prime derivative number

Keyq = Prime derivative number

Keypair = Public Key Pair

Keyp (op) Keyq = Keypair

Where "(op)" is the operation used to derive the public key from Keyp and Keyq, which is unique

to the public key algorithm used. Generally, for an n bit public key:

2
n
2−1 < Keyp < 2

n
2

2
n
2−1 < Keyq < 2

n
2

2n−2 < Keypair < 2n

Because of the Prime Number Theorem (Selberg 1949), we can accurately estimate the number

of primes up to a given number with natural log:

p = set o f primes

pn = p < 2n

|pn| '
2n

loge(2n)

We can use this to approximate the number of available Keyp and Keyq’s there are in any Keypair

of n bits with the equation below:

30

pq = p < 2
n
2

p′q = p < 2
n
2−1

|pq| '
2

n
2

loge(2
n
2)

|p′q| '
2

n
2−1

loge(2
n
2−1)

|qspace| ≈ |pq| − |p′q|

|qspace| ≈
2 ∗ 2

n
2−1(n − 4)

n(n − 2)loge(2)

Now that the qspace has been defined, we can define the number of available Keyp and Keyq’s

there are in a few well known key sizes:

q512 ≈ 3.24995 ∗ 1074

q1024 ≈ 1.88530 ∗ 10151

q2048 ≈ 1.26513 ∗ 10305

q512 ≈ 2247

q1024 ≈ 2502

q2048 ≈ 21013

In cryptanalysis, any Keypair which shares a Keyp or Keyq with any other Keypair is trivial to com-

promise. Given the approximate number of available keys, it is simple to calculate the probability of

this happening:

31

Key′col = Collision chance f or any key pair

qcol =
1

|qspace|

Key′col ≈ 4 ∗ qcol

Key′col ≈
4

|qspace|

Given the probability of any two keys colliding, we can calculate the probability that, given Keystot

number of keys generated in a key space, any of that set of keys will collide using the Poisson

approximation:

Keycol = Chance o f any collision in key space

Keystot = Total number o f keys generated

Keycol =

1
Key′col

!

1
Key′col

Keystot (1
Key′col

− Keystot)!

This equation can be used to calculate the probability of any collision over the key-space. This

probability is astronomically low, the equation itself has a limit of 0 as the key-space moves toward

infinity.

6.1.2 Secure Connection

Securing a connection involves using public key cryptography to exchange a symmetric stream key

used to initialize a stream cipher which encrypts all future messages in the connection. Each node

must secure its own connection with every node it intends on communicating with. Figure 6.2 pro-

vides a visualization of the process.

32

Figure 6.2 Securing a connection

6.1.3 Authenticate Connection

Connections are authenticated through digital signatures. The hash of a signature message is signed

by a node to verify the node possess the private key pair of the advertised public key. Figure 6.3

details the authentication process. Note that if a node fails the authentication test, the node is either

hostile or using the TrusNet library improperly.

33

Figure 6.3 Authenticating a connection

6.2 Network Management

The TrusNet library defines a sub-network with string based addressing which operates on top of

existent networks. TrusNet, unlike the Internet in general, defines and secures this sub-net across

an area of any size. The sub-net is entirely virtual, and is achieved through encrypting and forwarding

messages through the sub-net.

34

6.2.1 Addressing

TrusNet addresses are string based and two tiered. Each node belongs to a group, defined by a

20 character string. Nodes cannot communicate with nodes outside their group through the TrusNet

protocol. Inside a group, each node is further identified by a 20 character string. This string, a

node’s name, is the TrusNet address of node. Any network protocol specific routing is abstracted

out, such that node send and receive messages based on name and group only. Figure 6.4 shows

this addressing framework.

Figure 6.4 TrusNet addressing

6.2.2 Mesh Network

TrusNet allows nodes to forward messages through other nodes. This allows nodes to communicate

over diverse networks, which is especially important if a node either lacks a network interface or is

outside of the range of a particular interface. In Figure 6.5, node A, C and D are all connected over

Wifi. Node A, B and D are all connected over Bluetooth. Inorder for node C to communicate with

Node B, it must forward messages through node A.

35

Figure 6.5 Mesh network

36

Chapter 7

Architectural Diagram

Our system design revolves around several basic steps. First the actors program calls the TrusNet

API to send a message. The TrusNet API calls on available hardware to format and encrypt the

message. This message is then sent into the mesh of various nodes until it arrives at the target

device. This target device will then use available hardware and the TrusNet API to decode the

message and provide it to a user program. The above Figure 7.1 shows the connections of a sample

network.

Figure 7.1 Overall design for a network

37

Chapter 8

Technologies Used

Technologies used describes the existing technologies used to in the project as well as the ones

used to support and create the project.

8.1 Build

These are the technologies used to build and compile the system. Note that both gcc and MVCC are

the broad compiler category, both were used to compile C++ code.

• CMake

• gcc

• Scripting

– Batch

– Shell

• MVCC

8.2 Support

Support technologies are used for organization, documentation and debugging of code. Note that in

some cases, support technologies are closely related to build technologies, most notably IDEs.

• GitHub

38

• LaTeX

• Visual Studios

• XCode

8.3 Hardware

Hardware technologies refers to the platforms which have been used to both develop and run the

project. The system will be primarily developed on Windows.

• Intel Edison

• Raspberry Pi

• Mac

• Windows

8.4 Runtime

Runtime technologies are the libraries and languages used during the runtime of the projects. This

project will use C++ as its primary language.

• C

• C++

• C++ 11

• openGL

8.5 Algorithms

The list of algorithms provided here is, by no means, an exhaustive record of all algorithms used.

Rather, the algorithms used includes algorithms implemented by the project.

• RSA

Public key encryption algorithm, used for exchanging keys and signing message hashes

39

• RC4

Stream cipher used to encrypt large blocks of data

• AVL Tree

Balanced binary search tree used to store data during runtime

40

Chapter 9

Design Rationale

The design rationale justifies technologies used. This section is split into Build, Support, Hardware,

Runtime and Algorithms.

9.1 Build

Technologies chosen for building the TrusNet project were effected, primarily, by our design con-

straints. For our compilers, we have chosen those natively supported by our chosen operating sys-

tems. Additionally, the compilers chosen are among the most popular C++ compilers, meaning they

are well tested and well used.

Because of the diversity of the compilers chosen, CMake was the most obvious choice for the

primary build system, as it supports a wide range of compilers on a wide range of platforms. To

automate miscellaneous file movement and calling of CMake, shell and batch scripting are used for

Unix and Windows respectively, as these languages are natively supported.

9.2 Support

For source control, GitHub is used to store and manage all code and documentation. Git is the

industry standard for source control, and automatically releases TrusNet as an open-source library.

Because it is both modular and makes type-setting easy, LaTex is the tool our team for docu-

mentation. LaTex allows each library to contain its own documentation, but for a central document to

additionally display that documentation.

41

Lastly, Visual Studios and XCode are two IDEs supported by CMake that provide extensive de-

bugging and programming aids. Both these IDEs are the standards for Windows and OSX develop-

ment, respectively.

9.3 Hardware

The hardware platforms were chosen for a variety of reasons. There are two classes of hardware

that run the TrusNet demonstration applications: UI platforms and headless platforms. Generally, UI

platforms were chosen because:

• Widely used

• OpenGL Support

• Developers posses systems

Headless systems were chosen because:

• GPIO Support

• Inexpensive

• Internet of Things targets

• Unix based

9.4 Runtime

C and C++ are the base of the TrusNet system because this family of languages is supported by most

devices, both embedded and otherwise, on the market today. Furthermore, C and C++ combined

balance speed and complexity, allowing for a system which both runs quickly and has a high degree

of complexity. C++ 11 has been integrated into the project to expedite development, taking advantage

of some of the newer features integrated into C++ 11.

OpenGL is used to construct the UI for a number of reasons. First, OpenGL provides a consistent

interface across all platforms. Second, OpenGL provides an immense amount of control to develop-

ers, allowing for construction of non-standard visual elements. Lastly, an OpenGL UI implementation

42

gives developers access to the basic source code of the UI, allowing the TrusNet library and the vi-

sual interface a much higher degree of coupling than would be permitted with the use of a third-party

library.

9.5 Algorithms

RSA and RC4 were chosen as the initial cryptographic algorithms because the pair is simple and well

researched. RSA provides the key exchange and signature, while RC4 provides the stream cipher

encrypting the messages passed between two nodes.

The Datastructures library relies heavily off of AVL trees because AVL trees combine fast insertion

and deletion with ability to traverse a set of data. Both vectors and arrays have limited insertion and

deletion capabilities, and hashes have difficulty traversing the set of data contained in them.

43

Chapter 10

Development Milestones

This project revolved around the development of our connection protocol. As such, the groundwork

of the project took most of 2015, followed by a major rebuild of several elements in early 2016

and a quick set of updates towards the end of the year, bringing additional elements online. From

initial connection to our final release took almost 5 months, with total development taking almost

the entire year. Table 10.1 on the next page notes the most important points in our development

process. Please consult figures A.1, A.2 and A.3 in the appendix for the gant charts used to plan our

development timeline.

44

Table 10.1 Key milestones

Milestone Date Details

Development begins June 10th, 2015

We began serious work on TrusNet at the end of our ju-
nior year. Working through the summer and fall allowed
us to take on a more ambitious project than we would
have otherwise been capable of.

Initial connection December 12th, 2015
This was the first time our protocol connected two de-
vices. This was under highly controlled circumstances,
but served as a proof of concept for our future work.

Edison freeze March 9th, 2016

The Intel Edisons were unusable for a several month pe-
riod due to problems with the operating system’s total
size. When a working OS was finally made available,
we quickly locked each of our Edisons to this OS as well
as cleaned and reloaded all additional functions we had
added. The OS of each Edison was unchanged since this
point.

1.0 release April 24th, 2016

The 1.0 release was the first build with each of the fea-
tures critical to demonstration. This version of the pro-
tocol included executables which passed the necessary
data, but did not yet include the files to read the joystick
or move the robot.

1.1 release May 5th, 2016
The 1.1 release added joystick functionality, as well as a
UI for the joystick.

1.2 release May 7th, 2016
The 1.2 release added robot functionality, as well as a UI
for the robot.

1.3 release May 10th, 2016
The 1.3 release fixed numerous bugs uncovered in the
previous releases, as well as added IP propagation, al-
lowing for a reliable and helpful demonstration.

45

Chapter 11

Project Problems

This sections contains analysis of certain problems which we encountered with the development of

the TrusNet protocol. Note that early in project development, potential risks were concretely outlined

and analyzed. Consult chapter B in the appendix for these tables.

11.1 Software Problems

As with any software project, we had numerous issues involving the code we had written. Aside from

bugs brought on by logical errors in our programming, we had several software issues caused by

compilers and language properties. The Intel Edison uses a different C compiler than Windows and

OSX systems. The differences in compilers meant that some static variables were stored in different

orders depending on platform. This in turn meant that several critical classes were formatting data in

different manors depending on platform. When different platforms tried to connect, the out of order

memory allocation meant that messages could not be read between platforms.

Another critical error was brought on by the need to constantly save time stamps. The Edisons

are constantly saving information, but when our protocol closes, saves may be in progress. Every

time an Edison was closed, even if not a crash, there is a chance that a file may be corrupted. When

this occurs, the system can no longer operate and must be cleaned manually. While we have taken

some steps to minimize the likelihood of this curring there is still a danger of corruption on shutdown.

Lastly, we had a problem with our destructors and virtual inheritance. When a class is virtually

inheriting two or more classes, which in turn inherit from a higher class (I will call the inheriting class

CB, the virtually inherited classes C1 and C2, and the highest class CM for sake of explanation) and

46

the destructor is called, CB and CM are properly destroyed. However, C1 and C2 are destroyed in

random order. C2’s destructor would fail if run second. Every time we deleted a CB object, we had a

50% chance of crashing our system.

11.2 Hardware Problems

We also had a selection of hardware centered commands, most involving the Edisons. For a several

month period, the flash tool Intel offered refused to work with any image we had. Additionally, the

older flash tools we had stored refused to install the latest OS image, mainly because the latest image

(which contained a critical upgrade to make we needed) was larger than the available memory on an

Edison. We had initially hoped to begin work on the demo unit in January, but were only able to bring

the Edisons online in mid April.

The provided Yocto image for the Edisons lacked several critical commands we used heavily for

scripting and building. We ended up downloading and installing bash and git manually on each Edi-

son, as well as installing Intel’s IoT libraries. Additionally, the school’s network forced us to manually

add each Edison’s IP Address to our personal accounts though a convoluted process.

Once built, our robot had a significant problem with power usage. Our initial wiring setups cause

the Edisons to frequently lose power entirely. We eventually built two independent battery systems

for the robot so that should the motor draw to much current, the Edison’s power would be mostly. We

still have voltage swings, but they are now well within the operating parameter of the Edison.

11.3 Team Problems

Both members of this project have clear opinions on software design, which did not always coincide.

As such, numerous arguments about the implementation of various elements in our system broke

out. To deal with these disagreements, we maintained a strong vision of our final goal, as well as

avoided criticizing each other, only the ideas put forward. Additionally, the initial division of roles

established a clear hierarchy in most arguments. Only a handful of disagreement lasted more than a

day, as one voice would eventually convince the other of a particular decision.

47

11.4 Lessons Learned

This project taught us much, both in technical skills and project design. Technically, we learned

a great deal about the struggles of working on a new platform. The constant bugs and crashes,

combined with a constantly changing code base, proved a new type of challenge. We are used to

uncovering bugs in our own code, this project introduced us to bugs and variance in the tools we

were using to build our project. Additionally, we also had a major problem with scope creep. As the

project grew, there were more and more elements we wanted to add. While we are pleased with the

final result, there are many features we want to add that we simply did not have the time to work on.

We were forced to decide between important features on a regular basis, which thankfully did not

cause internal arguments.

In the end, we did manage to avoid many pitfalls through intelligent project architecture. We

effectively managed our code through Git, and set up efficient cross-platform builds through CMake.

Our project architecture also fit Doxygen well, allowing us to save development time through efficient

code documentation.

48

Chapter 12

Ethical Analysis

12.1 Overview

Over the past few months, the ethical dilemmas involved with encryption and data-security have

been in the national spotlight. For those previously unfamiliar with the issues at stake, the spat

between Apple and F.B.I. concerns the unlocking of an iPhone once used by Syed Rizwan Farook,

who participated in a tragic mass shooting in San Bernardino, California in December 2015 (Staff

2016b). The concerns raised in this specific case, however, are merely a snapshot in a decades long

and international ethical disagreement.

This overview will, firstly, explain how TrusNet fits into the privacy verse security ethical dilemma,

discussing both what the system is capable of, how it is intended to be used and possible malicious

abuses of the project. Second, this overview will briefly review the international history of the legal

and ethical issues of strong encryption and data-protection. Lastly, the ethics of TrusNet will be

analyzed through a variety of different ethical systems and frameworks.

12.2 Privacy verses Security

The relative importance of privacy and security is a question all societies must address. There is

no single, perfect answer, as no matter what is selected, issues are present. For example, a society

with no privacy can maintain order extremely well. All criminals are stopped before their crimes. In

theory, no murder, rape, or robbery. Unfortunately, the trade off is a loss of personal liberty. When

the government has access to all information, minority groups and unpopular opinions are silenced.

Innovation becomes impossible, as anything truly groundbreaking is destroyed before it can come to

49

fruition. A society without privacy, however secure, is fundamentally flawed.

By the same token, a society with total privacy is dangerous. Syed Farook’s phone is just one

example in the modern world. Syed’s phone could have information on additional attacks, names of

conspirators, and vast amount of details only available through this phone. The inability to access

this phone could hamper authorities ability to stop future attacks. However, if the phone can be un-

locked, it opens another set of issues around the world. If communications can be unlocked, political

dissidents in China could be targeted and killed. Movements such as the Arab Spring could be shut

down before they began. If a skilled hacker stole an individuals phone, that hacker could access

personal information including bank accounts, biometrics, and secure passwords. If a phone can be

opened, we could access terrorists plan, but a stolen phone could be used to access infrastructure

such as the power grid, forcing a great area of the nation into literal darkness. As engineers, we have

a duty to consider how the technology we create can be used in both positive and negative ways.

In the creation of any particular encryption one must consider both the security of a network, as

well as the encryption’s ability to be used in a malicious manner. If our system allows unlimited long

distance communication across millions of devices and all networks with unbreakable encryption,

we will enable safe Internet usage, but at the cost of harming traditional law enforcement and anti-

terrorist groups. If our security is poor, anyone with requisite knowledge could compromise our

network, rendering it pointless.

12.3 TrusNet Capabilities

The TrusNet protocol is intended to be used for machine-to-machine communication on a medium-

size sub-network for usage in the Internet of Things. While TrusNet can theoretically be used for a

human message-exchange protocol, the deliberate size limitations on the protocol mean that such

a message-exchange protocol would need to separate users into sub-groups to efficiently operate.

TrusNet has two major features which relate to data security: Encryption and Authentication. These

two features provide different features of the system which have both beneficial and detrimental

ethical implications.

50

12.3.1 Encryption

Broadly, encryption refers to a mathematical operation which hides information through a key and

then subsequently decrypts the data with a key, which is either equivalent or related to the first key.

TrusNet leverages encryption to exchange keys and to pass data between nodes once a secure

connection has been established. First, TrusNet’s use of encryption helps in user authentication.

Second, TrusNet’s encryption protocols protect the data passed between nodes from being observed

by a third party.

It is the second use of encryption which has potential ethical implications. Because the encryption

algorithms used by TrusNet are strong-encryption, they cannot be read by a party which does not

have the correct keys. Unlike many other systems (including, for example, the software authentication

protocol used by Apple), TrusNet is not hierarchical, which means that a "master-key," or a key

which can decrypt any set of data encrypted by the system, is mathematically impossible. The

consequence of this is that if TrusNet were leveraged as a malicious communication protocol, the

subsequent messages would be impossible for a third party to decipher.

While such strong encryption has the potential to be used maliciously, it is also crucial for the

emerging Internet of Things. As our homes become more connected, thermostats, security cam-

eras, digital locks and home-entertainment systems will all communicate with both each other and

the personal devices of authorized individuals. In December 2015, for example, the digital toymaker

VTech fell victim to a disastrous data breach which allowed unauthorized individuals to access ac-

count details of users (Risen 2015). In VTech’s case, this compromised data even included pictures

of the children using VTech’s devices. This breach demonstrates the issues with failing to encrypt

data in transit, especially as the data being transferred is increasingly personal as connected devices

move deeper into our homes.

12.3.2 Authentication

Authentication refers to a mathematical protocol designed to ensure that a node is in possession of

some unique set of data. Usually, authentication schemes rely on public-key cryptography (12.1),

which allows an entity to securely prove its identity to another entity. It should be noted that the

schemes which achieve this unique behavior have been rigorously mathematically tested. TrusNet

51

leverages public-key cryptography to authenticate previously encountered nodes, requesting these

nodes to prove they have the unique set of data with which they are associated.

The ethical advantages of such a system are clear, especially when electronic devices are ca-

pable of modifying the behavior of physical objects such as cars and door locks. With a robust

authentication system such as TrusNet in place, these physical objects cannot be accessed in the

digital realm by unauthorized entities. For the emergent Internet of Things, forcing nodes to securely

and definitively identify themselves results in a safer network of devices which cannot be modified by

malicious actors.

Such strong authentication, however, can have a serious dark-side if expanded on a national, or

even regional, scale. Since a protocol like TrusNet forces all nodes to remain authenticated at all

times, the Internet as accessed through such a system has no anonymity. While anonymity can be

disastrous on embedded systems, it is crucial for media access in a free society. Because TrusNet,

if expanded to a national scale, has such a clearly Orwellian feature, we have designed the system

such that it’s scalability remains limited. The authentication module of TrusNet, by design, becomes

unusable as the system expands beyond its intended use inside a medium-size sub-network.

12.4 History of Data-Protection

Before analyzing the TrusNet project in various ethical frameworks, it is worth reviewing the history of

data-protection around the world so that we may avoid the mistakes of the past. For millennia, codes

and ciphers were based on writing and only rarely used to protect the most important of messages.

These techniques were often time-consuming and tended to focus on military communications. While

these ancient means of data-hiding were certainly pre-cursors to modern methods, it was not until the

advent of simple electronic computation just before World War II that the algorithms and techniques

we use to protect data today began to emerge.

12.4.1 World War II

During the Second World War, Nazi Germany developed an advanced substitution cipher based in

a machine known as the Enigma machine. Famously, Allied forces performed cryptanalysis on both

the Enigma machine and messages intercepted between German radio stations using the Enigma

52

machines and managed to crack the German system. The techniques used varied based on key gen-

eration methods, the size of the messages intercepted and even the headers used in the transmitted

messages (Gillogly 1995).

In the Pacific theater, American forces managed to break a number of Japanese crypto-systems,

most notably JN-25 (Donovan 2012). Perhaps the most impactful consequence of this breach was

the decisive Allied victory at the Battle of Midway where Japan lost four fleet carriers (Prados 1996).

Later in the war, American fighters shot down Admiral Yamamoto’s transport aircraft after having

intercepted encrypted Japanese communications and subsequently breaking the ciphers.

In the historical examples of World War II, we see Allied code-breakers immortalized as they

helped to take down the horrors of Nazi Germany and Imperial Japan. In recent years, as the United

States and British governments have declassified the actions of their cryptanalysis efforts during

World War II, the actions and results of some of these activities have given the public an impression

that all crypto-systems can be analyzed and cracked, given enough time and effort.

12.4.2 AES/DES

The more recent history of commercial symmetric key cryptography, namely AES and DES, demon-

strate that modern cryptography differs drastically from the electro-mechanical boxes used during

the World Wars. In 1974, IBM developed an algorithm which was reviewed by the N.S.A. (National

Security Agency) and released in 1977 as the Data Encryption Standard, or DES. Since DES is an

algorithm, and not a physical device as previous crypto-systems had been, DES can be implemented

on various different platforms in both hardware an software. Despite its age, and the fact that DES

was formally replaced as an encryption standard for most organizations in the early 2000’s, DES

remains frequently used today (Smid and Branstad 1988).

As computation power increased in the 80’s and 90’s, the relatively small key used by DES began

to be insufficient for digital cryptography. As with DES before it, the National Institute of Standards

and Technologies held a contest to find the sufficient cipher to replace DES. The winner of contest

was an algorithm named Rijndael, which since became known as the Advanced Encryption Standard

(Selent 2010). It should be noted that AES was developed in Belgium, so the notion that any nation

can adequately control the international availability of cryptographic algorithms has been shown to

be quite ridiculous.

53

From a cryptographic perspective, both AES and DES are "secure," meaning that unlike the

systems of World War II, mathematical analysis has yet to be able to decrypt AES and DES cipher

texts without access to the keys. In both cases, the only known way to break into an AES or DES

secured system is to iteratively attempt all possible keys until a working key is found. For the 128

bit minimum key size of AES, such a brute force attack is far beyond the capabilities of modern

computing. DES, however, has a key size of only 56 bits. In the 70’s when DES was developed,

the 56 bit key size was sufficient. Today, in research settings, brute force attacks on DES have been

successfully preformed. The equations bellow describe the difference between the size of the two

keys.

KeysizeAES = 2128 ≈ 3.4 ∗ 1038

KeysizeDES = 256 ≈ 7.2 ∗ 1016

The key sizes of both AES and DES have ethical implications because they hugely effect the

overall security of the system, and how the systems can actually be compromised. AES is not merely

70 times stronger than DES, as a simple bit count would indicate, it is 4.7 sextillion times stronger

than DES. With modern, and even foreseeable technology, AES remains an essentially unbreakable

symmetric key crypto-system.

12.4.3 RSA

In 1978, mathematicians Ron Rivest, Adi Shamir and Leonard Adleman developed a system which

changed the way the world thought about cryptography. The algorithm they developed has became

known as RSA, and it is the first example of a widely deployed public key crypto-system (Bar-Yosef

2012). Figure 12.1 below demonstrates the features of a public key crypto-system. Essentially, public

key crypto-systems allow mathematical guarantees as to what entity can open a message and which

entity a message has come from.

54

Figure 12.1 Public key crypto-system

In short a public key crypto-system such as RSA allows for entities to securely exchange sym-

metric keys anonymously and allows for digital signatures to mathematically establish identity. Public

key cryptography is ultimately the technology that underpins modern website security, and is a cen-

tral technology in the TrusNet project. It can also be controversial, because although it ultimately

protects our modern financial system, it stands in direct confrontation with the often-touted idea of a

"back-door".

12.4.4 Clipper Chip

Frequently, we here calls for "back-doors" to be placed in crypto-systems. The most recent example

of this, as mentioned earlier, is the conflict between Apple and the FBI. In a broader sense, the

argument made for inserting "back-doors" into crypto-systems is that crypto-systems without a "back-

door" are effectively immune to legal tools such as search warrants. Without taking a position on the

ethically of "back-doors," it is important to note that from a technical perspective, they are essentially

impossible to build.

In 1993, the United States developed the now infamous "Clipper Chip," which could theoretically

allow law enforcement agency to unlock a device with a master key. In order to prevent use, keys

were split in half with different government agencies keeping the two halves, in theory only combining

them when a system needed to be justifiably unlocked. The Clipper Chip was based in hardware,

not software and was at first thought to be tamper-proof.

Clearly, however, recent events clearly show that the Clipper Chip was never widely implemented.

Shortly after its release, a researcher at Bell Labs not only manged to disable the back-door on the

55

chip, but was actually able to extract the master key from a chip (Blaze 1994). Furthermore, in

analyzing the failure of the Clipper Chip, the researcher who broke the chip essentially concluded

that the issue was not merely with the implementation of the Clipper Chip, it was rather with the idea

that any system could simultaneously provide adequate data-security and allow a "back-door" for law

enforcement.

12.4.5 International Laws

The laws surrounding strong cryptographic algorithms like AES and RSA are inconsistent across the

globe. According to the laws of many nations, the United States included, cryptography is considered

to be ’arms’ and is, at least officially, regulated as such (Koop 1996). Even so, the laws regulating

cryptography in the United States are murky. In some cases, source code was found to be First

Amendment protected speech, making any domestic restrictions or even export controls on such

code unconstitutional. In other cases, however, export restrictions were held up (Koop 2013).

In the United States, there is a movement to require technology companies to be able to unlock

any encrypted device. Two senators are currently writing a bill that would ban effectively strong

encryption (Staff 2016a). If this ban were to pass, technology such as TrusNet would become illegal,

as there is no way for a company to decrypt a message not intended for them.

Some nations hardly regulate digital cryptography at all. These include some of the places one

might expect such as Denmark, Japan, and Sweden as well as a number of nations with a long

history of attacks on basic Human Rights such as Syria and Venezuela (Koop 2013). Many of the

nations which have not heavily regulated cryptography seem to be nations with either young or non-

existent high-tech sectors.

The last group is the nations which heavily restrict the use of digital cryptography. In many cases,

the nations which heavily restrict cryptography are the same totalitarian states which regularly crack-

down on freedom of speech, place such as Russia, China and Egypt. But frequently, states such as

France, Italy and even the European Union as a whole put heavy and circuitous regulations on the

use of cryptography for the purposes of national defense (Koop 2013). In short, International Laws

regarding cryptography have not been well defined, and this is becoming an increasingly large source

of conflict in international business, as many Facebook’s WhatsApp has shown in its interactions

abroad (Lomas 2016).

56

12.5 Ethical Framing

TrusNet exists in a fundamentally gray ethical area, as we cannot control who uses it or for what

purpose. Our target goal includes a system with both encryption and authentication. It is by design

that only a specific node can ever decrypt a message. Even if a node is compromised, it is unable

to decrypt the messages intended for other nodes. If a malicious group used our protocol to transmit

messages, there is no "back-door" system to allow authorities in, nor is there the possibility to create

such a system. One of the realities we have to accept in creating TrusNet is the possibility of its

harmful use.

Another feature is the authentication we are using. While a message can not be decrypted, the

meta-data can be accurately recorded. This means that any node on the network can look at a

message and determine its sender, receiver, size, and time of transmission. TrusNet has no concept

of anonymity. If the identity of one node is known, an observer can use this information to make

connections about users on the network. In much the same way that authorities are unable to read

messages, they can monitor their transmission. If authorities apprehend on malicious user, they

can know both how many other potentially malicious users exist and whom those individuals were

communicating with.

12.5.1 Utilitarianism

Ultimately, it is probably utilitarianism which best frames the ethics of this project. Even many of

the other ethical systems will end up defaulting to the same reasoning used by utilitarianism. With-

out a doubt, as reviewed in this analysis, great harm can come through strong digital encryption.

Such codes have protected terrorists, murderers and sexual abusers. For decades, in fact, utilitarian

analysis would likely come down against the strong cryptography used in the TrusNet project.

As the Internet of Things expands, however, strong cryptography begins to have more benefits

than it does downsides. Nothing illustrates this better than the recent Jeep Cherokee hack, where

researchers remotely shut off a Jeep as it was driving down the high-way (GreenBerg 2015). This,

along with the VTech hack mentioned earlier (Risen 2015) demonstrates that data encryption is no

longer simply a matter of privacy, failure to secure data can put lives at risk. As of yet, no one is

known to have been killed by a compromised "smart" device, but most experts agree that it is only

57

a matter of time. In-order to protect the public as a whole, utilitarianism calls for the protection of

digital communication to prevent these kinds of physical attacks through software, even at the cost

of protecting criminals.

12.5.2 IEEE

Oddly, IEEE as an organization has not formally taken a stance on strong cryptography. However, the

first point of IEEE’s code of ethics states that the member of IEEE promise "to accept responsibility

in making decisions consistent with the safety, health, and welfare of the public, and to disclose

promptly factors that might endanger the public or the environment" (IEEE 2016). The difficulty with

strong cryptography, as has been discussed, is both using and not using such systems has negative

effects of the public. It is at this point where IEEE’s ethical stance begins to merge with that of

Utilitarianism (12.5.1), weighing the pros and cons of strong digital encryption.

12.5.3 Kantian Ethics

Immanuel Kant describes a duty based ethical system, where the morality of actions is based on

intent rather than the effect of the action (Kemerling 2011). At first, Kantian ethics appears to look

kindly upon those providing strong crypto-systems with the intent that such tools be used benevo-

lently. Under Kant, there would be no immoral action on the part of the cryptographer if the system

was used maliciously. This line of reasoning is actually a large part of the moral rationale for TrusNet:

the system is not designed or intended to be used a chat protocol.

Kant’s arguments, however, begins to have issues when we consider cases like the Clipper Chip

(12.4.4) or the Jeep hack (GreenBerg 2015). In both these cases, the intention of the designers

was that the design systems would either provide security or at the very least be tamper proof.

