
Santa Clara University
Scholar Commons

Computer Engineering Senior Theses Engineering Senior Theses

6-2-2016

Planly
Alberto Diaz-Tostado
Santa Clara University

Amy Nguyen Tran
Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_senior

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Computer Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Diaz-Tostado, Alberto and Tran, Amy Nguyen, "Planly" (2016). Computer Engineering Senior Theses. 65.
https://scholarcommons.scu.edu/cseng_senior/65

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior/65?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Planly

by

Alberto Diaz-Tostado
Amy Nguyen Tran

Submitted in partial fulfillment of the requirements
for the degrees of

Bachelor of Science in Computer Science and Engineering
Bachelor of Science in Web Design and Engineering

School of Engineering
Santa Clara University

Santa Clara, California
June 2, 2016

Planly

Alberto Diaz-Tostado
Amy Nguyen Tran

Department of Computer Engineering
Santa Clara University

June 2, 2016

ABSTRACT

Individuals currently live in a society that revolves around productivity. People from managers to students
are bombarded with numerous tasks and daunting deadlines, making it extremely difficult to stay organized.
In addition, these individuals also have multiple commitments in their lives, adding to the stress of keeping
up with their already busy schedules. Currently, people are faced with a variety of organization methods.
However, the two tools most people resort to, e-mail and notepad, have become more burdensome than
helpful as the organization challenges have increased. In addition, current project management solutions are
targeted towards large enterprises and not accessible for the general public. In response, we developed a
simple and user-friendly web-based solution accessible to all. With the creation of a collaborative project
management application, we enable users to host a collaborative environment by providing them with a web-
based interface where they can easily communicate with their team members, find an organized list of their
tasks and keep track of their project progress.

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Current Solutions . 1
1.3 Literature Review . 2
1.4 Proposed Solution . 3
1.5 Requirements . 3

1.5.1 Functional Requirements . 3
1.5.2 Non-functional Requirements . 5
1.5.3 Design Constraints . 5

2 Design 6
2.1 Conceptual Models . 6

2.1.1 Entity Relationship Diagram . 6
2.1.2 Activity Diagrams . 7
2.1.3 Mockups . 9

2.2 Use Cases . 10
2.3 Architectural Design . 14
2.4 Technologies Used . 14
2.5 Design Rationale . 15

2.5.1 Technology Rationale . 15
2.5.2 Aesthetics Rationale . 16

3 Project Management 19
3.1 Test Plan . 19
3.2 Project Risks . 19
3.3 Development Timeline . 21
3.4 Societal Issues . 24

3.4.1 Ethical Justification for Our Project . 24
3.4.2 Team and Organizational Ethics . 24
3.4.3 Product Development . 24
3.4.4 Social and Cultural Issues . 25
3.4.5 Political Issues . 25
3.4.6 Economic Issues . 26
3.4.7 Health and Safety Issues . 26
3.4.8 Manufacturability Issues . 26
3.4.9 Sustainability Issues . 26
3.4.10 Environmental Issues . 26
3.4.11 Usability Issues . 26
3.4.12 Lifelong Learning . 26

iv

List of Figures

2.1 Entity Relationship Diagram . 6
2.2 Activity Diagram: Creating a project. 7
2.3 Activity Diagram: Creating a team. 8
2.4 Activity Diagram: Assigning tasks. 9
2.5 A mockup of our system concept. 9
2.6 Use Case Diagram . 10
2.7 Diagram describing the technology stack for our application. 14
2.8 The interface for Microsoft Project . 17

3.1 The Fall quarter development timeline . 21
3.2 The Winter quarter development timeline . 22
3.3 The Spring quarter development timeline . 23

v

List of Tables

1.1 Literature Review: Foundations . 2
1.2 Literature Review: Previous Web Applications . 2
1.3 The resulting ranking from requirements analysis by AHP 4

2.4 A quick analysis of Microsoft project. 17

3.1 Risk analysis table . 20
3.2 ACM Code of Ethics vs Our Team . 25

vi

Chapter 1

Introduction

1.1 Motivation

Individuals currently live in a society that revolves around productivity. People from managers to students

are bombarded with numerous tasks and daunting deadlines, making it extremely difficult to stay organized.

In addition, these individuals have multiple commitments in their lives, adding to the stress of keeping up

with their already busy schedules. Currently, individuals are faced with a variety of organization methods.

However, the two tools most people resort to are e-mail and notepads. Without a doubt, people are often

drawn to the simplicity of typing out a quick note or sending an e-mail. However, it becomes extremely

difficult to keep track of all these notes and e-mails. Before you know it, lines of communication become

broken and trains of thought are lost forever. Older conventions are becoming outdated as e-mail searches

often yield innumerable results, and text files are never where they need to be. Team members in general, and

college students in particular, need a way arrange their tasks and ensure that every member is on track.

