Santa Clara University
Scholar Commons

Computer Engineering Senior Theses Engineering Senior Theses

6-4-2015

Dynamic life management assistant (DyLMA)

Arturo Aguilar

Santa Clara University

Ruben Luva
Santa Clara University

David Mora-Barajas

Santa Clara University

Sunny Patel

Santa Clara University

Alejandro Rodriguez

Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/cseng senior

b Part of the Computer Engineering Commons

Recommended Citation

Aguilar, Arturo; Luva, Ruben; Mora-Barajas, David; Patel, Sunny; and Rodriguez, Alejandro, "Dynamic life management assistant
(DyLMA)" (2015). Computer Engineering Senior Theses. SO.
https://scholarcommons.scu.edu/cseng_senior/50

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in

Computer Engineering Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/cseng_senior/50?utm_source=scholarcommons.scu.edu%2Fcseng_senior%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

SANTA CLARA UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Date: June 4, 2015

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Arturo Aguilar
Ruben Luva
David Mora-Barajas
Sunny Patel
Alejandro Rodriguez

ENTITLED
Dynamic Life Management Assistant (DyLMA)
BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

/ hesis Advisor

oLoA ([ofi

Department ChaU

Dynamic Life Management Assistant (DyLMA)

Arturo Aguilar
Ruben Luva
David Mora-Barajas
Sunny Patel
Alejandro Rodriguez

Submitted in partial fulfillment of the requirements
for the degree of
Bachelor of Science in Computer Science and Engineering
School of Engineering
Santa Clara University

Santa Clara, California
June 4, 2015

Dynamic Life Management Assistant (DyLMA)

Arturo Aguilar
Ruben Luva
David Mora-Barajas
Sunny Patel
Alejandro Rodriguez

Department of Computer Science and Engineering
Santa Clara University
June 4, 2015

ABSTRACT

Individuals currently face difficulty allocating time to achieve an ideal level of productivity. It
is often demanding to manage tasks and responsibilities along with their specific priority level and
deadlines. Likewise, managing health and wellness priorities while under the stress of a busy schedule
can be just as challenging. The productivity tools of today offer a fragmented mobile experience that
relies on a multitude of applications to achieve simple goals. A viable solution is a life-management
system for Google Glass that integrates a user's schedule in order to aid productivity and time
management. This system manages a series of everyday tasks and calendar events, while as the
same time promoting a healthy lifestyle by offering suggestions based on availability and user-defined
priorities. The system allows notifications to be displayed conveniently within a user's field of view,
ultimately leading to more productive and healthy individuals.

Table of Contents

8

9

Introduction
1.1 Background and Problem Statement . .
1.2 Current Solutions
1.3 Proposed Solution
Requirements
2.1 Functional Requirements
2.2 Non-functional Requirements
2.3 Design Constraints
Design Concept
3.1 Conceptual Model
32 UseCases
Design Architecture
4.1 Activity Diagram
4.2 Sequence Diagram
43 DataFlow
Design Rationale
5.1 Technologies Used
5.2 Design Choices
5.3 Suggestion Algorithm
Testing
6.1 Interface Testing
6.2 Verification Testing
6.3 Integration Testing
6.4 Validation Testing
6.5 Test Results
Social Concerns
7.1 Ethics Analysis
7.1.1 Social and Ethical Ramifications
7.1.2 Product Development Ethics . .
7.1.3 Organizational Ethics
7.2 Aesthetics Analysis

Risk Assesment

Development Timeline

10 Future of the Project

B~ w w W N = = =

(231

11
11
12
12

16
16
16
17

19
19
19
20
20
20

22
22
22
23
23
24

26

27

31

11 Conclusion

11.1 Project State e e e
11.2 Evaluation of Solution
11.2.1 Advantages
11.2.2 Disadvantages. e e e
11.3 Lessons Learned e

Derivation of the Suggestion Algorithm

Source Code

B.1 Schedule Manager e
B.1.1 Base Classes i e
B.1.2 Scheduler Class
B.1.3 Suggestion System Class

B.2 Google Glass Application
B.2.1 Google Glass Landing Page L.
B.2.2 User Viewed Home Screens
B.2.3 Detailed Views on Google Glass,

B.3 Android Application oL
B.3.1 Google Calendar Connection
B.3.2 Bluetooth Connection,

32
32
32
32
32
33

34

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

9.1
9.2
9.3

Busy State 5
Free State e 6
More Information for an Event o000 7
More Information for a Task 7
Use Case Diagram 0 e 8
User Flow Chart 11
System Sequence Diagram oL L L 14
Data Flow Diagram e 15
Gantt Chart: Fall e 28
Gantt Chart: Winter e 29
Gantt Chart: Spring e 30

vi

Chapter 1

Introduction

1.1 Background and Problem Statement

Individuals face difficulty allocating time for maximum productivity. It is often demanding to man-
age tasks and responsibilities with physically written reminders, especially if a schedule is saturated
with activities. Humans are error-prone; forgetting one task can spawn numerous scheduling con-
flicts. Physical reminders, such as sticky notes, have spatial limitations and are a nuisance to deal
with. For this reason, mobile devices are used instead of these physical reminders. However, mobile
applications currently used to keep track of events or tasks cannot prioritize and suggest the most
optimal solutions to scheduling issues. Current apps are also incapable of considering an individual's

needs other than a task list, such as their personal health.

1.2 Current Solutions

The productivity tools of today offer a fragmented mobile experience that relies on many applications
to achieve simple goals. Relying on an iPhone or Android is inconvenient because the device remains
in the user's pocket for the majority of the day. Today's apps allow users to view schedules when
opened but do not provide guidance on accomplishing tasks. For example, when a user sees a
planned dinner period in their schedule, another source such as an application must be used to find
food locations. Currently, an intelligent productivity tool that can offer recommendations based
on location, daily activities, and important events does not exist. Relying on tools that are spread
across multiple services and applications ruins the productivity that could be achieved by a more
unified experience.

Today, the only solution is to settle with a combination of multiple products on the market to
keep track of schedules. For example, a user must use a calendar app to view his or her schedule

as well as use a reminders app to view tasks that need to be completed. There is no widespread,

convenient way to weave these actions despite the similarities they share. Upon deciding on what
activity the user will be working on, the user must then switch apps to find information, usually
through a map, store, or internet search app. This disconnect only adds to the inconvenience for
users due to the multiples transitions between different apps. Current software lacks the proper
implementation to offer the functionality that a user wishes he or she could have with such a utility.
Often, personal assistants are marketed as having the ability to make everyday tasks less tasking,

but ultimately leave much to be desired in the core functionality.

1.3 Proposed Solution

Our solution is to provide a dynamic life-management tool on the Google Glass platform. This tool
will not only manage an itinerary for everyday tasks, it will offer suggestions as to what should
be done during free time. This ability to suggest will help users stay on task with all duties,
including those which are not time specific. This not only solves the issue of having two separate
applications to manage calendar schedules and to-do lists, it interweaves their functionality. The
personalized assistant will learn from the users' activities, such as their daily tasks, and adjust the
priority of activities accordingly. In this way, it can help users complete tasks based on order of
importance. Additionally, our solution will help ensure the well-being of the users beyond efficient
time management. For example, the app will help promote a healthy lifestyle by encouraging the
users to include exercise periods into each day.

The solution thus offers a suggestion system, based on the user's most recent activity list, in
order to provide an efficient usage of time. This is achieved by having a user-friendly experience,
where notifications can be viewed directly within a user's line of sight. Having the ability to have a
unified experience, tears away the psychological barriers tied to the stress-inducing task of managing

a schedule, leaving only the productivity aspect to benefit.