Ultimately, however, the intentions stopped mattering when catastrophic and dangerous weaknesses

were uncovered in both systems. Regardless of the intent of the systems, both could potentially put

lives in jeopardy, so it is difficult to subscribe to the idea that both systems were ethical given their

capacity for destruction.

58

12.5.4 Moral Relativism

Frankly, moral relativism offers a poor framework to analyze advanced encryption systems. The

central issue with moral relativism in cryptography is that despite efforts by many entities to the

contrary, the Internet is a global system spanning major and diverse cultures around the world. But,

moral relativism would hold that it is the norms of a specific culture which define the morality of strong

cryptography within those cultures. This reasoning very quickly breaks down.

First, cultural norms surrounding data security only begin to emerge as the Internet permeates a

cultures, which is why many developing nations simply have no cultural norms regarding encryption

(Koop 2013). Even once norms are established, they frequently change as technology evolves, and

the United States is a perfect example of this.

Second, cultural norms may be uninformed of the technical reality. The Clipper Chip (12.4.4) is

a perfect example of this. Many politician and Americans today will frequently tout the possibility of

constructing "back-doors" into encryption products, despite the fact that experts in the field nearly

universally denounce these a technical impossibility. The intention of the norm demanding a "back-

door" is to allow Law Enforcement to access encrypted data in specific circumstances, but the reality

is that such a norm eliminates encrypted data entirely. Here, we see moral relativism fall apart,

betraying the very intention of the culture’s moral norm.

Lastly, the Internet is far too international for moral relativism to yield any meaningful answers.

If one ascribes to the morality of the culture one operates in, what happens when operation occurs

across cultural norms? Consider a software team in the United States developing an application

intended for use in Italy with data servers in the Netherlands. Is the data encrypted according the

cultural norms of Italy, the Netherlands or the United States? On the one hand, Italians will be the

primary audience, so perhaps it is their norm that should be respected. On the other hand, the

Dutch are actually storing the data, so surely their culture should determine what techniques are

used to encrypt data on disk. But then again, according to moral relativism, one cannot ask the

United States developers to disregard their own cultural norms in the development of the system. A

strict adherence to moral relativism would leave such international software products impossible to

develop, resulting in a more stratified and disjointed world.

59

12.5.5 Catholic Social Teaching

Unsurprisingly, the Catholic Church rarely inserts itself into international technical debates. Given

this, the Catholic Church has never officially taken a stance on strong encryption. But the fundamen-

tal underpinnings of Catholic Moral teachings are relevant to TrusNet and any strong cryptographic

system, namely the common good and human freedom. Strong cryptographic systems relate to the

common good because they help stabilize the emergent Internet of Things. In short, the common

good ascribes to the same reasoning used in Utilitarianism (12.5.1).

Human freedom, however, introduces a new ethical dimension of strong cryptography yet to be

mentioned. While strong cryptography can be used to hide deplorable criminal behavior, such as

Child Pornography or terrorism, it can also be used to hide behavior which has been unjustifiably

outlawed. The Tor network, which allows users to hide the source and destination of their web traffic,

is an excellent example of this juxtaposition (Kiosowski 2014). Tor is often used for criminal activity,

and this is usually why it makes the news. But Tor is also used to subvert draconian censorship

laws in nations such as China and Russia. Tor, and strong cryptography as a whole, are used

by journalists, diplomats and Human Rights activists around the world. In short, cryptography is a

central and indispensable tool in breaking down and exposing government oppression.

12.6 Conclusion

Ultimately, our network is another option for others to use and build upon. While TrusNet encryption

is almost impossible to break, several critical design choices prevent TrusNet from being used for

large scale communication. The overall computational cost of the network scales poorly, so above a

certain number of nodes, our network is simply inefficient to the point of uselessness. We feel that

while no system is perfect, we have developed a secure method of communication with structural

choices which help alleviate some of the problems with malicious use of advanced encryption.

60

Chapter 13

Test Plan

13.1 Unit Testing

Unit tests are designed to verify the functionality of specific code modules. For our project, we will

use two types of unit tests: informal and automated.

13.1.1 Informal Unit Testing

Before integrating new code, developers are expected to confirm the functionality of their additions

through informal unit testing. Additionally, if additions are substantial, developers will utilize git’s

branching ability to protect functioning code from errors introduced by untested code. Informal unit

tests are never considered adequate, code must (at a minimum) be integrated into the automated

unit testing framework.

13.1.2 Automated Unit Testing

TrusNet contains an Automated Unit Testing framework, designed to run a battery of tests as defined

by library dependencies. Each library contains a library testing class, which can be added to test

battery for any executable. Each executable artifact, with the exception of the Unit Test executable

itself, must be able to define a Unit Test battery for itself. The precise mechanics of the automated

Unit Testing framework are explained in the documentation for the UnitTest library.

61

13.2 Cross-Platform Testing

The TrusNet project must be able to run on multiple platforms. For the demonstration project, there

are two classes of platforms to be tested. Some platforms must display the TrusNet UI, these plat-

forms are:

• Windows

• OSX

• Linux

The other class of platforms need only run the headless release of TrusNet. These platforms are:

• Raspian

• Intel Edison

Cross platform tests were preformed by running the Automated Unit Tests on each of the target

platforms frequently. Additionally, end-to-end tests were preformed on diverse platforms.

13.3 Security Testing

Security testing involves attempting to sabotage the TrusNet system during runtime. Because of

the strong mathematical backing of public-key cryptography, some security testing is unnecessary

as the algorithms used have been vigorously proven. Despite this guaranteed security, toward the

conclusion of the TrusNet project, we allowed our peers to attempt to compromise the security of the

TrusNet system in a variety of attacks, including:

• Man-in-the-middle

• Denial of Service

• Eavesdropping

62

13.4 End-to-End Testing

Throughout development, the system was frequently tested end-to-end. End-to-end tests involved

attempting to use the system to create and use a mesh network. These tests, in addition to testing

end-to-end functionality, also tested cross platform functionality.

13.5 User Testing

Toward the conclusion of Senior Design development, non-technical individuals tested the TrusNet

system. In particular, these testers used the demonstration application User Interface and reported

on the usability of the system.

63

Chapter 14

Test Results

14.1 Unit Testing Results

Our extensive unit testing allowed us to catch numerous problems far before they would have ap-

peared in general operation. The unit tests were built during our standard build, so each call to build

the project rebuilt the unit test suite. Thanks to this fact, we constantly ran the unit tests.

14.2 Speed Testing Results

Table 14.1 notes the performance of several critical steps in our security system. Notably, the initial

key creation take excessive amounts of time, especially on the Intel Edison. However, the actual

message passing (in the final column) is all under one thousandth of a second, even with 512 bit

RSA authentication on the Intel Edison. Consult 14.1 for a graphical representation of one of these

time profiling tests.

64

Table 14.1 Time Profiling

Test i5 3.4 GHz i5 1.6 GHz Xeon 3.7 GHz Edison
Key Generation

RSA 128 bit 0.1861 0.9811 0.4207 4.7658
RSA 256 bit 3.8253 9.2788 3.4820 75.6635
RSA 512 bit 18.3665 90.6345 36.9524 675.8570

Basic Message Passing
RSA 128 bit 0.0209 0.1448 0.0364 0.5063
RSA 256 bit 0.1094 0.4304 0.2449 3.6867
RSA 512 bit 0.6373 2.8642 1.7653 24.3530

Secure Gateway Connection
RSA 128 bit 0.0454 0.1448 0.0761 1.1115
RSA 256 bit 0.3960 0.8666 0.4751 7.5162
RSA 512 bit 1.2737 5.9611 3.5429 49.8386

Gateway Message Passing
RSA 128 bit 2.504e-05 8.038e-05 5.282e-05 8.745e-04
RSA 256 bit 2.526e-05 8.028e-05 5.234e-05 8.837e-04
RSA 512 bit 2.536e-05 7.978e-05 5.476e-05 8.818e-04

Figure 14.1 256 bit RSA time profiling

14.3 Demonstration Testing Results

The demonstration unit contained its own unit tests, which were tested in the macro unit testing

commands whenever the test suite was run on an Intel Edison platform. Additionally, we also had

65

a dedicated embedded system test which ran various sweeps across motors, tested motor enables

and disables, and confirmed the accurate reading of the joystick unit. These tests required human

input and verification, but allowed us to tune and test our demonstration system before the TrusNet

protocol was fully operational.

66

Chapter 15

User Manual

The user manual provides a description of how to use each of the three deliverables of the TrusNet

project. For those interested in using the library, consult 15.3 to see how to download, compile

and link the source code. Very detailed documentation is provided in the repository containing the

source-code of the library.

15.1 Headless Application

The headless application is designed for use with the UI application. However, before operation,

several steps are required to ensure that every node is prepared to demonstrate.

15.1.1 Unit Testing

When adding a node, it is important to make sure that all the necessary libraries and subsystems

are installed on a given node. Furthermore, we wish to ensure that all the functions used in the

demonstration and TrusNet protocol are operational. In order to ensure proper functionality, running

the UnitTestExe executable is the first step when working with any node, regardless of type. If any

tests fail, they will be noted in the terminal output or any file you wish to pipe into. If small changes

have been made to a node after the initial unit test, calling "UnitTestExe fast" from your terminal

client. This skips the RSA generation and verification tests. Once the unit tests are successful, you

can be sure that a given platform can run TrusNet.

67

15.1.2 Edison Setup

For the Intel Edisons specifically, several additional steps are required for demonstration. Because

each Edison can be a joystick, robot, or standard node, you must configure each Edison for its re-

spective role. The configuration file is located at Remote_Files/<Device Name>/Remote_Controller.

Here, you can change the "No Hardware" line to "joystick" or "bot" for those respective nodes. You

should also make a note of the IP address for each node. This will assist you in setting up the network

as well as allow you to remotely connect to the Edisons.

15.1.3 Network Setup

Once all nodes have been setup, unit tests run, and Edisons configured, you must setup the network.

Launch BaseForm on a computer and use the UI application to add all the nodes to that computer

via the IP form element of the UI application. Then boot all the nodes one at a time until all are online

running either RemoteMain or BaseForm. Thanks to the IP sharing, each node will get a copy of all

the IPs from the inital node, then each will verify the existence of all other nodes. The network is now

ready to be demonstrated.

15.1.4 Demonstration

For demonstration purposes, robots bind to the first joystick they encounter. We recommend that you

launch your joystick node first, then launch your robot node, then launch any other nodes you wish

to have in the network. This will ensure that the joystick and robot node connect to each other first

and allow for optimal demonstration.

15.2 UI Application

The UI application is a multi-user graphical interface which visualizes the intrinsics of TrusNet. This

application is designed to be used on multiple different operating systems.

15.2.1 Getting Started

On both Windows and Unix systems, the BaseForm application is accessed by clicking on the exe-

cutable. Even on Mac, where such behavior usually opens an application the user’s root, will localize

68

the application to the directory it is contained in. BaseForm will save its files in a directory called

"WifiRC_Base."

On Windows, a number of .dll files are needed to run BaseForm. The list is:

• freeglut.dll

• msvcp110.dll

• msvcr110.dll

These files should have been included in your distribution of the UI application.

15.2.2 Logging In

Upon starting the application, Figure 15.1 is an example of the form a user will encounter. If a user

is returning to this machine, the user logs in. If, however, a user is new, this user must create a new

user as shown in Figure 15.2. Note that this particular form asks a prospective user for a password

twice, and Figure 15.3 shows an example of what happens if that check should fail. After choosing a

user-name, password and initial public key size, keys are generated and a waiting form is displayed

until generation is complete, as shown in Figure 15.4.

Figure 15.1 Basic login form

69

Figure 15.2 Building a new user

Figure 15.3 New user with mis-matching passwords

70

Figure 15.4 Generating new RSA keys

To check if a user is saved on this machine, enter into the "List Users" form. Figure 15.5 shows

an example of what this form may look like. Note that users can also be deleted from a machine

through this form. Lastly, if a password is entered incorrectly, a pop-up like the one in Figure 15.6 will

be displayed.

71

Figure 15.5 List of known users

Figure 15.6 Password error pop-up

72

15.2.3 IP Address Management

Figure 15.7 demonstrates what the IP address management form looks like. This form allows for

adding both IPv4 and IPv6 addresses, and is managing both an IPv4 and IPv6 server. Additionally,

IP Addresses can be blocked, constantly polling or polling until some time-out value is reached. IP

Addresses also are paired with an indicator, which is either blue, red, yellow or green. Blue indicates

the IP address is referencing this machine, red indicates no connection has been established, yellow

indicates a connection is being authenticated and green indicates a connection is both secure and

authenticated.

Figure 15.7 Managing IP addresses

15.2.4 Key Management

Figure 15.8 shows an example of management of cryptographic algorithms and keys. Through this

interface, users can change what their preferred algorithms are and regenerate public keys.

73

Figure 15.8 Cryptographic management

15.2.5 Node Interaction

In the main form, users can interact with connected nodes. Figure 15.9 gives an example of the

list of connected node. Similar to the IP Address management in section 15.2.3, red indicates no

connection, yellow indicates an active authentication process and green indicates a connection is

secure and authenticated. Figure 15.10 shows an example of the node interaction menu when

a node is unconnected. Figure 15.11 demonstrates the interface when a node is a joystick, and

constantly broadcasting messages indicating the position of the joystick. Lastly, Figure 15.12 shows

the interface when a form is both sending commands to and receiving feedback from a remote node

running under the robot configuration.

74

Figure 15.9 Connection list

Figure 15.10 Node interface: no connection

75

Figure 15.11 Node interface: joystick

Figure 15.12 Node interface: robot

76

15.3 Library Usage

Building the source code for this project and linking this project to outside projects requires a number

of outside software tools. This manual also provides a description of the scripts involved, what they

do and how to make any needed modifications.

15.3.1 Required Tools

In-order to properly utilize the scripts provided by the TrusNet architecture, users first need to down-

load the tools below:

• CMake

• git

• Doxygen (optional)

All three of these tools are available for both Windows and Unix systems. Note that these tools

must be installed on the command line. If these tools are improperly installed, the scripts will alert

the user. Note that for Unix systems, bash must be installed, and for Windows systems, batch files

need to be executable. Scripts are provided for both Unix and Windows systems.

15.3.2 Repositories

The TrusNet project is primarily stored on github. The primary repository is the WifiRC_Builder

repository, who’s address is:

h t t ps : / / g i thub . com/ JonWBedard / Wif iRC_Bui lder

This repository contains a script to pull the correct version of all repositories required to build the

TrusNet project. To pull the most recent version of the project on a Unix system, run:

$ g i t c lone h t t ps : / / g i thub . com/ JonWBedard / Wi f iRC_Bui lder

$ cd Wif iRC_Bui lder

$ g i t checkout June2016 \ _F ina l

$. / pul lRepos . bash

77

Note that the final version of the project as of June 2016 is on the "June2016_Final" branch. The

details of the master branch will change as development updates occur, and this document become

out of date.

15.3.3 IDE Support

CMake support multiple different IDEs, although our scripts only support five build types. Our scripts

search for a set of installed IDEs, a list of which is below. If none of these IDEs is found, a simple

makefile is used.

• Visual Studios (10-14)

• XCode

• Eclipse

• Code Blocks

Note that if you do not like the behavior of the automatic IDE selection scripts, you can modify

the scripts in Datastructures/Windows/genIDE.bat for Windows or Datastructures/Unix/genIDE.bash

for Unix systems. If you intend on including the library in your own project, consult the scripts in

WifiRC_Builder to see how CMake is called from scripts.

15.3.4 Building and Compiling

After all repositories are installed, run buildWindowsWifiRC.bat if on a Windows system or buil-

dUnixWifiRC.bash if on a Unix system. This script will create a new folder on the same level as

"WifiRC_Builder" called "build," and place the build folder "WifiRC" and "WifiRC_Headless" in the

build folder.

In order to link either TrusNet or CryptoGateway to your own project through CMake, use the

following structure:

INCLUDE (. . . / CryptoGateway / CMakeLists . t x t)

INCLUDE (. . . / TrusNet / CMakeLists . t x t)

. . .

TARGET_LINK_LIBRARIES(EXE_NAME

78

$ {OS_LIBS}

$ { EXE_LIBS }

. . .

)

. . .

The two macros linked to are a list of libraries TrusNet and CryptoGateway depend on, includ-

ing TrusNet and CryptoGateway. Consult the detailed documentation contained in the TrusNet and

CryptoGateway repositories for usage of the actual libraries.

79

Chapter 16

Documentation

The appendix contains basic documentation for each of the libraries and modules included in the

project. These parts describe the intended use of each library or module, its dependencies and the

classes inside of it. Note that more detailed documentation is available on-line. For brevity, however,

this documentation has been left out. The libraries and modules used in this project are as follows.

• Datastructures

• UnitTest

• osMechanics

• CryptoGateway

• TrusNet

• EdisonHAL

• WifiRC

• RemoteMain

• glGraphics

• CryptoLogin

• BaseForm

80

Figure 16.1 visualizes the dependencies between the libraries. As over viewed in the User Man-

ual, the WifiRC_Builder repository should be used to pull all of the dependent repositories when

one intends on building any one of the deliverables. Figure 16.1 does not include testing libraries or

testing executables, although some are built for this project. These testing assets are as follows:

• osMechanicsTest

• CryptoGatewayTest

• EdisonHalTest

• glGraphicsTest

• UnitTestExe (executable)

• HardwareTest (executable)

• SpeedProfiling (executable)

81

Figure 16.1 Library dependencies

82

Bibliography

Bar-Yosef, N. (2012). Understanding public key cryptography and the history of rsa.

Blaze, M. (1994). Protocol failure in the escrowed encryption standard.

Bormann, C. (2015). Constrained application protocol.

Donovan, P. (2012). The flaw in the jn-25 series of ciphers, ii. Cryptologia, 36.

Gillogly, J. (1995). Ciphertext-only cryptanalysis of enigma. Cryptologia, 19(4).

GreenBerg, A. (2015). Hackers remotely kill a jeep on the highway - with me in it.

IEEE (2016). Code of ethics ieee.

Kemerling, G. (2011). Kant the moral order.

Kiosowski, T. (2014). What is tor and should i use it?

Koop, B. (1996). Encryption law–ii: A survey of cryptography laws and regulations’. Computer Law

and Security Reporter, 12:349–355.

Koop, B. (2013). Crypto law survey.

Lomas, N. (2016). Whatsapp completes end-to-end encryption rollout.

Niem, T. C. (11-04-2002). Bluetooth and its inherent security issues. Technical report, SANS GIAC

Security Essentials Certification.

Patel, H. (2015). Improving ZigBee Device Network Authentication Using Ensemble Decision Tree

Classifiers With Radio Frequency Distinct Native Attribute Fingerprinting, volume 64. IEEE.

83

Prados, J. (1996). Battle of midway.

Risen, T. (2015). Vtech hack shows kids at risk with wifi toys.

Selberg, A. (1949). An Elementary Proof of the Prime-Number Theorem, volume 50 of Second.

Annals of Mathematics.

Selent, D. (2010). Advanced encryption standard. Rivier Academic Journal, 6.

Smid, M. and Branstad, D. (1988). The data encryption standard: Past and future. Proceedings of

the IEEE, 76.

Staff, D. D. (2016a). Senate bill effectivly bans strong encryption.

Staff, N. Y. T. (2016b). Breaking down apple’s iphone fight with the u.s. government.

84

Appendix A

Gant Charts

Figure A.1 Fall 2015 Gantt chart

Figure A.2 Winter 2016 Gantt chart

85

Figure A.3 Spring 2016 Gantt chart

86

Appendix B

Risk Tables

B.1 Management Risks

Risks in this category impact the ability of team members to complete their tasks, or work adequately

together. Management risks are not technical in nature, and are shown in Table B.1.

B.2 Design Risks

Design risks are risks which effect the central design premises used in the project. Risks in this

section have some of the highest impacts because these risks have the potential to undermine the

paradigm which TrusNet was conceived in. These risks are outlined in Table B.2.

B.3 Demonstration Risks

This category of risks is entirely technical in nature. These risks effect only the ability to demonstrate

the system, not a failure of the core functionality of the system. Table B.3 outlines these risks.

B.4 Security Risks

Since the core functionality of the TrusNet system is security, risks in this category effect the core

functionality of the system. While primarily technical in nature, these risks can also be legal as well

and are outlined in Table B.4.

87

Table B.1 Management Risks

Risk Consequences Probability Severity Impact Mitigation Strategy
Illness Some members will

be unable to work
for a time

0.7 5 3.5 To avoid problems brought
on by illness, we have a
system of repositories, al-
lowing us to work indi-
vidually. Additionally, we
have regular theory crafting
meeting to ensure we each
understand each module,
allowing for us to temporar-
ily take over for one an-
other.

Job demands Both of us have
jobs, so pressing
business require-
ments may slow
progress

0.1 8 0.8 We are staying on a tight
schedule to ensure that we
have plenty of extra time
later in the year to finish
work delayed by job re-
quirements.

Table B.2 Design Risks

Risk Consequences Probability Severity Impact Mitigation Strategy
Mesh Problem Building a con-

stantly updating and
intelligent network
is no simple task.
Even within a sin-
gle medium, we
are likely to have
issues connecting
and communicating
efficiently.

0.8 0.6 4.8 We are separating the
individual communication
and mesh elements of
our network. Even with a
poor mesh, our security
and communication sys-
tems still provide useful
advancements for other
mesh networks.

Porting Difficulty We may need to put
the code on yet un-
known hardware.

0.2 7 1.4 The entire TrusNet API is
built on core libraries and
C++. Given that almost ev-
ery piece of hardware runs
C++ code, we should be
able to add new platforms
with little effort.

88

Table B.3 Demonstration Risks

Risk Consequences Probability Severity Impact Mitigation Strategy
Platform Variance This network is de-

signed to run on a
variety of platforms.
Each will have its
own issues indepen-
dent of the other
platforms

0.8 5 4 Many of the things we have
done for porting apply here.
Additionally, we are making
use of CMake to standard-
ize compilation across sys-
tems.

Edison Failure One or more of our
Edison boards may
become inoperable.

0.3 8 2.4 In order to prevent damage
to the Edisons, we keep
them stored in packaging.
We also have six boards,
but our project only needs
3 to demonstrate its func-
tionality.

Wifi Problem The wifi communi-
cation methods we
are currently using
may have unseen
problems.

0.1 5 0.5 Wifi is well understood, so
unknown problems are un-
likely. In case of wifi prob-
lems, we can use other
technologies to communi-
cate, such as Bluetooth.

Robot Failure We have access
to two simple om-
nibots from the
robotics systems
lab. While reliable,
these robots are not
always perfect and
may have issues.

0.1 5 0.5 One of the omnibots is
kept as a demonstration
unit while the other is un-
dergoing a rebuild. Once
complete, the rebuilt robot
will have almost total hard-
ware redundancy.

89

Table B.4 Security Risks

Risk Consequences Probability Severity Impact Mitigation Strategy
Security Failure Encryption is always

advancing. Our se-
curity methods may
become broken dur-
ing development.

0.1 9 0.9 We have built our own
key generation algorithms
to ensure that outside ac-
cess is minimal. We have
also abstracted the security
so that we can change al-
gorithms without breaking
our overall security theory.

Legal problems Various govern-
ments have a
history of outlawing
encryption or other
wise rendering this
technology illegal.

0.02 10 0.2 The likelihood of our tech-
nology being outlawed
in the United States is
fairly low. Should a single
encryption method be
banned, we can change
certain elements to ensure
the overall project can
continue.

90

Part I

Datastructures Library

91

Appendix C

Introduction

The Datastructures library contains a series of utility classes and template classes used for the

organization and management of data. Most notably, this library allow dynamic memory management

through the smart_ptr class and provides a flexible runtime data container in the ads (Abstract Data

Structure) template and its children.

C.1 Unit Testing

The testing of the Datastructures library is contained within the UnitTest library. Since the UnitTest

library uses the functionality of the Datastructures library, the Datastructures library cannot be de-

pendent on the UnitTest library as the UnitTest library is already dependent on the Datastructures

library

C.2 Namespace os

Datastructures extends the os namespace. The os namespace is designed for tools, algorithms and

data-structures used in programs of all types. Structures in this library do not implement operating

system specific interfaces such as sockets and file I/O. The osMechanics library also extends the os

namespace.

92

Appendix D

File Index

D.1 File List

Here is a list of all files with brief descriptions:

abstractSorting.h

Template for sorting arrays . 95

ads.h

Abstract datastructure interface . 96

asyncAVL.h

Asynchronous AVL tree . 97

AVL.h

AVL tree . 98

Datastructures.h

Master Datastructures header file . 95

eventDriver.cpp

Event driver implementation . 100

eventDriver.h

Event sender and receiver . 99

list.h

Doubly Linked List . 100

matrix.h

Matrix templates . 101

93

osLogger.cpp

Logging for os namespace, implementation . 121

osLogger.h

Logging for os namespace . 120

osVectors.h

Vector templates . 121

set.h

Smart Set . 123

smartPointer.h

Template declaration of os::smart_ptr (p. ??) 124

staticConstantPrinter.cpp

Constant printing support, implementation . 134

staticConstantPrinter.h

Constant printing support . 134

94

Appendix E

File Documentation

E.1 Datastructures.h File Reference

Master Datastructures header file.

E.1.1 Detailed Description

Master Datastructures header file.

Author

Jonathan Bedard

Date

2/14/2016

Bug No known bugs.

All of the headers in the Datastructures library are held in this file. When using the Datastructures

library, it is expected that this header is included instead of the individual required headers.

E.2 abstractSorting.h File Reference

Template for sorting arrays.

Namespaces

• os

95

Functions

• template<class dataType >

int os::defaultCompareSort (const dataType &v1, const dataType &v2)
Basic compare.

• template<class dataType >

int os::pointerCompareSort (smart_ptr< dataType > ptr1, smart_ptr< dataType > ptr2)
Raw pointer compare.

• template<class dataType >

void os::quicksort (dataType ∗arr, unsigned int length, int(∗sort_comparison)(const dataType

&, const dataType &)=&defaultCompareSort)
Template quick-sort.

• template<class dataType >

void os::pointerQuicksort (smart_ptr< smart_ptr< dataType > > arr, unsigned int length,

int(∗sort_comparison)(smart_ptr< dataType >, smart_ptr< dataType >)=&pointerCompare←↩

Sort)
Template for quick-sort, pointer version.

E.2.1 Detailed Description

Template for sorting arrays.

Author

Jonathan Bedard

Date

2/15/2016

Bug No known bugs.

This file contains a template class definition of an AVL tree and its nodes. This tree has insertion,

search and deletion of O(log(n)) where n is the number of nodes in the tree. This tree is thread safe.

E.3 ads.h File Reference

Abstract datastructure interface.

96

Classes

• class os::ptrComp
Pointer compare interface.

• class os::adnode< dataType >
Abstract data-node.

• class os::ads< dataType >
Abstract datastructure.

Namespaces

• os

E.3.1 Detailed Description

Abstract datastructure interface.

Author

Jonathan Bedard

Date

5/9/2016

Bug No known bugs.

This file contains definitions of a set of class interfaces used by abstract datastructures and

classes interfacing with abstract datastructures.

E.4 asyncAVL.h File Reference

Asynchronous AVL tree.

Classes

• class os::asyncAVLNode< dataType >
Node for usage in an asynchronous AVL tree.

• class os::asyncAVLTree< dataType >
Asynchronous balanced binary search tree.

97

Namespaces

• os

E.4.1 Detailed Description

Asynchronous AVL tree.

Author

Jonathan Bedard

Date

5/9/2016

Bug No known bugs.

This file contains a template class definition of an AVL tree and its nodes. This tree has insertion,

search and deletion of O(log(n)) where n is the number of nodes in the tree. This tree is thread safe.

E.5 AVL.h File Reference

AVL tree.

Classes

• class os::AVLNode< dataType >

Node for usage in an AVL tree.

• class os::AVLTree< dataType >

Balanced binary search tree.

Namespaces

• os

E.5.1 Detailed Description

AVL tree.

98

Author

Jonathan Bedard

Date

2/12/2016

Bug No known bugs.

This file contains a template class definition of an AVL tree and its nodes. This tree has insertion,

search and deletion of O(log(n)) where n is the number of nodes in the tree. This tree is not thread

safe.

E.6 eventDriver.h File Reference

Event sender and receiver.

Classes

• class os::eventSender< receiverType >

Class which enables event sending.

• class os::eventReceiver< senderType >

Class which enables event receiving.

Namespaces

• os

Variables

• std::recursive_mutex ∗ os::eventLock

Event processing mutex.

E.6.1 Detailed Description

Event sender and receiver.

99

Author

Jonathan Bedard

Date

5/9/2016

Bug No known bugs.

Both os::eventReceiver (p. ??) and os::eventSender (p. ??) are experimental classes and have

not been tested or utilized.

E.7 eventDriver.cpp File Reference

Event driver implementation.

E.7.1 Detailed Description

Event driver implementation.

Author

Jonathan Bedard

Date

2/28/2016

Bug No known bugs.

This file implements os::eventLock (p. ??) for os::eventSender (p. ??) and os::eventReceiver

(p. ??). These are experimental class and not yet used or tested

E.8 list.h File Reference

Doubly Linked List.

100

Classes

• class os::unsortedListNode< dataType >

Node for usage in a linked list.

• class os::unsortedList< dataType >

Unsorted linked list.

Namespaces

• os

E.8.1 Detailed Description

Doubly Linked List.

Author

Jonathan Bedard

Date

2/1/2016

Bug No known bugs.

This file contains a template class definition of a linked list and its nodes. This list has insertion,

find and delete of O(n). The linked list provided is doubly linked, allowing for forward and backward

traversal. This list is not thread safe.

E.9 matrix.h File Reference

Matrix templates.

Classes

• class os::matrix< dataType >

Raw matrix.

• class os::indirectMatrix< dataType >

Indirect matrix.

101

Namespaces

• os

Functions

• template<class dataType >

bool os::compareSize (const matrix< dataType > &m1, const matrix< dataType > &m2)

Compares the size of two matrices.

• template<class dataType >

bool os::compareSize (const indirectMatrix< dataType > &m1, const matrix< dataType >

&m2)

Compares the size of two matrices.

• template<class dataType >

bool os::compareSize (const matrix< dataType > &m1, const indirectMatrix< dataType >

&m2)

Compares the size of two matrices.

• template<class dataType >

bool os::compareSize (const indirectMatrix< dataType > &m1, const indirectMatrix< dataType

> &m2)

Compares the size of two matrices.

