
Santa Clara University
Scholar Commons

Computer Engineering Senior Theses Engineering Senior Theses

6-6-2016

Live
Samuel Kujovich
Santa Clara University

Griffin Cook
Santa Clara University

Tyler Selewicz
Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/cseng_senior

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in
Computer Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

Recommended Citation
Kujovich, Samuel; Cook, Griffin; and Selewicz, Tyler, "Live" (2016). Computer Engineering Senior Theses. 61.
https://scholarcommons.scu.edu/cseng_senior/61

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior/61?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Live

by

Samuel Kujovich, Griffin Cook, Tyler Selewicz

Submitted in partial fulfillment of the requirements
for the degree of

Bachelor of Science in Computer Science and Engineering
School of Engineering
Santa Clara University

Santa Clara, California
June 3, 2016

Live

Samuel Kujovich, Griffin Cook, Tyler Selewicz

Santa Clara University
June 3, 2016

ABSTRACT

Music streaming applications that do not require listeners to actually own the music they listen
to are quickly become the most popular and most cost effective way to listen to music. These
applications however are limited in their capabilities for playlist collaboration, specifically for real
time collaboration. When an app does provide a way for users to collaborate on playlists, the users
must be friends who have explicitly granted each other access to edit playlists. Our solution aims
to improve on existing applications by allowing users to collaborate on music playlists in real time
based on their immediate location.

Live is a mobile jukebox allowing people to connect with those around them over a common love,
music. We pull music from existing services so users can continue to listen to all of the music they
are accustomed to, but we also provide users with better ways to discover new music. In addition to
providing a platform for real time location based playlist collaboration, the application recommends
songs based on what people in a user’s immediate location are listening too. Our application’s key
features will change the way that users both find and share their music.

Contents

1 Introduction 6

1.1 Problem Statement . 6
1.2 Background . 6
1.3 Solution . 7
1.4 Requirements . 7

1.4.1 Functional Requirements . 7
1.4.2 Nonfunctional Requirements . 7
1.4.3 Design Constraints . 8

2 Design 9

2.1 Use Cases . 9
2.2 Activity Diagram . 12
2.3 User Interface . 13
2.4 Technologies Used . 18
2.5 Architectural Design . 19
2.6 Design Rationale . 20

3 Project Management 21

3.1 Testing . 21
3.2 Risk Analysis . 22
3.3 Developmental Timeline . 23
3.4 Ethical Issues . 23

3.4.1 Issues Regarding Content Creators . 23
3.4.2 Issues Regarding Users . 23

4 Conclusion 24

4.1 Future Improvements . 24
4.2 Lessons Learned . 24

3

List of Figures

1.1 Functional Requirements and Importance. 7
1.2 Nonfunctional Requirements and Importance. 8
1.3 Design Constraints and Importance. 8

2.1 Use Case Diagram. 9
2.2 Activity Diagram. 12
2.3 Home Screen . 13
2.4 Login Screen . 14
2.5 Now Playing Screen . 15
2.6 Top Songs . 16
2.7 User Profile Screen . 17
2.8 Data-Centric Architectural Model. 19

3.1 Risk Analysis Table . 22
3.2 Developmental Timeline. 23

4

List of Tables

2.1 Play a Requested Song . 10
2.2 View Most Requested Songs in a Geographical Location 10
2.3 Build a Collaborative Playlist . 11

5

Chapter 1

Introduction

1.1 Problem Statement

When people want to listen to music these days, many look to mobile applications to listen to
playlists or just stream individual songs. Users currently utilize streaming services, which allow them
more access to music without having to actually own the songs they would like to listen to. Many
of these services are public facing, allowing users to share playlists created in their applications with
friends, family or the general public. Although this model is convenient, it does not allow other users
to edit playlists, and due to the contracts set up between streaming services and artists, popular
artists occasionally do not host their music on these services. With the exponentially expanding
rate at which music is being produced, it is becoming harder and harder for users to find good songs
and create an enjoyable playlist.