Chapter 2

Requirements

We first established a list of functional and nonfunctional requirements based on what was deemed
necessary for the system. Functional requirements define the behaviour of the system. They establish
what the system will do. Non-functional requirements define the manner in which the system

accomplishes the functional requirements. They define the performance and feel of the system.

2.1 Functional Requirements

1. The system will add calendar events by syncing with user's calendars.
(a) The data will be drawn from Google Calendar.

2. The system will add user tasks by syncing with user's task list applications.
(a) The system will support Google Tasks.

3. The system will provide dynamic suggestions for the schedule based on user's inputted events.
(a) The user will be given options which he/she may accept or refuse.

4. The system will provide suggestions based on health goals, such as physical activities.

5. The system will provide additional help for suggestions.

6. The system will generate reminders to keep the user on track.

2.2 Non-functional Requirements

1. The system will be consistent with Google Glass design standards.

(a) Will not confuse users with an unfamiliar setting

2. The system's use will be intuitive.
(a) Easy to read and use
3. The system will be responsive.

(a) The system will minimize load delays and information will appear quickly in response to

user interactions.
4. The system will be visually appealing.

(a) Users should not be distracted by the application, nor should they have difficulty distin-

guishing important aspects.
5. The system will be secure.

(a) Users should not be distracted by the application, nor should they have difficulty distin-

guishing important aspects.

6. Due to the nature of requesting personal data, the system will protect imported information.

2.3 Design Constraints

The system is required to run within a certain environment and with certain limitations. These
limitations may take the form of system application limitations, such as caps on usable memory,
or limitations on available tools, such as the limited pool of networking libraries. These limitations
put a constraint on the design options developers when creating a system. Our Dynamic Life
Management Tool must run on Google Glass and be compatible with Google Calendars. It must
be able to interact and work in conjunction with a smartphone application running on an Android

based Operating System.

Chapter 3

Design Concept

3.1 Conceptual Model

As the system will be displayed on the Google Glass screen, it is necessary that all screens be simple
and easy to read. The Glass design imperative is to use white text on a semi-transparent black in
order to maintain partial visibility. Information is to be presented with sparse detail unless a user
requests more data. With this in mind, the design has two home screens which indicate the status

of the user.

May 13 5:40 AM

Currently:

Senior Design Presentation

Coming Up:

. 9:30 AM-1:51 PM
Dinner / Awards Today

Figure 3.1: Busy State

Figure 3.1 represents one of two possible home screens for the system. This figure demonstrates
when a user's status is set to busy; the screen shown is that of a busy status. In the busy status,
the user is given little information. Instead, the system presents a condensed, low detail format.
This low detail format provides only the necessary details for their current, non-flexible event. This
prevents the user from becoming distracted and helps them to stay productive. The current date
and time is shown in the top left corner. The status is clearly indicated in the top right hand of the

screen as a red light. In the center of the screen the user can see the current event.The status is set

to busy whenever there is an event scheduled during the current time. The bottom portion of the

screen shows a quick summary of the next upcoming event.

May 13 5:37 AM

Tasks to Do:

COEN 164 Lab Project

Coming Up:

9:30 AM - 1:51 PM

Dinner / Awards Today

Figure 3.2: Free State

Figure 3.2 represents the other possible home screen for the system. In Figure 3.2, the user's
status is free and therefore the screen shows a free status. This screen differs in content from that
of the busy status home screen by presenting a suggested Task. One of the similarities to the busy
state home screen is that the top left corner of the screen still shows the current date and time.
However, the top right corner of the screen now displays the current status as free, as indicated by
the green light. When the user is free, the system presents tasks in the middle of the screen.

The idea of having different views is that when the user is not busy, he or she still has different
tasks or assignments that need to be completed. These tasks or activities could range from complet-
ing a homework assignment to reminding the user to go exercise. The list of activities is presented
one at a time and each has three options: to delay the task and see what other tasks are present, to
state that the user has completed the task, or to permanently remove the task. The bottom portion
of the screen shows what upcoming event is next and at what time it will begin so that the user can
gauge how much time he or she has available to complete the required tasks.

Figure 3.3 represents a more detailed view of an event. The user can navigate to the screen in
Figure 3.3 from the busy state or free state home screens. From the busy state, the user can access
the details of the current event and the next upcoming event. From the free state, the user may
only access information about the next upcoming event. The home screen merely shows the title of
the current event; in this screen, the user is presented with more details about the event that could
otherwise not fit in the home screen. From here, the user can go back to the home screen.

Figure 3.4 represents a more detailed view of a task. The user can only navigate to the screen

Event: Senior Design Presentation
Category: WORK
Start: Today 3:30 AM

End: Today 7:51 AM

Presenting Google Glass application to
captive audience

Figure 3.3: More Information for an Event

Task: COEN 164 Lab Project
Category: WORK
Due: May 19

Need a good algorithm for extra credit.
Use Caeser Cipher Algorithm

Figure 3.4: More Information for a Task

shown in Figure 3.4 from the free state home screen. The free state home screen shows a task for the
user that he or she could select to accomplish. In this screen, the user is presented with more details
about the task that cannot fit in the free state home screen. This screen tells the user what needs
to be done to complete the task and gives a deadline for when the task needs to be completed. This
screen has a set of options for dealing with the given task. The user has a completed option which
allows the user to state that the task has been completed. Other options include "remove”, which
permanently removes the task from circulation, and ”skip”, which delays this task temporarily and
presents a different one. The user can go back to the free state home screen by swiping down on the

glass.

3.2 TUse Cases

Use cases in our system describe the management of schedules and system recommendations by the
user. These use cases define the series of steps required to accomplish our functional requirements.
We have identified five use cases to address the functional requirements defined on a previous page.

Figure 3.5 gives a high-level view of all use cases defined by our system.

Connect Calendar

View Current Status

View Activity Details

User
Change Activity Status

— Accept or Decline Recommendations

Figure 3.5: Use Case Diagram

The following enumerated list describes each use case in greater detail.

1. Accept or Decline Recommendation

Goal: Change the schedule based on acceptance or rejection of the system's suggestion.
Actor: User

Precondition: The system has attained enough information from the user's schedule to in-

telligently create suggestions.

Postcondition: The system modifies the schedule based on the implemented modification

algorithm.
Steps:
(a) User clicks accept or decline when the suggestion notification pops up.

Exceptions: The system does not know enough about the user to suggest schedule improve-

ments.

2. View Event Details
Goal: The user receives detailed information on a scheduled event rather than just viewing
the event's basic information.
Actor: User

Precondition: The user has events on their schedule with added detailed information attained

through the companion app.
Postcondition: The user knows more detailed information on a scheduled event.
Steps:
(a) Navigate to status screen.
(b) Highlight event of interest by swiping through events.
(c) Tap the touchpad to access detailed view.
Exceptions: None
3. View Current Status
Goal: Allow the user to view his or her current status in regards to schedule. Either Busy or
Free.
Actor: User

Precondition: User has added data to the calendar and/or user has added tasks he or she

would like to accomplish.

Postcondition: User sees what status he or she is currently in. User will also know if he or

she has events coming up.
Steps:
(a) Open the Application.
(b) Look to the top right hand corner of the Screen.

(¢c) Home page shows current status of user and shows relevant information based on the

current status.

Exceptions: None
4. Manage Events

Goal: Allow the user to be in control of scheduled events and list of tasks he or she wants to

accomplish.

Actor: User
Precondition: The user must have already sync their calendar events.

Postcondition: The user would have added additional information, such as priority and

deadline to each task.
Steps:

(a) Users would open the Android companion application in order to view their sync
schedule.
(b) They would select a specific task or event and add additional information

(¢) They would then save the information and let the Google Glass application resync

the new information.