• template<class dataType >

bool os::testCross (const matrix< dataType > &m1, const matrix< dataType > &m2)

Tests if the cross-product is a legal operation.

• template<class dataType >

bool os::testCross (const indirectMatrix< dataType > &m1, const matrix< dataType > &m2)

Tests if the cross-product is a legal operation.

• template<class dataType >

bool os::testCross (const matrix< dataType > &m1, const indirectMatrix< dataType > &m2)

Tests if the cross-product is a legal operation.

• template<class dataType >

bool os::testCross (const indirectMatrix< dataType > &m1, const indirectMatrix< dataType >

&m2)

102

Tests if the cross-product is a legal operation.

• template<class dataType >

bool operator== (const os::matrix< dataType > &m1, const os::matrix< dataType > &m2)

Test for equality.

• template<class dataType >

bool operator== (const os::indirectMatrix< dataType > &m1, const os::matrix< dataType >

&m2)

Test for equality.

• template<class dataType >

bool operator== (const os::matrix< dataType > &m1, const os::indirectMatrix< dataType >

&m2)

Test for equality.

• template<class dataType >

bool operator== (const os::indirectMatrix< dataType > &m1, const os::indirectMatrix< data←↩

Type > &m2)

Test for equality.

• template<class dataType >

bool operator!= (const os::matrix< dataType > &m1, const os::matrix< dataType > &m2)

Test for inequality.

• template<class dataType >

bool operator!= (const os::indirectMatrix< dataType > &m1, const os::matrix< dataType >

&m2)

Test for inequality.

• template<class dataType >

bool operator!= (const os::matrix< dataType > &m1, const os::indirectMatrix< dataType >

&m2)

Test for inequality.

• template<class dataType >

bool operator!= (const os::indirectMatrix< dataType > &m1, const os::indirectMatrix< data←↩

Type > &m2)

Test for inequality.

103

• template<class dataType >

os::matrix< dataType > operator+ (const os::matrix< dataType > &m1, const os::matrix<

dataType > &m2)

Addition.

• template<class dataType >

os::matrix< dataType > operator+ (const os::indirectMatrix< dataType > &m1, const os←↩

::matrix< dataType > &m2)

Addition.

• template<class dataType >

os::matrix< dataType > operator+ (const os::matrix< dataType > &m1, const os::indirect←↩

Matrix< dataType > &m2)

Addition.

• template<class dataType >

os::indirectMatrix< dataType > operator+ (const os::indirectMatrix< dataType > &m1, const

os::indirectMatrix< dataType > &m2)

Addition.

• template<class dataType >

os::matrix< dataType > operator- (const os::matrix< dataType > &m1, const os::matrix<

dataType > &m2)

Subtraction.

• template<class dataType >

os::matrix< dataType > operator- (const os::indirectMatrix< dataType > &m1, const os←↩

::matrix< dataType > &m2)

Subtraction.

• template<class dataType >

os::matrix< dataType > operator- (const os::matrix< dataType > &m1, const os::indirect←↩

Matrix< dataType > &m2)

Subtraction.

• template<class dataType >

os::indirectMatrix< dataType > operator- (const os::indirectMatrix< dataType > &m1, const

os::indirectMatrix< dataType > &m2)

104

Subtraction.

• template<class dataType >

os::matrix< dataType > operator∗ (const os::matrix< dataType > &m1, const os::matrix<

dataType > &m2)

Cross-product.

• template<class dataType >

os::matrix< dataType > operator∗ (const os::indirectMatrix< dataType > &m1, const os←↩

::matrix< dataType > &m2)

Cross-product.

• template<class dataType >

os::matrix< dataType > operator∗ (const os::matrix< dataType > &m1, const os::indirect←↩

Matrix< dataType > &m2)

Cross-product.

• template<class dataType >

os::indirectMatrix< dataType > operator∗ (const os::indirectMatrix< dataType > &m1, const

os::indirectMatrix< dataType > &m2)

Cross-product.

• template<class dataType >

os::matrix< dataType > operator∗ (const dataType &d1, const os::matrix< dataType > &m1)

Scalar multiplication.

• template<class dataType >

os::matrix< dataType > operator∗ (const os::matrix< dataType > &m1, const dataType &d1)

Scalar multiplication.

• template<class dataType >

os::matrix< dataType > operator/ (const os::matrix< dataType > &m1, const dataType &d1)

Scalar division.

• template<class dataType >

os::indirectMatrix< dataType > operator∗ (const dataType &d1, const os::indirectMatrix<

dataType > &m1)

Scalar multiplication.

105

• template<class dataType >

os::indirectMatrix< dataType > operator∗ (const os::indirectMatrix< dataType > &m1, const

dataType &d1)
Scalar multiplication.

• template<class dataType >

os::indirectMatrix< dataType > operator/ (const os::indirectMatrix< dataType > &m1, const

dataType &d1)
Scalar division.

• template<class dataType >

std::ostream & operator<< (std::ostream &os, const os::matrix< dataType > &dt)
Prints out a matrix.

• template<class dataType >

std::ostream & operator<< (std::ostream &os, const os::indirectMatrix< dataType > &dt)
Prints out a matrix.

E.9.1 Detailed Description

Matrix templates.

Author

Jonathan Bedard

Date

2/2/2016

Bug No known bugs.

This file contains two template class definitions for matrices. One of these is an "indirect" matrix,

meaning that the is an array of pointers, and the other is a direct matrix, meaning the matrix is an

array of values.

E.9.2 Function Documentation

template<class dataType > bool operator!= (const os::matrix< dataType > & m1, const
os::matrix< dataType > & m2)

Test for inequality.

106

Calls '==' and then inverts the result. Depends on the '!=' operator of dataType.

Parameters

in m1 Raw matrix reference

in m2 Raw matrix reference

Returns

False if exactly equivalent

template<class dataType > bool operator!= (const os::indirectMatrix< dataType > & m1, const
os::matrix< dataType > & m2)

Test for inequality.

Calls '==' and then inverts the result. Depends on the '!=' operator of dataType.

Parameters

in m1 Indirect matrix reference

in m2 Raw matrix reference

Returns

False if exactly equivalent

template<class dataType > bool operator!= (const os::matrix< dataType > & m1, const
os::indirectMatrix< dataType > & m2)

Test for inequality.

Calls '==' and then inverts the result. Depends on the '!=' operator of dataType.

Parameters

in m1 Raw matrix reference

in m2 Indirect matrix reference

107

Returns

False if exactly equivalent

template<class dataType > bool operator!= (const os::indirectMatrix< dataType > & m1, const
os::indirectMatrix< dataType > & m2)

Test for inequality.

Calls '==' and then inverts the result. Depends on the '!=' operator of dataType.

Parameters

in m1 Indirect matrix reference

in m2 Indirect matrix reference

Returns

False if exactly equivalent

template<class dataType > os::matrix<dataType> operator∗ (const os::matrix< dataType > &
m1, const os::matrix< dataType > & m2)

Cross-product.

Preforms the cross-product. The cross- product is undefined if the width of m1 does not equal

the height of m2. If the cross-product is undefined, a matrix of size (0,0) will be returned. Depends

on the '∗' and '+=' operator of the dataType.

Parameters

in m1 Raw matrix reference

in m2 Raw matrix reference

108

Returns

m1 x m2 (raw matrix)

template<class dataType > os::matrix<dataType> operator∗ (const os::indirectMatrix<
dataType > & m1, const os::matrix< dataType > & m2)

Cross-product.

Preforms the cross-product. The cross- product is undefined if the width of m1 does not equal

the height of m2. If the cross-product is undefined, a matrix of size (0,0) will be returned. Depends

on the '∗' and '+=' operator of the dataType.

Parameters

in m1 Indirect matrix reference

in m2 Raw matrix reference

Returns

m1 x m2 (raw matrix)

template<class dataType > os::matrix<dataType> operator∗ (const os::matrix< dataType > &
m1, const os::indirectMatrix< dataType > & m2)

Cross-product.

Preforms the cross-product. The cross- product is undefined if the width of m1 does not equal

the height of m2. If the cross-product is undefined, a matrix of size (0,0) will be returned. Depends

on the '∗' and '+=' operator of the dataType.

Parameters

in m1 Raw matrix reference

in m2 Indirect matrix reference

109

Returns

m1 x m2 (raw matrix)

template<class dataType > os::indirectMatrix<dataType> operator∗ (const os::indirectMatrix<
dataType > & m1, const os::indirectMatrix< dataType > & m2)

Cross-product.

Preforms the cross-product. The cross- product is undefined if the width of m1 does not equal

the height of m2. If the cross-product is undefined, a matrix of size (0,0) will be returned. Depends

on the '∗' and '+=' operator of the dataType.

Parameters

in m1 Indirect matrix reference

in m2 Indirect matrix reference

Returns

m1 x m2 (indirect matrix)

template<class dataType > os::matrix<dataType> operator∗ (const dataType & d1, const
os::matrix< dataType > & m1)

Scalar multiplication.

Multiplies a matrix by a constant. This function depends on the '∗' operator of the dataType.

Parameters

in d1 Scalar data type

in m1 Raw matrix reference

110

Returns

d1 ∗ m1 (raw matrix)

template<class dataType > os::matrix<dataType> operator∗ (const os::matrix< dataType > &
m1, const dataType & d1)

Scalar multiplication.

Multiplies a matrix by a constant. This function depends on the '∗' operator of the dataType.

Parameters

in m1 Raw matrix reference

in d1 Scalar data type

Returns

d1 ∗ m1 (raw matrix)

template<class dataType > os::indirectMatrix<dataType> operator∗ (const dataType & d1, const
os::indirectMatrix< dataType > & m1)

Scalar multiplication.

Multiplies an indirect matrix by a constant. This function depends on the '∗' operator of the data←↩

Type.

Parameters

in d1 Scalar data type

in m1 Indirect matrix reference

Returns

d1 ∗ m1 (indirect matrix)

template<class dataType > os::indirectMatrix<dataType> operator∗ (const os::indirectMatrix<
dataType > & m1, const dataType & d1)

Scalar multiplication.

111

Multiplies an indirect matrix by a constant. This function depends on the '∗' operator of the data←↩

Type.

Parameters

in m1 Indirect matrix reference

in d1 Scalar data type

Returns

d1 ∗ m1 (indirect matrix)

template<class dataType > os::matrix<dataType> operator+ (const os::matrix< dataType > &
m1, const os::matrix< dataType > & m2)

Addition.

Preforms matrix addition. Matrix addition is undefined if the two matrices are of different size.

If the operation is undefined, a matrix of size (0,0) will be returned. Depends on the '+' operator of

dataType.

Parameters

in m1 Raw matrix reference

in m2 Raw matrix reference

Returns

m1 + m2 (raw matrix)

template<class dataType > os::matrix<dataType> operator+ (const os::indirectMatrix<
dataType > & m1, const os::matrix< dataType > & m2)

Addition.

Preforms matrix addition. Matrix addition is undefined if the two matrices are of different size.

If the operation is undefined, a matrix of size (0,0) will be returned. Depends on the '+' operator of

dataType.

112

Parameters

in m1 Indirect matrix reference

in m2 Raw matrix reference

Returns

m1 + m2 (raw matrix)

template<class dataType > os::matrix<dataType> operator+ (const os::matrix< dataType > &
m1, const os::indirectMatrix< dataType > & m2)

Addition.

Preforms matrix addition. Matrix addition is undefined if the two matrices are of different size.

If the operation is undefined, a matrix of size (0,0) will be returned. Depends on the '+' operator of

dataType.

Parameters

in m1 Raw matrix reference

in m2 Indirect matrix reference

Returns

m1 + m2 (raw matrix)

template<class dataType > os::indirectMatrix<dataType> operator+ (const os::indirectMatrix<
dataType > & m1, const os::indirectMatrix< dataType > & m2)

Addition.

Preforms matrix addition. Matrix addition is undefined if the two matrices are of different size.

If the operation is undefined, a matrix of size (0,0) will be returned. Depends on the '+' operator of

dataType.

Parameters

in m1 Indirect matrix reference

113

Parameters

in m2 Indirect matrix reference

Returns

m1 + m2 (indirect matrix)

template<class dataType > os::matrix<dataType> operator- (const os::matrix< dataType > &
m1, const os::matrix< dataType > & m2)

Subtraction.

Preforms matrix subtraction. Matrix subtraction is undefined if the two matrices are of different

size. If the operation is undefined, a matrix of size (0,0) will be returned. Depends on the '-' operator

of dataType.

Parameters

in m1 Raw matrix reference

in m2 Raw matrix reference

Returns

m1 - m2 (raw matrix)

template<class dataType > os::matrix<dataType> operator- (const os::indirectMatrix< dataType
> & m1, const os::matrix< dataType > & m2)

Subtraction.

Preforms matrix subtraction. Matrix subtraction is undefined if the two matrices are of different

size. If the operation is undefined, a matrix of size (0,0) will be returned. Depends on the '-' operator

of dataType.

Parameters

in m1 Indirect matrix reference

in m2 Raw matrix reference

114

Returns

m1 - m2 (raw matrix)

template<class dataType > os::matrix<dataType> operator- (const os::matrix< dataType > &
m1, const os::indirectMatrix< dataType > & m2)

Subtraction.

Preforms matrix subtraction. Matrix subtraction is undefined if the two matrices are of different

size. If the operation is undefined, a matrix of size (0,0) will be returned. Depends on the '-' operator

of dataType.

Parameters

in m1 Raw matrix reference

in m2 Indirect matrix reference

Returns

m1 - m2 (raw matrix)

template<class dataType > os::indirectMatrix<dataType> operator- (const os::indirectMatrix<
dataType > & m1, const os::indirectMatrix< dataType > & m2)

Subtraction.

Preforms matrix subtraction. Matrix subtraction is undefined if the two matrices are of different

size. If the operation is undefined, a matrix of size (0,0) will be returned. Depends on the '-' operator

of dataType.

Parameters

in m1 Indirect matrix reference

in m2 Indirect matrix reference

115

Returns

m1 - m2 (indirect matrix)

template<class dataType > os::matrix<dataType> operator/ (const os::matrix< dataType > &
m1, const dataType & d1)

Scalar division.

Divides a matrix by a constant. This function depends on the '/' operator of the dataType. No zero

check, as the dataType is not defined.

Parameters

in m1 Raw matrix reference

in d1 Scalar data type

Returns

m1/d (raw matrix)

template<class dataType > os::indirectMatrix<dataType> operator/ (const os::indirectMatrix<
dataType > & m1, const dataType & d1)

Scalar division.

Divides an indirect matrix by a constant. This function depends on the '/' operator of the dataType.

No zero check, as the dataType is not defined.

Parameters

in m1 Raw matrix reference

in d1 Scalar data type

116

Returns

m1/d (raw matrix)

template<class dataType > std::ostream& operator<< (std::ostream & os, const os::matrix<
dataType > & dt)

Prints out a matrix.

Prints out the entire matrix in the provided output stream. This matrix will be printed out in text

form and requires the dataType of the matrix to define an ostream operator.

Parameters

[in/out] os std::ostream reference

in dt Raw matrix reference

Returns

std::ostream os

template<class dataType > std::ostream& operator<< (std::ostream & os, const
os::indirectMatrix< dataType > & dt)

Prints out a matrix.

Prints out the entire matrix in the provided output stream. This matrix will be printed out in text

form and requires the dataType of the matrix to define an ostream operator.

Parameters

[in/out] os std::ostream reference

in dt Indirect matrix reference

117

Returns

std::ostream os

template<class dataType > bool operator== (const os::matrix< dataType > & m1, const
os::matrix< dataType > & m2)

Test for equality.

Tests the two matrices for equal size and then tests each matrix element for equality as well. This

function is dependent on the '!=' definition of the dataType.

Parameters

in m1 Raw matrix reference

in m2 Raw matrix reference

Returns

True if exactly equivalent

template<class dataType > bool operator== (const os::indirectMatrix< dataType > & m1, const
os::matrix< dataType > & m2)

Test for equality.

Tests the two matrices for equal size and then tests each matrix element for equality as well. This

function is dependent on the '!=' definition of the dataType.

Parameters

in m1 Indirect matrix reference

in m2 Raw matrix reference

118

Returns

True if exactly equivalent

template<class dataType > bool operator== (const os::matrix< dataType > & m1, const
os::indirectMatrix< dataType > & m2)

Test for equality.

Tests the two matrices for equal size and then tests each matrix element for equality as well. This

function is dependent on the '!=' definition of the dataType.

Parameters

in m1 Raw matrix reference

in m2 Indirect matrix reference

Returns

True if exactly equivalent

template<class dataType > bool operator== (const os::indirectMatrix< dataType > & m1, const
os::indirectMatrix< dataType > & m2)

Test for equality.

Tests the two matrices for equal size and then tests each matrix element for equality as well. This

function is dependent on the '!=' definition of the dataType.

Parameters

in m1 Indirect matrix reference

in m2 Indirect matrix reference

119

Returns

True if exactly equivalent

E.10 osLogger.h File Reference

Logging for os namespace.

Namespaces

• os

Functions

• std::ostream & os::osout_func ()

Standard out object for os namespace.

• std::ostream & os::oserr_func ()

Standard error object for os namespace.

Variables

• smart_ptr< std::ostream > os::osout_ptr

Standard out pointer for os namespace.

• smart_ptr< std::ostream > os::oserr_ptr

Standard error pointer for os namespace.

E.10.1 Detailed Description

Logging for os namespace.

Jonathan Bedard

Date

1/30/2016

Bug No known bugs.

This file contains declarations which are used for logging within the os namespace.

120

E.11 osLogger.cpp File Reference

Logging for os namespace, implementation.

E.11.1 Detailed Description

Logging for os namespace, implementation.

Jonathan Bedard

Date

2/15/2016

Bug No known bugs.

This file contains global functions and variables used for logging in the os namespace.

E.12 osVectors.h File Reference

Vector templates.

Classes

• class os::vector2d< dataType >

2-dimensional vector

• class os::vector3d< dataType >

3-dimensional vector

Namespaces

• os

Typedefs

• typedef vector2d< int8_t > os::vector2d_8

8 bit 2-d vector

• typedef vector2d< uint8_t > os::vector2d_u8

unsigned 8 bit 2-d vector

• typedef vector2d< int16_t > os::vector2d_16

121

16 bit 2-d vector

• typedef vector2d< uint16_t > os::vector2d_u16
unsigned 16 bit 2-d vector

• typedef vector2d< int32_t > os::vector2d_32
32 bit 2-d vector

• typedef vector2d< uint32_t > os::vector2d_u32
unsigned 32 bit 2-d vector

• typedef vector2d< int64_t > os::vector2d_64
64 bit 2-d vector

• typedef vector2d< uint64_t > os::vector2d_u64
unsigned 64 bit 2-d vector

• typedef vector2d< float > os::vector2d_f
float 2-d vector

• typedef vector2d< double > os::vector2d_d
double 2-d vector

• typedef vector3d< int8_t > os::vector3d_8
8 bit 3-d vector

• typedef vector3d< uint8_t > os::vector3d_u8
unsigned 8 bit 3-d vector

• typedef vector3d< int16_t > os::vector3d_16
16 bit 3-d vector

• typedef vector3d< uint16_t > os::vector3d_u16
unsigned 16 bit 3-d vector

• typedef vector3d< int32_t > os::vector3d_32
32 bit 3-d vector

• typedef vector3d< uint32_t > os::vector3d_u32
unsigned 32 bit 3-d vector

• typedef vector3d< int64_t > os::vector3d_64
64 bit 3-d vector

• typedef vector3d< uint64_t > os::vector3d_u64
unsigned 64 bit 3-d vector

• typedef vector3d< float > os::vector3d_f
float 3-d vector

• typedef vector3d< double > os::vector3d_d
double 3-d vector

122

E.12.1 Detailed Description

Vector templates.

Author

Jonathan Bedard

Date

3/12/2016

Bug No known bugs.

This file contains two template classes defining vector objects. Vectors can, in a broad sense, be

used for any class which defines general mathematical operations. This particular file offers vector

type definitions for all of the basic integer and floating point types.

E.13 set.h File Reference

Smart Set.

Classes

• class os::smartSet< dataType >

Smart set abstract data-structures.

Namespaces

• os

Enumerations

• enum os::setTypes { os::def_set =0, os::small_set, os::sorted_set }

Index of abstract data-structures.

E.13.1 Detailed Description

Smart Set.

123

Author

Jonathan Bedard

Date

2/12/2016

Bug No known bugs.

This file contains a template class defining a "smart set." A smart set wraps other forms of abstract

data structures, allowing applications to define abstract data-structures by numbered indexes.

E.14 smartPointer.h File Reference

Template declaration of os::smart_ptr (p. ??).

Classes

• class os::smart_ptr< dataType >

Reference counted pointer.

Namespaces

• os

Typedefs

• typedef void(∗ os::void_rec) (void ∗)

Deletion function typedef.

Enumerations

• enum os::smart_pointer_type {

os::null_type =0, os::raw_type, os::shared_type, os::shared_type_array,

os::shared_type_dynamic_delete }

Enumeration for types of os::smart_ptr (p. ??).

124

Functions

• template<class targ , class src >

smart_ptr< targ > os::cast (const os::smart_ptr< src > &conv)

os::smart_ptr (p. ??) cast function

• template<class dataType >

bool operator== (const os::smart_ptr< dataType > &c1, const os::smart_ptr< dataType >

&c2)

• template<class dataType >

bool operator== (const os::smart_ptr< dataType > &c1, const dataType ∗c2)

• template<class dataType >

bool operator== (const dataType ∗c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator== (const os::smart_ptr< dataType > &c1, const void ∗c2)

• template<class dataType >

bool operator== (const void ∗c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator== (const os::smart_ptr< dataType > &c1, const int c2)

• template<class dataType >

bool operator== (const int c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator== (const os::smart_ptr< dataType > &c1, const long c2)

• template<class dataType >

bool operator== (const long c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator== (const os::smart_ptr< dataType > &c1, const unsigned long c2)

• template<class dataType >

bool operator== (const unsigned long c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator!= (const os::smart_ptr< dataType > &c1, const os::smart_ptr< dataType >

125

&c2)

• template<class dataType >

bool operator!= (const os::smart_ptr< dataType > &c1, const dataType ∗c2)

• template<class dataType >

bool operator!= (const dataType ∗c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator!= (const os::smart_ptr< dataType > &c1, const void ∗c2)

• template<class dataType >

bool operator!= (const void ∗c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator!= (const os::smart_ptr< dataType > &c1, const int c2)

• template<class dataType >

bool operator!= (const int c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator!= (const os::smart_ptr< dataType > &c1, const long c2)

• template<class dataType >

bool operator!= (const long c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator!= (const os::smart_ptr< dataType > &c1, const unsigned long c2)

• template<class dataType >

bool operator!= (const unsigned long c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator< (const os::smart_ptr< dataType > &c1, const os::smart_ptr< dataType >

&c2)

• template<class dataType >

bool operator< (const os::smart_ptr< dataType > &c1, const dataType ∗c2)

• template<class dataType >

bool operator< (const dataType ∗c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator< (const os::smart_ptr< dataType > &c1, const void ∗c2)

126

• template<class dataType >

bool operator< (const void ∗c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator< (const os::smart_ptr< dataType > &c1, const int c2)

• template<class dataType >

bool operator< (const int c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator< (const os::smart_ptr< dataType > &c1, const long c2)

• template<class dataType >

bool operator< (const long c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator< (const os::smart_ptr< dataType > &c1, const unsigned long c2)

• template<class dataType >

bool operator< (const unsigned long c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator<= (const os::smart_ptr< dataType > &c1, const os::smart_ptr< dataType >

&c2)

• template<class dataType >

bool operator<= (const os::smart_ptr< dataType > &c1, const dataType ∗c2)

• template<class dataType >

bool operator<= (const dataType ∗c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator<= (const os::smart_ptr< dataType > &c1, const void ∗c2)

• template<class dataType >

bool operator<= (const void ∗c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator<= (const os::smart_ptr< dataType > &c1, const int c2)

• template<class dataType >

bool operator<= (const int c1, const os::smart_ptr< dataType > &c2)

127

• template<class dataType >

bool operator<= (const os::smart_ptr< dataType > &c1, const long c2)

• template<class dataType >

bool operator<= (const long c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator<= (const os::smart_ptr< dataType > &c1, const unsigned long c2)

• template<class dataType >

bool operator<= (const unsigned long c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator> (const os::smart_ptr< dataType > &c1, const os::smart_ptr< dataType >

&c2)

• template<class dataType >

bool operator> (const os::smart_ptr< dataType > &c1, const dataType ∗&c2)

• template<class dataType >

bool operator> (const dataType ∗&c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator> (const os::smart_ptr< dataType > &c1, const void ∗c2)

• template<class dataType >

bool operator> (const void ∗c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator> (const os::smart_ptr< dataType > &c1, const int c2)

• template<class dataType >

bool operator> (const int c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator> (const os::smart_ptr< dataType > &c1, const long c2)

• template<class dataType >

bool operator> (const long c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator> (const os::smart_ptr< dataType > &c1, const unsigned long c2)

128

• template<class dataType >

bool operator> (const unsigned long c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator>= (const os::smart_ptr< dataType > &c1, const os::smart_ptr< dataType >

&c2)

• template<class dataType >

bool operator>= (const os::smart_ptr< dataType > &c1, const dataType ∗&c2)

• template<class dataType >

bool operator>= (const dataType ∗&c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator>= (const os::smart_ptr< dataType > &c1, const void ∗c2)

• template<class dataType >

bool operator>= (const void ∗c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator>= (const os::smart_ptr< dataType > &c1, const int c2)

• template<class dataType >

bool operator>= (const int c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator>= (const os::smart_ptr< dataType > &c1, const long c2)

• template<class dataType >

bool operator>= (const long c1, const os::smart_ptr< dataType > &c2)

• template<class dataType >

bool operator>= (const os::smart_ptr< dataType > &c1, const unsigned long c2)

• template<class dataType >

bool operator>= (const unsigned long c1, const os::smart_ptr< dataType > &c2)

E.14.1 Detailed Description

Template declaration of os::smart_ptr (p. ??).

129

Author

Jonathan Bedard

Date

4/18/2016

Bug No known bugs.

This file contains a template declaration of os::smart_ptr (p. ??) and supporting constants and

functions. Note that because os::smart_ptr (p. ??) is a template class, the implimentation of os←↩

::smart_ptr (p. ??) occurs here as well.

E.14.2 Function Documentation

template<class dataType > bool operator!= (const os::smart_ptr< dataType > & c1, const
os::smart_ptr< dataType > & c2) [inline]

template<class dataType > bool operator!= (const os::smart_ptr< dataType > & c1, const
dataType ∗ c2) [inline]

template<class dataType > bool operator!= (const dataType ∗ c1, const os::smart_ptr< dataType
> & c2) [inline]

template<class dataType > bool operator!= (const os::smart_ptr< dataType > & c1, const void ∗
c2) [inline]

template<class dataType > bool operator!= (const void ∗ c1, const os::smart_ptr< dataType > &
c2) [inline]

template<class dataType > bool operator!= (const os::smart_ptr< dataType > & c1, const int c2
) [inline]

template<class dataType > bool operator!= (const int c1, const os::smart_ptr< dataType > & c2
) [inline]

template<class dataType > bool operator!= (const os::smart_ptr< dataType > & c1, const long
c2) [inline]

template<class dataType > bool operator!= (const long c1, const os::smart_ptr< dataType > &
c2) [inline]

template<class dataType > bool operator!= (const os::smart_ptr< dataType > & c1, const
unsigned long c2) [inline]

template<class dataType > bool operator!= (const unsigned long c1, const os::smart_ptr<
dataType > & c2) [inline]

130

template<class dataType > bool operator< (const os::smart_ptr< dataType > & c1, const
os::smart_ptr< dataType > & c2) [inline]

template<class dataType > bool operator< (const os::smart_ptr< dataType > & c1, const
dataType ∗ c2) [inline]

template<class dataType > bool operator< (const dataType ∗ c1, const os::smart_ptr< dataType
> & c2) [inline]

template<class dataType > bool operator< (const os::smart_ptr< dataType > & c1, const void ∗
c2) [inline]

template<class dataType > bool operator< (const void ∗ c1, const os::smart_ptr< dataType > &
c2) [inline]

template<class dataType > bool operator< (const os::smart_ptr< dataType > & c1, const int c2)
[inline]

template<class dataType > bool operator< (const int c1, const os::smart_ptr< dataType > & c2)
[inline]

template<class dataType > bool operator< (const os::smart_ptr< dataType > & c1, const long c2
) [inline]

template<class dataType > bool operator< (const long c1, const os::smart_ptr< dataType > & c2
) [inline]

template<class dataType > bool operator< (const os::smart_ptr< dataType > & c1, const
unsigned long c2) [inline]

template<class dataType > bool operator< (const unsigned long c1, const os::smart_ptr<
dataType > & c2) [inline]

template<class dataType > bool operator<= (const os::smart_ptr< dataType > & c1, const
os::smart_ptr< dataType > & c2) [inline]

template<class dataType > bool operator<= (const os::smart_ptr< dataType > & c1, const
dataType ∗ c2) [inline]

template<class dataType > bool operator<= (const dataType ∗ c1, const os::smart_ptr<
dataType > & c2) [inline]

template<class dataType > bool operator<= (const os::smart_ptr< dataType > & c1, const void ∗
c2) [inline]

template<class dataType > bool operator<= (const void ∗ c1, const os::smart_ptr< dataType > &
c2) [inline]

template<class dataType > bool operator<= (const os::smart_ptr< dataType > & c1, const int c2
) [inline]

template<class dataType > bool operator<= (const int c1, const os::smart_ptr< dataType > & c2
) [inline]

131

template<class dataType > bool operator<= (const os::smart_ptr< dataType > & c1, const long
c2) [inline]

template<class dataType > bool operator<= (const long c1, const os::smart_ptr< dataType > &
c2) [inline]

template<class dataType > bool operator<= (const os::smart_ptr< dataType > & c1, const
unsigned long c2) [inline]

template<class dataType > bool operator<= (const unsigned long c1, const os::smart_ptr<
dataType > & c2) [inline]

template<class dataType > bool operator== (const os::smart_ptr< dataType > & c1, const
os::smart_ptr< dataType > & c2) [inline]

template<class dataType > bool operator== (const os::smart_ptr< dataType > & c1, const
dataType ∗ c2) [inline]

template<class dataType > bool operator== (const dataType ∗ c1, const os::smart_ptr<
dataType > & c2) [inline]

template<class dataType > bool operator== (const os::smart_ptr< dataType > & c1, const void ∗
c2) [inline]

template<class dataType > bool operator== (const void ∗ c1, const os::smart_ptr< dataType > &
c2) [inline]

template<class dataType > bool operator== (const os::smart_ptr< dataType > & c1, const int c2
) [inline]

template<class dataType > bool operator== (const int c1, const os::smart_ptr< dataType > & c2
) [inline]

template<class dataType > bool operator== (const os::smart_ptr< dataType > & c1, const long
c2) [inline]

template<class dataType > bool operator== (const long c1, const os::smart_ptr< dataType > &
c2) [inline]

template<class dataType > bool operator== (const os::smart_ptr< dataType > & c1, const
unsigned long c2) [inline]

template<class dataType > bool operator== (const unsigned long c1, const os::smart_ptr<
dataType > & c2) [inline]

template<class dataType > bool operator> (const os::smart_ptr< dataType > & c1, const
os::smart_ptr< dataType > & c2) [inline]

template<class dataType > bool operator> (const os::smart_ptr< dataType > & c1, const
dataType ∗& c2) [inline]

template<class dataType > bool operator> (const dataType ∗& c1, const os::smart_ptr<
dataType > & c2) [inline]

132

template<class dataType > bool operator> (const os::smart_ptr< dataType > & c1, const void ∗
c2) [inline]

template<class dataType > bool operator> (const void ∗ c1, const os::smart_ptr< dataType > &
c2) [inline]

template<class dataType > bool operator> (const os::smart_ptr< dataType > & c1, const int c2)
[inline]

template<class dataType > bool operator> (const int c1, const os::smart_ptr< dataType > & c2)
[inline]

template<class dataType > bool operator> (const os::smart_ptr< dataType > & c1, const long c2
) [inline]

template<class dataType > bool operator> (const long c1, const os::smart_ptr< dataType > & c2
) [inline]

template<class dataType > bool operator> (const os::smart_ptr< dataType > & c1, const
unsigned long c2) [inline]

template<class dataType > bool operator> (const unsigned long c1, const os::smart_ptr<
dataType > & c2) [inline]

template<class dataType > bool operator>= (const os::smart_ptr< dataType > & c1, const
os::smart_ptr< dataType > & c2) [inline]

template<class dataType > bool operator>= (const os::smart_ptr< dataType > & c1, const
dataType ∗& c2) [inline]

template<class dataType > bool operator>= (const dataType ∗& c1, const os::smart_ptr<
dataType > & c2) [inline]

template<class dataType > bool operator>= (const os::smart_ptr< dataType > & c1, const void ∗
c2) [inline]

template<class dataType > bool operator>= (const void ∗ c1, const os::smart_ptr< dataType > &
c2) [inline]

template<class dataType > bool operator>= (const os::smart_ptr< dataType > & c1, const int c2
) [inline]

template<class dataType > bool operator>= (const int c1, const os::smart_ptr< dataType > & c2
) [inline]

template<class dataType > bool operator>= (const os::smart_ptr< dataType > & c1, const long
c2) [inline]

template<class dataType > bool operator>= (const long c1, const os::smart_ptr< dataType > &
c2) [inline]

template<class dataType > bool operator>= (const os::smart_ptr< dataType > & c1, const
unsigned long c2) [inline]

133

template<class dataType > bool operator>= (const unsigned long c1, const os::smart_ptr<
dataType > & c2) [inline]

E.15 staticConstantPrinter.h File Reference

Constant printing support.