1.2 Background

There are multiple existing solutions to this problem, but each has its own quirks that we hope
to improve upon. One current solution is the music streaming application Spotify. Spotify looks to
bring restricted content owned by record labels to users through online streaming. There are two
tiers to the service, Spotify Free, which costs no money, but occasionally serves advertisements, and
Spotify Premium, which is paid for through a monthly subscription.The problem with this product
is that there is no way to easily collaborate on playlists, meaning it is difficult to have multiple
people contribute to a specific playlist. Another solution is Google Music, an online radio streaming
service. Users can select songs, genre, or artists, and hear a playlist that relates to their selection.
Google generates “recommended for you” playlists and stations based on artists in your music library,
provides a listing of the most popular songs in their service, and offers users the ability to create
their own playlist. Again, the major problems in this service relate to playlist creation and additions.
All playlists must be created in the web interface that Google provides, and although one can share
a playlist, others cannot add to it. Apple Music is the most recent solution to this problem. Apple
looks to join the content streaming space by allowing users to create playlists, see recommended
playlists, or even listen to radio stations based on genre. Like Spotify, Apple Music is also paid
for via a monthly subscription. It currently provides no way for users to collaborate on playlists.
Another very popular application, Soundcloud, also looks to take on this challenge. Soundcloud
allows users to stream content, create playlists, interact with others, and even post songs. It is a
free service, that is available through a mobile app and a web app. Soundcloud attempts to provide
a “Trending” songs feature, which should list popular songs at the time, but the feature seems to
be broken as the songs featured in that portion of the application rarely seem to update. Playlists
created by other users are difficult to find, and the mobile application is not intuitive and often does
not function properly. The balance between making money and providing functionality has truly
handcuffed the user experience with many of these applications.

6

1.3 Solution

Our project aims to improve upon the current solutions by adding features to allow users to
collaborate based on immediate location and demand for individual songs. While a user plays music
from the mobile application, other users will be able to suggest songs to the playlist if they are in
its general vicinity. The more a song is suggested, the more likely it will be played next, which
makes requesting a song very easy if enough users want to listen to it, but also makes it so a single
user cannot abuse his or her right to request songs. Since the playlist can be created by all of
its listeners, the application will eliminate the need of having a person in charge of handling song
request manually. Our solution aims to pull music from existing services, but because it will be
a time-consuming process for a user to find new music, we aim to recommend new music to users
based on what people in the same places as them are listening as well. We believe that our solution
will make both playlist creation and music recommendation significantly easier and quicker.

1.4 Requirements

The objectives of our project will be referred to as requirements. A functional requirement is
something our application will do. A non-functional requirement defines the manner in which our
project will meet a functional requirement. A design constraint will limit how the project can be
created.

1.4.1 Functional Requirements

The functional requirements are listed in Figure 1.1, and are ranked by how necessary the team
views them to the final project. The importance to the final product is ranked on a scale of 1 to 10,
with 10 being crucial for our final project to succeed, and 1 being a stretch goal for our project.

Requirement Importance (1-10)

The application will play any requested songs it can locate 10

The application will find a requested song from public facing third party

streaming services

10

The application will allow certain playlists to be accessible and editable
by certain users through security settings

10

The application will allow users to collaborate in real time on playlists in

the their area

10

The application will provide users with new music suggestions based on

location

8

The application will prioritize song order based on how many people are

requesting each song.

8

The application will authenticate users via Facebook 8

Figure 1.1: Functional Requirements and Importance.

1.4.2 Nonfunctional Requirements

The nonfunctional requirements are listed in Figure 1.2, and are ranked by how important the
team views each requirement to our final product.

7

Requirement Importance (1-10)

The application will be user-friendly 10

The application will be responsive 10

The application will be intuitive 9

Figure 1.2: Nonfunctional Requirements and Importance.

1.4.3 Design Constraints

The design constraints are listed in Figure 1.3, and are ranked by how important the team views
each requirement to our final product.

Design Constraint Importance (1-10)

Native iOS application 10

Figure 1.3: Design Constraints and Importance.

8

Chapter 2

Design

2.1 Use Cases

Use cases give a list of steps defining the interaction between an actor and the system to complete
some goal. They give any preconditions for a specific use, the flow of the events to complete that
functionality, any postconditions after the use has been completed, and any error conditions or
alternative flows that a user may encounter.