1.2 Current Solutions

Previous solutions have failed to provide an accessible and simple project management tool. The issues with

current solutions are:

1. Most workflow management solutions, such as Asana and Basecamp, are often marketed and catered

to large enterprises rather students and small groups.

2. Current solutions are exceedingly expensive, thus community organizations and students tend to avoid

these applications.

3. Current solutions have a steep learning curves that often require additional training.

4. Present solutions, such as Pivotal Tracker and Microsoft Outlook, have poor user interface design and

are not straightforward, thus making it difficult to setup a meeting or look up a contact.

1

5. Present solutions, such as to-do applications, are too constrained since the application’s main focus is

on individual use.

6. Present project management applications are visually unappealing and not user-friendly. Most appli-

cations follow the conventional three panel layout, as seen in Outlook, pushing your tasks into some

sidebar crevice where they can easily be overlooked. These applications are not designed for students

or small groups with minimal project management experience.

1.3 Literature Review

In order to build a new system, we needed to review previous solutions and research in order to gain a strong

foundation of project management and web applications. The sources we discovered have not only given

our team a foundation in project management, the sources further contributed to our understandings of the

Web. Through researching previous projects, we have taken to consideration all of the past projects and will

carefully implement the best qualities into our design. Below, in Table 1.1, is a summary of the relevant

literatures and their contribution to our project.

Table 1.1: Literature Review: Foundations
Source Summary Relevance to Our Project
“Project management assets and
project management performance:
Preliminary findings”
Jugdev, K.; Mathur, G.; Tak Fung(1)

Provided a background of how man-
agers use management techniques to
aid them as well as which techniques
are most effective.

The source helped us pinpoint which
features of project management are
most helpful for individuals.

“The Effect Of Project Based Web
2.0-Learning On Students’ Out-
come”
Mohamed, Bahaaeldin, and Thomas
Koehler(2)

Offered important insights to how
users perform using web-based ap-
plications.

Inspired us to use the results from the
study in designing to UI/UX our web
applications

Table 1.2: Literature Review: Previous Web Applications
Source Summary Relevance to Our Project
“Web based project collaboration,
monitoring and management sys-
tem”
Seneviratna, G.A.D.P.S.; Nan-
dasara, S.T.(3)

Authors built a system that helps
facilitate project managements and
increases organizations between
teams.

From this research, the authors in-
cluded features that we would like to
implement in our system.
The features are: document manage-
ment and a feature for team collabo-
ration (i.e. chat feature)

“Web Application For Project Man-
agement Based On Open Source So-
lutions”
Wojtera, M.; Sakowicz, B.(?)

The authors built a project manage-
ment web application using open
source solutions.

The authors uses JSP library to build
their system, while my team is us-
ing Ember.js, which is a JavaScript
framework.

“Web-based project management
system”
Galezowski, G.; Zabierowski, W.;
Napieralski, A.(?)

The authors researched different
project management tools and eval-
uated the problems with existing so-
lutions

My team will keep the criticisms of
current systems in mind as we design
our project.

2

1.4 Proposed Solution

We design a simple, yet powerful, web-based solution that lives entirely within a browser. The goal was to

have an easily accessible place for not only small groups of students or professionals to host a collaborative

environment, but, we also want individuals to use our system for personal projects. To achieve our goal:

1. Accessibility was achieved through a simple sign-on system without the hassle of painful payment

systems and complex learning curves.

2. After signing in, the user is able to begin collaborating by creating a project and creating multiple teams

for the project.

3. After the project and teams are created, the user has the ability to add deadlines as well as assign tasks

for him/herself or for others. The users can also assign subtasks that pertain to a certain task. All tasks

can be viewed by all members of the project.

4. Users can also comment on tasks.

5. The application includes a progress bar showing the current progress of the project.

Once our product was completed, we performed a usability study, where we asked participants to compelete

a series of tasks and provide us with feedback after finishing each task. In addition, we had an exit survey

where we further asked for the participants’ feedback and opinons.

1.5 Requirements

We defined a set of functional and nonfunctional requirements for our web application. Functional require-

ments specifies criteria that can be used to judge the operations of a system. In other words, functional

requirements define what must be done by the system. Nonfunctional requirements describe the behavior and

the limits of the application.

1.5.1 Functional Requirements

1. Critical

To prioritize our requirements, we created an Analytic Hierarchy Process (AHP) chart seen in Table

1.3. By using AHP, we were able to easily prioritize our requirements.

3

Critical Recommended Suggested
Requirement A B C D E F G H I

Rank 14.34 13.36 12.78 12.01 8.72 6.24 5.80 5.52 5.19

Table 1.3: The resulting ranking from requirements analysis by AHP

From our AHP table, we recognized our critical requirements. Our critical requirements define the

functionalities needed to have a basic working product.

The critical requirements speak to the purpose of our project, which is providing an accessible tool for

individuals to create projects, collaborate with team members, and manage their tasks.

The critical requirements for our web application are summarized below.