Classes

• class os::constantPrinter

Prints constant arrays to files.

Namespaces

• os

E.15.1 Detailed Description

Constant printing support.

Author

Jonathan Bedard

Date

1/31/2016

Bug No known bugs.

This file contains a class which helps facilitate printing massive tables of constants. It outputs .h

and .cpp files with configured arrays of constants.

E.16 staticConstantPrinter.cpp File Reference

Constant printing support, implementation.

134

E.16.1 Detailed Description

Constant printing support, implementation.

Author

Jonathan Bedard

Date

4/618/2016

Bug No known bugs.

This file implements os::constantPrinter (p. ??). Consult staticConstantPrinter.h (p. 134) for

detailed documentation.

135

Part II

Unit Test Library

136

Appendix F

Introduction

The UnitTest library contains classes which preform automated unit tests while a project is under

development. Utilizing C++ exceptions, the UnitTest library separates its test battery into libraries

tested, suites in libraries and tests in suites. The UnitTest library iterates through instantiated libraries

running every test suite in the library.

F.1 Namespace test

The test namespace is designed to hold all of the classes and functions related to unit testing.

Classes and functions in the test namespace should not be included in the final release application.

It is expected that libraries add to this namespace and place their own testing assets here. Note that

the test namespace uses elements from the os namespace, all of these elements are defined in the

Datastructures library.

F.2 Datastructures Testing

The Datastructures library is rigorously unit tested by the UnitTest library, and the Datastructures unit

tests are automatically included in any system unit test unless specifically removed. The Datastruc-

tures UnitTests are particularly important because the Datastructures library serves as a base for

memory management and data organization. These tests fall broadly into two categories: determin-

istic and random.

Deterministic tests preform the exact same test every iteration. Deterministic tests are used to

ensure that specific functions and operators are returning expected data. Deterministic tests don’t

137

merely identify the existence of an error, but usually identify the precise nature of the error as well.

Random tests use a random number generator to preform a unique test with every iteration.

This allows unit tests to, over time, catch edge cases with complex data structures. In contrast to

deterministic tests, random testing will usually not identify the precise nature of the error.

Note that as a general rule, the implementation of tests is not documented. The location of test

suites is documented, through both .h and .cpp files, but the classes and functions which make up

these tests are not included.

138

Appendix G

File Index

G.1 File List

Here is a list of all files with brief descriptions:

DatastructuresTest.cpp

Datastructures library test implementation . 141

DatastructuresTest.h

Datastructures library test . 141

defaultTestInit.cpp

Default UnitTest initializer function . ??

masterTestHolder.cpp

Library tests, masterTestHolder singleton implementations 143

masterTestHolder.h

Library tests, masterTestHolder singleton . 142

singleTest.cpp

Single test class implementation . 144

singleTest.h

Single test class . 143

TestSuite.cpp

Single test class . 145

TestSuite.h

Single test class . 144

139

UnitTest.cpp

Unit Test logging and global functions . 146

UnitTest.h

Unit Test header file . 145

UnitTestExceptions.h

Common exceptions thrown by unit tests . 147

UnitTestLog.h . 147

UnitTestMain.cpp

UnitTest entry point . ??

140

Appendix H

File Documentation

H.1 DatastructuresTest.h File Reference

Datastructures library test.

H.1.1 Detailed Description

Datastructures library test.

Author

Jonathan Bedard

Date

2/4/2016

Bug No known bugs.

Contains the declaration of the Datastructures library test. Note that this library test is automati-

cally added to all Unit Test executables.

H.2 DatastructuresTest.cpp File Reference

Datastructures library test implementation.

H.2.1 Detailed Description

Datastructures library test implementation.

141

Author

Jonathan Bedard

Date

4/18/2016

Bug No known bugs.

Implements the Datastructures library test. These tests are designed to guarantee the function-

ality of each of the elements in the Datastructures library.

H.3 masterTestHolder.h File Reference

Library tests, masterTestHolder singleton.

Classes

• class test::libraryTests
Library test group.

• class test::masterTestHolder
Unit Test singleton.

Namespaces

• test

H.3.1 Detailed Description

Library tests, masterTestHolder singleton.

Jonathan Bedard

Date

4/11/2016

Bug No known bugs.

This file contains declarations for the library test base class and test::masterTestHolder (p. ??)

singleton class. This file represents the top level of the Unit Test driver classes.

142

H.4 masterTestHolder.cpp File Reference

Library tests, masterTestHolder singleton implementations.

H.4.1 Detailed Description

Library tests, masterTestHolder singleton implementations.

Jonathan Bedard

Date

4/11/2016

Bug No known bugs.

This file contains implementations for the library test base class and test::masterTestHolder

(p. ??) singleton class. Consult masterTestHolder.h (p. 142) for details.

H.5 singleTest.h File Reference

Single test class.

Classes

• class test::singleTest

Single unit test class.

• class test::singleFunctionTest

Single unit test from function.

Namespaces

• test

Typedefs

• typedef void(∗ test::testFunction) ()

Typedef for single test function.

143

H.5.1 Detailed Description

Single test class.

Jonathan Bedard

Date

2/6/2016

Bug No known bugs.

This file contains declarations for a single unit test. Unit tests can be defined as separate class

or a simple test function.

H.6 singleTest.cpp File Reference

Single test class implementation.

H.6.1 Detailed Description

Single test class implementation.

Jonathan Bedard

Date

2/6/2016

Bug No known bugs.

This file contains implementation for a single unit test. Consult singeTest.h for details.

H.7 TestSuite.h File Reference

Single test class.

Classes

• class test::testSuite

144

Namespaces

• test

H.7.1 Detailed Description

Single test class.

Jonathan Bedard

Date

4/11/2016

Bug No known bugs.

This file contains declarations for a test suite. Test suites contain lists of unit tests.

H.8 TestSuite.cpp File Reference

Single test class.

H.8.1 Detailed Description

Single test class.

Jonathan Bedard

Date

2/12/2016

Bug No known bugs.

This file contains declarations for a test suite. Consult testSuite.h (p. 144) for details.

H.9 UnitTest.h File Reference

Unit Test header file.

Namespaces

• test

145

Functions

• void test::startTests ()

Print out header for Unit Tests.

• void test::endTestsError (os::smart_ptr< std::exception > except)

End tests in error.

• void test::endTestsSuccess ()

End tests successfully.

• void test::testInit (int argc=0, char ∗∗argv=NULL)

Test initialization.

H.9.1 Detailed Description

Unit Test header file.

Author

Jonathan Bedard

Date

4/2/2016

Bug No known bugs.

Packages all headers required for the UnitTest library and declares a number of global test func-

tions used for initializing and ending a Unit Test battery.

H.10 UnitTest.cpp File Reference

Unit Test logging and global functions.

H.10.1 Detailed Description

Unit Test logging and global functions.

Author

Jonathan Bedard

146

Date

2/4/2016

Bug No known bugs.

Implements logging in the test namespace. Implements a number of global test functions used

for initializing and ending a Unit Test battery.

H.11 UnitTestLog.h File Reference

Namespaces

• test

Functions

• std::ostream & test::testout_func ()

Standard out object for test namespace.

• std::ostream & test::testerr_func ()

Standard error object for test namespace.

Variables

• os::smart_ptr< std::ostream > test::testout_ptr

Standard out pointer for test namespace.

• os::smart_ptr< std::ostream > test::testerr_ptr

Standard error pointer for test namespace.

H.12 UnitTestExceptions.h File Reference

Common exceptions thrown by unit tests.

Classes

• class test::generalTestException

Base class for test exceptions.

• class test::unknownException

147

Unknown exception class.

• class test::nullFunctionException

NULL function exception class.

Namespaces

• test

H.12.1 Detailed Description

Common exceptions thrown by unit tests.

Jonathan Bedard

Date

2/19/2016

Bug No known bugs.

This file contains a number of common test exceptions used by unit tests. All of these classes

extend std::exception.

148

Part III

osMechanics Library

149

Appendix I

Introduction

The osMechanics library contains classes which are general tools for navigating file systems, thread

management and logging. Some classes, particularly those dealing with threading, sockets and file

access, differ from operating system to operating system. CMake should handle all operating system

variances.

I.1 Namespace

osMechanics extends the os namespace. The os namespace is designed for tools, algorithms and

data-structures used in programs of all types. Note that the Datastructures library also uses the os

namespace.

150

Appendix J

File Index

J.1 File List

Here is a list of all files with brief descriptions:

logger.cpp

Logger implementation file . 154

logger.h

Logger header file . 155

multiLock.cpp

MultiLock implementation file . 156

multiLock.h

MultiLock header file . 156

osFunctions.cpp

OsFunctions implementation file . 157

osFunctions.h

OsFunctions header file . 157

osMechanics.h

OsMechanics header file . 159

osMechanicsTest.cpp

Test implimentaiton for osMechanics . 159

osMechanicsTest.h

OsMechanics tests . 160

151

osThreads.cpp

Threads implementation file . 160

osThreads.h

OsThreads header file . 161

safeQueue.h

Safe queue header file . 162

savableClass.cpp

Implementation of the generalized savable class 163

savableClass.h

Defines a set of classes facilitating saving . 163

Serial.h

Determines which serial methods are needed 164

serialThread.cpp

SerialThread implementation file . 164

serialThread.h

Serial thread header file . 165

socketFrame.cpp

SocketFrame implementation file . 166

socketFrame.h

Socket frame header file . 167

spinLock.cpp

SpinLock file . 167

spinLock.h

SpinLock file . 168

threadDistribution.cpp

Thread distribution implementation file . 168

threadDistribution.h

Thread distribution header file . 169

unix_osFunctions.cpp

Os functions implementation file . 170

152

unix_osFunctions.h

Os functions header file . 171

unix_Serial.h

Serial header file . 173

unix_spinLock.cpp

SpinLock implementation file . 174

unix_spinLock.h

Spin lock header file . 174

USBAccess.cpp

USBAccess implementation file . 175

USBAccess.h

USBAccess header file . 175

win_osFunctions.cpp

Os functions implementation file . 176

win_osFunctions.h

Os functions header file . 176

win_Serial.h

Serial header file . 177

win_spinLock.cpp

SpinLock implementation file . 177

win_spinLock.h

Spin lock header file . 178

XMLParser.cpp

XML parser implementation file . 178

XMLParser.h

XML Parser header file . 179

XMLTest.cpp

XML tests . 180

XMLTest.h

SML test header file . 180

153

Appendix K

File Documentation

K.1 logger.cpp File Reference

logger implementation file

Functions

• static void loggerSavingThread (void ∗ptr, smart_ptr< threadHolder > th)

Variables

• smart_ptr< Log > _single_log

• static bool singleton_bool = false

K.1.1 Detailed Description

logger implementation file

Jonathan Bedard

Date

4/23/2015

Bug No known bugs.

The implementation of our logging systems are in this file. The logger records various timing,

operation, and debug information and places it in various files so that we can better analyze our own

system's performance.

154

K.1.2 Function Documentation

static void loggerSavingThread (void ∗ ptr, smart_ptr< threadHolder > th) [static]

K.1.3 Variable Documentation

smart_ptr<Log> _single_log

bool singleton_bool = false [static]

K.2 logger.h File Reference

logger header file

Classes

• class os::logStatusHolder

• class os::logStatusListener

• struct os::logLine

• class os::LogStreamListener

• class os::LineLogger

• class os::LogSaver

• class os::LineSaver

• class os::LineSaverListener

• class os::Log

• class os::LogDirectedStream

Namespaces

• os

Variables

• logStatusHolder os::logStatus

• Log & os::logger =∗Log::singleton()

155

K.2.1 Detailed Description

logger header file

Jonathan Bedard

Date

4/23/2016

Bug No known bugs.

All of the headers in the Datastructures library are held in this file. When using the Datastructures

library, it is expected that this header is included instead of the individual required headers.

K.3 multiLock.cpp File Reference

multiLock implementation file

K.3.1 Detailed Description

multiLock implementation file

Jonathan Bedard

Date

9/29/2015

Bug No known bugs.

This is the implementation of our multiLock. It is platform agnostic.

K.4 multiLock.h File Reference

multiLock header file

Classes

• class os::multiLock

os::multilock class definition Defines the os::multilock class. This class has 4 variables and 8 methods

156

Namespaces

• os

K.4.1 Detailed Description

multiLock header file

Jonathan Bedard

Date

1/30/2016

Bug No known bugs.

This is the multilock header we are using. It has reading and writing locks, allowing multiple users

to read, but only one to write at any given time.

K.5 osFunctions.cpp File Reference

osFunctions implementation file

K.5.1 Detailed Description

osFunctions implementation file

Jonathan Bedard

Date

5/20/2016

Bug No known bugs.

This is the implementation of the osFunctions that do not care about operating system. This is

mostly converting bit structures between different hardware platforms.

K.6 osFunctions.h File Reference

osFunctions header file

157

Namespaces

• os

Functions

• uint16_t os::to_comp_mode (uint16_t i)

Changes bit order for compatibility Depending on the system at hand, bits may be in several different
orders. This function swaps to compatibility mode.

• uint16_t os::from_comp_mode (uint16_t i)

Changes bit order for compatibility Depending on the system at hand, bits may be in several different
orders. This function swaps from compatibility mode.

• uint32_t os::to_comp_mode (uint32_t i)

Changes bit order for compatibility Depending on the system at hand, bits may be in several different
orders. This function swaps to compatibility mode.

• uint32_t os::from_comp_mode (uint32_t i)

Changes bit order for compatibility Depending on the system at hand, bits may be in several different
orders. This function swaps from compatibility mode.

• uint64_t os::to_comp_mode (uint64_t i)

Changes bit order for compatibility Depending on the system at hand, bits may be in several different
orders. This function swaps to compatibility mode.

• uint64_t os::from_comp_mode (uint64_t i)

Changes bit order for compatibility Depending on the system at hand, bits may be in several different
orders. This function swaps from compatibility mode.

• uint64_t os::getTimestamp ()

Gets a timestamp Generates a time stamp from the time function.

• bool os::testCreateFolder (std::string n)

Test if a folder exists Checks if a given folder exists. If it does not exist, this function will create said
folder.

• std::string os::convertTimestamp (uint64_t stamp)

Type conversion on timestamp Converts the timestamp from an integer into a string.

K.6.1 Detailed Description

osFunctions header file

Jonathan Bedard

158

Date

5/20/2016

Bug No known bugs.

This is the definitions for some of our compatibility functions.

K.7 osMechanics.h File Reference

osMechanics header file

K.7.1 Detailed Description

osMechanics header file

Jonathan Bedard

Date

2/24/2015

Bug No known bugs.

This file includes all of our headers, so that other libraries can easily include the osMechanics

library with one include.

K.8 osMechanicsTest.cpp File Reference

Test implimentaiton for osMechanics.

K.8.1 Detailed Description

Test implimentaiton for osMechanics.

Author

Adrian Bedard

159

Date

4/12/2016

Bug No known bugs.

Binds all osMechanics test suites. These suites test the basic funcitonality of the osMechanics

library. Projects which utilize osMechanics are suggested to bind the osMechanics library tests to

their own test suite.

K.9 osMechanicsTest.h File Reference

osMechanics tests

K.9.1 Detailed Description

osMechanics tests

Jonathan Bedard
Date

4/11/2016

Bug No known bugs.

This is the test suite for the osMechanics library.

K.10 osThreads.cpp File Reference

threads implementation file

Functions

• void temp_thread_call (void ∗ptr_array, bool typ, std::string thread_info)

• void wait_for_threads ()

Variables

• static spinLock globalThreadLock

• static threadTracker ∗ static_ref = NULL

160

K.10.1 Detailed Description

threads implementation file

Jonathan Bedard

Date

4/18/2016

Bug No known bugs.

This is the implementation of our multi threading system.

K.10.2 Function Documentation

void temp_thread_call (void ∗ ptr_array, bool typ, std::string thread_info)

void wait_for_threads ()

K.10.3 Variable Documentation

spinLock globalThreadLock [static]

threadTracker∗ static_ref = NULL [static]

K.11 osThreads.h File Reference

osThreads header file

Classes

• class os::threadHolder

• class os::threadTracker

Monitors a range of threads This class holds a range of threadHolders. This includes both active and
expired threads, ensuring the ability to operate on many threads in mass.

Namespaces

• os

Functions

• smart_ptr< std::thread > os::spawnThread (void(∗func)(void ∗), void ∗ptr, std::string thread←↩

_info="")

161

• smart_ptr< std::thread > os::spawnThread (void(∗func)(void ∗, smart_ptr< threadHolder >),

void ∗ptr, std::string thread_info="")

K.11.1 Detailed Description

osThreads header file

Jonathan Bedard
Date

4/13/2016

Bug No known bugs.

This is the osThreads header we are using. This header allows us to use multithreading with our

own types, pointers, and management

K.12 safeQueue.h File Reference

safe queue header file

Classes

• class os::safeQueue< dataType >
This is the safeQueue (p. ??) class The safeQueue (p. ??) class is thread safe. It is a template class.

Namespaces

• os

K.12.1 Detailed Description

safe queue header file

Jonathan Bedard
Date

11/9/2015

Bug No known bugs.

This is a thread safe queue, so we can multi thread safely.

162

K.13 savableClass.cpp File Reference

Implementation of the generalized savable class.

K.13.1 Detailed Description

Implementation of the generalized savable class.

Author

Jonathan Bedard

Date

4/12/2016

Bug None

Provides an implementation of the savable class, used to tie together multiple classes which need

to be saved as a group.

K.14 savableClass.h File Reference

Defines a set of classes facilitating saving.

Classes

• class os::savable

Basic saving class.

• class os::savingGroup

Group of saving classes.

Namespaces

• os

163

K.14.1 Detailed Description

Defines a set of classes facilitating saving.

Author

Jonathan Bedard

Date

4/12/2016

Bug None

Provides a definition of user which has a user-name, password and associated bank of public

keys.

K.15 Serial.h File Reference

determines which serial methods are needed.

K.15.1 Detailed Description

determines which serial methods are needed.

Jonathan Bedard

Date

5/20/2016

Bug No known bugs.

This header determines if we are on a windows or unix system, then includes a different header

for each.

K.16 serialThread.cpp File Reference

serialThread implementation file

164

Functions

• static void serialSearch (void ∗ptr, smart_ptr< threadHolder > th)

K.16.1 Detailed Description

serialThread implementation file

Jonathan Bedard

Date

11/1/2015

Bug No known bugs.

These implementations allow us to create threads for monitoring serial communication

K.16.2 Function Documentation

static void serialSearch (void ∗ ptr, smart_ptr< threadHolder > th) [static]

K.17 serialThread.h File Reference

serial thread header file

Classes

• class os::serialThread

Serial (p. ??) communication thread The is a serial class that runs as a thread. Thanks to this fact,
we can run multiple serial communication threads as well as run a primary set of threads at once.

Namespaces

• os

K.17.1 Detailed Description

serial thread header file

Jonathan Bedard

165

Date

11/9/2015

Bug No known bugs.

This is a serial thread class. This class allows us to monitor multiple ports effectively simultane-

ously.

K.18 socketFrame.cpp File Reference

socketFrame implementation file

Functions

• void close_all_sockets ()

Variables

• static smart_ptr< socketTracker > st_instance = NULL

K.18.1 Detailed Description

socketFrame implementation file

Jonathan Bedard

Date

2/12/2016

Bug No known bugs.

This is the implementation of our socket user, UDP socket, and socket tracker. Socket communi-

cation is important for us, and this allows us to safely have reliable sockets.

K.18.2 Function Documentation

void close_all_sockets ()

K.18.3 Variable Documentation

166

smart_ptr<socketTracker> st_instance = NULL [static]

K.19 socketFrame.h File Reference

socket frame header file

Classes

• class os::socketUser

Socket user class This class allows us to manage sockets.

• class os::UDPSocket

UDPSocket (p. ??) class A class for UDPSockets, which in turn allows us to multi thread the packet
send/receive functionality.

• class os::socketTracker

socketTracker (p. ??) class Tracks all currently active sockets.

Namespaces

• os

K.19.1 Detailed Description

socket frame header file

Jonathan Bedard

Date

4/12/2016

Bug No known bugs.

Generalized socket class.

K.20 spinLock.cpp File Reference

spinLock file

167

K.20.1 Detailed Description

spinLock file

Jonathan Bedard

Date

5/20/2016

Bug No known bugs.

This file includes different implementations of our spin lock depending on the operating system.

K.21 spinLock.h File Reference

spinLock file

K.21.1 Detailed Description

spinLock file

Jonathan Bedard

Date

5/20/2016

Bug No known bugs.

This header includes different versions of the spin lock header depending on the operating sys-

tem.

K.22 threadDistribution.cpp File Reference

thread distribution implementation file

Functions

• static void executor_thread_starter (void ∗ptr, smart_ptr< threadHolder > th)

168

K.22.1 Detailed Description

thread distribution implementation file

Jonathan Bedard

Date

4/18/2015

Bug No known bugs.

These methods determine which thread will operate next.

K.22.2 Function Documentation

static void executor_thread_starter (void ∗ ptr, smart_ptr< threadHolder > th) [static]

K.23 threadDistribution.h File Reference

thread distribution header file

Classes

• class os::threadActor
threadActor (p. ??) class This class holds information for determining which thread goes at a give
time.

• class os::threadDistributor
Distributes threads This class allows us to determine which thread should execute at any given time.

• class os::executorThread
executorThread (p. ??) class This class holds a thread which has multiple steps.

• class os::singleAction
single action class This class is for a thread with only one action.

Namespaces

• os

Functions

• float os::getSysTime ()

gets time Gets the current system time.

169

K.23.1 Detailed Description

thread distribution header file

Jonathan Bedard

Date

4/18/2015

Bug No known bugs.

This the thread distribution system.

K.24 unix_osFunctions.cpp File Reference

os functions implementation file

Functions

• static void receiveThreadServerIPV4 (void ∗ptr, smart_ptr< threadHolder > th)

• static void receiveThreadServerIPV6 (void ∗ptr, smart_ptr< threadHolder > th)

Variables

• static os::smart_ptr< threadDistributor > ipthread = NULL

• static std::string local_path = ""

K.24.1 Detailed Description

os functions implementation file

Jonathan Bedard

Date

5/20/2016

Bug No known bugs.

This is the implementation of the UNIX specific functions.

170

K.24.2 Function Documentation

static void receiveThreadServerIPV4 (void ∗ ptr, smart_ptr< threadHolder > th) [static]

static void receiveThreadServerIPV6 (void ∗ ptr, smart_ptr< threadHolder > th) [static]

K.24.3 Variable Documentation

os::smart_ptr<threadDistributor> ipthread = NULL [static]

std::string local_path = "" [static]

K.25 unix_osFunctions.h File Reference

os functions header file

Classes

• class os::IPAddress

os::IPAddress (p. ??) class definition This is an IP Address class It has 2 variables and 10 methods

• class os::myIPAddress

Holds a node's own IP address Every node needs it's own IP address. This class holds that value, as
well as provide several functions for determining priorities.

• class os::UDPPacket

• class os::UDPClient

• struct os::UDPAVLNode

• class os::UDPServer

Namespaces

• os

Functions

• void os::sleep (int32_t x)

Sleep the thread for a certain amount of time This is a simple sleep function, it takes in a length of
time to sleep and return nothing.

• void os::startInternet (bool multiThread=true)

Activates Internet Spawns an IP thread distributor, if one does not currently exist.

• void os::closeInternet ()

Deactivates Internet deletes the IP thread distributor and sets the thread pointer to null.

171

• smart_ptr< threadDistributor > os::internetThreads ()

Return IP thread distributor Gives the ipthread distributor to the caller.

• int32_t os::cp_clock_gettime (int32_t X, struct timeval ∗tv)

Gets time Returns the current time to the caller. This is designed to work across a range of platforms
and format the time to a high precision.

• void os::strcpy_s (char ∗output, int32_t inlen, const char ∗input)

String copier Safely calls string copy.

• bool os::is_directory (std::string file)

Determines if a file is a directory Checks if a given file is a directory.

• bool os::check_exists (std::string name)

Checks if a given file exists Takes a file and checks if it exists. A directory is considered existing.

• smart_ptr< std::string > os::list_files (std::string directory, uint32_t &len)

Return contents of directory Creates an array of strings of all the names inside a given directory. This
is not recursive.

• std::string os::extract_name (std::string full_path)

Extracts a given file Extracts a file or directory.

• void os::delete_file (std::string path)

Deletes a file Deletes the file or directory at the given path. This is a recursive delete.

• void os::setLocalPath (int argc, char ∗∗argv)

Sets local path Sets the local path given the received arguments.

• std::string os::getLocalPath ()

Returns local path.

• static int32_t os::fopen_s (FILE ∗∗fp, const char ∗file_name, const char ∗typ)

fopen_s for windows This is a file open function for windows so that we can more efficiently write multi
platform code.

Variables

• const uint32_t CLOCK_REALTIME =0

• const uint32_t CLOCK_MONOTONIC =1

• const uint32_t os::BUFLEN =512

• const std::string os::DEFAULT_IP ="127.0.0.1"

• const uint32_t os::MY_MESSAGE_NOTIFICATION =1048

172

K.25.1 Detailed Description

os functions header file

Jonathan Bedard

Date

5/20/2016

Bug No known bugs.

This is the file which contains the declarations for the OS unique functions.

K.25.2 Variable Documentation

const uint32_t CLOCK_MONOTONIC =1

const uint32_t CLOCK_REALTIME =0

K.26 unix_Serial.h File Reference

Serial header file.

Classes

• class os::Serial

This is the Serial (p. ??) class. Serial (p. ??) objects allow us to abstract out most of the platform
irregularities across multiple systems.

Namespaces

• os

Variables

• const uint32_t os::ARDUINO_WAIT_TIME =2000

K.26.1 Detailed Description

Serial header file.

Jonathan Bedard

173

Date

5/20/2016

Bug No known bugs.

This is the Serial thread. It allows us to establish serial communication across a range of systems.

There are multiple versions of this header and C file. Which version is used is determined by the

current platform. This is the UNIX version.

K.27 unix_spinLock.cpp File Reference

spinLock implementation file

K.27.1 Detailed Description

spinLock implementation file

Jonathan Bedard

Date

5/20/2016

Bug No known bugs.

This is the UNIX implementation of our spin lock.

K.28 unix_spinLock.h File Reference

spin lock header file

Classes

• class os::spinLock

Namespaces

• os

174

K.28.1 Detailed Description

spin lock header file

Jonathan Bedard

Date

5/20/2016

Bug No known bugs.

This is the spinLock that we use to safely multi thread.

K.29 USBAccess.cpp File Reference

USBAccess implementation file.

K.29.1 Detailed Description

USBAccess implementation file.

Jonathan Bedard

Date

11/3/2015

Bug No known bugs.

These are simple USB methods. They are unused in our larger project.

K.30 USBAccess.h File Reference

USBAccess header file.

Classes

• class os::USBNode

This class stores the location of a USB device.

• class os::USBFile

175

Namespaces

• os

K.30.1 Detailed Description

USBAccess header file.

Jonathan Bedard

Date

6/21/2015

Bug No known bugs.

This is a pair of simple classes for working with USB devices.

K.31 win_osFunctions.cpp File Reference

os functions implementation file

K.31.1 Detailed Description

os functions implementation file

Jonathan Bedard

Date

5/20/2016

Bug No known bugs.

This is the implementation of the windows specific functions.

K.32 win_osFunctions.h File Reference

os functions header file

176

K.32.1 Detailed Description

os functions header file

Jonathan Bedard

Date

5/20/2016

Bug No known bugs.