Play	a	requested	song	

View	Most	Requested	Songs	in	a	Geographical	Loca;on	

Build	a	Collabora;ve	Playlist	

Figure 2.1: Use Case Diagram.

Our use case diagram, shown in Figure 2.1, outlines 3 particular use cases that describe the
solution. They are Play a requested song, View Most Requested Song in a Geographical Location,
and Build a Collaborative Playlist, located in tables 2.1, 2.2 and 2.3 respectively.

9

Components Details

Actor User

Goal To Play a Requested Song

Preconditions The user has an account
The user has a connection to the internet
User must be included in the group that can edit a playlist

Postconditions New Song Added to Queue.

Steps User submits title and artist of desired song
System monitors number of times a song is requested
As the number of requests for the song increases,
the high priority is placed on the song.

Exceptions The Song will not be played if it has
been recently (within one hour).

Table 2.1: Play a Requested Song

Components Details

Actor User

Goal To View Most Requested Songs in a specified Geographical Location

Preconditions The user has an account
The user has a connection to the internet
User has application
User has Location Services Enabled

Postconditions List of most requested songs in an area are displayed

Steps Open Application
Select ”Top Tracks” Tab
Select Genera of Choice

Exceptions No Requested Tracks near current location
Location Services turned off

Table 2.2: View Most Requested Songs in a Geographical Location

10

Components Details

Actor User

Goal To Build a Collaborative Playlist with a Select Group of People

Preconditions The user has an account
The user has a connection to the internet
The user has the applicaiton

Postconditions New Playlist Added Successfully

Steps Open Application
Select ”Create New Playlist”
Submit title of new playlist
Select other users that will be able to request songs
Notification sent to all users who can collaborate on the playlist

Exceptions N/A

Table 2.3: Build a Collaborative Playlist

11

2.2 Activity Diagram

An activity diagram is a graphical representation of workflows (organizational and computational
processes) of stepwise functions and activities. Activity diagrams contain support for concurrency,
iteration and choice and, in short, show the overall flow of control. They are regarded as a type of
flowchart. The activity diagram below illustrates what the process of using our application is like
for the user.

Figure 2.2: Activity Diagram.

12

2.3 User Interface

Our system takes the format of a native iOS application that the user can download from the
Apple App Store. The user will then login and will be presented with a main screen. From this
the user will have the option to play any of the local playlists or navigate to one of the apps other
screens. One of the tabs allows a user to see their own playlists that they have created. Another
tab allows them to see and control what is currently playing. The last two tabs allow a user to view
the top 10 songs in their area and to view their profile and settings.

The home screen of the application is shown in Figure 2.3. The application is split into screens
that are accessable via the navigation bar across the bottom of the screen. The users can select the
view that is affiliated with their goal. The login screen is shown in Figure 2.4.

Figure 2.3: Home Screen

13

Figure 2.4: Login Screen

14

Figure 2.5: Now Playing Screen

Once the user is connected to a playlist and listening, they can select the Now Playing tab, which
displays the current song’s album art and provides information about the playlist. This can be seen
in Figure 2.5. Figure 2.6 shows the top songs screen where users can see what the most popular
songs in their area are. Users can also go to their profile tab where they can view their own profile.
This screen is shown in Figure-2.7.

15

Figure 2.6: Top Songs

16

Figure 2.7: User Profile Screen

17

2.4 Technologies Used

For the backend of our system, we used Parse, a service run by Facebook that essentially acts
as a frontend for a MongoDB database and a metrics system, that allows for easy control and easy
communication between any client and that server. Our frontend is an iOS application that we used
the Apple iOS SDK to create. We also used Github as a version control system and Xcode as our
integrated development environment (IDE) during the development process.

18

2.5 Architectural Design

Figure 2.8: Data-Centric Architectural Model.

This section identifies the architectural design model our system falls under. Choosing an archi-
tectural design is important because changing the architecture during the design and implementation
phases is costly and time consuming.