A. The system allows users to create teams and assign members to those teams.

B. The system allows users to assign tasks to team members.

C. The system allows users to define project goals and requirements.

2. Recommended

The recommended requirements describe additional functionality that we would want to have in our

project. Our recommended requirements outline animations and personal integrations that would en-

hance our project but are not needed for a basic working system.

D. The system has a logical flow between tasks based on the dependencies between tasks, calendars,

and time progression.

E. The system provides a way for users to view all tasks related to the project.

F. The system allows teams to create milestones within their project timeline.

3. Suggested

The suggested requirements explain the functionality that we would like to have but are a last priority

in our project.

G. The system has a progress bar that will dynamically change as the project progresses.

H. The system has a personal calendar integration, so members not only can see the availability of

other members, but also plan their schedules accordingly.

I. The system allows the user to create his/her own private set of tasks, schedules, etc.

4

1.5.2 Non-functional Requirements

In addition to functional requirements, we have outlined non-functional requirements, summarized below.

Because we want to appeal to a variety of audiences, we designed our application to be effortless and user-

friendly. We want our users to engage in a collaborative and interactive environment. Because we want our

application to be accessible, we designed our project to work on major web browsers as well as be compatible

with desktops, laptops and tablets.

The system will be:

• user-friendly

• aesthetically pleasing

• easy to use

• collaborative

• accessible on major web browsers

• compatible with desktops, laptops, and tablets

1.5.3 Design Constraints

With regards to design constraints, we have identified one constraint. Our application must be a web-based

application because of senior design requirements for the Web Design and Engineering major. However, we

believe that a web-based system allows our application to be easily accessible for our users.

• The system must be a web-based system.

5

Chapter 2

Design

2.1 Conceptual Models

In this section, we discuss how some of the main components and processes of our system will function and

behave. These models will lay the foundation for the initial development of our system. We included three

models to clearly illustrate our vision for the system; an entity relationship diagram, activity diagrams, and a

mock-up of our primary application view.

2.1.1 Entity Relationship Diagram

An entity relationship diagram describes the types of connections between the main components of the sys-

tem. Figure 2.1 shows us the five primary pieces that makeup our application; projects, teams, team members,

a team leader, and project tasks.

Leader

Projects Teams

Tasks Members

1 1..*composed of

1 1..*complete

1

1..*

list

1

1..*

have

1

1..*

makes

1

1..*

guides

Figure 2.1: Entity Relationship Diagram

A project and a team can only have one leader. A project can have many teams, which are composed of

many members. Lastly, members can have many tasks. A team leader effectively makes the projects. He or

6

she is the person who initially uses the application to enter all the details of the project, including tasks and

deadlines. The team leader also invites other members to the application and starts to assign them tasks and

even add to them to a team with its own set of subtasks.

2.1.2 Activity Diagrams

An activity diagram is a flowchart of a user's actions to accomplish a goal. Our first figure, figure 2.2, depicts

the actions necessary to create a project.

Name Project

Define project goal Define project deadline

Add people to the project

add members

done

Figure 2.2: Activity Diagram: Creating a project.

Assuming that the user has signed in, the user must name her project, and also define the project's goal and

deadline. Next she will have the option to add team members to the project. (This process will be explained

in Figure 2.3). If she declines to add members, the project creation process is completed.

The next activity diagram, figure 2.3, describes team creation.

7

Enter team description

Enter member contact

Add member to team Send email invite

Assign project lead role

Submit Team

add members

contact found

contact not found

not done

Figure 2.3: Activity Diagram: Creating a team.

If the user wishes to add team members of his project, he must first add a team description. Next, he/she

will add a team member by entering his/her e-mail. If the member has an account in our application, he/she

will be successfully added to the team. If he/she is not a member, our system will send him/her an e-mail

invitation. The user will then have the option to continue adding team members. Lastly, the project creator

will assign a project lead role to either him/herself or another member. Once the project lead role is assigned,

he/she has completed the team creation process.

The next activity diagram, figure 2.4, depicts the assignment of tasks process. The user will select a task

and proceed to assign the task to team member(s). After this step, the process is complete.

8

Select task

Select members to assign

Save task

Figure 2.4: Activity Diagram: Assigning tasks.

2.1.3 Mockups

Our final model, the mock-up, represented in Figure 2.5, gives us a rough overview of the layout for the

application.

Figure 2.5: A mockup of our system concept.

The nav bar and left side bar are minimalistic, having only as many features as necessary to accomplish

any logistics such as account management and login buttons. The main feature, a blank canvas, will provide

users with any interactivity related to the current projects they are viewing, including tasks, timelines, and

upcoming deadlines.

9

2.2 Use Cases

A use case defines the steps required to accomplish a specific goal. The following use cases describe how the

user interacts with the system to achieve these goals, including preconditions, postconditions, steps required,

and common errors that might occur. The use case diagram, Figure 2.6, helps to illustrate the user's major

actions in our application: creating a project, adding team members, and creating and assigning tasks.