Exceptions: None
. Connect Calendar

Goal: Connect system with Google Calendar to sync.

Actor: User

Precondition: The user must have a Google Calendar with events.
Postcondition: Google Calendar has synced with the system.
Steps:

(a) Log into Google Calendar.

(b) Give our system access to view calendar events.

Exceptions: None

10

Chapter 4

Design Architecture

4.1 Activity Diagram

View Current Status

User currently busy? ‘

Yes

?

View Current

View Future Activity

Activity

Get Assistance

Figure 4.1: User Flow Chart

An activity diagram describes how an end user moves through the system. Figure 4.1 describes

the user interactions of a user who has already downloaded the application to their Google Glass

device, completed the import and synchronization processes, and is now actively using the applica-

tion.

11

The activity diagram in Figure 4.1 shows that users begin by viewing their current status. This
status will provide them with some preliminary useful information, at which point the user may be
satisfied and end the cycle. As the user progresses down this figure, the user is given more detailed
information related to a task. If the user desires more information, their next step is dependent on
the system's status. If the user is currently busy, they can either view a future activity or the current
activity. If the user is not busy, the user can either view a future activity or review a task. When
viewing the details of an activity or task, the user may decide that they want additional assistance.
The user could then progress further, which would call the most relevant assistance tool available,

such as the Google Maps tool.

4.2 Sequence Diagram

A sequence diagram depicts the interactions between modules. Figure 4.2 is the sequence diagram
of this system. The interactions of the system will be launched by the user's interactions with the
status screen. This status screen will load different events based on whether the user is currently
busy. First, the system will queries the activity section on the status of the user's schedule. The
status screen will then be requesting information from the activity and task data structures. If the
system receives a busy indication, it requests only two activities. These two activities are the current
activity and the next major activity. If the user is not busy the system will request the next activity
and a task. The activities and tasks given are determined within the class data structures. A user
could then request details. If the details requested are on an activity object, the Activity class is
called to present further details. If the details are requested for a task, the Task class is called to
present further details. From the detail view, a user may request further assistance. The Status
Screen will then ask the Assistance Module to launch another application, such as Google Maps or

Yelp, for greater assistance and will be transferred accordingly.

4.3 Data Flow

The system was broken down into different modules in order to create an extensible system and
enabled independent development of each tasks. The interactions between modules is modeled in
Figure 4.3. Data begins in the Google servers, either in Google Calendar or in Google Tasks. The
Calendar Translator module receives updates from the servers and displays the data on the Android
Companion App. The translator module was separated to enable future improvement through the

swapping or adding of multiple translator modules drawing from different data sources. The app

12

displays the pulled data as well as allows the tagging of this data with extra information such as the
type of activity of priority level. This data is then forwarded in the form of JSON objects to the
Google Glass device. The device receives it and inserts it into the Scheduler Manager module. The
Scheduler Manager is responsible for evaluating the data it is given and prioritizing it. The module
receives requests from the user for data through the status screens and sends it in the form of Java

Objects defined by the Scheduler Manager.

13

Assistance
Module

Status . .
User :Activity :Task
Screen
I I | I
load	() >	
isBusy() >		
<———————=- A		
f 1 f		
alt [I		
: Busy :—IoadActivity(a,b)—b: :		
<————————- .		
(I r-— 77— I T		
I Not Busy	I	
—loadActivity(a)——»		
<—-——————-- .		

: : loadTask(b) }:
| | | |
| <———————-- g Attt .
| | |]
| | | |
| | | |
<———————-- . | |
: details(a) }: : :
alt	- .	
—activityDetails(a)—»		
: a:Activty k __________ _: :		
<-1T-—-———-- .		
I e — . A 1]		
: a:Task : : :		
	taskDetails(a) >	
<———————-- g Attt .		
<-1T-—-———-- .		
:—requestAssistance(a)—b: ! !
: : getAssistance(a)

Figure 4.2: System

Sequence Diagram

14

Android Companion App

Google
Calendar/ Calendar Function Data
Raw Data > .
Google Translator Calls Display
Tasks
JSON
Objects
- -/
Google Glass device v
Status Java Schedule Function Receiver
Screen Objects Manager Calls

Figure 4.3: Data Flow Diagram

15

Chapter 5

Design Rationale

5.1 Technologies Used

The system uses a variety of technologies focusing on smartphone applications to fully meet all
requirements. The system is implemented using Java , Android SDK, and the Glass Development

Kit.

e Java is a programming language that serves as the foundation for the Android Operating
System. Java is class-based, object-oriented, and designed to be portable so that it can be

coded independently of the platform.

e The Android SDK, known as Android Software Development Kit, is a set of software develop-
ment tools that allows the creation of applications for Android based systems. Android SDK

is built upon and works in conjunction with the Java programming language.

e The Glass Development Kit is an add-on to the Android SDK that allows software called

Glassware to be built and run directly on a Google Glass device.

5.2 Design Choices

Our system will be implemented to run primarily on the Google Glass device. This allows for
portability and accessibility within the dynamic life management software no matter where the user
is or what the user may be doing. The system will work in conjunction with an Android application.
Mobile applications have numerous advantages and benefits over regular desktop applications, one of
the most important being the seamless experience provided to the users. Mobile applications allow
users to perform activities and tasks once limited by a stationary desktop. The use of an application

in conjunction with a wearable device exemplifies that the system is beneficial to the users in all

16

aspects of their lives. No longer will users have to remember to use the system when they want to
be productive because our system will remind them to.

The primary purpose of developing a mobile application is to provide an easy experience for users
to add tasks/goals around their regular schedules quickly and efficiently. A mobile application is
needed in order to work with the Google Glass because typing is not supported and can be extremely
time consuming if a future update allows it. A mobile application seems the best choice to solve

this issue since a Google Glass typically relies on a mobile phone for internet connectivity.

5.3 Suggestion Algorithm

The Schedule Manager is built around a formula defined heuristically based on the predicted needs
of a user. This algorithm takes in a variety of factors and produces a relative importance, or weight,
of a particular task. The higher the weight, the sooner the task is presented to the user. There are

five pieces of information considered in this weight.

1. Category The category of a task is the type of activity to be performed. The system has three
categories. Work is a category for academic or career related tasks. These are considered
to have the highest importance. The category Exercise includes physical activity meant
to maintain a user's health. An example would be time at the gym or yoga. This category
is of medium importance and is also used to monitor user health. The last category is
Rest. Rest is a relatively low level category for non-strenuous activities such as social
gatherings or time to relax. If a task is not characterized by a user, it is automatically

placed in the work category.

2. Due Date One of the strongest indications of importance is an upcoming due date. The
system considers due dates in bucket categories which places items with similar due dates
in the same category. It then applies a transformation based on the buckets to come up

with a numeric representation of the relative importance of each task.

3. Category Completion The system keeps track of the relative completion rates of tasks in
each category. A user who is consistently failing to perform their tasks in a specific
category needs to be told about future tasks in the category with more ample time to
complete them. For example, if a user continuously fails to complete Work category
items, they will begin to see tasks in this category a few days sooner than they normally

would.This gives them more time to complete the tasks.

17

4. Skips Tasks that are skipped are assumed to be of relatively less importance than otherwise
equal tasks. The system keeps track of the number of skips and reduces the importance

of these tasks up to a cap.

5. Priority Priority is a user-defined category. Tasks are given a numerical importance by the
user using the Android Companion app. The ratings span from 1, relatively unimportant,
to 5, extremely important. The default importance is 3. Since the priority is directly

defined by the user in this system it carries a high level of importance.

To see the derivation of the formula used in the application, please see Appendix A.