This is the file which contains the declarations for the OS unique functions.

K.33 win_Serial.h File Reference

Serial header file.

K.33.1 Detailed Description

Serial header file.

Jonathan Bedard

Date

5/20/2016

Bug No known bugs.

This is the Serial thread. It allows us to establish serial communication across a range of systems.

There are multiple versions of this header and C file. Which version is used is determined by the

current platform. This is the windows version.

K.34 win_spinLock.cpp File Reference

spinLock implementation file

K.34.1 Detailed Description

spinLock implementation file

Jonathan Bedard

177

Date

5/20/2016

Bug No known bugs.

This is the windows implementation of our spin lock.

K.35 win_spinLock.h File Reference

spin lock header file

K.35.1 Detailed Description

spin lock header file

Jonathan Bedard
Date

5/20/2016

Bug No known bugs.

This is the spinLock that we use to safely multi thread.

K.36 XMLParser.cpp File Reference

XML parser implementation file.

K.36.1 Detailed Description

XML parser implementation file.

Jonathan Bedard
Date

2/7/2015

Bug No known bugs.

Our XML parse is implemented in this file. We have several functions that allow us to easily

convert XML data from file to program and vice versa.

178

K.37 XMLParser.h File Reference

XML Parser header file.

Classes

• class os::XML_Node
XML Node class The core node of our XML parsing.

Namespaces

• os

• os::xml

Typedefs

• typedef smart_ptr< XML_Node > os::smartXMLNode

• typedef smart_ptr< unsortedList< XML_Node > > os::smartXMLNodeList

Functions

• bool os::XML_Output (std::string path, smartXMLNode head)

outputs tree Outputs an XML tree into a file.

• smartXMLNode os::XML_Input (std::string path)

imports tree Imports an XML tree from a file.

• void os::xml::insertTabs (std::ofstream &f, int32_t x)

adds tabs Adds tabs.

• void os::xml::writeNode (std::ofstream &f, smartXMLNode node, int32_t depth)

writes nodes Writes all the nodes to a file. This function runs recursively.

• std::vector< std::string > os::xml::readTillTag (std::ifstream &f)

reads until next tag Reads a file until the next tag is found.

• std::string os::xml::readThroughTag (std::ifstream &f)

reads through the next tag Reads a file until a tag is found, including that tag.

• smartXMLNode os::xml::parseNode (std::ifstream &f)

parses a node Pulls a node from a file and returns it.

• bool os::xml::compareTrees (smartXMLNode n1, smartXMLNode n2)

compares trees Determines if two nodes are equivalent.

179

K.37.1 Detailed Description

XML Parser header file.

Jonathan Bedard

Date

2/7/2015

Bug No known bugs.

This is our XML Parser, so we can standardize use across systems.

K.38 XMLTest.cpp File Reference

XML tests.

K.38.1 Detailed Description

XML tests.

Jonathan Bedard

Date

2/29/2016

Bug No known bugs.

These are the tests for our XML classes.

K.39 XMLTest.h File Reference

SML test header file.

K.39.1 Detailed Description

SML test header file.

Jonathan Bedard

180

Date

4/12/2016

Bug No known bugs.

This is the test suite for the XML tests.

181

Part IV

CryptoGateway Library

182

Appendix L

Introduction

The CryptoGateway library contains classes which handle cryptography. CryptoGateway is designed

as an open source library, so much of the cryptography within the library is relatively simple. Crypto-

Gateway is not meant to define cryptography to be used widely, rather, it is meant to provide a series

of generalized hooks and interfaces which can be extended to various cryptographic algorithms.

L.1 Namespace

CryptoGateway uses the crypto namespace. The crypto namespace is designed for class, functions

and constants related to cryptography. CrytpoGateway depends on many of the tools defined in the

os namespace. Additionally, the crypto namespace contains a series of nested namespaces which

help to disambiguate constants.

183

Appendix M

File Index

M.1 File List

Here is a list of all files with brief descriptions:

binaryEncryption.cpp

Implementation of binary encryption files . 189

binaryEncryption.h

Definition of binary encryption files . 189

c_BaseTen.c

Implementation of base-10 algorithms . 190

c_BaseTen.h

Base-10 number functions . 191

c_cryptoTesting.cpp

Implementation for C file testing . 196

c_cryptoTesting.h

Header for C file testing . 196

c_numberDefinitions.c

Implementation of basic number . 197

c_numberDefinitions.h

Basic number declarations . 197

cryptoCConstants.h

Extern declarations of C constants . 203

184

cryptoCHeaders.h

Collected headers for C source code . 204

cryptoConstants.cpp

Implementation of CryptoGateway constants . 205

cryptoConstants.h

Extern definitions of CryptoGateway constants 205

cryptoCSource.cpp

Implementation of all C code . 206

cryptoError.cpp

Implementation of error sender and listener . 206

cryptoError.h

Declaration of cryptographic errors . 207

cryptoFileTest.cpp

Implementation for cryptographic file testing . 209

cryptoFileTest.h

Header for cryptographic file testing . 210

CryptoGateway.h

Global include file . 210

cryptoHash.cpp

Implementation of crypto hashing . 211

cryptoHash.h

Declaration of crypto hashing . 212

cryptoLogging.cpp

Logging for crypto namespace, implementation 214

cryptoLogging.h

Logging for crypto namespace . 214

cryptoNumber.cpp

Implements basic number types . 215

cryptoNumber.h

Defines basic number types . 215

185

cryptoNumberTest.cpp

Testing crypto::number (p. ??) and crypto::integer (p. ??) 216

cryptoPublicKey.cpp

Generalized and RSA public key implementation 217

cryptoPublicKey.h

Generalized and RSA public keys . 217

cryptoTest.cpp

CryptoGateway library test constructor . 218

cryptoTest.h

CryptoGateway library test header . 219

gateway.cpp

Implements the gateway . 219

gateway.h

Defines the gateway . 220

gatewayTest.cpp

Implementation for end-to-end gateway testing 221

gatewayTest.h

Header for end-to-end gateway testing . 221

hashTest.cpp

Implementation for hash tests . 222

hashTest.h

Header for hash testing . 222

hexConversion.cpp

Hex conversion implementation . 223

hexConversion.h

Hex conversion header . 223

keyBank.cpp

Implimentation for the AVL tree based key bank 224

keyBank.h

Header for the AVL tree based key bank . 225

186

message.cpp

Crypto-Gateway message implementation . 226

message.h

Crypto-Gateway message . 226

publicKeyPackage.cpp

Implementation of public key bank . 227

publicKeyPackage.h

Declaration of public key bank . 228

publicKeyTest.h

Public Key tests . 229

RC4_Hash.cpp . 229

RC4_Hash.h . 229

staticTestKeys.cpp

Auto-generated . 229

staticTestKeys.h

Auto-generated . 230

streamCipher.cpp . 230

streamCipher.h . 230

streamPackage.cpp

Implementation of streaming bank . 231

streamPackage.h

Declaration of streaming bank . 231

streamTest.cpp

Implementation for stream tests . 232

streamTest.h

Header for stream testing . 233

testKeyGeneration.cpp . 233

testKeyGeneration.h

Implementation of test key binding . 233

187

user.cpp

Implementation of the CryptoGateway user . 234

user.h

Definition of the CryptoGateway user . 235

XMLEncryption.cpp

Implementation of RC-4 . 235

XMLEncryption.h

Defines basic stream ciphers . 236

188

Appendix N

File Documentation

N.1 binaryEncryption.cpp File Reference

Implementation of binary encryption files.

N.1.1 Detailed Description

Implementation of binary encryption files.

Author

Jonathan Bedard

Date

4/18/2016

Bug None

Implements the binary encryption files. Consult binaryEncryption.h (p. 189) for details on using

these classes.

N.2 binaryEncryption.h File Reference

Definition of binary encryption files.

Classes

• class crypto::binaryEncryptor

189

Encrypted binary file output.

• class crypto::binaryDecryptor

Encrypted binary file output.

Namespaces

• crypto

N.2.1 Detailed Description

Definition of binary encryption files.

Author

Jonathan Bedard

Date

3/7/2016

Bug None

Provides an interface to dump and retrieve data from an encrypted binary file without concern as

to the encryption algorithm used.

N.3 c_BaseTen.c File Reference

Implementation of base-10 algorithms.

N.3.1 Detailed Description

Implementation of base-10 algorithms.

Author

Jonathan Bedard

190

Date

2/12/2016

Bug No known bugs.

This file implements all of the basic functionality of a base-10 integer. All integer operations, both

basic and otherwise, are implemented in this file.

N.4 c_BaseTen.h File Reference

Base-10 number functions.

Functions

• struct numberType ∗ buildBaseTenType ()

Construct a base-10 number.

• int base10Addition (const uint32_t ∗src1, const uint32_t ∗src2, uint32_t ∗dest, uint16_t length)

Base-10 addition.

• int base10Subtraction (const uint32_t ∗src1, const uint32_t ∗src2, uint32_t ∗dest, uint16_t

length)

Base-10 subtraction.

• int base10Multiplication (const uint32_t ∗src1, const uint32_t ∗src2, uint32_t ∗dest, uint16_t

length)

Base-10 multiplication.

• int base10Division (const uint32_t ∗src1, const uint32_t ∗src2, uint32_t ∗dest, uint16_t length)

Base-10 division.

• int base10Modulo (const uint32_t ∗src1, const uint32_t ∗src2, uint32_t ∗dest, uint16_t length)

Base-10 modulo.

• int base10Exponentiation (const uint32_t ∗src1, const uint32_t ∗src2, uint32_t ∗dest, uint16←↩

_t length)

Base-10 exponentiation.

• int base10ModuloExponentiation (const uint32_t ∗src1, const uint32_t ∗src2, const uint32_t

∗src3, uint32_t ∗dest, uint16_t length)

• int base10GCD (const uint32_t ∗src1, const uint32_t ∗src2, uint32_t ∗dest, uint16_t length)

191

• int base10ModInverse (const uint32_t ∗src1, const uint32_t ∗src2, uint32_t ∗dest, uint16_t

length)

• int primeTest (const uint32_t ∗src1, uint16_t test_iteration, uint16_t length)

N.4.1 Detailed Description

Base-10 number functions.

Author

Jonathan Bedard

Date

2/12/2016

Bug No known bugs.

Contains functions which define a base-10 integer. There functions are bound to a number type.

N.4.2 Function Documentation

int base10Addition (const uint32_t ∗ src1, const uint32_t ∗ src2, uint32_t ∗ dest, uint16_t length)

Base-10 addition.

This function takes in two arrays which represent base-10 numbers, preforms src1+src2 on the

pair and then output the result to dest. Note that all three arrays must be the same size.

Parameters

in src1 Argument 1

in src2 Argument 2

out dest Output

in length Number of uint32_t in the arrays

192

Returns

1 if success, 0 if failed

int base10Division (const uint32_t ∗ src1, const uint32_t ∗ src2, uint32_t ∗ dest, uint16_t length)

Base-10 division.

This function takes in two arrays which represent base-10 numbers, preforms src1/src2 on the

pair and then output the result to dest. Note that all three arrays must be the same size.

Parameters

in src1 Argument 1

in src2 Argument 2

out dest Output

in length Number of uint32_t in the arrays

Returns

1 if success, 0 if failed

int base10Exponentiation (const uint32_t ∗ src1, const uint32_t ∗ src2, uint32_t ∗ dest, uint16_t
length)

Base-10 exponentiation.

This function takes in two arrays which represent base-10 numbers, preforms src1+src2 on the

pair and then output the result to dest. Note that all three arrays must be the same size.

Parameters

in src1 Argument 1

in src2 Argument 2

out dest Output

in length Number of uint32_t in the arrays

193

Returns

1 if success, 0 if failed

int base10GCD (const uint32_t ∗ src1, const uint32_t ∗ src2, uint32_t ∗ dest, uint16_t length)

int base10ModInverse (const uint32_t ∗ src1, const uint32_t ∗ src2, uint32_t ∗ dest, uint16_t
length)

int base10Modulo (const uint32_t ∗ src1, const uint32_t ∗ src2, uint32_t ∗ dest, uint16_t length)

Base-10 modulo.

This function takes in two arrays which represent base-10 numbers, preforms src1src2 on the

pair and then output the result to dest. Note that all three arrays must be the same size.

Parameters

in src1 Argument 1

in src2 Argument 2

out dest Output

in length Number of uint32_t in the arrays

Returns

1 if success, 0 if failed

int base10ModuloExponentiation (const uint32_t ∗ src1, const uint32_t ∗ src2, const uint32_t ∗
src3, uint32_t ∗ dest, uint16_t length)

int base10Multiplication (const uint32_t ∗ src1, const uint32_t ∗ src2, uint32_t ∗ dest, uint16_t
length)

Base-10 multiplication.

This function takes in two arrays which represent base-10 numbers, preforms src1∗src2 on the

pair and then output the result to dest. Note that all three arrays must be the same size.

Parameters

in src1 Argument 1

in src2 Argument 2

194

Parameters

out dest Output

in length Number of uint32_t in the arrays

Returns

1 if success, 0 if failed

int base10Subtraction (const uint32_t ∗ src1, const uint32_t ∗ src2, uint32_t ∗ dest, uint16_t
length)

Base-10 subtraction.

This function takes in two arrays which represent base-10 numbers, preforms src1-src2 on the

pair and then output the result to dest. Note that all three arrays must be the same size.

Parameters

in src1 Argument 1

in src2 Argument 2

out dest Output

in length Number of uint32_t in the arrays

Returns

1 if success, 0 if failed

struct numberType∗ buildBaseTenType ()

Construct a base-10 number.

This function will return a numberType (p. ??) pointer defining the function pointers for a base-

10 number. Note that the resulting pointer points to a structure which is static to the c_BaseTen.c

(p. 190) file.

195

Returns

Pointer to numberType (p. ??) of type base-10

int primeTest (const uint32_t ∗ src1, uint16_t test_iteration, uint16_t length)

N.5 c_cryptoTesting.cpp File Reference

Implementation for C file testing.

N.5.1 Detailed Description

Implementation for C file testing.

Author

Jonathan Bedard

Date

2/12/2016

Bug No known bugs.

This file implements test suites which are testing raw C code. This file currently tests the Base-←↩

Ten suite.

N.6 c_cryptoTesting.h File Reference

Header for C file testing.

N.6.1 Detailed Description

Header for C file testing.

Author

Jonathan Bedard

196

Date

2/12/2016

Bug No known bugs.

This header is meant for the test suites which are testing raw C code. This header currently

contains the Base-Ten suite.

N.7 c_numberDefinitions.c File Reference

Implementation of basic number.

N.7.1 Detailed Description

Implementation of basic number.

Author

Jonathan Bedard

Date

2/12/2016

Bug No known bugs.

Most numerical operations must be defined by the specific number type, but a select few are

generally applicable across all number types, these are implemented here.

N.8 c_numberDefinitions.h File Reference

Basic number declarations.

Classes

• struct numberType

Number type function structure.

197

Typedefs

• typedef int(∗ operatorFunction) (const uint32_t ∗, const uint32_t ∗, uint32_t ∗, uint16_t)
Operator function typedef.

• typedef int(∗ tripleCalculation) (const uint32_t ∗, const uint32_t ∗, const uint32_t ∗, uint32_t

∗, uint16_t)
Triple operator function typedef.

• typedef int(∗ shiftFunction) (const uint32_t ∗, uint16_t, uint32_t ∗, uint16_t)
Shift operator function typedef.

• typedef int(∗ compareFunction) (const uint32_t ∗, const uint32_t ∗, uint16_t)
Comparison function typedef.

Functions

• struct numberType ∗ buildNullNumberType ()
Construct a NULL number.

• int standardCompare (const uint32_t ∗src1, const uint32_t ∗src2, uint16_t length)
Standard comparision.

• int standardRightShift (const uint32_t ∗src1, uint16_t src2, uint32_t ∗dest, uint16_t length)
Right shift.

• int standardLeftShift (const uint32_t ∗src1, uint16_t src2, uint32_t ∗dest, uint16_t length)
Left shift.

N.8.1 Detailed Description

Basic number declarations.

Author

Jonathan Bedard

Date

2/12/2016

Bug No known bugs.

Contains function typedefs used for various number operations and defines a few nearly universal

numerical functions.

198

N.8.2 Typedef Documentation

typedef int(∗ compareFunction) (const uint32_t ∗, const uint32_t ∗, uint16_t)

Comparison function typedef.

This function typedef defines a function which takes in two arrays which represent numbers and

then compares them.

Parameters

in uint32←↩

_t∗

Argument 1

in uint32←↩

_t∗

Argument 2

in uint16←↩

_t

size

Returns

-1 if 1<2, 0 if 1==2, 1 if 1>2

typedef int(∗ operatorFunction) (const uint32_t ∗, const uint32_t ∗, uint32_t ∗, uint16_t)

Operator function typedef.

This function typedef defines a function which takes in two arrays which represent numbers,

preform some operation on the pair and then output the result to a third array.

Parameters

in uint32←↩

_t∗

Argument 1

in uint32←↩

_t∗

Argument 2

out uint32←↩

_t∗

Output

199

Parameters

in uint16←↩

_t

size

Returns

1 if success, 0 if failed

typedef int(∗ shiftFunction) (const uint32_t ∗, uint16_t, uint32_t ∗, uint16_t)

Shift operator function typedef.

This function typedef defines a function which takes in an array representing a number, shifts it

the provided number of bits and outputs the result into the second array.

Parameters

in uint32←↩

_t∗

Argument 1

in uint16←↩

_t

Bits to shift

out uint32←↩

_t∗

Output

in uint16←↩

_t

size

Returns

1 if success, 0 if failed

typedef int(∗ tripleCalculation) (const uint32_t ∗, const uint32_t ∗, const uint32_t ∗, uint32_t ∗,
uint16_t)

Triple operator function typedef.

This function typedef defines a function which takes in three arrays which represent numbers,

preform some operation on the triple and then output the result to a fourth array.

200

Parameters

in uint32←↩

_t∗

Argument 1

in uint32←↩

_t∗

Argument 2

in uint32←↩

_t∗

Argument 3

out uint32←↩

_t∗

Output

in uint16←↩

_t

size

Returns

1 if success, 0 if failed

N.8.3 Function Documentation

struct numberType∗ buildNullNumberType ()

Construct a NULL number.

This function will return a numberType (p. ??) pointer defining the function pointers for a NULL

number. Note that the resulting pointer points to a structure which is static to the c_number←↩

Definitions.c (p. 197) file.

Returns

Pointer to numberType (p. ??) of type NULL

int standardCompare (const uint32_t ∗ src1, const uint32_t ∗ src2, uint16_t length)

Standard comparision.

This function takes in two arrays which represent numbers and then compares them.

201

Parameters

in src1 Argument 1

in src2 Argument 2

in length Number of uint32_t in the arrays

Returns

-1 if 1<2, 0 if 1==2, 1 if 1>2

int standardLeftShift (const uint32_t ∗ src1, uint16_t src2, uint32_t ∗ dest, uint16_t length)

Left shift.

Shifts the bits in src1 in the left direction src2 number of bits. Output the result in dest. Note that

dest and src1 should be the same size.

Parameters

in src1 Argument 1

in src2 Bits to shift

out dest Output

in length Number of uint32_t in the arrays

Returns

1 if success, 0 if failed

int standardRightShift (const uint32_t ∗ src1, uint16_t src2, uint32_t ∗ dest, uint16_t length)

Right shift.

Shifts the bits in src1 in the right direction src2 number of bits. Output the result in dest. Note

that dest and src1 should be the same size.

Parameters

in src1 Argument 1

202

Parameters

in src2 Bits to shift

out dest Output

in length Number of uint32_t in the arrays

Returns

1 if success, 0 if failed

N.9 cryptoCConstants.h File Reference

Extern declarations of C constants.

Variables

• const int crypto_numbertype_default

Default number ID.

• const int crypto_numbertype_base10

Base-10 number ID.

• const char ∗ crypto_numbername_default

Default number marker.

• const char ∗ crypto_numbername_base10

Base-10 number marker.

N.9.1 Detailed Description

Extern declarations of C constants.

Author

Jonathan Bedard

203

Date

2/12/2016

Bug No known bugs.

Declares a number of constants needed by both the C numerical algorithms and by C++ number

classes.

N.9.2 Variable Documentation

const char∗ crypto_numbername_base10

Base-10 number marker.

This constant is "Base 10 Type". It represents a number of type base-10, or standard integer.

const char∗ crypto_numbername_default

Default number marker.

This constant is "NULL Type". It represents an untyped number.

const int crypto_numbertype_base10

Base-10 number ID.

This constant is 1. It represents a number of type base-10, or standard integer.

const int crypto_numbertype_default

Default number ID.

This constant is 0. It represents an untyped number.

N.10 cryptoCHeaders.h File Reference

Collected headers for C source code.

N.10.1 Detailed Description

Collected headers for C source code.

204

Author

Jonathan Bedard

Date

2/20/2016

Bug None

N.11 cryptoConstants.cpp File Reference

Implementation of CryptoGateway constants.

N.11.1 Detailed Description

Implementation of CryptoGateway constants.

Author

Jonathan Bedard

Date

3/19/2016

Bug None

Binds all of the scoped constants used by CryptoGateway. The nested namespaces ensure that

there is no ambiguity as to the purpose and nature of the constants.

N.12 cryptoConstants.h File Reference

Extern definitions of CryptoGateway constants.

N.12.1 Detailed Description

Extern definitions of CryptoGateway constants.

205

Author

Jonathan Bedard

Date

3/19/2016

Bug None

Consult cryptoConstants.cpp (p. 205) for details. This file merely defines extern references to

the global constants in cryptoConstants.cpp (p. 205).

N.13 cryptoCSource.cpp File Reference

Implementation of all C code.

N.13.1 Detailed Description

Implementation of all C code.

Author

Jonathan Bedard

Date

2/13/2016

Bug No known bugs.

This file includes all of the .c files needed for this library. It allows the CMake scripts for this

project to be entirely C++ while still includeing raw C code.

N.14 cryptoError.cpp File Reference

Implementation of error sender and listener.

206

N.14.1 Detailed Description

Implementation of error sender and listener.

Author

Jonathan Bedard

Date

4/16/2016

Bug None

Implements the error sender and listeners. These classes allow for managing the throwing of

crypto::errorPointer (p. ??). Consult cryptoError.h (p. 207) for details.

N.15 cryptoError.h File Reference

Declaration of cryptographic errors.

Classes

• class crypto::error

Sortable exception.

• class crypto::passwordSmallError

Symmetric key too small.

• class crypto::passwordLargeError

Symmetric key too big.

• class crypto::bufferSmallError

Buffer too small.

• class crypto::bufferLargeError

Buffer too large.

• class crypto::insertionFailed

ADS Insertion Failed.

• class crypto::customError

Custom crypto::error (p. ??).

207

• class crypto::fileOpenError
File open error.

• class crypto::fileFormatError
File format error.

• class crypto::illegalAlgorithmBind
Algorithm bound failure.

• class crypto::hashCompareError
Hash mis-match.

• class crypto::hashGenerationError
Hash generation error.

• class crypto::actionOnFileError
File error.

• class crypto::actionOnFileClosed
File closed error.

• class crypto::publicKeySizeWrong
Public-key size error.

• class crypto::keyMissing
Key missing error.

• class crypto::NULLPublicKey
NULL public-key error.

• class crypto::NULLDataError
NULL data error.

• class crypto::NULLMaster
NULL master error.

• class crypto::masterMismatch
Master mis-match.

• class crypto::unknownErrorType
Unknown error.

• class crypto::stringTooLarge
String size error.

• class crypto::errorListener
crypto::error (p. ??) listener

• class crypto::errorSender
Sends crypto::error (p. ??).

208

Namespaces

• crypto

Typedefs

• typedef os::smart_ptr< error > crypto::errorPointer

Smart pointer to crypto::error (p. ??).

N.15.1 Detailed Description

Declaration of cryptographic errors.

Author

Jonathan Bedard

Date

4/1/2016

Bug None

Declares a number of errors for the CryptoGateway package. Also declares two classes to man-

age the sending and listening for the throwing of crypto::errorPointer (p. ??).

N.16 cryptoFileTest.cpp File Reference

Implementation for cryptographic file testing.

N.16.1 Detailed Description

Implementation for cryptographic file testing.

Author

Jonathan Bedard

209

Date

4/18/2016

Bug No known bugs.

This file implements a series of tests designed to confirm the stability of cryptographic save file

and load file functions.

N.17 cryptoFileTest.h File Reference

Header for cryptographic file testing.

N.17.1 Detailed Description

Header for cryptographic file testing.

Author

Jonathan Bedard

Date

3/5/2016

Bug No known bugs.

This contains a number of test suites and supporting classes which are designed to test the

functionality of saving and loading cryptographic files, both binary and EXML.

N.18 CryptoGateway.h File Reference

Global include file.

Namespaces

• crypto

210

Variables

• bool crypto::global_logging

Deprecated logging flag.

N.18.1 Detailed Description

Global include file.

Author

Jonathan Bedard

Date

4/16/2016

Bug None

This file contains all of the headers in the CryptoGateway library. Project which depend on the

CryptoGateway library need only include this file.

N.19 cryptoHash.cpp File Reference

Implementation of crypto hashing.

N.19.1 Detailed Description

Implementation of crypto hashing.

Implementation of RC4 hash.

Author

Jonathan Bedard

211

Date

2/23/2016

Bug None

Implements basic hashing frameworks and the XOR hash. Note that the XOR hash is not cryp-

tographically secure. Consult cryptoHash.h (p. 212) for details.

Author

Jonathan Bedard

Date

2/23/2016

Bug None

Implements the RC-4 hash algorithm. The RC-4 hashing algorithm is likely secure, but not proven

secure. Consult the RC4_Hash.h (p. 229) for details.

N.20 cryptoHash.h File Reference

Declaration of crypto hashing.

Classes

• class crypto::hash

Base hash class.

• class crypto::xorHash

XOR hash class.

Namespaces

• crypto

212

Functions

• std::ostream & crypto::operator<< (std::ostream &os, const hash &num)

Output stream operator.

• std::istream & crypto::operator>> (std::istream &is, hash &num)

Input stream operator.

• template<class hashClass >

hashClass crypto::hashData (uint16_t hashType, const unsigned char ∗data, uint32_t length)

Hashes data with the specified algorithm.

N.20.1 Detailed Description

Declaration of crypto hashing.

Implementation of RC4 hash.

Author

Jonathan Bedard

Date

2/23/2016

Bug None

Declares base cryptographic hashing class and functions. All hash algorithms should extend this

hash class.

Author

Jonathan Bedard

Date

2/23/2016

Bug None

Declares the RC-4 hash algorithm. The RC-4 hashing algorithm is likely secure, but not proven

secure.

213

N.21 cryptoLogging.cpp File Reference

Logging for crypto namespace, implementation.

N.21.1 Detailed Description

Logging for crypto namespace, implementation.

Jonathan Bedard

Date

2/23/2016

Bug No known bugs.

This file contains global functions and variables used for logging in the crypto namespace.

N.22 cryptoLogging.h File Reference

Logging for crypto namespace.

Namespaces

• crypto

Functions

• std::ostream & crypto::cryptoout_func ()

Standard out object for crypto namespace.

• std::ostream & crypto::cryptoerr_func ()

Standard error object for crypto namespace.

Variables

• os::smart_ptr< std::ostream > crypto::cryptoout_ptr

Standard out pointer for crypto namespace.

• os::smart_ptr< std::ostream > crypto::cryptoerr_ptr

Standard error pointer for crypto namespace.

214

N.22.1 Detailed Description

Logging for crypto namespace.

Jonathan Bedard

Date

2/23/2016

Bug No known bugs.

This file contains declarations which are used for logging within the crypto namespace.

N.23 cryptoNumber.cpp File Reference

Implements basic number types.

N.23.1 Detailed Description

Implements basic number types.

Author

Jonathan Bedard

Date

4/3/2016

Bug No known bugs.

Implements basic large numbers and the more specific large integer. Consult cryptoNumber.h

(p. 215) for details.

N.24 cryptoNumber.h File Reference

Defines basic number types.

215

Classes

• class crypto::number

Basic number definition.

• class crypto::integer

Integer number definition.

Namespaces

• crypto

Functions

• std::ostream & crypto::operator<< (std::ostream &os, const number &num)

Output stream operator.

• std::istream & crypto::operator>> (std::istream &is, number &num)

Input stream operator.

N.24.1 Detailed Description

Defines basic number types.

Author

Jonathan Bedard

Date

3/2/2016

Bug No known bugs.

Contains declarations of large numbers for usage inside the CryptoGateway. The two numbers

defined in this file are the general structure for large numbers and a basic integer.

N.25 cryptoNumberTest.cpp File Reference

Testing crypto::number (p. ??) and crypto::integer (p. ??).

216

N.25.1 Detailed Description

Testing crypto::number (p. ??) and crypto::integer (p. ??).

Author

Jonathan Bedard

Date

4/18/2016

Bug No known bugs.

This file has a series of tests which confirm the functionality of crypto::integer (p. ??) and it's

base class, crypto::number (p. ??).

N.26 cryptoPublicKey.cpp File Reference

Generalized and RSA public key implementation.

N.26.1 Detailed Description

Generalized and RSA public key implementation.

Author

Jonathan Bedard

Date

5/5/2016

Bug No known bugs.

Contains implementation of the generalized public key and the RSA public key. Consult crypto←↩

PublicKey.h (p. 217) for details.

N.27 cryptoPublicKey.h File Reference

Generalized and RSA public keys.

217

Classes

• class crypto::keyChangeReceiver

Interface for receiving key changes.

• class crypto::keyChangeSender

Interface inherited by publicKey (p. ??).

• class crypto::publicKey

Base public-key class.

• class crypto::publicRSA

RSA public-key encryption.

• class crypto::RSAKeyGenerator

Helper key generation class.

Namespaces

• crypto

N.27.1 Detailed Description

Generalized and RSA public keys.

Author

Jonathan Bedard

Date

5/9/2016

Bug No known bugs.

Contains declarations of the generalized public key and the RSA public key. These classes can

both encrypt and decrypt public keys.

N.28 cryptoTest.cpp File Reference

CryptoGateway library test constructor.

218

N.28.1 Detailed Description

CryptoGateway library test constructor.

Author

Jonathan Bedard

Date

4/7/2016

Bug No known bugs.

Binds all test suites for the test::CryptoGatewayLibraryTest. This library test is called "Crypto←↩

Gateway."

N.29 cryptoTest.h File Reference

CryptoGateway library test header.

N.29.1 Detailed Description

CryptoGateway library test header.