User

Add
Team Members

Create Project

Create &
Assign Tasks

Figure 2.6: Use Case Diagram

10

Use Case 1 Create Project

Goal: Initialize project objectives, tasks, and deadlines

Actor: User

Preconditions: Account is set up and logged in

Postconditions: Project is initialized

Steps:
1. Name the project

2. Define project goals and deadlines

3. Add people to the project

4. Save the project

Exceptions:
A. Project with the same name already exists

1. System shows failure message

2. User must rename his project

11

Use Case 2 Add team members

Goal: Associate people with the project

Actor: User

Preconditions: Logged in, project created, members added

Postconditions: Project has people assigned

Steps:
1. Enter team description

2. Enter member contact

3. If found, add member to team, if not found send e-mail invite

4. Once, all members are added, choose a leader

5. Submit

Exceptions:
A. Project does not exist:

1. System shows failure message

2. User taken to project creation phase

B. Project does not have members:

1. System shows failure message

2. User prompted to add members

12

Use Case 1 Assign tasks

Goal: Assign tasks to individual members or teams

Actor: User

Preconditions: Logged in, project created, tasks created

Postconditions: Tasks assigned

Steps:
1. Select a task

2. Select members who will be assigned the task

3. Save the task

Exceptions:
A. Project does not exist:

1. System shows failure message

2. User taken to project creation phase

B. Project does not have tasks:

1. System shows failure message

2. User prompted to add tasks

13

2.3 Architectural Design

Figure 2.7 shows a highlevel overview of the technologies that make up our application.

Figure 2.7: Diagram describing the technology stack for our application.

The backend of our application is provided by Firebase, a cloud base Backend-as-a-service, which handles

our realtime database. The front-end is built using Ember.js, a JavaScript framework based on the Model-

View-ViewModel architecture. The two are coupled together through the built-in data adapter, appropriately

named EmberFire, which translates the JSON objects provided by Firebase into models compatible with

Ember.js. Ember.js uses the ViewModel layer to manage the users interactions with the View and provide the

View with the appropriate information from the Model.

2.4 Technologies Used

More detailed information about these technologies and why and how we used them is presented in the

following section.

HTML5

The latest version of the standard web markup language

JavaScript

A high-level, untyped, and interpreted programming language supported by all modern web browser

CSS3

A stylesheet language used to describe the presentation of HTML documents

Ember.js

A front-end javascript framework based on the model-view-controller (MVC) model and applies pro-

gramming conventions to build scalable applications

14

Ember-CLI

A command line utility that provides a fast asset pipeline. An asset pipeline allows us to precompile,

concatenate and minify assets into one central path.(4)

Firebase

A backend-as-a-service that provides client-side APIs, and services such as databases, web hosting, and

authentication.

2.5 Design Rationale

In this section, we describe why we chose these technologies and the advantages and disadvantages associated

with each of those technologies.

2.5.1 Technology Rationale

1. HTML5/CSS3/JS

This trio of web technologies has become the standard for web development

(a) Advantages

i. Well documented and supported in the development community

ii. Gives the developer control over the look and feel of the application

iii. Compatible with nearly any web browser

(b) Disadvantages

i. Without a framework or library it has little functionality

ii. Requires a lot of time and effort to create a complete and robust application

iii. Some browser interpret certain elements differently

2. Ember.js

We chose a framework because it expedites the development process. Ember.js boasts taking its devel-

opers 80% of the way through development with the use of best idioms and proper practices. It is used

by companies such as Yahoo, Groupon, and Square(5).

(a) Advantages

i. Faster development start time

ii. Allows the developer to create reusable components through the use Handlebars templates

15

iii. The built in router allows developers to create multi page applications by navigating the

user through states rather than physical webpages, reducing the need to keep track of these

different states since the page never physically reloads.

(b) Disadvantages

i. The framework is based around conventions, limiting developers freedom for a majority of

the development process.

ii. If the developers do stray from convention, they could find themselves having a difficult time

reaching completion.

3. Firebase

We chose this backend service due to the fact that it provides a client-side API for Ember.js called

EmberFire.

(a) Advantages

i. Using a client-side API eliminates the need for a backend language and allow us to focus on

a single language for all of our development.

ii. Firebase also provides hosting and database services for free!

(b) Disadvantages

i. Support is outsourced, we do not have direct access to our server and are at the mercy of

whatever functionality is provided by the API

ii. A free firebase account does not provide provide private backups of our data, increasing the

probability of data loss

2.5.2 Aesthetics Rationale

1. Existing Product Aesthetics

a. Social Media Aesthetics Social media attracts users from a wide variety of backgrounds.

Good social media encompasses design that is usable by literally anyone around the world.

Thus, we want to make our design use components of social media because our audience

will generally be familiar with this layout.(6)

b. Competitor Aesthetics In addition, we explored a competitor's application: Microsoft Project(7).