18

Chapter 6

Testing

The testing phase is a key portion in any type of software development because its primary purpose
is to find bugs and defects in software. Our test plan consisted of numerous stages and phases which

were used all throughout the development stages.

6.1 Interface Testing

The interface-testing phase verifies the applications ease of navigation. Since the Graphic User
Interface (GUI) is separated from the backend of the system, we were able to test it independent of
the rest of the system. When testing the interface, we navigated the use cases just as a user would.
This allowed us to test the flow of our menus as well as how natural the gesture commands felt.

Additionally, we were testing for the usability of the layout and the general look of DyLMA.

6.2 Verification Testing

The first stage of testing for the back end was the verification stage. The verification stage involves

proving the system is functionally correct. This had four main cases:

e Verify that the user's calendar is being accurately synchronized with the Google Glass appli-

cation

e Verify that the user is able to navigate through the different tasks and events they have

scheduled. These cases tested the level of responsiveness of our system.
e Verify that the system can update with Google calendar, to test the portability.

e Verify the application provides various suggestions based on the user's list of events, checking

the usability aspect.

19

6.3 Integration Testing

The next stage of testing was integration testing. This tested the entire application from end to
end for errors and bugs that are exposed when the different components are combined. In this
stage, other aspects come into play such as performance and latency. The application needs to be

functioning correctly and have low latency as latency negatively impacts a user's experience.

6.4 Validation Testing

Once every component of our software has been compiled, we performed validation testing. Valida-
tion testing is a check to see if the right product has been built for the marketplace. A technically
proficient product which does not suit the user's needs will not succeed. There were two stages,
Alpha and Beta testing. Alpha testing is when a software or product is tested among the internal
team of developers or engineers within a corporation. Beta testing is when a community of people

outside the corporation is invited to use the product to find potential bugs within the software.

Alpha We have worn the Google Glass running DyLMA and have used it to schedule our days. We

have found it to be helpful, but limited by the system's battery life.

Beta Once our product successfully passes Alpha testing, we will invite a handful of users from

Santa Clara to help us test our system.

6.5 Test Results

Throughout the rigorous testing of our system and application, we worked to make each of the
project's functional and nonfunctional requirements operate smoothly. Users of our application are
able to successfully use our system to generate a custom schedule of tasks and events based on
priority and maximum efficiency.

The final project passed each of the test cases in the verification. This phase brought out
numerous bugs and inconsistencies for adding or removing tasks. We had minor bugs in the system
when shifting the tasks based on priority but were able to correct each error. The alpha testing and
beta testing phase were beneficial due to the variety of actions produced by real users. We found
most of our errors and bugs during or before alpha testing; we found our misunderstandings of how
the Glass devices is used by users in alpha and beta testing. Listing each one of these errors out,

we were able to debug them individually to result in a complete scheduling system.

20

Unfortunately, alpha and beta testing revealed the shortcoming of the project's host device. The
Google Glass does not lend itself well to extended usage, which our application requires. Due to
the short battery life and overheating problems, the application was not as effective as it could have

been.

21

Chapter 7

Social Concerns

7.1 Ethics Analysis

7.1.1 Social and Ethical Ramifications

Ethical Data Collection An ethical responsibility we made sure to adhere to is preserving and
securing the data we obtained from the user. From a technical standpoint we must obtain
and interpret user data in order for our system to offer and accomplish the services we intend.

Having been entrusted with this necessary data, we have taken measures to prevent data leaks.

Preventing Sale of User Data A common practice among companies that work with large amounts
of personal metadata is to attempt to commoditize this information, often through the intro-
duction of targeted advertising or the selling of the information to third parties for their use.
Google Glass allows for the sale, rent, or providing data to a third party, as long as the third
party is not using the information for advertising purposes. Our legal obligation is to request
an opt-in for this specific data use. Providing this level of detailed, personal information to
a third party after it has been entrusted to us would be unethical. For this reason, only the

information that is necessary for our system to function is shared.

Accuracy of Suggestions As our system advises individuals on the best use of their time, there
is an ethical obligation to provide users with the best possible information. However, the
application is a suggestion based system and relies only on the information provided by the
user. It is the user's responsibility to accomplish tasks, whether or not the application has
advised them on that subject. It is also the user's responsibility to provide quality data
for processing in order to receive quality information. The ethical obligation extends as far
as offering suggestions to the user. It still remains their duty to follow through on their

responsibilities.

22

7.1.2 Product Development Ethics

Preventing Data Theft Integrity is ensured within the product through the use of data encryp-
tion and access controls. Data encryption will be used to lock the user's information with a
cipher making it difficult to decode in the case of a data breach. All of this encrypted data

will be useless without the ability to decrypt the data.

Authentication The implementation of access controls is necessary in order to limit the read and
write privileges for the various modules and components in the application. User access to
data can be accomplished through the authentication process of the data sources. In order
for data to be trusted by the users, they need to feel assured that the application will not

undermine the user's data security.

7.1.3 Organizational Ethics

Engineering Obligations It is a moral obligation for a group developing a project to operate
within the ethical standards of engineering. Our project must not violate the principles of do
no harm, nor violate other established engineering moral codes of conducts. An individual has

been appointed to monitor that these ethical principles or obligations are not violated.

Fairness and Equality Team equality has been preserved through a debate and voting process.
This ensured that all creativity and novel ideas were taken into consideration during the

development process.

23

7.2 Aesthetics Analysis

Design Aesthetics Our design is significantly influenced by aesthetic and usability considerations
due to our platform. Using the Google Glass as our platform, one of the design constraints
that we face is making the best utilization of the limited display space. Due to the small
nature of the screen, all of the information presented to the user must be easy to read and
understand. Often, only the most crucial information can be presented in one moment and
the user must be able to infer the rest. Additionally, usability becomes a key issue when we
consider the limited user interaction of the device. Most of the input into the device relies
upon the swiping mechanism on the side, which only has 5 simple commands possible. The
design of our application must make it intuitive to navigate through all of our functionality
using only these five buttons, while maintaining consistency with other apps that the system

provides.

Inherently Simple Our application uses the fewest possible methods of user input and control in
order to maintain usability. Ultimately, our goal was to remove any and all confusion revolving
around using the system and make it easy to use within the daily lives of our users. Displaying
notifications to the user is done in easy to read fonts and uses a hierarchical layout where
each level becomes more and more detailed than the prior level. The purpose of this tiered
data display is to only display a relevant amount of information at any time. The system only
provides more depth in the case that the user requests more details. The user also has the
option to put aside notifications at an early level which prevents the screen from becoming

cluttered with unwanted information.

Aesthetics Matter Many of our design decisions are based on our expected users and the envi-
ronment in which we expect them to operate. Currently, Google Glass users are a mostly
young group of individuals. They tend to be highly technology oriented, as it is still in its
pioneering phase. This tells us that our users want an elegant design. Technology junkies have
a tendency to move on to the next comparable product whenever they are displeased with the
visual design. This project required that we maximized the visual appeal of the screens within
the limitations that the tiny screen provided. On the other hand, we tried to keep the design

minimalist as the device's location on the face makes cluttered apps bothersome.

Usable We have taken design aesthetics into great consideration as we were developing and pro-

totyping our intelligent events application. Having a product or application rich in function

24

means nothing unless it is simple to use, extremely user friendly, and easy to learn. Such
characteristics either draw users towards the product or away, which translates to success or
failure. Usability has heavily influenced the design of our project. The limited nature of our

user interaction and limited screen space has made this project largely function following form.