Author

Jonathan Bedard

Date

4/2/2016

Bug No known bugs.

Contains declarations need to bind the CryptoGateway test library to the unit test driver.

N.30 gateway.cpp File Reference

Implements the gateway.

219

N.30.1 Detailed Description

Implements the gateway.

Author

Jonathan Bedard

Date

5/9/2016

Bug No known bugs.

Implements the gateway defined in gateway.h (p. 220). Consult gateway.h (p. 220) for details.

N.31 gateway.h File Reference

Defines the gateway.

Classes

• class crypto::gatewaySettings

Holds settings for gateway encryption.

• class crypto::gateway

Security gateway.

Namespaces

• crypto

N.31.1 Detailed Description

Defines the gateway.

Author

Jonathan Bedard

220

Date

5/9/2016

Bug No known bugs.

This file contains the declaration for the gateway and the gateway settings. This header file is the

culmination of the CryptoGateway library.

Note that due to development constraints, the gatewaySettings class is being pushed out in a

frame-work form and is intended to contain a large set of algorithm definitions as well as an algorithm

use agreement protocol.

N.32 gatewayTest.cpp File Reference

Implementation for end-to-end gateway testing.

N.32.1 Detailed Description

Implementation for end-to-end gateway testing.

Author

Jonathan Bedard

Date

4/26/2016

Bug No known bugs.

This file contains implementation of the key bank tests and the end-to-end gateway tests. These

tests are not exhaustive, they test basic functionality of both structures.

N.33 gatewayTest.h File Reference

Header for end-to-end gateway testing.

221

N.33.1 Detailed Description

Header for end-to-end gateway testing.

Author

Jonathan Bedard

Date

3/20/2016

Bug No known bugs.

This header contains declarations of the key bank tests and the end-to-end gateway tests. These

tests are not exhaustive, they test basic functionality of both structures.

N.34 hashTest.cpp File Reference

Implementation for hash tests.

N.34.1 Detailed Description

Implementation for hash tests.

Author

Jonathan Bedard

Date

4/18/2016

Bug No known bugs.

This file contains algorithm-specific cryptographic hash testing. These tests confirm that the

respective hash algorithms are outputting their expected value.

N.35 hashTest.h File Reference

Header for hash testing.

222

N.35.1 Detailed Description

Header for hash testing.

Author

Jonathan Bedard

Date

4/18/2016

Bug No known bugs.

This file contains a number of template classes used to confirm the functionality of cryptographic

hash algorithms.

N.36 hexConversion.cpp File Reference

Hex conversion implementation.

N.36.1 Detailed Description

Hex conversion implementation.

Author

Jonathan Bedard

Date

3/16/2016

Bug No known bugs.

Implements the set of hex conversion functions. Consult hexConversion.h (p. 223) for details.

N.37 hexConversion.h File Reference

Hex conversion header.

223

Namespaces

• crypto

Functions

• bool crypto::isHexCharacter (char c)

Check the character type.

• std::string crypto::toHex (unsigned char i)

Converts an 8 bit integer to a hex string.

• std::string crypto::toHex (uint32_t i)

Converts an 32 bit integer to a hex string.

• unsigned char crypto::fromHex8 (const std::string &str)

Converts a hex string to an 8 bit integer.

• uint32_t crypto::fromHex32 (const std::string &str)

Converts a hex string to an 32 bit integer.

N.37.1 Detailed Description

Hex conversion header.

Author

Jonathan Bedard

Date

3/16/2016

Bug No known bugs.

Contains a set of functions to convert integers and characters from a hex string and converts hex

strings to integers and characters.

N.38 keyBank.cpp File Reference

Implimentation for the AVL tree based key bank.

224

N.38.1 Detailed Description

Implimentation for the AVL tree based key bank.

Author

Jonathan Bedard

Date

4/19/2016

Bug No known bugs.

This file contians the implimentation for the crypto::avlKeyBank (p. ??) and supporting classes.

Consult keyBank.h (p. 225) for details.

N.39 keyBank.h File Reference

Header for the AVL tree based key bank.

Classes

• class crypto::nodeGroup

Node group.

• class crypto::nodeNameReference

Name storage node.

• class crypto::nodeKeyReference

Key storage node.

• class crypto::keyBank

Key bank interface.

• class crypto::avlKeyBank

AVL key back.

Namespaces

• crypto

225

N.39.1 Detailed Description

Header for the AVL tree based key bank.

Author

Jonathan Bedard

Date

4/19/2016

Bug No known bugs.

This file contians declarations for the crypto::avlKeyBank (p. ??) and supporting classes. Note

that the key-bank may later be implimented with more advanced datastructures.

N.40 message.cpp File Reference

Crypto-Gateway message implementation.

N.40.1 Detailed Description

Crypto-Gateway message implementation.

Author

Jonathan Bedard

Date

4/16/2016

Bug No known bugs.

Implements the message used by the crypto-gateway to pass encrypted data between machines.

N.41 message.h File Reference

Crypto-Gateway message.

226

Classes

• class crypto::message

Crypto-Gateway message.

Namespaces

• crypto

N.41.1 Detailed Description

Crypto-Gateway message.

Author

Jonathan Bedard

Date

4/16/2016

Bug No known bugs.

The message declared in this file acts as a message for the Crypto-Gateway. These messages

are intended to be converted to machine-to-machine communication.

N.42 publicKeyPackage.cpp File Reference

Implementation of public key bank.

N.42.1 Detailed Description

Implementation of public key bank.

Author

Jonathan Bedard

227

Date

5/19/2016

Bug None

Implements a bank of public key types to be accessed at run-time. Essentially acts as a meta-

object access bank.

N.43 publicKeyPackage.h File Reference

Declaration of public key bank.

Classes

• class crypto::publicKeyPackageFrame

• class crypto::publicKeyPackage< pkType >

• class crypto::publicKeyTypeBank

Namespaces

• crypto

N.43.1 Detailed Description

Declaration of public key bank.

Author

Jonathan Bedard

Date

5/19/2016

Bug None

Declares a bank of public keys as well as supporting classes. Acts as a meta-object construct for

public-key algorithms.

228

N.44 publicKeyTest.h File Reference

Public Key tests.

N.44.1 Detailed Description

Public Key tests.

Author

Jonathan Bedard

Date

4/18/2016

Bug No known bugs.

Since the public key tests are defined by very simple tests, the template testing classes contained

in this file are also defined in this file. There is no .cpp file paired with this particular header.

N.45 RC4_Hash.cpp File Reference

N.46 RC4_Hash.h File Reference

Classes

• class crypto::rc4Hash

RC-4 hash class.

Namespaces

• crypto

N.47 staticTestKeys.cpp File Reference

Auto-generated.

229

N.47.1 Detailed Description

Auto-generated.

Author

None

Bug None

N.48 staticTestKeys.h File Reference

Auto-generated.

N.48.1 Detailed Description

Auto-generated.

Author

None

Bug None

N.49 streamCipher.cpp File Reference

N.50 streamCipher.h File Reference

Classes

• class crypto::streamCipher

• class crypto::RCFour

• class crypto::streamPacket

• class crypto::streamEncrypter

• class crypto::streamDecrypter

Namespaces

• crypto

230

Variables

• bool global_logging

N.50.1 Variable Documentation

bool global_logging

N.51 streamPackage.cpp File Reference

Implementation of streaming bank.

N.51.1 Detailed Description

Implementation of streaming bank.

Author

Jonathan Bedard

Date

5/19/2016

Bug None

Implements a a bank of stream ciphers and hash algorithms to be accessed at run-time. Essen-

tially acts as a meta-object access bank.

N.52 streamPackage.h File Reference

Declaration of streaming bank.

Classes

• class crypto::streamPackageFrame

• class crypto::streamPackage< streamType, hashType >

• class crypto::streamPackageTypeBank

231

Namespaces

• crypto

N.52.1 Detailed Description

Declaration of streaming bank.

Author

Jonathan Bedard

Date

5/19/2016

Bug None

Declares a bank of stream ciphers and hash algorithms along with supporting classes. Acts as a

meta-object construct for public-key algorithms.

N.53 streamTest.cpp File Reference

Implementation for stream tests.

N.53.1 Detailed Description

Implementation for stream tests.

Author

Jonathan Bedard

Date

4/18/2016

Bug No known bugs.

This file contains algorithm-specific cryptographic stream testing. These tests confirm that the

respective stream algorithms are outputting their expected value.

232

N.54 streamTest.h File Reference

Header for stream testing.

N.54.1 Detailed Description

Header for stream testing.

Author

Jonathan Bedard

Date

4/18/2016

Bug No known bugs.

This file contains a number of template classes used to confirm the functionality of cryptographic

stream objects.

N.55 testKeyGeneration.cpp File Reference

N.56 testKeyGeneration.h File Reference

Implementation of test key binding.

N.56.1 Detailed Description

Implementation of test key binding.

Binds generated testing keys.

Author

Jonathan Bedard

233

Date

4/18/2016

Bug No known bugs.

Implements the binding of the static test keys to arrays in memory. Consult testKeyGeneration.h

(p. 233) for details.

Author

Jonathan Bedard

Date

2/12/2016

Bug No known bugs.

Provides access to the keys generated and stored in staticTestKeys.h (p. 230) and staticTest←↩

Keys.cpp (p. 229). These keys are always copied into a raw array of uint32_t.

N.57 user.cpp File Reference

Implementation of the CryptoGateway user.

N.57.1 Detailed Description

Implementation of the CryptoGateway user.

Author

Jonathan Bedard

Date

4/26/2016

Bug None

Provides an implementation of user which has a user-name, password and associated bank of

public keys. Consult user.h (p. 235) for details.

234

N.58 user.h File Reference

Definition of the CryptoGateway user.

Classes

• class crypto::user

Primary user class.

Namespaces

• crypto

N.58.1 Detailed Description

Definition of the CryptoGateway user.

Author

Jonathan Bedard

Date

4/26/2016

Bug None

Provides a definition of user which has a user-name, password and associated bank of public

keys.

N.59 XMLEncryption.cpp File Reference

Implementation of RC-4.

N.59.1 Detailed Description

Implementation of RC-4.

Implements encrypted XML functions.

235

Author

Jonathan Bedard

Date

5/19/2016

Bug None

Implements the RC-4 stream cipher and more generally, a framework for all stream ciphers to

use.

Author

Jonathan Bedard

Date

5/19/2016

Bug None

Implements functions to save and load XML trees in files locked with both a password and with

public keys.

N.60 XMLEncryption.h File Reference

Defines basic stream ciphers.

Namespaces

• crypto

Functions

• bool crypto::EXML_Output (std::string path, os::smartXMLNode head, unsigned char ∗sym←↩

Key, unsigned int passwordLength, os::smart_ptr< streamPackageFrame > spf=NULL)

• bool crypto::EXML_Output (std::string path, os::smartXMLNode head, std::string password,

os::smart_ptr< streamPackageFrame > spf=NULL)

236

• bool crypto::EXML_Output (std::string path, os::smartXMLNode head, os::smart_ptr< public←↩

Key > pbk, unsigned int lockType=file::PRIVATE_UNLOCK, os::smart_ptr< streamPackage←↩

Frame > spf=NULL)

• bool crypto::EXML_Output (std::string path, os::smartXMLNode head, os::smart_ptr< num-

ber > publicKey, unsigned int pkAlgo, unsigned int pkSize, os::smart_ptr< streamPackage←↩

Frame > spf=NULL)

• os::smartXMLNode crypto::EXML_Input (std::string path, unsigned char ∗symKey, unsigned

int passwordLength)

• os::smartXMLNode crypto::EXML_Input (std::string path, std::string password)

• os::smartXMLNode crypto::EXML_Input (std::string path, os::smart_ptr< publicKey > pbk,

os::smart_ptr< keyBank > kyBank, os::smart_ptr< nodeGroup > &author)

• os::smartXMLNode crypto::EXML_Input (std::string path, os::smart_ptr< publicKey > pbk)

• os::smartXMLNode crypto::EXML_Input (std::string path, os::smart_ptr< keyBank > kyBank)

• os::smartXMLNode crypto::EXML_Input (std::string path, os::smart_ptr< keyBank > kyBank,

os::smart_ptr< nodeGroup > &author)

N.60.1 Detailed Description

Defines basic stream ciphers.

Provides structure to encrypt an XML save file.

Author

Jonathan Bedard

Date

5/19/2016

Bug None

Defines some basic stream ciphers and stream cipher tools for basic encryption.

237

Author

Jonathan Bedard

Date

5/19/2016

Bug None

Provides functions to save and load XML trees in encrypted files.

238

Part V

TrusNet Library

239

Appendix O

Introduction

The TrusNet library contains classes which handle message and node management. The TrusNet

library sends and receives messages through the CryptoGateway library. TrusNet also manages

connections between nodes, exposing these connections to be used elsewhere. The library provides

a few network hooks and means of managing those network types.

O.1 Namespace

TrusNet uses the tnet namespace. The tnet namespace is designed for class, functions and con-

stants related to node management and high-level message passing. TrusNet depends on many of

the tools defined in the os and crypto namespaces.

240

Appendix P

File Index

P.1 File List

Here is a list of all files with brief descriptions:

Connection.cpp

Implementation of Connection and ConnectionModule 243

Connection.h

Definition of Connection and ConnectionModule 243

LocalIPManager.cpp

Implementation of LocalIPManager and IPModule 244

LocalIPManager.h

Definition of LocalIPManager and IPModule . 245

MessageTypes.cpp

Implementation MessageType and MessageRegistry 246

MessageTypes.h

Defines MessageType and MessageRegistry . 247

NetworkManager.cpp

Implements class used in network hooks . 248

NetworkManager.h

Defines class used in network hooks . 249

NetworkMaster.cpp

Implements a NetworkManager driver . 250

241

NetworkMaster.h

Defines a NetworkManager driver . 251

TrusNet.h

Global include file . 251

TrusNetFunctions.cpp

Logging for tnet namespace, implementation . 252

TrusNetFunctions.h

Logging for tnet namespace . 252

trusNetPacket.cpp

Implementation MessageType and MessageRegistry 253

trusNetPacket.h

Declaration of various packet classes . 253

trusPermissions.cpp

Future implementation of permission management 255

trusPermissions.h

Future declaration of permission management 255

242

Appendix Q

File Documentation

Q.1 Connection.cpp File Reference

Implementation of Connection and ConnectionModule.

Q.1.1 Detailed Description

Implementation of Connection and ConnectionModule.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

Consult Connection.h (p. 243) for details. Note that each module must be independently authen-

ticated, a Connection is merely a collection of ConnectionModules.

Q.2 Connection.h File Reference

Definition of Connection and ConnectionModule.

Classes

• class tnet::Connection

• class tnet::ConnectionModule

243

Namespaces

• tnet

Variables

• const int tnet::MAX_CONNECTION_TIMEOUT =180

• const int tnet::CONNECTION_TIMEOUT =30

• const unsigned int tnet::PEER =0

• const unsigned int tnet::BLOCKED =1

• const unsigned int tnet::ONLOOKER =2

• const unsigned int tnet::PERMISSION_MIN =PEER

• const unsigned int tnet::PERMISSION_MAX =ONLOOKER

• const unsigned int tnet::PING_MESSAGE =1

• const unsigned int tnet::CRYPTO_MESSAGE =2

• const unsigned int tnet::MULTICAST_MESSAGE =3

Q.2.1 Detailed Description

Definition of Connection and ConnectionModule.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

Connection and ConnectionModule are secure abstractions of the communication protocols avail-

able in TrusNet.

Q.3 LocalIPManager.cpp File Reference

Implementation of LocalIPManager and IPModule.

244

Q.3.1 Detailed Description

Implementation of LocalIPManager and IPModule.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

Consult LocalIPManager.h (p. 245) for details. Note that the LocalIPManager will attempt to

instantiate both at IPv4 and IPv6 server.

Q.4 LocalIPManager.h File Reference

Definition of LocalIPManager and IPModule.

Classes

• class tnet::IPModuleListener

• class tnet::LocalIPManager

• class tnet::IPModule

Namespaces

• tnet

Variables

• const std::string IPADDRESSFILE ="IP_Address_Bank"

• const std::string IDFILE ="ID_Info_File"

• const unsigned int IPV4_PORT_DEFAULT =2690

• const unsigned int IPV6_PORT_DEFAULT =2691

• const unsigned int IP_BLOCKED =0

• const unsigned int IP_ACTIVE =1

• const unsigned int IP_TIMEOUT =2

245

• const std::string IP_STRING_BLOCKED ="blocked"

• const std::string IP_STRING_ACTIVE ="active"

• const std::string IP_STRING_TIMEOUT ="timeout"

• const unsigned int TIMEOUT_MINIMUM =1

• const unsigned int TIMEOUT_DEFAULT =1209600

Q.4.1 Detailed Description

Definition of LocalIPManager and IPModule.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

LocalIPManager and IPModule comprise the IP hook for TrusNet.

Q.4.2 Variable Documentation

const std::string IDFILE ="ID_Info_File"

const unsigned int IP_ACTIVE =1

const unsigned int IP_BLOCKED =0

const std::string IP_STRING_ACTIVE ="active"

const std::string IP_STRING_BLOCKED ="blocked"

const std::string IP_STRING_TIMEOUT ="timeout"

const unsigned int IP_TIMEOUT =2

const std::string IPADDRESSFILE ="IP_Address_Bank"

const unsigned int IPV4_PORT_DEFAULT =2690

const unsigned int IPV6_PORT_DEFAULT =2691

const unsigned int TIMEOUT_DEFAULT =1209600

const unsigned int TIMEOUT_MINIMUM =1

Q.5 MessageTypes.cpp File Reference

Implementation MessageType and MessageRegistry.

246

Q.5.1 Detailed Description

Implementation MessageType and MessageRegistry.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

Consult MessageTypes.h (p. 247) for details. Note that the MessageRegistry is a singleton

class.

Q.6 MessageTypes.h File Reference

Defines MessageType and MessageRegistry.

Classes

• class tnet::MessageType

• class tnet::Blocked

• class tnet::PingMessage

• class tnet::ForwardMessage

• class tnet::KeyExchangeMessage

• class tnet::SigningMessage

• class tnet::GatewayExchangeMessage

• class tnet::ConfirmErrorMessage

• class tnet::BasicErrorMessage

• class tnet::TimeoutErrorMessage

• class tnet::PermenantErrorMessage

• class tnet::NetworkMessage

• class tnet::IPAddressMessage

• class tnet::LogMessage

• class tnet::MessageRegistry

247

Namespaces

• tnet

Functions

• void tnet::register_message_types ()

• os::smart_ptr< MessageRegistry > tnet::getRegistry ()

• os::smart_ptr< NetworkMessage > tnet::NetworkMessageType ()

• os::smart_ptr< LogMessage > tnet::LogMessageType ()

Variables

• const unsigned int tnet::NUM_MESSAGE_TYPES =256

• NetworkMessage tnet::netMess

• IPAddressMessage tnet::ipAddressMess

• LogMessage tnet::logMes

Q.6.1 Detailed Description

Defines MessageType and MessageRegistry.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

Defines the MessageType base class and the MessageRegistry used to keep track of all of the

MessageTypes.

Q.7 NetworkManager.cpp File Reference

Implements class used in network hooks.

248

Q.7.1 Detailed Description

Implements class used in network hooks.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

Consult NetworkManager.h (p. 249) for details. This file implements the various classes used in

network management.

Q.8 NetworkManager.h File Reference

Defines class used in network hooks.

Classes

• class tnet::NetworkPoller

• class tnet::ConnectionListener

• class tnet::NetworkManager

• class tnet::NetworkFramework

Namespaces

• tnet

Variables

• const std::string tnet::ID_INFO_FILE ="ID_Info_File"

• const std::string tnet::CONNECTION_PATH ="Connections"

• const unsigned int tnet::MAX_NETWORKS =1

• const unsigned int tnet::VERSION_1 =1

• const unsigned int tnet::VERSION_2 =2

• const unsigned int tnet::CURRENT_VERSION =VERSION_2

249

• const unsigned int tnet::LOCAL_IP_INDEX =0

• const unsigned int tnet::MASTER =0

• const unsigned int tnet::INDEPENDENT =1

• const unsigned int tnet::SERVANT =2

• const unsigned int tnet::SLAVE =3

• const unsigned int tnet::PRIVILEGE_MIN =MASTER

• const unsigned int tnet::PRIVILEGE_MAX =SLAVE

Q.8.1 Detailed Description

Defines class used in network hooks.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

The classes defined in this file are used by network protocol hooks within TrusNet. These base

classes allowing things such as polling, event listening and basic connection management.

Q.9 NetworkMaster.cpp File Reference

Implements a NetworkManager driver.

Q.9.1 Detailed Description

Implements a NetworkManager driver.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

Consult NetworkMaster.h (p. 251) for details. Note that the NetworkMaster class is meant to be

extended so that messages can be processed in a meaningful way.

250

Q.10 NetworkMaster.h File Reference

Defines a NetworkManager driver.

Classes

• class tnet::NetworkMaster

Namespaces

• tnet

Q.10.1 Detailed Description

Defines a NetworkManager driver.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

The class defined in this class provides a class to driver the NetworkManager and receive events

from the NetworkManager when messages arrive.

Q.11 TrusNet.h File Reference

Global include file.

Q.11.1 Detailed Description

Global include file.

Author

Jonathan Bedard

251

Date

5/23/2016

Bug None

This file contains all of the headers in the TrusNet library. Project which depend on the TrusNet

library need only include this file.

Q.12 TrusNetComplete.h File Reference

Q.13 TrusNetFunctions.cpp File Reference

Logging for tnet namespace, implementation.

Q.13.1 Detailed Description

Logging for tnet namespace, implementation.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

This file contains global functions and variables used for logging in the tnet namespace.

Q.14 TrusNetFunctions.h File Reference

Logging for tnet namespace.

Namespaces

• tnet

Functions

• std::ostream & tnet::tnetout_func ()

• std::ostream & tnet::tneterr_func ()

252

Variables

• os::smart_ptr< std::ostream > tnet::tnetout_ptr

• os::smart_ptr< std::ostream > tnet::tneterr_ptr

Q.14.1 Detailed Description

Logging for tnet namespace.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

This file contains declarations which are used for logging within the tnet namespace.

Q.15 trusNetPacket.cpp File Reference

Implementation MessageType and MessageRegistry.

Q.15.1 Detailed Description

Implementation MessageType and MessageRegistry.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

Consult trusNetPacket.h (p. 253) for details. This file implements the details of TrusNet packet

management.

Q.16 trusNetPacket.h File Reference

Declaration of various packet classes.

253

Classes

• class tnet::byte_array

• class tnet::trusPacketAssemblerData

• class tnet::TrusPacket

• class tnet::trusPacketAssembler

Namespaces

• tnet

Typedefs

• typedef os::smart_ptr< byte_array > tnet::byte_array_ptr

• typedef os::smart_ptr< std::vector< os::smart_ptr< crypto::message > > > tnet::interior←↩

MessageList

• typedef os::smart_ptr< TrusPacket > tnet::smartTrusPacket

Enumerations

• enum tnet::PacketTypes { tnet::pck_ERROR, tnet::pck_UDP, tnet::pck_CHAINED }

Variables

• const unsigned int tnet::MAX_TRUS_UDP_SIZE =470

Q.16.1 Detailed Description

Declaration of various packet classes.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

The classes in the module are designed to abstract data packet separation in TrusNet.

254

Q.17 trusPermissions.cpp File Reference

Future implementation of permission management.

Q.17.1 Detailed Description

Future implementation of permission management.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

Current, permissions are managed in the modules utilizing TrusNet. This will change in the

future.

Q.18 trusPermissions.h File Reference

Future declaration of permission management.

Namespaces

• tnet

Q.18.1 Detailed Description

Future declaration of permission management.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

Current, permissions are managed in the modules utilizing TrusNet. This will change in the

future.

255

Part VI

EdisonHAL Library

256

Appendix R

Introduction

The EdisonHAL library provides a basic wrapper around the hardware IO pins of the Intel Edison

platform. In order to allow for easy testing on different platforms, the EdisonHAL library fakes I/O pin

functionality when not running on an Intel Edison.

R.1 Unit Testing

Currently, the EdisonHAL library does not define any Unit Tests to be included in an application’s

battery of unit tests.

R.2 Namespace edison

EdisonHAL establishes the edison namespace. The edison namespace is designed for function calls

and basic algorithms relevant to the physical I/O pins on the Intel Edison.

257

Appendix S

File Index

S.1 File List

Here is a list of all files with brief descriptions:

EdisonHal.h

This is a top level header that can be included into other libraries 259

EdisonHalLogging.cpp . 260

EdisonHalTest.cpp . 260

EdisonHalTest.h . 260

hardwareEntry.cpp . 261

helloWorldMraa.cpp . 261

helloWorldMraa.h . 261

motorController.cpp . 261

motorController.h . 262

258

Appendix T

File Documentation

T.1 EdisonHal.h File Reference

This is a top level header that can be included into other libraries.

Namespaces

• edison

Functions

• std::ostream & edison::edout_func ()

Standard out object for edison namespace.

• std::ostream & edison::ederr_func ()

Standard error object for edison namespace.

Variables

• os::smart_ptr< std::ostream > edison::edout_ptr

Standard out pointer for edison namespace.

• os::smart_ptr< std::ostream > edison::ederr_ptr

Standard error pointer for edison namespace.

T.1.1 Detailed Description

This is a top level header that can be included into other libraries.

259

Author

Jonathan Bedard

Date

5/2/2016

Bug No known bugs.

This header adds the streams for errors and includes the other necessary headers for the hard-

ware header.

T.2 EdisonHalLogging.cpp File Reference

Namespaces

• edison

Functions

• std::ostream & edison::edout_func ()

Standard out object for edison namespace.

• std::ostream & edison::ederr_func ()

Standard error object for edison namespace.

T.3 EdisonHalTest.cpp File Reference

Variables

• int r

T.3.1 Variable Documentation

int r

T.4 EdisonHalTest.h File Reference

Namespaces

• edison

260

T.5 hardwareEntry.cpp File Reference

Functions

• int main (int argc, char ∗∗argv)

T.5.1 Function Documentation

int main (int argc, char ∗∗ argv)

T.6 helloWorldMraa.cpp File Reference

Functions

• int hello ()

T.6.1 Function Documentation

int hello ()

T.7 helloWorldMraa.h File Reference

Functions

• int hello ()

T.7.1 Function Documentation

int hello ()

T.8 motorController.cpp File Reference

Functions

• void sig_handler (int signo)

• int blink ()

• int sweep ()

• int read ()

Variables

• int running = 0

• static int iopin

261

T.8.1 Function Documentation

int blink ()

int read ()

void sig_handler (int signo)

int sweep ()

[Interesting]

T.8.2 Variable Documentation

int iopin [static]

int running = 0

T.9 motorController.h File Reference

Classes

• class edison::motorController

• class edison::joyStick

• class edison::robot

Namespaces

• edison

Functions

• int edison::blink ()

• int edison::sweep ()

• int edison::read ()

262

Part VII

WifiRC Library

263

Appendix U

Introduction

The WifiRC library defines a set of controllers which utilize TrusNet in-order to demonstrate the

capabilities of the system. While there are two main controller types defined, Remote and Base,

there are 3 different configurations of the Remote controller type.

U.1 Namespace wrc

The wrc namespace is designed to define the set of controllers and helper classes for these con-

trollers. The wrc namespace does not define the network interfaces used or hardware interfaces, it

merely acts as a manager between the network interface and local hardware or UI interface.

264

Appendix V

File Index

V.1 File List

Here is a list of all files with brief descriptions:

BaseController.cpp

Implements the base controller class . 267

Controller.cpp

Implements the basic controller class . 267

Controller.h

Definition of various controller types . 268

controllerMessageType.cpp

Implements the message types for WifiRC . 270

controllerMessageType.h

Defines the message types for WifiRC . 270

Converter.h

Defines a set of control basics . 271

GenControls.cpp

Defines the general control framework . 271

RCControls.cpp

Defines the control framework for an RC car . 272

RemoteController.cpp

Implements the remote controller class . 272

265

siblingStruct.cpp

Implementation of the siblingStruct class . 273

siblingStruct.h

Definition of the siblingStruct class . 273

WifiRC.h

Global include file . 274

wifiRCLogging.cpp

Logging for wrc namespace, implementation . 274

wifiRCLogging.h

Logging for wrc namespace . 275

266

Appendix W

File Documentation

W.1 BaseController.cpp File Reference

Implements the base controller class.

W.1.1 Detailed Description

Implements the base controller class.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

The base class is used by the user-interface to connect and manage connections with remote

nodes.

W.2 Controller.cpp File Reference

Implements the basic controller class.

W.2.1 Detailed Description

Implements the basic controller class.

Jonathan Bedard

267

Date

5/23/2016

Bug No known bugs.

The controller class is inherited by the remote and base. It provides a basic interface for user

management, messaging and file saving.

W.3 Controller.h File Reference

Definition of various controller types.

Classes

• class wrc::Controller

• class wrc::RemoteController

• class wrc::BaseController

Namespaces

• wrc

Variables

• const unsigned int wrc::IDENTIFIER =1

• const unsigned int wrc::AUTO_SELECT =0

• const unsigned int wrc::PREFFERED_AUTO =1

• const unsigned int wrc::LIST_SELECTION =2

• const unsigned int wrc::PREFFERED_LIST =3

• const unsigned int wrc::ONE_SELECTION =4

• const unsigned int wrc::DEFAULT_CHOICE =0

• const unsigned int wrc::LIST_CHOICE =1

• const unsigned int wrc::PREFERED_CHOICE =2

• const unsigned int wrc::BLOCKED_CHOICE =3

268

• const std::string wrc::AUTO_SELECT_STRING ="Auto-Select"

• const std::string wrc::PREFFERED_AUTO_STRING ="Prefered_Auto"

• const std::string wrc::LIST_SELECTION_STRING ="List_Selection"

• const std::string wrc::PREFFERED_LIST_STRING ="Prefered_List"

• const std::string wrc::ONE_SELECTION_STRING ="One_Selection"

• const std::string wrc::DEFAULT_CHOICE_STRING ="Default"

• const std::string wrc::LIST_CHOICE_STRING ="List"

• const std::string wrc::PREFERED_CHOICE_STRING ="Prefered"

• const std::string wrc::BLOCKED_CHOICE_STRING ="Blocked"

• const std::string wrc::AUTO_SELECT_UI ="Auto-Select"

• const std::string wrc::PREFFERED_AUTO_UI ="Prefered Auto"

• const std::string wrc::LIST_SELECTION_UI ="List Selection"

• const std::string wrc::PREFFERED_LIST_UI ="Prefered List"

• const std::string wrc::ONE_SELECTION_UI ="One Selection"

• const std::string wrc::DEFAULT_CHOICE_UI ="Unselected"

• const std::string wrc::LIST_CHOICE_UI ="Selected"

• const std::string wrc::PREFERED_CHOICE_UI ="Primary"

• const std::string wrc::BLOCKED_CHOICE_UI ="Blocked"

W.3.1 Detailed Description

Definition of various controller types.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

The remote and base controllers are defined in this class. Note that both forms of controller

inherit from a shared controller class.