Our project will be modeled after a Data-Centric Architecture as seen in Figure 2.8. There are two
pieces to the system. The data store (server) which will host our database and process information,
and the client which will display the information from the sever. These two components will be
connected through reads and writes from the client to the data store to enable users to indirectly
interact with the server. This is important for our application, as the system is user driven, meaning
the playlists change as users change. The system must be able to effect change quickly, and effectively.
A benefit of using this model is also to allow for many clients to connect and disconnect to the data
store, and each client does not need to know that the others exist. The problem with this is that all
clients are connected to the data store and thus if there is a problem with the data store then there
is a problem with the entirety of the system.

19

2.6 Design Rationale

Our system is intended to provide a user-friendly experience when attempting to listen to music
and create playlists from multiple public-facing music streaming services. We chose to create our
own interface to access these services to reduce the need to switch applications to listen to a different
song.

Our team decided on creating a native iOS application instead of a mobile web application for
a variety of reasons, namely the goal of reducing drain on battery life. By making a mobile web
application, the mobile web browser would act as an extra layer between our application and the
system, causing more function calls to be made to achieve the same goal on a native application,
which can cause immense battery drain in some cases. We feel that music applications should not
be too heavy on the battery of a mobile phone, so choosing a native application seemed clear to
us. On top of this, one of our team members has extensive experience in iOS development, which
outweighed the lack of experience our team had in the intricacies of web development, which helped
make our decision very easy.

We then looked at how we would like to store playlist data. To provide information to multiple
clients efficiently, we decided the best approach would be a client-server interface. Our user data,
metadata, and playlist information is all stored in a service called Parse, which provides an easy-to-
use frontend for a MongoDB database and a metrics system. By using a service instead of creating
our own server, we mitigate a bunch of the risk involved with maintaining our own system, making
sure we have efficient and secure networking code, and scaling our own system, as Parse handles every
one of these for us. Parse also provides extensive mobile SDKs that simplify the communications
between the client applications and their service, so we were able to use their iOS API as part of
our client side.

We then decided on what streaming services we would use. The first one we started with was
Soundcloud. It has the friendliest HTTP API that allows any third party service to access it and
play songs, but we soon thereafter discovered inconsistencies in their search feature that left as
longing for more options in addition to Soundcloud. Due to the service’s recent change from solely
a free-to-listen model that included occasional advertisements to a two-tiered model that has a free
tier where you can listen to most songs, but not all, and a paid tier in which you can listen to every
songs, the data being returned by their HTTP API has been censored to account for said changes.

From here, we thought about what we could use to fill in the cracks in our search issues, and
looked towards Spotify. With its library of high quality music, we knew we would get access to a
quality API, but we noticed one glaring issue: they will only stream songs to our application if the
user is signed into a Spotify Premium account, which is their paid tier. We decided that this option
is still a good idea, as it will allow the user to support their service while being able to interact with
the music in the more convenient way that our application provides.

For the users who choose not to use Spotify Premium, though, this glaring hole in our search
feature still exists, and that is why we ended up choosing Youtube as our last music source. The
quality is going to be lower as much of the data coming in from a Youtube video is not actually the
audio, so that would be a notable discerning factor in the situation.

20

Chapter 3

Project Management

3.1 Testing

Testing is a very important piece of the software engineering process. This is the portion in
which the developers, company, and clients use the application with the goal of finding bugs.

For a mobile application there are a few important bugs to look out for. The first is application
crashing, which is when an application crashes frequently when trying to execute. Another major
bug is application incompatibilities, which occurs when an application does not work on all devices it
is designed for (i.e. iPad, iPhone, iPod or iOS 7,iOS 8, iOS 9). Due to the nature of our application
being connected to Facebook, there is the need to protect personal information that is being granted.
This leads to another vulnerability in the app, security. This is where a hacker would be able to steal
a user’s information. The fourth major bug is memory leakage, which is where blocks of allocated
memory are no longer used by the program and can lead to crashes.

To combat against these bugs we took numerous steps. The first was to implement automated
testing. These automated tests looked to target each SDK that we used within the application,
as well as simulate the app on multiple devices. This helped with increasing the efficiency of our
baseline tests.

Our next phase was unit testing using the unit testing SDK that is provided through Apple,
XCTest, which is built into XCode. This allowed us to run seamless unit tests with low overhead
and high compatibility with the coding software we used, XCode.