25

Chapter 8

Risk Assesment

In order to evaluate possible risks and their consequences, we created a risk assessment table. This

table provides the probability and severity of a risk, the resulting impact, and our mitigation strate-

gies.
Table 8.1: Assessment of Risks and their Mitigation Strategies
Risk Consequence Probability | Severity | Impact | Mitigation
(P) (S) (P*$)
Group member | Personal deadlines | 1 8 8 Have 2 members as-
getting sick get pushed back or signed per task and
parts of the system set early soft dead-
not finished on time lines
Bugs System not working | 1 5) Have a test plan
as planned ready and begin
testing in early
stages
Time Parts of the system | .5 8 4 Prioritize features
not being finished and set early soft
deadlines
Incorrect knowl- | Time spent learn- | .3 7 2.1 Assign project
edge of technol- | ing topics again tasks based on
ogy used member with most
experience on re-
lated topic/subject
Data Loss Losing work 1 8 .8 Keep multiple
backups of project
and update each
other on progress
Group Conflict/ | Lack of unity or to- | .15 3 .45 Have frequent
Miscommunica- | getherness meetings and as-
tion sign lead members

in different areas

26

Chapter 9

Development Timeline

Figures 9.1 to 9.3, starting on page 28, show a Gantt Chart. These figures portray the major
components of the project's development cycle. A Gantt chart displays the amount of work done or
production that is completed in certain periods of time in relation to the amount planned for in such
periods. The chart provides an overview of all the stages and processes the system goes through
during development. The life span of this project is three quarters, but some included components
have hard deadlines prior to the final deadline. During each quarter of the project's life cycle, time
is allocated for individual components of the system. The component assignments are color coded
based on the included legend and indicate the personnel responsible for the appropriate project

component.

27

med ey 19ued) 16 @MSMTW

¥T/6T /2T vI/eg/feT vi/feT/en

YIA4C/TT PT/LT/IT PTOT/TT PISETT VT/LT/0T vI/0T/0T wI/ET/OT

wiaishs j2un]

110day ey
uoljejuasald |euid
Bunsa| 2oueydaloy
Bunsol wun

fuigsa]

Huljouey 1uaag

oufs aepugie) oo
wiyosy suinpays
AIRJIAI] 1R8N

wiayshg uoneaadD |e11u)

voday udisaqg pasnay
malnay LIFISA]

JuuInNDU(| usisag)
swiel8eig waload (e
unneiddy Jueig 11aloid
JUILWIELS W |godd

¥1/6z/6

ZOn3LIpoy Ieindy

P1ed eanT+eloWEZEEN pusfo

[1ed

28

IDJUIAA :)IRU) 1JURE) [7'¢ 2Indrq

St/ef€ S1fe/e s1/€e/T

S1/91/T

wiyshy jeu4

Joday |euy
uapReIudsay [euld
funsal surdany
Bunsa| wun

Susul

BuljpueH juang

Juds Jepuaje’) 3)door
w03y Suinpsyds
a0e] AU 18sn

wi21sAsg uoneszdp) (e

uoday ufisaq pasinay
TAINGY uBisac)

juawnoog udisaq
sweadeiy palosg e
uonnenddy jurio along
1UBLWISIEIS WIold

ST/6/T ST/T/T ST/9%/1T ST/6T/T ST/TT/1 ST/S/T EdYiTATAr

Zongrpoy Ieindy

eANT

P1ed eanT+eloWIEEDR pusfo

193UIAN

29

Fuudg :Ieyn) 1URY) €6 2INT1g

WalshAs |eurd

Tioday |ru4
UQIEIUAS 3 |EUIY
Fuusa 2oueideody
funsag jiun

Junsal

Fuypuey Juoad

uAg IRpURER) 518000
wyy o8y Suynpayag
JIRLIVIUL JOSN)

wiashs naneiado rnng

1oday us|soq pasinoy
malnay udisag

U0 uBisag
stefzig 1alold jeng
uoniednddy yuelig 12aloug
JUDWLELS WO

ST/1/9 SI/SZ/S ST/8t1/5 SH/TL/S ST/7/s ct/ielv stfozfy ST/EL/7 ST/9/v St/og/e ct/etfe S1/9t/€

zonSiuipoy iefinSy eANTEROLERINHEAIIN eloNjNLIEcy Sunds

30

Chapter 10

Future of the Project

Due to the uncertainty of the Google Glass project, the future of the project will likely continue on
a different device or suitable platform. Because of the modular nature of DyLMA, certain aspects

of the project can be expanded upon or redesigned for different platforms relatively easy.

Host Platform The Google Glass no longer seems like a suitable platform for this application.
The most natural change to the project would be to migrate the application to another mobile
device, such as a wearable. This includes devices/watches running on Android Wear. These
devices have a constant visual presence, similar to the Glass, and have the ability to sync
with Google services with ease. Smart watches are also available to a larger audience because
of their much lower price point than Google Glass. Another potential platform includes the
Microsoft HoloLens as it offers a more sophisticated solution than the Google Glass. The
HoloLens offers an actual augmented experience, other than simply having another screen in
front of your eyes. A move to another device would involve redesigning the Graphical User
Interface and modifications to the translator modules but would largely leave the scheduling

module intact.

Scheduling Algorithm The scheduling algorithm is not as sophisticated as was originally in-
tended. The priority adjustments need fine-tuning that could be determined through heuristic
testing on a wider array of end users. Additionally, the algorithm could be expanded to take
into consideration more of the user's information. This was mainly due to the limitations on
large scale user testing, which made it difficult to enhance the algorithm for all use cases. This

algorithm should be a key target for expansion with any future work on this project.

31

Chapter 11

Conclusion

11.1 Project State

The end product meets the defined requirements, as well as includes all the initially planned features
with some limitations. The project could be introduced to the Google Glassware store and made
available. However, this seems like a futile action as there is only a small market of current Glass
owners and no guarantee of compatibility with the next iteration of the platform. The application
should be expanded further before it forms a marketable product. The heuristic decisions on the

algorithm have not been tested enough to say that they fit the expectations of the users.

11.2 Evaluation of Solution

The final application presents users with a set of advantages and disadvantages over currently avail-
able solutions. While this product provides a useful combination of several services and a helpful

algorithm, it is severely hindered by the device.

11.2.1 Advantages

e The application combines multiple services which were previously spread throughout multiple

applications
e The application promotes the user's well-being
e The application's algorithm offers a way to optimize productivity

11.2.2 Disadvantages

e The application can not be run long enough on the device to be useful to the user for a complete

day

32

e The platform for the application is expensive

e Inputting user information is difficult

11.3 Lessons Learned

There is great risk in developing products and services for upcoming and emerging platforms. First
of all, there is no guarantee that the platform will be successful and remain in production. The
platform that you may be developing on could be discontinued or left unsupported. Additionally, if
the platform is yet to be in production, developer documentation may not exist or may be severely
limited. This provides a constraint for developing on such a device. However, to be successful with
an emerging device, beginning early is key to project completion even after dealing with the risks
and constraints associated.

For larger projects, pairwise programming is beneficial for success. The presence of two pro-
grammers provides a method for code review during the writing process, thus making code more
efficient.

While the product itself is fully functioning, it is disheartening to have a platform fall apart
midway through the development process, leaving ambiguity and concern about the future worth of
the project. Despite the shortcomings and surprises dealt while working with the Google Glass, the

group generally believes that the initial intent for the product was met.

33

Appendix A

Derivation of the Suggestion
Algorithm

The algorithm decides the order in which tasks are given to the user. The higher the weight produced
by the algorithm, the more important a task is. Calculation of a weight is based upon category
completion percentages, category of task, due date, number of skips, and user-given priority level.