16

Figure 2.8: The interface for Microsoft Project

The Good The Bad The Ugly

- Familiar images
- Color coordination
- Feature placement

- Information overload
- Cluttered workspace
- Unnecessary features

- Restrained within a ‘win-
dow’

- Nearly 20 year old design!

Table 2.4: A quick analysis of Microsoft project.

While Microsoft's project management tool has some good design ideas highlighted in the

social media section, it generally gives the user more than he or she needs at a given time.

The workspace looks crowded and at time messy, in no way representing any form of orga-

nization. To cap it all off, while graphics have improved over the years, the actual design of

the product remains exactly the same.

2. Our Aesthetics

We want our application to have low learning curve and to achieve this, we made our product

user-friendly. In order to achieve the desired usability, our system will have to meet specific

criteria:

i. The design of the individual components afford their features, i.e. hamburger-buttons serve

as an interface to a menu and text areas serve as a canvas for writing. Familiar icons increase

usability since most audiences understand the significance of these icons.

17

ii. The system aims to experience minimal latency from user input to interface response. Our

application needs to be as immersive as possible. Any technical glitch will detract from the

user's experience.

iii. The system's design follows conventional web application layouts. Proper placement of

features was the difference between leaving users confused and onboarding new users so

quickly that they begin planning activities in a matter of minutes.

18

Chapter 3

Project Management

3.1 Test Plan

We divided our test plan into two categories: white box and black box testing. We constantly conducted white

box testing throughout project development. Because we had knowledge of our code, we verified our system

through unit testing to ensure that components behaved correctly. Unit testing involved the login and logout

process and project creation process. We tested the application's logical flow of tasks based on dependencies

between tasks, calendars, and time progression by analyzing our logical path models as well as performing

unit testing. In addition, we conducted black box testing by playing the role of a user and interacting with the

system. Furthermore, we engaged in weekly inspections and reviews to examine the software artifacts for the

purpose of finding errors.

To test usability, functionality and aesthetics, we conducted acceptance testing through a series of alpha

and beta tests. For alpha testing, we observed users testing the account and project creation process. We had

the list of activities that we asked the user to perform and then recorded the user's feedback. In addition, we

conducted beta testing by asking users to use our application for managing their own small projects. After

they complete their projects, they answered survey questions in regards to functionality and user experience.

3.2 Project Risks

Risks threatened the success of our project. Issues are prone to happen during project development, thus we

needed to be prepared when facing adversity. By conducting a risk analysis(8), we identified all possible risks

and the impact on our application as a whole. As shown in table 3.1, we listed each risk and its consequence.

Next, we rated the probability from a scale of zero to one. In addition, we rated the severity of the risk from

a scale of zero to ten. We then multiplied the probability and severity to determine the risk's impact to our

project. After calculating the impact of each risk, we provided two mitigation strategies: one strategy to

reduce the probability and another strategy to reduce the severity of the risk.

19

Table 3.1: Risk analysis table
Risk Consequence Probability Severity Impact Mitigation Strategies
Bugs Delays in development

timeline, resulting in
failure to meet critical
deadlines

1 7 7 Conduct peer code review sessions
and use best coding practices to ef-
ficiently read and debug code.
Ensure our code has low coupling.

Missed
deadlines

Delay project, increas-
ing the risk for project
failure.

0.4 10 4 Set team deadlines in advance of
actual deadlines in order to have a
buffer period. Build the basic foun-
dation for a working system and
later conduct multiple releases to
add functionality.

Data loss Must rebuild code re-
sulting in wasted time

0.01 10 1 Backup project to GitHub. Have
multiple backups in different loca-
tions such as our own personal de-
vices and on GitHub.

Team
Dynamics

Fracture cohesiveness,
resulting in poor team-
work. Wasted time to
settle dispute.

0.3 5 1.5 Open communication with all group
members. Conduct weekly meet-
ings to ensure all members are co-
hesive.Conduct Gantt chart and as-
sign responsibilities in beginning
stages of the project, so if there is
a dispute, each member is still ac-
countable for his/her deliverables.

Technology
Issues

The technology used in
the project do not pro-
vide the functionality
that we hoped it would
do.

0.5 7 3.5 Conduct extensive research about
each technology we will use in our
project to guarantee that the tech-
nology is right for our project pur-
poses. Research other technologies
that may provide as an alternative to
our chosen technology.

User Issues User dissatisfied. Must
redo aspects of our
project. Can lead to de-
lays to project timeline

0.5 8 4 Conduct user studies ensure that we
are following the requirements and
building the right system for the
user. Conduct user test throughout
our project development, thus we
can fix user issues instantly rather
than allowing issues to accumulate
at the end.

Scope
Creep

Too many features, re-
sulting in project re-
lease delays.