Finally we looked to test our User Interface by physically deploying the application to numerous
devices and attempting to use and break the application. The first stage of this was to deploy the
app on our own devices, simulating white box testing. The second was to deploy the application to
other devices, where users did not know about the code, or have technical skills. This allowed us to
accurately replicate the experience a user will have.

21

3.2 Risk Analysis

The risk analysis table outlines the risks that we recognized we might encounter through the
entire development process. Risks are listed in descending order of Impact (Probability * Severity)
and each has a pre-determined list of foreseen consequences. The last column in the risk analysis
table lists our mitigation strategy for the listed risks. Our risk analysis table is shown in Table 3.1.

Risks Consequences Probaility Severity Impact Mitigation	Strategy

Bugs

Incorrect	songs	

played/displayed.		

Further	testing	and	

more	

programming/error	

checking	needs	to	be	

done

0.8 8 6.4

Go	through	test	cases	

slowly	and	in	unison,	

documenting	any	

anomalies	witnessed.	

Document	bugs	to	

ensure	that	no	bugs	

are	reoccuring

Illness

Re-Evaluation	of	

timeline.	Work	

redistribution

0.5 7 3.5

Sync	up	to	ensure	

memers	are	on	the	

same	page.	Side-by-

side	coding	sessions	to	

understand	each	

other's	code

Market	

Misunderstanding

Working	on	a	product	

that	is	not	needed.	
0.5 9 4.5

Constant	market	

research.	Constant	

analysis	of	

competitors	in	same	

space	to	avoid	

building	something	

that	already	exists

Technological	Inability

Lost	time	learning	

needed	technical	

skills.	

0.2 3 0.6

Identify	mandatory	

needed	skills	early.	

Shuffle	responsibilities	

as	needed	

Figure 3.1: Risk Analysis Table

Over the course of developing our application we did encounter two of the risks which we recog-
nized in our risk analysis. First, we had problems with technological inability. We had to change
our initial plan for the backend because we did not have enough experience to build everything from
scratch quickly enough. Luckily since we discovered this early enough in the process, we were able
to change our design to something more doable. We did not think it was very likely that we would
encounter this problem, but luckily we did recognize the possibility and planned accordingly. Sec-
ond, we had problems with bugs. This problem was much more expected, but that does not mean
it was easy to deal with. Even with careful documentation of anomalies or bugs in the application,
it was still sometimes very time consuming to fix certain bugs that arose.

22

Chapter 4

Conclusion

4.1 Future Improvements

There are several improvements and new features that could make our application better in the
future. The first is increased security settings. Right now our application does not have a way to
control who has access to edit each playlist. If a user creates a collaborative playlist, anyone in
their area will be able to request new songs to it and vote on songs. Future development could add
functionality so that a user can customize who has privileges to make changes to their playlists.

Another future improvement could be adding Apple Music as a music source. While Apple Music
is still not as popular as Spotify and Soundcloud, it does offer some artists’ music that the other
music sources do not.

Adding a feature so that users can download playlists could be another improvement to the
application. Spotify for example allows users to save music for offline listening so they can enjoy
their music even when they do not have a data connection. Currently users cannot use our application
unless they are connected to the internet.

Finally, future development could add functionality to recommend new music to users. Right
now the application can suggest new music based on what is popular in the area, but these song
recommendations are the same for every user in a location. With a large enough user base, we could
get enough user data to implement a recommendation system to give recommendations tailored
specifically to each user.

4.2 Lessons Learned

The biggest lessons we learned throughout the development process of this application were to
prototype early, focus on core functionality first, and simplify the design wherever possible. Starting
out we had several big ideas for features for our application that we tried to implement, and in doing
so we ended up with a terribly buggy product that could not even play music, which was supposed
to be our most important feature. We learned that it is much better to focus on the most important
things first, and then build off of that to add secondary features.

24

	Santa Clara University
	Scholar Commons
	6-6-2016

	Live
	Samuel Kujovich
	Griffin Cook
	Tyler Selewicz
	Recommended Citation

	Untitled