269

W.4 controllerMessageType.cpp File Reference

Implements the message types for WifiRC.

W.4.1 Detailed Description

Implements the message types for WifiRC.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

W.5 controllerMessageType.h File Reference

Defines the message types for WifiRC.

Classes

• class wrc::MotorControlMessage

• class wrc::ConnectionListMessage

Namespaces

• wrc

Variables

• MotorControlMessage wrc::motorControlMessageType

• ConnectionListMessage wrc::connectionListMessage

W.5.1 Detailed Description

Defines the message types for WifiRC.

Jonathan Bedard

270

Date

5/23/2016

Bug No known bugs.

This file defines the MotorControlMessage and the ConnectionListMessage, two message types

used by WifiRC to communicate between two nodes.

W.6 Converter.h File Reference

Defines a set of control basics.

Classes

• class wrc::GenControls

• class wrc::RCControls

Namespaces

• wrc

W.6.1 Detailed Description

Defines a set of control basics.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

This file defines a general control framework and a control framework used for controlling an RC

car. Currently, the WifiRC library does not use these interfaces.

W.7 GenControls.cpp File Reference

Defines the general control framework.

271

W.7.1 Detailed Description

Defines the general control framework.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

Note that this particular framework is currently not used in the WifiRC library.

W.8 RCControls.cpp File Reference

Defines the control framework for an RC car.

W.8.1 Detailed Description

Defines the control framework for an RC car.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

Note that this particular framework is currently not used in the WifiRC library.

W.9 RemoteController.cpp File Reference

Implements the remote controller class.

W.9.1 Detailed Description

Implements the remote controller class.

Jonathan Bedard

272

Date

5/23/2016

Bug No known bugs.

The remote class is used by headless applications to run or simulate IOT devices.

W.10 siblingStruct.cpp File Reference

Implementation of the siblingStruct class.

W.10.1 Detailed Description

Implementation of the siblingStruct class.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

This file implements the siblingStruct class used to hold the state of a remote node.

W.11 siblingStruct.h File Reference

Definition of the siblingStruct class.

Classes

• struct wrc::siblingData

Namespaces

• wrc

273

W.11.1 Detailed Description

Definition of the siblingStruct class.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

This file defines the siblingStruct class used to hold the state of a remote node, particularly the

node type, connection list and data intrinsics.

W.12 WifiRC.h File Reference

Global include file.

W.12.1 Detailed Description

Global include file.

Author

Jonathan Bedard

Date

5/23/2016

Bug None

This file contains all of the headers in the WifiRC library. Project which depend on the WifiRC

library need only include this file.

W.13 WifiRCComplete.h File Reference

W.14 wifiRCLogging.cpp File Reference

Logging for wrc namespace, implementation.

274

W.14.1 Detailed Description

Logging for wrc namespace, implementation.

Jonathan Bedard

Date

5/23/2016

Bug No known bugs.

This file contains global functions and variables used for logging in the wrc namespace.

W.15 wifiRCLogging.h File Reference

Logging for wrc namespace.

Namespaces

• wrc

Functions

• std::ostream & wrc::wrcout_func ()

• std::ostream & wrc::wrcerr_func ()

Variables

• os::smart_ptr< std::ostream > wrc::wrcout_ptr

• os::smart_ptr< std::ostream > wrc::wrcerr_ptr

W.15.1 Detailed Description

Logging for wrc namespace.

Jonathan Bedard

275

Date

5/23/2016

Bug No known bugs.

This file contains declarations which are used for logging within the wrc namespace.

276

Part VIII

glGraphics Library

277

Appendix X

Introduction

The glGraphics library contains cross-platform graphics tools. glGraphics visualizes through openGL,

allowing graphics to appear consistent across all systems. Furthermore, glGraphics provides an

interface to preform unit tests on the interfaces constructed through the library.

X.1 Unit Testing

glGraphics defines a number of testing primitives and, most notably, a headless UI driver, to allow

for the creation of headless UI unit tests to confirm the functionality of certain graphical components.

It is expected that libraries and executables which utilize this library will also use it’s unit testing

architecture.

X.2 Namespace

glGraphics uses the gl namespace. The gl namespace is designed for class, functions and constants

related to visualization through openGL. glGraphics depends on many of the tools defined in the os

namespace.

278

Appendix Y

File Index

Y.1 File List

Here is a list of all files with brief descriptions:

freeglut.h

Implements the UI testing framework . 283

freeglut_ext.h

Implements the UI testing framework . 283

freeglut_std.h

Implements the UI testing framework . 284

glCheckbox.cpp

Implements a checkbox and checkboxGroup . 284

glCheckbox.h

Defines a checkbox and checkboxGroup . 285

glColors.cpp

Implements the color list . 286

glColors.h

Defines a number of colors . 286

glContainers.cpp

Implements various graphics containers . 288

glContainers.h

Defines a number graphics containers . 288

279

glForm.cpp

Implements various forms and drivers . 289

glForm.h

Defines forms and UI drivers . 290

glFrame.cpp

Implements the graphics element and frame . 291

glFrame.h

Defines the graphics element and frame . 291

glInput.cpp

Implements the graphics input classes . 293

glInput.h

Defines a number of input classes . 293

glLabel.cpp

Implements text visualization tools . 295

glLabel.h

Defines text visualization classes . 296

glLibrary.h

Unified graphics library header . 297

glLogging.cpp

Logging for gl namespace, implementation . 298

glLogging.h

Logging for gl namespace . 298

glOSFunctions.cpp

Includes the correct glOSFuncitons cpp file . 299

glOSFunctions.h

Includes the correct glOSFuncitons header . 299

glPopUp.cpp

Implements a checkbox and checkboxGroup . 300

glPopUp.h

Defines a number of form types . 301

280

glTest.cpp

Defines glGraphics test suite . 302

glTest.h

Testing suite for the glGraphics library . 302

glTestingFrame.cpp

Implements the UI testing framework . 303

glTestingFrame.h

Defines the UI testing framework . 303

glTextbox.cpp

Implements a text-box . 305

glTextbox.h

Defines a text-box . 305

glut.h

Windows glut header . 306

image_DXT.cpp

Simple DXT compression / decompression code 306

image_DXT.h

Simple DXT compression / decompression code 307

image_helper.cpp

Image helper functions . 307

image_helper.h

Image helper functions . 308

osGraphics.h

OS specific openGL functions . 308

SOIL.cpp

Simple OpenGL Image Library . 309

SOIL.h

Simple OpenGL Image Library . 310

stb_image_aug.cpp

JPEG/PNG reader implementation . 310

281

stb_image_aug.h

JPEG/PNG reader header . 311

stbi_DDS_aug.h

DDS loading support . 311

stbi_DDS_aug_c.h . 312

textureManager.cpp

Implements the texture manager . 312

textureManager.h

Defines a texture-manager . 312

unix_glOSFunctions.cpp

Unix specific graphics functions . 313

unix_glOSFunctions.h

Unix specific graphics functions . 314

unix_osGraphics.h

Unix specific openGL functions . 315

win_freeglut.h

Windows freeglut header . 316

win_freeglut_ext.h

Windows freeglut_ext header . 316

win_freeglut_std.h

Windows freeglut_std header . 317

win_glOSFunctions.cpp

Windows specific graphics functions . 317

win_glOSFunctions.h

Windows specific graphics functions . 318

win_osGraphics.h

Windows specific openGL functions . 318

282

Appendix Z

File Documentation

Z.1 freeglut.h File Reference

Implements the UI testing framework.

Z.1.1 Detailed Description

Implements the UI testing framework.

Author

Jonathan Bedard

Date

5/20/2016

Bug None

Conditional freeglut include for Windows machines.

Z.2 freeglut_ext.h File Reference

Implements the UI testing framework.

Z.2.1 Detailed Description

Implements the UI testing framework.

283

Author

Jonathan Bedard

Date

5/20/2016

Bug None

Conditional freeglut_ext include for Windows machines.

Z.3 freeglut_std.h File Reference

Implements the UI testing framework.

Z.3.1 Detailed Description

Implements the UI testing framework.

Author

Jonathan Bedard

Date

5/20/2016

Bug None

Conditional freeglut_std include for Windows machines.

Z.4 glCheckbox.cpp File Reference

Implements a checkbox and checkboxGroup.

Z.4.1 Detailed Description

Implements a checkbox and checkboxGroup.

284

Author

Jonathan Bedard

Date

5/23/2016

Bug None

Consult glCheckbox.h (p. 285) for details. Note that the graphics class implemented here all

require a frame in their constructor.

Z.5 glCheckbox.h File Reference

Defines a checkbox and checkboxGroup.

Classes

• class gl::checkbox

• class gl::checkboxGroup

Namespaces

• gl

Enumerations

• enum gl::checkboxGroupType { gl::checkbox_noRestriction =0, gl::checkbox_single, gl←↩

::checkbox_chooseOne, gl::checkbox_chooseSome }

Z.5.1 Detailed Description

Defines a checkbox and checkboxGroup.

Author

Jonathan Bedard

285

Date

5/23/2016

Bug None

This file defines a checkbox and a checkboxGroup. Both these classes are meant to be visual-

ized.

Z.6 glColors.cpp File Reference

Implements the color list.

Z.6.1 Detailed Description

Implements the color list.

Author

Jonathan Bedard

Date

5/23/2016

Bug None

Consult glColors.h (p. 286) for details. Implements each of the defined colors.

Z.7 glColors.h File Reference

Defines a number of colors.

Namespaces

• gl

• gl::col

286

Variables

• const color gl::col::red

• const color gl::col::yellow

• const color gl::col::green

• const color gl::col::blue

• const color gl::col::black

• const color gl::col::brown

• const color gl::col::white

• const color gl::col::clear

• const color gl::col::clickedBlue

• const color gl::col::textboxBlue

• const color gl::col::darkGray

• const color gl::col::gray

• const color gl::col::inactiveGray

• const color gl::col::lightGray

• const color gl::col::overlayGray

• const color gl::col::overlayBlack

• const color gl::col::darkGreen

Z.7.1 Detailed Description

Defines a number of colors.

Author

Jonathan Bedard

Date

5/23/2016

Bug None

Each of the colors defined in this file is held in a doubly nested namespace. The colors defined

in this file are immutable.

287

Z.8 glContainers.cpp File Reference

Implements various graphics containers.

Z.8.1 Detailed Description

Implements various graphics containers.

Author

Jonathan Bedard

Date

5/23/2016

Bug None

Consult glContainers.h (p. 288) for details. The containers defined include, most notably, a box,

drop-down menu and scroll area.

Z.9 glContainers.h File Reference

Defines a number graphics containers.

Classes

• class gl::box

• class gl::wrappableBox

• class gl::fileBar

• class gl::barGroup

• class gl::scrollbar

• class gl::scrollArea

• class gl::entireFormScroll

Namespaces

• gl

288

Enumerations

• enum gl::scrollbarDir { gl::scrollbar_vertical =0, gl::scrollbar_horizontal }

Z.9.1 Detailed Description

Defines a number graphics containers.

Author

Jonathan Bedard

Date

5/23/2016

Bug None

The classes defined in this file extend the gl::frame (p. ??). Each of these containers has certain

unique qualities.

Z.10 glForm.cpp File Reference

Implements various forms and drivers.

Z.10.1 Detailed Description

Implements various forms and drivers.

Author

Jonathan Bedard

Date

5/24/2016

Bug None

Consult glForm.h (p. 290) for details. Note that each driver only draws a single form, but these

forms are defined in a tree hierarchy.

289

Z.11 glForm.h File Reference

Defines forms and UI drivers.

Classes

• class gl::form

• class gl::form3d

• class gl::baseUIDriver

• class gl::UIDriver

• class gl::testingDriver

Namespaces

• gl

Enumerations

• enum gl::resizePolicyEnum {

gl::resize_none =0, gl::resize_master, gl::resize_minimum, gl::resize_maximum,

gl::resize_bounded, gl::resize_lock, gl::resize_custom }

Variables

• const int gl::form_width_minimum =116

• const int gl::form_height_minimum =0

Z.11.1 Detailed Description

Defines forms and UI drivers.

Author

Jonathan Bedard

290

Date

5/24/2016

Bug None

Defines both a 3-d and 2-d form, as well as standard and testing drivers for displaying and testing

form hierarchies.

Z.12 glFrame.cpp File Reference

Implements the graphics element and frame.

Z.12.1 Detailed Description

Implements the graphics element and frame.

Author

Jonathan Bedard

Date

5/24/2016

Bug None

Consult glFrame.h (p. 291) for details. Many of the functions defined here are extended in the

many classes which inherit from these base classes.

Z.13 glFrame.h File Reference

Defines the graphics element and frame.

Classes

• struct gl::color

• class gl::clickedListener

• class gl::pressedListener

291

• class gl::depressedListener

• class gl::enterListener

• class gl::resizedListener

• class gl::clickedFunction

• class gl::clickedFunctionVoid

• class gl::pressedFunction

• class gl::pressedFunctionVoid

• class gl::depressedFunction

• class gl::depressedFunctionVoid

• class gl::enterFunction

• class gl::enterFunctionVoid

• class gl::resizeFunction

• class gl::resizeFunctionVoid

• class gl::element

• class gl::frame

Namespaces

• gl

Typedefs

• typedef void(∗ gl::elementHandler) (os::smart_ptr< element > elm)

• typedef void(∗ gl::elementHandler_void) (os::smart_ptr< element > elm, void ∗vptr)

Z.13.1 Detailed Description

Defines the graphics element and frame.

Author

Jonathan Bedard

292

Date

5/24/2016

Bug None

The classes defined in this header are the basic classes all of the graphics library builds off of.

These include a basic event framework, the base element class and the frame class, which defines

an element which holds other elements.

Z.14 glInput.cpp File Reference

Implements the graphics input classes.

Z.14.1 Detailed Description

Implements the graphics input classes.

Author

Jonathan Bedard

Date

5/24/2016

Bug None

Consult glInput.h (p. 293) for details. Along with class definitions, a number of global constants

are implemented in this file.

Z.15 glInput.h File Reference

Defines a number of input classes.

Classes

• class gl::key

• class gl::mouseListener

293

• class gl::keyboardListener

• class gl::globalMouseListener

• class gl::globalKeyboardListener

• class gl::mouse

• class gl::keyboard

Namespaces

• gl

Enumerations

• enum gl::elementDepth { gl::defaultDepth =0, gl::bottomDepth, gl::middleDepth, gl::top←↩

Depth }

• enum gl::keyType { gl::key_standard =0, gl::key_special =1 }

Variables

• const key gl::ESCAPE

• const key gl::ENTER

• const key gl::DELETE_KEY

• const key gl::BACKSPACE

• const key gl::TAB

• const key gl::SPACE

• const key gl::ARROWUP

• const key gl::ARROWDOWN

• const key gl::ARROWLEFT

• const key gl::ARROWRIGHT

• const int gl::MOUSE_DOWN =0

• const int gl::MOUSE_UP =1

• const int gl::MOUSE_RIGHT_BUTTON =2

• const int gl::MOUSE_SCROLLBUTTON =1

294

• const int gl::MOUSE_LEFT_BUTTON =0

• const int gl::MOUSE_SCROLLUP =3

• const int gl::MOUSE_SCROLLDOWN =4

Z.15.1 Detailed Description

Defines a number of input classes.

Author

Jonathan Bedard

Date

5/25/2016

Bug None

The classes and objects defined in this file are used for gathering user input, either from the

mouse or keyboard.

Z.16 glLabel.cpp File Reference

Implements text visualization tools.

Z.16.1 Detailed Description

Implements text visualization tools.

Author

Jonathan Bedard

Date

5/25/2016

Bug None

Consult glLabel.h (p. 296) for details. Because of the limitations of openGL, there are only a few

fonts available.

295

Z.17 glLabel.h File Reference

Defines text visualization classes.

Classes

• class gl::font

• class gl::TimesRomanStroke

• class gl::TimesMonoRomanStroke

• class gl::TimesRoman

• class gl::Helvetica

• class gl::label

• class gl::button

• class gl::arrowButton

• class gl::activeDisplayButton

• class gl::activeDisplayArrowButton

Namespaces

• gl

Enumerations

• enum gl::lateralTextLayout { gl::layout_right =0, gl::layout_center, gl::layout_left }

• enum gl::verticalTextLayout { gl::layout_top =0, gl::layout_middle, gl::layout_bottom }

• enum gl::arrowType { gl::arrow_up =0, gl::arrow_right, gl::arrow_down, gl::arrow_left }

Functions

• os::smart_ptr< std::string > gl::displayAssembleString (std::string str, int &length)

• void gl::drawText (double x, double y, std::string str, const color &c, const font ∗_font, lateral←↩

TextLayout layout=layout_left)

• void gl::drawText (double x, double y, const char ∗str, const color &c, const font ∗_font, lateral←↩

TextLayout layout=layout_left)

296

• void gl::drawText (double x, double y, os::smart_ptr< std::string > strArr, int length, const color

&c, const font ∗_font, lateralTextLayout layout)

• double gl::textHeight (os::smart_ptr< std::string > strArr, int length, const font ∗_font)

• double gl::textHeight (std::string str, const font ∗_font)

• double gl::textWidth (os::smart_ptr< std::string > strArr, int length, const font ∗_font)

• double gl::textWidth (std::string str, const font ∗_font)

• std::string gl::textChop (std::string str, double length_bound, const font ∗_font)

Z.17.1 Detailed Description

Defines text visualization classes.

Author

Jonathan Bedard

Date

5/25/2016

Bug None

The classes and functions defined in this file allow for rendering text in a form. This file also

defines a number of basic buttons.

Z.18 glLibrary.h File Reference

Unified graphics library header.

Z.18.1 Detailed Description

Unified graphics library header.

Author

Jonathan Bedard

297

Date

5/25/2016

Bug None

Includes all of the required graphics files for the glGraphics library.

Z.19 glLogging.cpp File Reference

Logging for gl namespace, implementation.

Z.19.1 Detailed Description

Logging for gl namespace, implementation.

Jonathan Bedard

Date

2/15/2016

Bug No known bugs.

This file contains global functions and variables used for logging in the gl namespace.

Z.20 glLogging.h File Reference

Logging for gl namespace.

Namespaces

• gl

Functions

• std::ostream & gl::glout_func ()

• std::ostream & gl::glerr_func ()

298

Variables

• os::smart_ptr< std::ostream > gl::glout_ptr

• os::smart_ptr< std::ostream > gl::glerr_ptr

Z.20.1 Detailed Description

Logging for gl namespace.

Jonathan Bedard

Date

1/30/2016

Bug No known bugs.

This file contains declarations which are used for logging within the gl namespace.

Z.21 glOSFunctions.cpp File Reference

Includes the correct glOSFuncitons cpp file.

Z.21.1 Detailed Description

Includes the correct glOSFuncitons cpp file.

Author

Jonathan Bedard

Date

5/20/2016

Bug None

Z.22 glOSFunctions.h File Reference

Includes the correct glOSFuncitons header.

299

Namespaces

• gl

Variables

• const double gl::PI =3.14159265

• const double gl::DEG_RAD =(PI/180)

• const double gl::RAD_DEG =(180/PI)

Z.22.1 Detailed Description

Includes the correct glOSFuncitons header.

Author

Jonathan Bedard

Date

5/20/2016

Bug None

Z.23 glPopUp.cpp File Reference

Implements a checkbox and checkboxGroup.

Z.23.1 Detailed Description

Implements a checkbox and checkboxGroup.

Author

Jonathan Bedard

300

Date

5/25/2016

Bug None

Consult glPopUp.h (p. 301) for details. This file also implements a basic navigation form, which

allows for users to go "back" to a previous form.

Z.24 glPopUp.h File Reference

Defines a number of form types.

Classes

• class gl::popUp

• class gl::singleButtonPopUp

• class gl::navForm

Namespaces

• gl

Z.24.1 Detailed Description

Defines a number of form types.

Author

Jonathan Bedard

Date

5/25/2016

Bug None

The classes defined here extend the form class. Most notably, this file defines a "pop-up" class

which allows for a temporary form on-top of the primary form.

301

Z.25 glTest.cpp File Reference

Defines glGraphics test suite.

Z.25.1 Detailed Description

Defines glGraphics test suite.

Author

Jonathan Bedard

Date

5/19/2016

Bug None

Defines the test suite for the glGraphics library.

Z.26 glTest.h File Reference

Testing suite for the glGraphics library.

Z.26.1 Detailed Description

Testing suite for the glGraphics library.

Author

Jonathan Bedard

Date

5/19/2016

Bug None

Declares the test suite for the glGraphics library. This suite can be added to the test battery for

an application

302

Z.27 glTestingFrame.cpp File Reference

Implements the UI testing framework.

Z.27.1 Detailed Description

Implements the UI testing framework.

Author

Jonathan Bedard

Date

5/19/2016

Bug None

Implements tools used to preform unit tests on the graphics framework.

Z.28 glTestingFrame.h File Reference

Defines the UI testing framework.

Classes

• class test::singleUITest

• class test::singleUIFunctionTest

• class test::UITestSuite

• class test::resizedTestListener

• class test::clickedTestListener

• class test::pressedTestListener

• class test::depressedTestListener

• class test::enterTestListener

• class test::testForm

• class test::textboxForm

• class test::checkboxForm

303

Namespaces

• test

• test::macro

Functions

• void test::setUpGraphicsTest ()

• void test::teardownGraphicsTest ()

• os::smart_ptr< gl::testingDriver > test::getTestDriver () throw (os::smart_ptr<std::exception>)

• void test::macro::moveMouseTo (int xPos, int yPos)

• void test::macro::moveMouseTo (const gl::element &elm)

• void test::macro::moveMouseTo (std::string str)

• void test::macro::mousePress ()

• void test::macro::mouseRelease ()

• void test::macro::mouseClick ()

• void test::macro::mouseClick (gl::element &elm)

• void test::macro::mouseClick (std::string str)

• void test::macro::keyboardClick (const gl::key &_key)

• void test::macro::keyboardDown (const gl::key &_key)

• void test::macro::keyboardUp (const gl::key &_key)

• void test::macro::keyboardType (const std::string &str)

• void test::macro::clickFileBar (os::smart_ptr< gl::barGroup > target)

• os::smart_ptr< os::unsortedList< gl::element > > test::macro::searchUIBy (std::string str)

Z.28.1 Detailed Description

Defines the UI testing framework.

Author

Jonathan Bedard

304

Date

5/19/2016

Bug None

Defines tools used to preform unit tests on the graphics framework.

Z.29 glTextbox.cpp File Reference

Implements a text-box.

Z.29.1 Detailed Description

Implements a text-box.

Author

Jonathan Bedard

Date

5/25/2016

Bug None

Consult glTextbox.h (p. 305) for details. The textbox implemented here does not currently sup-

port copying and pasting.

Z.30 glTextbox.h File Reference

Defines a text-box.

Classes

• class gl::textbox

Namespaces

• gl

305

Z.30.1 Detailed Description

Defines a text-box.

Author

Jonathan Bedard

Date

5/25/2016

Bug None

The text-box class allows a user to enter a string into the element and for this string to be ac-

cessed for some other use

Z.31 glut.h File Reference

Windows glut header.

Z.31.1 Detailed Description

Windows glut header.

Author

None

Date

5/20/2016

Bug None

Z.32 glut_w.h File Reference

Z.33 image_DXT.cpp File Reference

simple DXT compression / decompression code

306

Z.33.1 Detailed Description

simple DXT compression / decompression code

Author

Jonathan Dummer

Date

7/31/2007

Bug None

Modified for usage in glGraphics by Jonathan Bedard.

Z.34 image_DXT.h File Reference

simple DXT compression / decompression code

Z.34.1 Detailed Description

simple DXT compression / decompression code

Author

Jonathan Dummer

Date

7/31/2007

Bug None

Modified for usage in glGraphics by Jonathan Bedard.

Z.35 image_helper.cpp File Reference

Image helper functions.

307

Z.35.1 Detailed Description

Image helper functions.

Author

Jonathan Dummer

Date

7/31/2007

Bug None

Modified for usage in glGraphics by Jonathan Bedard.

Z.36 image_helper.h File Reference

Image helper functions.

Z.36.1 Detailed Description

Image helper functions.

Author

Jonathan Dummer

Date

7/31/2007

Bug None

Modified for usage in glGraphics by Jonathan Bedard.

Z.37 osGraphics.h File Reference

OS specific openGL functions.

308

Z.37.1 Detailed Description

OS specific openGL functions.

Author

Jonathan Bedard

Date

5/20/2016

Bug None

Includes a the correct osGraphics header for a specific operating system.

Z.38 SOIL.cpp File Reference

Simple OpenGL Image Library.

Z.38.1 Detailed Description

Simple OpenGL Image Library.

Author

Jonathan Dummer

Date

7/26/2007

Bug None

Public Domain using Sean Barret's stb_image as a base

Thanks to:
Sean Barret - for the awesome stb_image
Dan Venkitachalam - for finding some non-compliant DDS files, and patching some explicit casts
everybody at gamedev.net

Edited by Jonathan Bedard for compatibility with glGraphics C++ library

309

Z.39 SOIL.h File Reference

Simple OpenGL Image Library.

Z.39.1 Detailed Description

Simple OpenGL Image Library.

Author

Jonathan Dummer

Date

7/26/2007

Bug None

A tiny c library for uploading images as textures into OpenGL. Also saving and loading of images

is supported.

Edited by Jonathan Bedard for compatibility with glGraphics C++ library

Z.40 stb_image_aug.cpp File Reference

JPEG/PNG reader implementation.

Z.40.1 Detailed Description

JPEG/PNG reader implementation.

Author

Jonathan Dummer

Date

7/26/2007

Bug None

Edited by Jonathan Bedard for compatibility with glGraphics C++ library

310

Z.41 stb_image_aug.h File Reference

JPEG/PNG reader header.

Z.41.1 Detailed Description

JPEG/PNG reader header.

Author

Jonathan Dummer

Date

7/26/2007

Bug None

Edited by Jonathan Bedard for compatibility with glGraphics C++ library

Z.42 stbi_DDS_aug.h File Reference

DDS loading support.

Z.42.1 Detailed Description

DDS loading support.

DDS file support.

Author

Jonathan Dummer

Date

7/26/2007

Bug None

Edited by Jonathan Bedard for compatibility with glGraphics C++ library

311

Author

Jonathan Dummer

Date

7/26/2007

Bug None

Edited by Jonathan Bedard for compatibility with glGraphics C++ library

Z.43 stbi_DDS_aug_c.h File Reference

Z.44 textureManager.cpp File Reference

Implements the texture manager.

Z.44.1 Detailed Description

Implements the texture manager.

Author

Jonathan Bedard

Date

5/25/2016

Bug None

Consult textureManager.h (p. 312) for details. The textureManager is a singleton class, and can

only be instantiated once.

Z.45 textureManager.h File Reference

Defines a texture-manager.

312

Classes

• struct gl::texture_data

• class gl::textureManager

• class gl::imageElement

Namespaces

• gl

Functions

• GLuint gl::load_texture (std::string file_name)

• os::smart_ptr< textureManager > gl::globalTextureManager ()

• void gl::deleteTextures ()

Z.45.1 Detailed Description

Defines a texture-manager.

Author

Jonathan Bedard

Date

5/25/2016

Bug None

The texture manager allows for global management of graphics textures used in a graphics pro-

gram.

Z.46 unix_glOSFunctions.cpp File Reference

Unix specific graphics functions.

313

Z.46.1 Detailed Description

Unix specific graphics functions.

Author

Jonathan Bedard

Date

5/20/2016

Bug None

Implements a number of graphics functions uniquely for Unix.

Z.47 unix_glOSFunctions.h File Reference

Unix specific graphics functions.

Namespaces

• gl

Functions

• void gl::glSetSource (char ∗source_string)

• std::string gl::glGetSource ()

• std::string gl::glGetExecutable ()

• int gl::glGetSourceDepth ()

• bool gl::glIsBase (std::string loc)

• void gl::glTestCreateFolder (std::string n)

• bool gl::gl_is_directory (std::string file)

• std::string ∗ gl::gl_list_files (std::string directory, int ∗len)

• std::string gl::gl_extract_name (std::string full_path)

• void gl::gl_delete_file (std::string path)

• FILE ∗ gl::fopen_s (FILE ∗∗f, const char ∗name, const char ∗read_type)

314

Variables

• const std::string gl::DEFAULT_LOC ="/home"

Z.47.1 Detailed Description

Unix specific graphics functions.

Author

Jonathan Bedard

Date

5/20/2016

Bug None

Defines a number of graphics functions uniquely for Unix.

Z.48 unix_osGraphics.h File Reference

Unix specific openGL functions.

Functions

• static void glutLeaveMainLoop ()

• static int glutStrokeHeight (const void ∗ptr)

• static int glutBitmapHeight (const void ∗ptr)

Z.48.1 Detailed Description

Unix specific openGL functions.

Author

Jonathan Bedard

315

Date

5/20/2016

Bug None

Includes a number of headers specific to certain operating systems needed for openGL.

Z.48.2 Function Documentation

static int glutBitmapHeight (const void ∗ ptr) [static]

static void glutLeaveMainLoop () [static]

static int glutStrokeHeight (const void ∗ ptr) [static]

Z.49 win_freeglut.h File Reference

Windows freeglut header.

Z.49.1 Detailed Description

Windows freeglut header.

Author

Jonathan Bedard

Date

5/20/2016

Bug None

Z.50 win_freeglut_ext.h File Reference

Windows freeglut_ext header.

Z.50.1 Detailed Description

Windows freeglut_ext header.

316

Author

Jonathan Bedard

Date

5/20/2016

Bug None

Z.51 win_freeglut_std.h File Reference

Windows freeglut_std header.

Z.51.1 Detailed Description

Windows freeglut_std header.

Author

Jonathan Bedard

Date

5/20/2016

Bug None

Z.52 win_glOSFunctions.cpp File Reference

Windows specific graphics functions.

Z.52.1 Detailed Description

Windows specific graphics functions.

Author

Jonathan Bedard

317

Date

5/20/2016

Bug None

Implements a number of graphics functions uniquely for Windows.

Z.53 win_glOSFunctions.h File Reference

Windows specific graphics functions.

Z.53.1 Detailed Description

Windows specific graphics functions.