0.75 7 5.25 Prioritize requirements in order to
focus on developing the most crit-
ical features of the project. Build
the foundation of our project to en-
sure that we always have a working
product. By adding functionality in
later releases, we will have a prod-
uct that is able to be released at any
given moment.

20

3.3 Development Timeline

In order to manage our time efficiently, we developed a Gantt chart. A Gantt chart displays the amount

of work done or production that is completed in certain periods of time in relation to the amount planned

for in such periods. Organization is crucial to the success of this project, thus we assigned each member

responsibilities and set concrete deadlines for each responsibility. The following figures show our proposed

development timeline.

Legend

Amy Tran

Alberto Diaz

All

Fall Quarter (Weeks 1 - 10)

1 2 3 4 5 6 7 8 9 10 11

Design Document

Problem Statement

Activity Diagram

Architectural Diagram

Use Case Diagrams

Mock Ups

Requirements

Conceptual Model

Technologies Used

Design Rationale

Test Plan

Risk Analysis

Begin Project Development

Design Document Review

Figure 3.1: The Fall quarter development timeline

21

Winter Quarter (Weeks 1 - 10)

1 2 3 4 5 6 7 8 9 10

Design Review

Revised Design Report

Operational System

Login Portal

Project Creation Process

Team Creation Process

Tasks Assignment Process

Progress Bar and Milestones

Front-End and Design

Unit Testing

Figure 3.2: The Winter quarter development timeline

22

Spring (Weeks 1 - 10)

1 2 3 4 5 6 7 8 9 10

Senior Thesis

User Manual

API Documentation

Maintenance Guide

Suggested Changes

Lessons Learned

Operational System

Front-End and Design

Calendar Integration

Testing

Acceptance Testing

Testing Results

Final Changes

Design Conference

Final Changes

Figure 3.3: The Spring quarter development timeline

23

3.4 Societal Issues

When building a new application, it is important to realize the societal aspects pertaining to the new product.

As engineers, we have the ability to influence our users and thus we must act in an ethical manner when

designing and developing an application. In order to ensure that we were acting ethically, we referenced the

IEEE/ACM Code of Ethics(9) throughout the process of our application. Below is a ethical justification for

our project, as well as how we plan to ensure that we are acting ethically with our team members and during

product development. Lastly, we discuss social and cultural issues associated with Planly.

3.4.1 Ethical Justification for Our Project

We selected to build a collabortive project management application because we noticed a need for a manage-

ment and organizational application for individuals who have multiple commitments in their lives. The moral

reason we decided on our project is because we are aware that we live in a society based on productivity.

Many individuals are being bombarded with tasks from different organizations, and with the invention of mo-

bile devices, it seems that work never stops. We believe all humans have the right to live a dignified life and

should not be stressed to such severity that health-related consequences, such as mental illness, can occur.

With the creation of an organizational management application, we hope to relieve stress by providing indi-

viduals with an accessible web based interface where they can easily communicate with their team members,

find an organized list of their tasks and keep track of their schedules. In addition, we hope that individuals

will use our project management app to plan personal projects, such as weddings or birthday parties, thus

allowing them to enjoy their lives doing the things that make life memorable.

3.4.2 Team and Organizational Ethics

Our team wass composed of two individuals. Practical steps that were taken to ensure fair treatment among

team members were effective communication and negotiation regarding which tasks each member will do.

We ensured that we acted ethically by obeying the IEEE-CS/ACM Software Engineering Code of Ethics (later

explained in the Product Development section) and also by using the SCUs Ethical Decision Framework when

we were unsure of a decision.

3.4.3 Product Development

To ensure that we were acting ethically when developing our product, we followed the IEEE-CS/ACM Soft-

ware Engineering Code of Ethics.

24

Table 3.2: ACM Code of Ethics vs Our Team
IEEE-CS/ACM Code Of Ethics Our Team
Public: Act in the public’s interest When deciding our project, we analyzed who our

market is and what their needs are to ensure we act-
ing in the publics interest.

Client and Employers: Act in a manner that suits
their interest and is consistent with the publics in-
terest

We always considered SCUs interest in ethics when
designing our project.

Product: Product must meet the most professional
standards

We used robust code and best coding practices
when developing our software. We chose the cor-
rect coding frameworks that worked best for our
project. We used security measures to ensure data
is protected.

Judgement: Maintain professional integrity in
your judgement

We always used our best judgement when making
decisions. If we were not sure of a decision, we re-
ferred to SCUs ethical decision framework to guide
us.

Management: Promote ethics in their team Our advisor, who served as a managerial figure, ad-
vised us towards the most ethical decision.

Profession: Maintain ethics in our professions We have an ethical duty to our users to do no harm.
We always asked for consent when asking others to
test our product.

Colleagues: Be honest and treat colleagues with
fairness

We gave our most honest opinions and constructive
criticism during each stage of product development.

Self: Maintain ethics in every aspects of our lives. During our education at SCU, ethics were stressed
throughout numerous courses and we believe that
this education affected our decisions for the rest of
our lives.