1. The base value is established through the time remaining until the due date. Items with sooner
due dates must be given higher final weights.In general, users will not differentiate due dates
which are close to each other. This affect is amplified the further the due date is from the
current date. This led to the establishment of buckets for due dates as follows:

Due Date to Bucket Transformation
Days Remaining | 0-1 | 1-3 | 3-6 | 6-10 | 10-15 | 15+
Bucket 0 1 2 3 4 5

Those items in bucket zero have the most importance. These are assigned a value of 1. The
rest of the buckets must decrease in importance. In determining the relative importance of the
buckets, it was assumed that while bucket 0 is much more important than bucket 1, bucket 4
is only marginally more important than bucket 5. A function which exhibits this behavior is
an exponential function with a base b where 0 < b < 1. Additionally, in order to account for
items that are past due, the buckets are mirrored onto the negative due dates to achieve:

wo = 75\bucket|

2. The three categories were each assigned relative values. These values are multiplied with the
values calculated from the due date. These relative values are used to reduce the importance
of certain tasks. Exercise was deemed half as important as Work. Rest was deemed less
important than Exercise, but not half as important. For this formula, the Work category to
be of full importance so it was assigned a value of 1. This makes Exercise become 0.5. Since
rest should be greater than 0.25 but still fairly low, the team settled on 0.35. These numbers
are multiplied around the base importance.

W1 =T *Wo

1.0 if Category is Work
where 7 = ¢ 0.5 if Category is Exercise
0.35 if Category is Rest

34

3. Tasks in categories that are not being completed are given higher priority over tasks that are
being completed. This ensures that the task will appear with enough time for a user to complete
the task. The available statistic on each category is the percentage of successful completions
in each category. A task with 100% success rate in its category should experience no change,
while a task with a low success rate should become more important. A transformation which
follows these guidelines is:

we = wy * (2 — Category Success Rate)

4. Ttems that are being skipped are reduced in priority. The first skip should give the largest
reduction in priority, with each further skip becoming less effective. After several skips, the
user has essentially declared the task to be very low priority. Using this idea, the effect of
skips on the weight is capped after 3 skips. The same transformation of the data is used as
for due dates, as a skip is roughly equal to a downgrade by one bucket:

w3 = woy * .75FPs

5. Priority is a user-defined category. As the only user-defined category, it was given a very high
weight in assigning weights. A priority 5 task must have a very high weight, while a priority
1 task should have a relatively small weight. In attempting to determine some constants
heuristically with test data, we arrived at the following constants:

Priority to o Transformation

Priority | 1 2 |3 4 5
Q@ B35 .75 | 1| 175] 3

Leading to the equation:
Weight = o * ws

Which when fully expanded is:

Weight = a x 1 % .75/°uketl 4 (2 — Category Success Rate) % .75°FP*

35

Appendix B

Source Code

36

.

%)

16

B.1 Schedule Manager

The scheduler manager works by creating an instance of a Scheduler class and by passing information
into this instance. The instance may then be queried to receive the needed information on the user’s
schedule. The Scheduler class works by sorting Tasks based on their calculated weights. Events
are kept in a chronological order as they are fixed in time. Each instance of the Scheduler makes
use of an instance of the SuggestionSystem class in order to insert suggested items as well as track
information on the data.

B.1.1 Base Classes

The base classes for this system are the Activity, Event, and Task classes. They contain the infor-
mation for an item in a user’s schedule. Event and Task are extensions of an Activity, which is an
abstract class. Instances of Task and Event are passed internally in the Scheduler. Activity defines
the categories of Events and Tasks. The name of the class had to be changed to ActivityS due to a
conflict with a Google Glass predefined class.

Listing B.1: Activity Class

package com.ld.project.activity;

import java.util.Calendar;
import com.ld.project.suggestionSystem . ActivityCategory ;

// Parent class of Tasks and (Calendar) Events
public abstract class ActivityS implements java.io.Serializable{
private static final long serialVersionUID = 1L;

private String id;

private String title;

private Calendar updated;
private ActivityCategory type;

// constructor default type
public ActivityS(String -id, String _title){
this (-id, _title , Calendar.getInstance());

public ActivityS(String -id, String _title , String _type){
this (-id, _title);
setType(-type);

}

// constructor with updated
public ActivityS(String -id, String _title ,
Calendar _updated){
this (-id, _title ,
_updated , "work”);

}

// constructor all variables
public ActivityS(String -id, String _title ,
Calendar _updated, String _type)({
this.setId (-id);
this.setTitle(_title);
this.setUpdated (-updated);
this.setType(_type);

// two Activities are the same activity (with possibly updated information)
// if they have the same id
@Override
public boolean equals(Object obj) {
if (!(obj instanceof ActivityS))

37

56

66

76

96

return false;
if (obj = this)

return true;

ActivityS rhs = (ActivityS) ob
if (getld().equals(rhs.getId())
return true;

Js
)1
}

return false;

public String getld () {
return id;
}

public void setId(String id) {
this.id = id;

public String getTitle() {
if(title = null){
return ”error”;
}

return title;

public void setTitle(String title) {
this.title = title;

public Calendar getUpdated () {
return updated;

public void setUpdated(Calendar updated) {
this.updated = updated;

}
public String getType() {
if (type = ActivityCategory .WORK) {
return ”work”;
}
if (type = ActivityCategory .REST) {
return "rest”;
}
if (type = ActivityCategory .EXERCISE){
return ”exercise”;
}

return ”error”;

}

// work, rest, or exercise
public void setType(String _type) {
String _typeLower = _type.toLowerCase();
if (_typeLower.equals (”work”)){
type = ActivityCategory .WORK;
return;

if (.typeLower.equals(”rest”)){
type = ActivityCategory .REST;
return ;

if (-typeLower.equals(”exercise”)){
type = ActivityCategory .EXERCISE;
return;

38

The Task class is used for non-time specific events. Each of these represents a task that needs
to be done by a certain date. They are organized inside of the Scheduler class. The most important
function in this class is the getWeight() function. Each instance of a Task is capable of determining
how ”important” it is with a number. The higher the number, the more important. The Task class

16

56

implements the Comparable interface in order to make it easier to sort in the Scheduler.

Listing B.2: Task Class

package activity ;

import java.text.SimpleDateFormat;
import java.util.Calendar;

il import suggestionSystem . ActivityCategory ;

import suggestionSystem.SuggestionSystem;
public class Task extends ActivityS implements Comparable<Task> {

private Calendar due;
private String description;
private int priority;
private int skips;

@Override

// Overriding the compareTo method using weight

public int compareTo(Task other) {
Double d = new Double(this.getWeight());
Double oth = new Double(other.getWeight ());
return oth.compareTo(d);

}

// returns near one if important, small if not

public double getWeight () {

?/ //////////////////////////////////

Calculate time left and assign value

/! ///////////////////////////////

// effective current time rounded to nearest hour
Calendar currTime = Calendar. getInstance () ;

int unroundedMinutes = currTime. get (Calendar .MINUTE) ;
int mod = unroundedMinutes % 15;

currTime.add (Calendar .MINUTE, —mod) ;
currTime. set (Calendar .SECOND, 0);

currTime. set (Calendar . MILLISECOND, 0);

double value = due.getTimeInMillis () — currTime.getTimeInMillis () ;
value = Math.abs(value);

// value into seconds

value /= 1000;

// value into minutes

value = (double) Math. floor (value /= 60);

// value into hours

value = (double) Math. floor (value /= 60);

// six cases of categories:
// dueDateValue will be .757|x| where x is a time duration category
double dueDateValue;
// 0 — 1 days
if (value <= 24) {
dueDateValue = 0

// 1 — 3 days

else if (24 < value && value <= 72) {
dueDateValue = 1;

// 3 — 6 days

else if (72 < value && value <= 144) {

39

61 dueDateValue = 2;