Author

Jonathan Bedard

Date

5/20/2016

Bug None

Defines a number of graphics functions uniquely for Windows.

Z.54 win_osGraphics.h File Reference

Windows specific openGL functions.

Z.54.1 Detailed Description

Windows specific openGL functions.

Author

Jonathan Bedard

318

Date

5/25/2016

Bug None

Includes a number of headers specific to certain operating systems needed for openGL.

319

Part IX

CryptoLogin Library

320

Appendix AA

Introduction

The CryptoLogin library contains a series of forms and support class used to open, manage and

edit users. These forms utilize the Datastructures, osMechanics, CryptoGateway and glGraphics

libraries.

AA.1 Unit Testing

Currently, the CryptoLogin library is not tested. In the future, the CryptoLogin will leverage the testing

functionality of the glGraphics library to preform basic testing on the forms through the headless

testing interface in glGraphics.

AA.2 Namespace login

This namespace contains forms used for both logging in and visualizing the basics of a user. Note

that the initial entry form is a template class so that the login namespace can open any form when

logging in. It is expected that the subsequent form will provide opportunities for the user to open

some of the user editing forms provided by the login namespace.

321

Appendix AB

File Index

AB.1 File List

Here is a list of all files with brief descriptions:

createUserForm.cpp

Implements the user creation form . 324

createUserForm.h . 325

cryptoLogin.h

All login header files . 325

cryptoLoginLog.h

Logging for login namespace . 326

keyGenerationPopUp.cpp

Key generation pop-up . 326

keyGenerationPopUp.h

Various crypto-graphic pop-ups . 327

listUsersForm.cpp . 328

listUsersForm.h . 328

loginMain.cpp

Miscellaneous implementation for login namespace 328

loginMain.h

Entry login form . 329

loginMetaData.cpp . 330

322

loginMetaData.h

Impliments login-form meta-data . 330

manageKeysForm.cpp . 331

manageKeysForm.h . 331

323

Appendix AC

File Documentation

AC.1 createUserForm.cpp File Reference

Implements the user creation form.

AC.1.1 Detailed Description

Implements the user creation form.

Implements key management form.

Author

Jonathan Bedard

Date

4/21/2016

Bug None

Implements the user creation form. Consult createUserForm.h (p. 325) for details.

Author

Jonathan Bedard

324

Date

5/5/2016

Bug None

Implements the key management form, which can be accessed from the secure side side of the

gateway

AC.2 createUserForm.h File Reference

Classes

• class login::createUser

Namespaces

• login

AC.3 cryptoLogin.h File Reference

All login header files.

AC.3.1 Detailed Description

All login header files.

Author

Jonathan Bedard

Date

4/12/2016

Bug None

Includes all login header files to be used outside the library.

325

AC.4 cryptoLoginLog.h File Reference

Logging for login namespace.

Namespaces

• login

Functions

• std::ostream & login::loginout_func ()
Standard out object for login namespace.

• std::ostream & login::loginerr_func ()
Standard error object for login namespace.

Variables

• os::smart_ptr< std::ostream > login::loginout_ptr
Standard out pointer for login namespace.

• os::smart_ptr< std::ostream > login::loginerr_ptr
Standard error pointer for login namespace.

AC.4.1 Detailed Description

Logging for login namespace.

Author

Jonathan Bedard

Date

4/12/2016

Bug None

This file contains declarations which are used for logging within the login namespace.

AC.5 keyGenerationPopUp.cpp File Reference

Key generation pop-up.

326

AC.5.1 Detailed Description

Key generation pop-up.

Author

Jonathan Bedard

Date

5/8/2016

Bug None

Implements the key-generation pop-up which provides a UI while public keys are being gener-

ated.

AC.6 keyGenerationPopUp.h File Reference

Various crypto-graphic pop-ups.

Classes

• class login::pulblicKeyPopUp

Used when generating keys.

• class login::userLoadingPopUp

Used when loading the user.

Namespaces

• login

AC.6.1 Detailed Description

Various crypto-graphic pop-ups.

Author

Jonathan Bedard

327

Date

4/21/2016

Bug None

Provides two pop-up forms used by the CryptoLogin library. One is used when generating public

keys and another is used when loading user data.

AC.7 listUsersForm.cpp File Reference

AC.8 listUsersForm.h File Reference

Classes

• class login::userFrame

Defines a user display frame This frame displays basic user data before a user is logged in. This data
is defined from the login meta-data.

• class login::listUsers

List-user form A navigation form listing all users associated with a particular loginMetaData (p. ??)
class.

Namespaces

• login

AC.9 loginMain.cpp File Reference

Miscellaneous implementation for login namespace.

AC.9.1 Detailed Description

Miscellaneous implementation for login namespace.

Author

Jonathan Bedard

328

Date

3/7/2016

Bug None

Implements a number of functions and objects used in the login namespaces. In particular, this

file implements the logging structures for the login namespace.

AC.10 loginMain.h File Reference

Entry login form.

Classes

• class login::mainLogin< nextForm >

Login form.

Namespaces

• login

AC.10.1 Detailed Description

Entry login form.

Author

Jonathan Bedard

Date

4/20/2016

Bug None

Provides a template class for applications which would like to include a password to log in. Will

allow the user to create new users and define public keys for those users as well.

329

AC.11 loginMetaData.cpp File Reference

AC.12 loginMetaData.h File Reference

Impliments login-form meta-data.

Classes

• struct login::userNode

User node.

• class login::loginMetaData

Login meta-data class.

Namespaces

• login

Variables

• const char ∗ login::META_FILE

Meta-data file name.

• const char ∗ login::USERS_FOLDER

Folder holding user data.

AC.12.1 Detailed Description

Impliments login-form meta-data.

Contains meta-data for login form.

Author

Jonathan Bedard

Date

4/18/2016

Bug None

Impliments the login meta-data class. Consult loginMetaData.h (p. 330) for details.

330

Author

Jonathan Bedard

Date

4/13/2016

Bug None

Provides meta-data to the login form. This class has default states, so if a custom meta-data

class is not passed to the login form, a default one will be created.

AC.13 manageKeysForm.cpp File Reference

AC.14 manageKeysForm.h File Reference

Classes

• class login::publicKeyTypeFrame

• class login::userSettingsForm

• class login::keyBankForm

Namespaces

• login

331

Part X

RemoteMain Executable

332

Appendix AD

Introduction

The RemoteMain executable runs a headless controller to demonstrate TrusNet’s functionality. As

an executable, RemoteMain also defines a testing battery. In addition, RemoteMain defines the

SpeedProfiling executable used to test performance within the TrusNet library.

AD.1 Namespace

RemoteMain does not define a namespace. Rather, RemoteMain essentially acts as a wrapper

around WifiRC’s RemoteController class.

333

Appendix AE

File Index

AE.1 File List

Here is a list of all files with brief descriptions:

RemoteMain.cpp

Entry point to headless application . 335

remoteMainTestInit.cpp

Test Initialization for RemoteMain . 335

speedProfiling.cpp

Entry point to speed profiling . 336

334

Appendix AF

File Documentation

AF.1 RemoteMain.cpp File Reference

Entry point to headless application.

AF.1.1 Detailed Description

Entry point to headless application.

Author

Jonathan Bedard

Date

5/11/2016

Bug None

Starts the TrustNet headless demonstration application. Randomly creates a user if one does not

already exist.

AF.2 remoteMainTestInit.cpp File Reference

Test Initialization for RemoteMain.

AF.2.1 Detailed Description

Test Initialization for RemoteMain.

335

Author

Jonathan Bedard

Date

4/26/2016

Bug No known bugs.

Binds library tests for Remote Main. Binds the osMechanics and CryptoGateway library tests.

AF.3 speedProfiling.cpp File Reference

Entry point to speed profiling.

AF.3.1 Detailed Description

Entry point to speed profiling.

Author

Jonathan Bedard

Date

4/27/2016

Bug None

Speed profiling function. This preforms basic speed tests on different platforms and records the

results.

336

Part XI

BaseForm Executable

337

Appendix AG

Introduction

This executable is designed to visualize the TrusNet library. It depends on a number of other libraries,

including TrusNet, CryptoLogin and glGraphics. This executable uses the graphics framework of

glGraphics to visualize the TrusNet library. As an executable, BaseForm also defines a testing battery.

AG.1 Namespace base

Establishes the base namespace, which is designed to be used for functions and classes unique

to the visualizing of the TrusNet library. Note that this particular namespace is not designed to be

extended outside of this project.

338

Appendix AH

File Index

AH.1 File List

Here is a list of all files with brief descriptions:

appEntry.cpp

Entry point to TrusNet demo . 341

baseFormTestInit.cpp . 341

fileDropDownForm.cpp

Implementation of file navigation form for TrusNet demo 341

fileDropDownForm.h

File navigation form for TrusNet demo . 342

IPAddressForm.cpp

Implementation for the IP-Address form . 343

IPAddressForm.h

IP Address form declaration . 343

networkMapForm.cpp

Implements the network-map form . 344

networkMapForm.h

Defines the network-map form . 345

nodeControlForm.cpp

Implementation of node control form assets . 345

339

nodeControlForm.h

Node control UI assets . 346

programTools.cpp

Implimentation of program tools . 346

programTools.h

Program tools header . 347

340

Appendix AI

File Documentation

AI.1 appEntry.cpp File Reference

Entry point to TrusNet demo.

AI.1.1 Detailed Description

Entry point to TrusNet demo.

Author

Jonathan Bedard

Date

4/16/2016

Bug None

Starts the TrustNet demonstration application. Uses the login form to intialize a user.

AI.2 baseFormTestInit.cpp File Reference

AI.3 fileDropDownForm.cpp File Reference

Implementation of file navigation form for TrusNet demo.

341

AI.3.1 Detailed Description

Implementation of file navigation form for TrusNet demo.

Author

Jonathan Bedard

Date

5/21/2016

Bug None

Implements the form structure which allows for intuitive navigation between forms within the ap-

plication.

AI.4 fileDropDownForm.h File Reference

File navigation form for TrusNet demo.

Classes

• class base::fileDropDownForm

File navigation form for TrusNet demo Declaration of the navigation form used by the TrusNet demo.

• struct base::connectionButton

Connection button Button with a reference to a connection allowing the opening of a new form.

• class base::sideUserList

Side user list Lists all users currently associated with a particular node.

Namespaces

• base

AI.4.1 Detailed Description

File navigation form for TrusNet demo.

342

Author

Jonathan Bedard

Date

5/21/2016

Bug None

Declares a form with a drop-down allowing for exiting, logging out and going back.

AI.5 IPAddressForm.cpp File Reference

Implementation for the IP-Address form.

AI.5.1 Detailed Description

Implementation for the IP-Address form.

Author

Jonathan Bedard

Date

5/21/2016

Bug None

Implements the IP address form. This form allows for insertion and management of IP addresses.

Consult IPAddressForm.h (p. 343) for details.

AI.6 IPAddressForm.h File Reference

IP Address form declaration.

Classes

• class base::IPAddressFrame

• class base::IPAddressForm

343

Namespaces

• base

AI.6.1 Detailed Description

IP Address form declaration.

Author

Jonathan Bedard

Date

5/21/2016

Bug None

The IP Address form visualizes the IPv4 and IPv6 addresses used by TrusNet to communicate

over the Internet protocol. Can add, remove and manage IP addresses.

AI.7 networkMapForm.cpp File Reference

Implements the network-map form.

AI.7.1 Detailed Description

Implements the network-map form.

Author

Jonathan Bedard

Date

5/21/2016

Bug None

Currently, the network-map form essentially just wraps the file drop-down form, declaring a unique

set of menu items at the top level.

344

AI.8 networkMapForm.h File Reference

Defines the network-map form.

Classes

• class base::networkMapForm

Namespaces

• base

AI.8.1 Detailed Description

Defines the network-map form.

Author

Jonathan Bedard

Date

5/21/2016

Bug None

The network-map form is designed to be the entry point to the BaseForm applicaiton after login

has occurred.

AI.9 nodeControlForm.cpp File Reference

Implementation of node control form assets.

AI.9.1 Detailed Description

Implementation of node control form assets.

Author

Jonathan Bedard

345

Date

5/8/2016

Bug None

The node control form allows direct control of node intrinsics.

AI.10 nodeControlForm.h File Reference

Node control UI assets.

Classes

• class base::nodeControlForm

Namespaces

• base

AI.10.1 Detailed Description

Node control UI assets.

Author

Jonathan Bedard

Date

5/8/2016

Bug None

UI elements meant to control intrinsics of a remote node.

AI.11 programTools.cpp File Reference

Implimentation of program tools.

346

AI.11.1 Detailed Description

Implimentation of program tools.

Author

Jonathan Bedard

Date

4/16/2016

Bug None

Program tools are basic functions used accross this demo application.

AI.12 programTools.h File Reference

Program tools header.

Namespaces

• tools

Functions

• void tools::setupLogging ()
Set-up logging functions.

AI.12.1 Detailed Description

Program tools header.

Author

Jonathan Bedard

Date

4/16/2016

Bug None

Function declarations of all program tools and headers of of all libraries used in this application.

347

	Santa Clara University
	Scholar Commons
	6-9-2016

	TrusNet: Peer-to-Peer Cryptographic Authentication
	Adrian Bedard
	Jonathan Bedard
	Recommended Citation

	Introduction
	Overview
	Current Solutions
	Peer-to-Peer
	Hierarchical

	Proposal

	Project Requirements
	TrusNet Library
	Functional Requirements
	Non-Functional Requirements

	Demonstration Application
	Functional Requirements
	Non-Functional Requirements

	Design Constraints

	Use Cases
	Normal API
	Set-Up
	Authentication
	Transmit
	Receive
	Shut-down
	Permission Shifting
	Rebuild-Key

	Hostile Interactions
	Eavesdropping
	Node Spoofing
	DOS Attack
	Permission Spamming

	Demonstration
	Normal Operation
	Ad-Hoc Demonstration
	Node Spoofing

	Conceptual Model
	Overview
	Connection Library
	Network Extension System
	Demonstration Project

	Component State Charts
	Authentication
	NULL State
	Disconnected
	Connected
	Secured
	Authenticated

	Permissions
	Desired and Functional Permissions
	Permission Levels

	System Sequence Diagram
	Connection Security and Authentication
	Key Generation
	Secure Connection
	Authenticate Connection

	Network Management
	Addressing
	Mesh Network

	Architectural Diagram
	Technologies Used
	Build
	Support
	Hardware
	Runtime
	Algorithms

	Design Rationale
	Build
	Support
	Hardware
	Runtime
	Algorithms

	Development Milestones
	Project Problems
	Software Problems
	Hardware Problems
	Team Problems
	Lessons Learned

	Ethical Analysis
	Overview
	Privacy verses Security
	TrusNet Capabilities
	Encryption
	Authentication

	History of Data-Protection
	World War II
	AES/DES
	RSA
	Clipper Chip
	International Laws

	Ethical Framing
	Utilitarianism
	IEEE
	Kantian Ethics
	Moral Relativism
	Catholic Social Teaching

	Conclusion

	Test Plan
	Unit Testing
	Informal Unit Testing
	Automated Unit Testing

	Cross-Platform Testing
	Security Testing
	End-to-End Testing
	User Testing

	Test Results
	Unit Testing Results
	Speed Testing Results
	Demonstration Testing Results

	User Manual
	Headless Application
	Unit Testing
	Edison Setup
	Network Setup
	Demonstration

	UI Application
	Getting Started
	Logging In
	IP Address Management
	Key Management
	Node Interaction

	Library Usage
	Required Tools
	Repositories
	IDE Support
	Building and Compiling

	Documentation
	Gant Charts
	Risk Tables
	Management Risks
	Design Risks
	Demonstration Risks
	Security Risks

	I Datastructures Library
	Introduction
	Unit Testing
	Namespace os

	File Index
	File List

	File Documentation
	Datastructures.h File Reference
	Detailed Description

	abstractSorting.h File Reference
	Detailed Description

	ads.h File Reference
	Detailed Description

	asyncAVL.h File Reference
	Detailed Description

	AVL.h File Reference
	Detailed Description

	eventDriver.h File Reference
	Detailed Description

	eventDriver.cpp File Reference
	Detailed Description

	list.h File Reference
	Detailed Description

	matrix.h File Reference
	Detailed Description
	Function Documentation

	osLogger.h File Reference
	Detailed Description

	osLogger.cpp File Reference
	Detailed Description

	osVectors.h File Reference
	Detailed Description

	set.h File Reference
	Detailed Description

	smartPointer.h File Reference
	Detailed Description
	Function Documentation

	staticConstantPrinter.h File Reference
	Detailed Description

	staticConstantPrinter.cpp File Reference
	Detailed Description

	II Unit Test Library
	Introduction
	Namespace test
	Datastructures Testing

	File Index
	File List

	File Documentation
	DatastructuresTest.h File Reference
	Detailed Description

	DatastructuresTest.cpp File Reference
	Detailed Description

	masterTestHolder.h File Reference
	Detailed Description

	masterTestHolder.cpp File Reference
	Detailed Description

	singleTest.h File Reference
	Detailed Description

	singleTest.cpp File Reference
	Detailed Description

	TestSuite.h File Reference
	Detailed Description

	TestSuite.cpp File Reference
	Detailed Description

	UnitTest.h File Reference
	Detailed Description

	UnitTest.cpp File Reference
	Detailed Description

	UnitTestLog.h File Reference
	UnitTestExceptions.h File Reference
	Detailed Description

	III osMechanics Library
	Introduction
	Namespace

	File Index
	File List

	File Documentation
	logger.cpp File Reference
	Detailed Description
	Function Documentation
	Variable Documentation

	logger.h File Reference
	Detailed Description

	multiLock.cpp File Reference
	Detailed Description

	multiLock.h File Reference
	Detailed Description

	osFunctions.cpp File Reference
	Detailed Description

	osFunctions.h File Reference
	Detailed Description

	osMechanics.h File Reference
	Detailed Description

	osMechanicsTest.cpp File Reference
	Detailed Description

	osMechanicsTest.h File Reference
	Detailed Description

	osThreads.cpp File Reference
	Detailed Description
	Function Documentation
	Variable Documentation

	osThreads.h File Reference
	Detailed Description

	safeQueue.h File Reference
	Detailed Description

	savableClass.cpp File Reference
	Detailed Description

	savableClass.h File Reference
	Detailed Description

	Serial.h File Reference
	Detailed Description

	serialThread.cpp File Reference
	Detailed Description
	Function Documentation

	serialThread.h File Reference
	Detailed Description

	socketFrame.cpp File Reference
	Detailed Description
	Function Documentation
	Variable Documentation

	socketFrame.h File Reference
	Detailed Description

	spinLock.cpp File Reference
	Detailed Description

	spinLock.h File Reference
	Detailed Description

	threadDistribution.cpp File Reference
	Detailed Description
	Function Documentation

	threadDistribution.h File Reference
	Detailed Description

	unix_osFunctions.cpp File Reference
	Detailed Description
	Function Documentation
	Variable Documentation

	unix_osFunctions.h File Reference
	Detailed Description
	Variable Documentation

	unix_Serial.h File Reference
	Detailed Description

	unix_spinLock.cpp File Reference
	Detailed Description

	unix_spinLock.h File Reference
	Detailed Description

	USBAccess.cpp File Reference
	Detailed Description

	USBAccess.h File Reference
	Detailed Description

	win_osFunctions.cpp File Reference
	Detailed Description

	win_osFunctions.h File Reference
	Detailed Description

	win_Serial.h File Reference
	Detailed Description

	win_spinLock.cpp File Reference
	Detailed Description

	win_spinLock.h File Reference
	Detailed Description

	XMLParser.cpp File Reference
	Detailed Description

	XMLParser.h File Reference
	Detailed Description

	XMLTest.cpp File Reference
	Detailed Description

	XMLTest.h File Reference
	Detailed Description

	IV CryptoGateway Library
	Introduction
	Namespace

	File Index
	File List

	File Documentation
	binaryEncryption.cpp File Reference
	Detailed Description

	binaryEncryption.h File Reference
	Detailed Description

	c_BaseTen.c File Reference
	Detailed Description

	c_BaseTen.h File Reference
	Detailed Description
	Function Documentation

	c_cryptoTesting.cpp File Reference
	Detailed Description

	c_cryptoTesting.h File Reference
	Detailed Description

	c_numberDefinitions.c File Reference
	Detailed Description

	c_numberDefinitions.h File Reference
	Detailed Description
	Typedef Documentation
	Function Documentation

	cryptoCConstants.h File Reference
	Detailed Description
	Variable Documentation

	cryptoCHeaders.h File Reference
	Detailed Description

	cryptoConstants.cpp File Reference
	Detailed Description

	cryptoConstants.h File Reference
	Detailed Description

	cryptoCSource.cpp File Reference
	Detailed Description

	cryptoError.cpp File Reference
	Detailed Description

	cryptoError.h File Reference
	Detailed Description

	cryptoFileTest.cpp File Reference
	Detailed Description

	cryptoFileTest.h File Reference
	Detailed Description

	CryptoGateway.h File Reference
	Detailed Description

	cryptoHash.cpp File Reference
	Detailed Description

	cryptoHash.h File Reference
	Detailed Description

	cryptoLogging.cpp File Reference
	Detailed Description

	cryptoLogging.h File Reference
	Detailed Description

	cryptoNumber.cpp File Reference
	Detailed Description

	cryptoNumber.h File Reference
	Detailed Description

	cryptoNumberTest.cpp File Reference
	Detailed Description

	cryptoPublicKey.cpp File Reference
	Detailed Description

	cryptoPublicKey.h File Reference
	Detailed Description

	cryptoTest.cpp File Reference
	Detailed Description

	cryptoTest.h File Reference
	Detailed Description

	gateway.cpp File Reference
	Detailed Description

	gateway.h File Reference
	Detailed Description

	gatewayTest.cpp File Reference
	Detailed Description

	gatewayTest.h File Reference
	Detailed Description

	hashTest.cpp File Reference
	Detailed Description

	hashTest.h File Reference
	Detailed Description

	hexConversion.cpp File Reference
	Detailed Description

	hexConversion.h File Reference
	Detailed Description

	keyBank.cpp File Reference
	Detailed Description

	keyBank.h File Reference
	Detailed Description

	message.cpp File Reference
	Detailed Description

	message.h File Reference
	Detailed Description

	publicKeyPackage.cpp File Reference
	Detailed Description

	publicKeyPackage.h File Reference
	Detailed Description

	publicKeyTest.h File Reference
	Detailed Description

	RC4_Hash.cpp File Reference
	RC4_Hash.h File Reference
	staticTestKeys.cpp File Reference
	Detailed Description

	staticTestKeys.h File Reference
	Detailed Description

	streamCipher.cpp File Reference
	streamCipher.h File Reference
	Variable Documentation

	streamPackage.cpp File Reference
	Detailed Description

	streamPackage.h File Reference
	Detailed Description

	streamTest.cpp File Reference
	Detailed Description

	streamTest.h File Reference
	Detailed Description

	testKeyGeneration.cpp File Reference
	testKeyGeneration.h File Reference
	Detailed Description

	user.cpp File Reference
	Detailed Description

	user.h File Reference
	Detailed Description

	XMLEncryption.cpp File Reference
	Detailed Description

	XMLEncryption.h File Reference
	Detailed Description

	V TrusNet Library
	Introduction
	Namespace

	File Index
	File List

	File Documentation
	Connection.cpp File Reference
	Detailed Description

	Connection.h File Reference
	Detailed Description

	LocalIPManager.cpp File Reference
	Detailed Description

	LocalIPManager.h File Reference
	Detailed Description
	Variable Documentation

	MessageTypes.cpp File Reference
	Detailed Description

	MessageTypes.h File Reference
	Detailed Description

	NetworkManager.cpp File Reference
	Detailed Description

	NetworkManager.h File Reference
	Detailed Description

	NetworkMaster.cpp File Reference
	Detailed Description

	NetworkMaster.h File Reference
	Detailed Description

	TrusNet.h File Reference
	Detailed Description

	TrusNetComplete.h File Reference
	TrusNetFunctions.cpp File Reference
	Detailed Description

	TrusNetFunctions.h File Reference
	Detailed Description

	trusNetPacket.cpp File Reference
	Detailed Description

	trusNetPacket.h File Reference
	Detailed Description

	trusPermissions.cpp File Reference
	Detailed Description

	trusPermissions.h File Reference
	Detailed Description

	VI EdisonHAL Library
	Introduction
	Unit Testing
	Namespace edison

	File Index
	File List

	File Documentation
	EdisonHal.h File Reference
	Detailed Description

	EdisonHalLogging.cpp File Reference
	EdisonHalTest.cpp File Reference
	Variable Documentation

	EdisonHalTest.h File Reference
	hardwareEntry.cpp File Reference
	Function Documentation

	helloWorldMraa.cpp File Reference
	Function Documentation

	helloWorldMraa.h File Reference
	Function Documentation

	motorController.cpp File Reference
	Function Documentation
	Variable Documentation

	motorController.h File Reference

	VII WifiRC Library
	Introduction
	Namespace wrc

	File Index
	File List

	File Documentation
	BaseController.cpp File Reference
	Detailed Description

	Controller.cpp File Reference
	Detailed Description

	Controller.h File Reference
	Detailed Description

	controllerMessageType.cpp File Reference
	Detailed Description

	controllerMessageType.h File Reference
	Detailed Description

	Converter.h File Reference
	Detailed Description

	GenControls.cpp File Reference
	Detailed Description

	RCControls.cpp File Reference
	Detailed Description

	RemoteController.cpp File Reference
	Detailed Description

	siblingStruct.cpp File Reference
	Detailed Description

	siblingStruct.h File Reference
	Detailed Description

	WifiRC.h File Reference
	Detailed Description

	WifiRCComplete.h File Reference
	wifiRCLogging.cpp File Reference
	Detailed Description

	wifiRCLogging.h File Reference
	Detailed Description

	VIII glGraphics Library
	Introduction
	Unit Testing
	Namespace

	File Index
	File List

	File Documentation
	freeglut.h File Reference
	Detailed Description

	freeglut_ext.h File Reference
	Detailed Description

	freeglut_std.h File Reference
	Detailed Description

	glCheckbox.cpp File Reference
	Detailed Description

	glCheckbox.h File Reference
	Detailed Description

	glColors.cpp File Reference
	Detailed Description

	glColors.h File Reference
	Detailed Description

	glContainers.cpp File Reference
	Detailed Description

	glContainers.h File Reference
	Detailed Description

	glForm.cpp File Reference
	Detailed Description

	glForm.h File Reference
	Detailed Description

	glFrame.cpp File Reference
	Detailed Description

	glFrame.h File Reference
	Detailed Description

	glInput.cpp File Reference
	Detailed Description

	glInput.h File Reference
	Detailed Description

	glLabel.cpp File Reference
	Detailed Description

	glLabel.h File Reference
	Detailed Description

	glLibrary.h File Reference
	Detailed Description

	glLogging.cpp File Reference
	Detailed Description

	glLogging.h File Reference
	Detailed Description

	glOSFunctions.cpp File Reference
	Detailed Description

	glOSFunctions.h File Reference
	Detailed Description

	glPopUp.cpp File Reference
	Detailed Description

	glPopUp.h File Reference
	Detailed Description

	glTest.cpp File Reference
	Detailed Description

	glTest.h File Reference
	Detailed Description

	glTestingFrame.cpp File Reference
	Detailed Description

	glTestingFrame.h File Reference
	Detailed Description

	glTextbox.cpp File Reference
	Detailed Description

	glTextbox.h File Reference
	Detailed Description

	glut.h File Reference
	Detailed Description

	glut_w.h File Reference
	image_DXT.cpp File Reference
	Detailed Description

	image_DXT.h File Reference
	Detailed Description

	image_helper.cpp File Reference
	Detailed Description

	image_helper.h File Reference
	Detailed Description

	osGraphics.h File Reference
	Detailed Description

	SOIL.cpp File Reference
	Detailed Description

	SOIL.h File Reference
	Detailed Description

	stb_image_aug.cpp File Reference
	Detailed Description

	stb_image_aug.h File Reference
	Detailed Description

	stbi_DDS_aug.h File Reference
	Detailed Description

	stbi_DDS_aug_c.h File Reference
	textureManager.cpp File Reference
	Detailed Description

	textureManager.h File Reference
	Detailed Description

	unix_glOSFunctions.cpp File Reference
	Detailed Description

	unix_glOSFunctions.h File Reference
	Detailed Description

	unix_osGraphics.h File Reference
	Detailed Description
	Function Documentation

	win_freeglut.h File Reference
	Detailed Description

	win_freeglut_ext.h File Reference
	Detailed Description

	win_freeglut_std.h File Reference
	Detailed Description

	win_glOSFunctions.cpp File Reference
	Detailed Description

	win_glOSFunctions.h File Reference
	Detailed Description

	win_osGraphics.h File Reference
	Detailed Description

	IX CryptoLogin Library
	Introduction
	Unit Testing
	Namespace login

	File Index
	File List

	File Documentation
	createUserForm.cpp File Reference
	Detailed Description

	createUserForm.h File Reference
	cryptoLogin.h File Reference
	Detailed Description

	cryptoLoginLog.h File Reference
	Detailed Description

	keyGenerationPopUp.cpp File Reference
	Detailed Description

	keyGenerationPopUp.h File Reference
	Detailed Description

	listUsersForm.cpp File Reference
	listUsersForm.h File Reference
	loginMain.cpp File Reference
	Detailed Description

	loginMain.h File Reference
	Detailed Description

	loginMetaData.cpp File Reference
	loginMetaData.h File Reference
	Detailed Description

	manageKeysForm.cpp File Reference
	manageKeysForm.h File Reference

	X RemoteMain Executable
	Introduction
	Namespace

	File Index
	File List

	File Documentation
	RemoteMain.cpp File Reference
	Detailed Description

	remoteMainTestInit.cpp File Reference
	Detailed Description

	speedProfiling.cpp File Reference
	Detailed Description

	XI BaseForm Executable
	Introduction
	Namespace base

	File Index
	File List

	File Documentation
	appEntry.cpp File Reference
	Detailed Description

	baseFormTestInit.cpp File Reference
	fileDropDownForm.cpp File Reference
	Detailed Description

	fileDropDownForm.h File Reference
	Detailed Description

	IPAddressForm.cpp File Reference
	Detailed Description

	IPAddressForm.h File Reference
	Detailed Description

	networkMapForm.cpp File Reference
	Detailed Description

	networkMapForm.h File Reference
	Detailed Description

	nodeControlForm.cpp File Reference
	Detailed Description

	nodeControlForm.h File Reference
	Detailed Description

	programTools.cpp File Reference
	Detailed Description

	programTools.h File Reference
	Detailed Description