3.4.4 Social and Cultural Issues

We have an ethical duty to do no harm to the potential users of our product. When building our system,

we took extremely proactive measures to ensure that their data is safe and secure. We would never release

any personal data unless required for legal action, and then only after informing the user. When conducting

product testing, we will always provide our testers with a consent form and ensure that they know what they

are signing off to. We would never pressure anyone to use our product. A ramification of our product to

society as a whole is that while it will help individuals stay organization, it may cause individuals to become

too dependent on technology. While we want people to use our product to ease their lives, we hope that they

see our tool as an aid rather than a dependency.

3.4.5 Political Issues

We do not foresee any political issues with our system because we do not see any need for political represen-

tatives to become involved with our application.

25

3.4.6 Economic Issues

We do not foresee any economic issues with our system as is it not making any revenue.

3.4.7 Health and Safety Issues

A potential health issue that we see with our system is creating a dependency on technology; however, as we

stated in the Social and Cultural Issues section, we hope that individuals use our system as an aid rather than

a dependency. As for safety issues, one issue is if our system were to be attacked and our users’ data was

captured, this can cause potential harm to our users’ saftey since their personal information is now exposed.

3.4.8 Manufacturability Issues

We do not foresee any manufacturability issues because our product is not manufacturable.

3.4.9 Sustainability Issues

Because our product is a software product, we do not foresee any sustainability issues.

3.4.10 Environmental Issues

As stated in the Sustainability Issue, our product is a software product, thus we do not believe that our system

will cause environmental issues.

3.4.11 Usability Issues

Because our application is very client heavy, we knew that usability would be the key to our application’s

success. Throughout the developement process, we were sure to include the user in every step and iterated

until the user was satisfied. We were able to recieve feedback and examine user interactions with each

component of our system. In addition, at the end of development, we hosted a user study, discussed in the

conclusion section.

3.4.12 Lifelong Learning

Through developing our system, we engaged in lifelong learning. Knowledge from our classes was not

enough for us to succeed. The project inspired us to study and learn new technologies, such as Ember.js and

Firebase, as well as strengthen our existing skills. By completing this project, we feel prepared for the time

where we must learn on our own.

26

Chapter 4

Our Project

4.1 The Final Application

Planly is a collabortive project management application built as a single page web application. When users

type in the URL for Planly, they are taken to the application’s homepage shown in Figure 4.1 The homepage

featured an image of our application. It is very minimalistic as users need to have an account in order to use

the application.

Figure 4.1: Homepage

4.1.1 Login

In order to log in or sign up for Planly, users must select “Sign In” on the top right corner of the homepage.

We provide users with three different methods to sign up for an account: Google, Facebook, or Email, shown

27

in Figure 4.2. After a user has successfully logged in, he/she will be presented with the Projects view. The

Projects view, seen in Figure 4.3, hosts all of the user’s projects as well as the members for each project.

Figure 4.2: Sign In / Login Screen

Figure 4.3: Projects View

4.1.2 Creating Projects and Teams

From the Projects view, users can create a new project as well as create teams for the project. By clicking on

the + icon, users will activate the Project Creation form, depicted in Figure 4.4. The user needs to input the

Project name, goal, deadline and team members. After completing the Project Creation form, users are given

the option to create a team or to skip it at this time.

If the user decides to create a team, he will need to enter the team name, description and team members.

28

Figure 4.4: Project Creation Form

4.1.3 Adding Tasks and Subtasks

After the project has been created, users can now add task and subtask to the project. Figure 4.5 shows the

Tasks view. In the Tasks view, users are presented with the project’s name, progress bar, and a form to add

tasks and subtasks. Once a user fills out the tasks form, he can then add a subtask or simply create the task.

The task will appear on the screen with the task’s deadline and who the task is assigned too. From there,

users can click on the subtask icon to see the subtasks associated with the task or then can click the comment

icon and post a comment. When a user marks a task as completed, the progress bar will change to reflect the

progress of the project.

29

Figure 4.5: Task View

4.2 User Testing and Results

After we completed Planly, we hosted a user testing session where we invited students to complete a series

of tasks and provide us with their feedback. At the end of the test, we asked users to submit an anonymous

survey. Figure 4.6 and Figure 4.7 shows our user testing results.

Beginning with the system as a whole, from the user testing results, the majority of the users found Planly

to be very usable system. To the question,“I found Planly to be a usable system”, 55.5% of users rated Planly

as a 5, the highest score on our scale. As for the question “ I found Planly to be overly complex”, a third of

the users rated Planly a 1, meaning that they did not find Planly to be complex. However, a third of the users

also answered with a score of 3, thus although most users found Planly to be usable, we acknowledge that

there is still work to be done.

Another question we asked in our survey was “What are some areas of improvement for Planly” and

users were allowed to select all features that applied. According to the results, we found that the features that

needed the most improvement were task and subtasks. It is interesting observation is that tasks and subtasks

were the last features we worked on prior to the testing, thus it makes sense that these features were the

weakest.