}

// 6 — 10 days

else if (144 < value && value <= 240) {
dueDateValue = 3;

// 10 — 15 days
else if (240 < value && value <= 360) {
dueDateValue = 4;

71 // 15+ days
else {
dueDateValue = 5;

}

dueDateValue = Math.pow (.75, dueDateValue);

?/ ITTTLTTTTT DTy

/ Calculate category constant

Ny

76

81 double categoryConst;
if (this.getType() = ActivityCategory .WORK) {
categoryConst = 1;
} else if (this.getType() = ActivityCategory .EXERCISE) {
categoryConst = .5;

86
// ActivityCategory . Rest
else {

categoryConst = .35;

}
// //////////////////////////////////

Calculate completion rate for category

LTI rr 777

double completionRate; // percentage of completed work

96 if (this.getType() = ActivityCategory WORK) {
completionRate = SuggestionSystem . getWorkCompleted () ;

} else if (this.getType() = ActivityCategory .EXERCISE) {
completionRate = SuggestionSystem . getExerciseCompleted () ;

101 // ActivityCategory . Rest
else {
completionRate = SuggestionSystem . getRestCompleted () ;

// returns value between 2 and 1 for multiplication
106 completionRate = (2 — completionRate);

ANy,

// Calculate skip penalty

A Yy,

// value between 0 — 1, 1 being no skips
// cap skips affect at 5 skips;

double skipValue = Math.min (5, skips);
skipValue = Math.pow (.75, skipValue);

A Yy,

// Priority Scale

A Yy,

121 double priorityScale = this.getPriority ();
// ultra—high priority
if (priorityScale = 5) {

priorityScale = 3;

116

126 // high priority
else if (priorityScale = 4) {
priorityScale = 1.75;

40

}

// average priority

131 else if (priorityScale = 3) {
priorityScale = 1;

}

// low priority

else if (priorityScale = 2) {

136 priorityScale = .75;

}

// ultra—low priority

if (priorityScale = 1) {
priorityScale = .35;

/

L~
>~

111777

/11777

quation
/
/

/117
/117
/11117 /117
/111177

146 //

~

~
~ >~~~
S~ B~

~
N
S~ ~

/1]
/17
/1]
/17

~— D S~

// final priority value
return priorityScale * dueDateValue % categoryConst * completionRate
151 * skipValue;

}

// sets updated:
// with type:
156 public Task(String _id, String _title , Calendar _updated,
String _description, Calendar _due, int _priority , String _type) {
super(.id, _title, _updated, _type);
this.setDue(_-due);
this.setDescription(_description);
161 this.setPriority (_priority);
this.resetSkips();
this.setType(_-type);

}

166 // without type:
public Task(String _id, String _title , Calendar _updated,
String _description , Calendar _due, int _priority) {
this(-id, _title, _updated, _description, _due, _priority , "work”);

}

// does not set updated:

// with type:

public Task(String _id, String _title ,String _description, Calendar _due,
int _priority , String _type) {

176 super(.id, _title, _type);

this.setDue(_-due);

this.setDescription(_description);

this.setPriority (-priority);

this.resetSkips();

181 this.setType(_-type);

}

// without type:
public Task(String _id, String _title, String _description ,Calendar _due,
186 int _priority) {
this(-id, -title ,_description, _due, _priority , "work”);
}

// without type, without updated, default priority

191 public Task(String -id, String _title, String _description ,Calendar _due) {
this(-id, _title ,_description, _due, 3, "work”);

}

public Calendar getDue() {
196 return due;

~

41

N

206

N
I}
et

236

246

}

// rounds down to nearest minute

public void setDue(Calendar due) {
due.set (Calendar .SECOND, 0);
due.set (Calendar . MILLISECOND, 0);
this.due = due;

}

public int getPriority () {
return priority;
}

public void setPriority (int _priority) {
if (-priority = 1) {
priority = 1;
return;

if (-priority = 2) {
priority = 2;
return;

if (-priority = 3) {
priority = 3;
return;

if (-priority = 4) {
priority = 4;
return;

}

if (-priority = 5) {
priority = 5;
return;

}

}

public String getDescription () {
return description;

}

public void setDescription(String description) {
this.description = description;

}

public void resetSkips () {
skips = 0;

}

public void skip () {
skips 4+= 1;

@Override

public String toString () {

SimpleDateFormat formatl = new SimpleDateFormat ("MM-dd, -HH:mm”) ;
String formatted = formatl.format (due.getTime());

return "Task.[title=" + this.getTitle() + "_|_priority=" + priority
+ 7.]coodue=" + formatted + ”.|._skips=" + skips + ”"._|_weight="
+ getWeight () + 717

The Event class is a relatively simple class. This is due to the fact that an event in a calendar is
fixed in time. The Event class simply adds a start time, end time, and a description to the Activity

42

class.

Listing B.3: Event Class

package activity;
import java.util.Calendar;
public class Event extends ActivityS {

private String description;
private Calendar start;
private Calendar end;

@Override
public String toString () {

return "Event_[title=" + this.getTitle() + 7]7;
}

// with updated:
// sets type
public Event(String _id, String _title , Calendar _updated,

String _description , Calendar _start, Calendar _end, String _type) {
super(-id, _title, _updated, _type);
this.setDescription(_description);
this.setStart(_-start);
this.setEnd(-end);

}

// doesnt set type
public Event(String _id, String _title , Calendar _updated,
String _description, Calendar _start, Calendar _end) {
super(-id, _title , _updated);
this.setDescription(-description);
this.setStart (_start);
this.setEnd(-end);

}

// without updated:
// with type
public Event(String -id, String _title, String _description ,
Calendar _start , Calendar _end, String _type) {
super (-id, _title, _type);
this.setDescription (_-description);
this.setStart (_start);
this.setEnd(_end);

}

// doesnt set type
public Event(String -id, String _title, String _description ,
Calendar _start, Calendar _end) {
super(-id, _title);
this.setDescription(_description);
this.setStart (_start);
this.setEnd(_end);

}

public String getDescription () {
return description;
}

public void setDescription(String description) {
this.description = description;
}

public Calendar getStart () {
return start;
}

43

68

88

1(

// rounds down to nearest 15 minutes
public void setStart(Calendar start) {
int unroundedMinutes = start.get(Calendar . MINUTE) ;
int mod = unroundedMinutes % 15;
start .add (Calendar .MINUTE, —mod) ;
start .set (Calendar .SECOND, 0);
start .set (Calendar . MILLISECOND, 0);
this.start = start;

}

public Calendar getEnd () {
return end;
}

// rounds up to nearest 15 minutes
public void setEnd(Calendar end) {
int unroundedMinutes = start.get(Calendar . MINUTE) ;
int mod = unroundedMinutes % 15;
end .add (Calendar .MINUTE, 15 — mod);
end. set (Calendar .SECOND, 0);
end . set (Calendar . MILLISECOND, 0);
this.end = end;

B.1.2 Scheduler Class

The Scheduler class is the interface through which the features of the Suggestion System are accessed.
First, an instance of a Scheduler is created. Insertion of a Task or Event is done through the inser-
tActivity() functions. In order to receive a recommendation, requests are made through getEvent()
and getTaskList(). In this iteration, getTaskList() only returns one task at a time. Once a user is
in possession of a Task, t, they may interact with it by calling complete(t), skip(t), or remove(t)
on the instance of the Scheduler. The Scheduler contains an instance of the SuggestionSystem, to
which it reports changes in the data.