30

Figure 4.6: User Testing Results

4.3 Lessons Learned

We want to highlight three important lessons that we learned while developing Planly: the importance of

human centered design, the need for multiple system iterations, and the neccesity to integrate early and often.

4.3.1 Challenges

Had we not involved the user in the design of our system as early on as we did, we would have ended up in an

entirely different place than we did. After completing our initial design and going through the design review,

we took the advice provided to us and performed some user research before actually beginning development.

The study exposed some major flaws in a lot of the interfaces we mocked up. This allowed to go back to

the drawing board during the design phase rather than later on in the development phase. This lesson was so

31

Figure 4.7: User Testing Results Continued

good, that we decided to borrow it moving forward. Each time we worked on a new feature, we would first

mock it up, test it with users, and then implement it.

We iterated through those steps repeatedly. Not only did this allow us to involve the user a lot more in the

development of Planly, it also enabled us to revisit some of the previous features we developed. As mentioned

before, during our user testing we found that the features we implemented first generally had less issues than

some of the newer features. Iteration is responsible for this. Each time we implemented a new feature, we

were able to further test and correct the features that were already in place.

As we added new features, we were not working on the same system, working on the same feature. We

worked on our own systems, implementing different features in order to divide and conquer the development

of Planly. However, early on during development, if we spent too much time working on our own thing, we

found that when the time came to finally merge our code, we had creeped into each others domains quite

a bit. The solution was simple. Integrate early, and integrate often. By shortening the amount of time our

code was apart, it prevented us from stepping on each others’ toes and it also helped to ensure that any work

performed by the other did not break any other part of the system.

4.3.2 Future Work

Moving forward, we are looking to add more features, primarily pulling from the feedback we received

through our user study. One feature that was frequentyly requested by users was the ability to edit teams.

This leads us to believe that users want more overall control over the content of their projects. We will

consider multiple ways to ensure they can customize their projects to their liking. Apart from the features

reccommended in the user study, we also want to look at some of the features we weren’t able to implement

32

during our primary development, including, but not limited to, implementing calendar functionality which

would allow users to import their event calendars in order to see who is available when and improving the

functionality of the timeline so it better reflects the progress of the project by considering more factors than

task completion. These features would greatly add to the user experience.

In order to ensure a better user experience forward, we need to consider more than just the features. We

also need to optimize the application for scalability. This would mean that as we take on more users, the

application wouldn’t break due to the amount of traffic. We also need to increase the overall robustness of

the application. As more users join Planly, we are going to encounter more usage styles. This means more

ways for people to encounter bugs. Ensuring we are as bug free as possible would increase the overall user

experience.

4.4 Conclusion

As mentioned, current solutions are either too simple, such as to-do applications, or too complex, such as

enterprise project management software. Planly targets the middle ground between these two fields, small

groups with collaborative projects outside of their full time roles. Planly is simplistic and intuitive web ap-

plication that provides its users with the essentially organizational tools they need to ensure their projects'

success. By performing user testing we found that that users enjoyed the simplistic nature of the application.

Furthermore, the testing reaffirmed that iterative development allowed for new, useful features to be imple-

mented while improving existing features. Taking what we learned, we are confident that we can continue to

enhance the users' experience and improve the small group project collaboration.

33

Bibliography

[1] Jugdev, K.; Mathur, G.; Tak Fung, “Project management assets and project management performance:

Preliminary findings,” in Technology Management in the Energy Smart World (PICMET), 2011 Pro-

ceedings of PICMET ’11: , vol., no., pp.1-7, July 31 2011-Aug. 4 2011

[2] Mohamed, Bahaaeldin, and Thomas1 Koehler. “The Effect Of Project Based Web 2.0-Learning On

Students’ Outcomes.” Proceedings Of The IADIS International Conference On WWW/Internet (2010):

253-258. Applied Science Technology Source. Web. 8 Oct. 2015.

[3] Seneviratna, G.A.D.P.S.; Nandasara, S.T., “Web based project collaboration, monitoring and manage-

ment system,” in Advances in ICT for Emerging Regions (ICTer), 2014 International Conference on ,

vol., no., pp.109-115, 10-13 Dec. 2014

[4] http://ember-cli.com/

[5] http://emberjs.com/

[6] https://www.usability.gov

[7] https://products.office.com/en-us/project/project-and-portfolio-management-software

[8] Tsui, Frank F., and Orlando Karam. Essentials of Software Engineering. Sudbury, MA: Jones and

Bartlett, 2007. Print.

[9] https://www.acm.org/about/se-code

34

	Santa Clara University
	Scholar Commons
	6-2-2016

	Planly
	Alberto Diaz-Tostado
	Amy Nguyen Tran
	Recommended Citation

	tmp.1467226059.pdf.j8Uwe