Listing B.4: Scheduler class

package scheduler;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Collections;

import suggestionSystem . ActivityCategory;
import suggestionSystem .SuggestionSystem ;
import activity .Event;

import activity .Task;

public class Scheduler {
// index of the last event/task found
private static int lastEvent = —1;

private static int lastTask = —1;

private ArrayList<Task> tasks = new ArrayList<Task>();
private ArrayList<Event> events = new ArrayList<Event>();

private ArrayList<Task> skipTasks = new ArrayList<Task>();
private ArrayList<Task> currTasks = new ArrayList<Task>();

private SuggestionSystem sugSys = new SuggestionSystem (this);
// Initially an empty schedule, the system should make the instance of the

scheduler persistent
// outside of this class.

44

Scheduler () {
}

public Task complete(Task t) {
// report to suggestion system:
sugSys.completed (t);

35 // first check if removal area is before or after where we currently

// are:

int location = tasks.indexOf(t);

if (location <= lastTask && lastTask != —1 && location != —1) {
lastTask ——;

40 }

// cannot remove
if (location = —1) {

System.out. println (”Error , _could _not_remove:.” + t);
45 }

// can remove

else {
tasks.remove(location);
currTasks.remove(t);

50 }

// return a new task
return getTask();

}

public Task skip(Task t) {

// first check if removal area is before or after where we currently
// are:

60 int location = tasks.indexOf(t);

if (location <= lastTask && lastTask != —1) {
lastTask ——;
}
65 // add to skip list

skipTasks.add(t);
// add a skip to it:

t.skip () ;
70 // cannot remove
if (location = —-1) {
System.out. println (”Error, _could _not_remove:.” + t);

}

// can remove to skipped list:
75 else {
tasks.remove(location);
currTasks.remove(t);

}

80 // return a new task
return getTask () ;

}

85 public Task remove(Task t) {
// report to suggestion system:
sugSys.removed (t);

// first check if removal area is before or after where we currently
90 // are:
int location = tasks.indexOf(t);
if (location <= lastTask && lastTask != —1) {
last Task ——;

}

45

// cannot remove
if (location = —1) {
System.out. println (”Error , _could _not_remove:.” + t);
}
100 // can remove
else {
tasks .remove(location);
currTasks.remove(t);

}

// return a new task
return getTask();

}

public void insertActivity (Task t) {
// add to end, it gets sorted when you getTask();
tasks.add(t);

110

115 }

// call on first use

public Task[] getTaskList () {
sugSys.refreshExercise () ;

120 Task[] a = new Task[5];

for (int i = 0; i < 5; i++) {
a[i] = getTask();

return a;

125 }

protected Task getTask() {

int i;
130 sugSys.refreshExercise () ;
Collections .sort (tasks);

// search for the next task
135 i = lastTask + 1;
// look for a task
while (i < tasks.size()) {
Task t = tasks.get(i);
// if this one has already been submitted or it
140 if (currTasks.contains(t)) {
i = lastTask = i + 1;
} else {
// if this is it:
lastTask = i;
145 currTasks.add(t);
return t;
}

}

150 // did not find any more tasks:
System.out. println (”Reached_end”);
lastTask = —1;

// reintegrate the skipped ones:
155 tasks.addAll (skipTasks);

// clear the skiptasks

skipTasks = new ArrayList<Task>();

// if we everything we have has been given:
160 if (tasks.size() = currTasks.size()) {

return null;

// if we have anything left , get more:

46

else {
165 return getTask();

}
}

// returns the next event suggested

170 public Event getEvent () {
int i;
Calendar currTime = Calendar.getInstance();

currTime. set (Calendar .SECOND, 0);
175 currTime. set (Calendar . MILLISECOND, 0);
// search for the next event
i = lastEvent + 1;
// look for an event
while (i < events.size()) {
180 Event e = events.get(i);
// if current time is after the event end, remove that event, don’t
// increase the counter
if (currTime.compareTo(e.getEnd()) > 0) {
System.out. println (”deleted _event_because_its._.over”);
185 events.remove(i);
continue;
}

// current event is now either ongoing or after current time, return
190 // this one

lastEvent = i;

return e;

}

195 // did not find any more events:
System.out. println (”Reached_end”);
lastEvent = —1;

return null;

}

public void insertActivity (Event e) {
int i = 0;

// only insert non—ended activities

205 Calendar currTime = Calendar. getInstance();
currTime. set (Calendar .SECOND, 0);

currTime. set (Calendar . MILLISECOND, 0);

Calendar eventEnd = e.getEnd();
// if current time is after event end, do not add

if (currTime.compareTo(eventEnd) > 0) {
return ;
}

215
// report event to the suggestion system
sugSys.addEvent (e) ;

// if empty

220 if (events.size() = 0) {

events.add(e);
return ;

}

// search for correct place
for (i = 0; i < events.size(); i++) {
// if this date is before or equal to this event, add it here
if (e.getStart().compareTo(events.get(i).getStart()) < 1) {
events.add (i, e);
230 return;

}

N
0

47

}

// if at the end
235 events.add (i, e);
return;

}

public boolean exercisingToday () {

240 // create calendar for end of the day
Calendar endOfDay = Calendar.getInstance () ;
int year = endOfDay. get (Calendar .YEAR) ;

int month = endOfDay. get (Calendar .MONTH) ;
int day = endOfDay. get (Calendar .DATE) ;

245 endOfDay . set (year , month, day, 23, 59, 59);
endOfDay . set (Calendar . MILLISECOND, 999);

// check events:

// if there are events

250 if (events.size() != 0) {

// events are in order by start time:

// look for an event today with exercise category

int i = 0;
while (events.get(i).getStart().before(endOfDay)) {
255 if (events.get(i).getType() = ActivityCategory .EXERCISE) {

return true;
}
i+
}
260 }

// create calendar for start of the day
Calendar beginOfDay = Calendar. getInstance () ;
year = beginOfDay.get (Calendar .YEAR) ;

265 month = beginOfDay . get (Calendar .MONTH) ;

day = beginOfDay . get (Calendar .DATE) ;
beginOfDay . set (year, month, day, 0, 0, 0);
beginOfDay . set (Calendar . MILLISECOND, 0);

270 // check tasks:

if (tasks.size() != 0) {
for (int i = 0; i < tasks.size(); i++) {
Calendar taskDate = tasks.get(i).getDue();
if (taskDate.before(endOfDay) && taskDate. after (beginOfDay)) {
if (tasks.get(i).getType() = ActivityCategory .EXERCISE)
return true;

&
~

}
}
280 }

// checked both, found none: return false
return false;

}

public boolean isBusy () {
Calendar currTime = Calendar.getInstance () ;
currTime. set (Calendar .SECOND, 0);
currTime. set (Calendar . MILLISECOND, 0);

N
00
o

290
int i = 0;
// look for an event that is current
while (i < events.size()) {

Event e = events.get(i);

// if current time is after the event end, remove that event, don’t

// increase the counter

if (currTime.compareTo(e.getEnd()) > 0) {
System.out.println (”deleted _event_because_its_over”);

48

300

305

N

events.remove(1i);
continue;

}

// events are sorted by start time, so if start time > current time
if (e.getStart().compareTo(currTime) > 0) {

return false;
¥

// start time <= current time, so must be in event, busy
else {
return true;

}

// got to end of list, not in an event, not busy
return false;

B.1.3 Suggestion System Class

The Suggestion System works by impacting the data in the Scheduler class to which it belongs. It
makes occasional insertions of Exercise events, as well as monitoring completion statistics in each
category: work, exercise, and rest. The suggestion system is still fairly rudimentary, currently only

making an insert if the user has not exercised at least once in the past day.

Listing B.5: SuggestionSystem class

package suggestionSystem ;

import java.util.ArrayList;
import java.util.Calendar;
import scheduler.Scheduler;
import activity .Event;
import activity .Task;

// system math works on assumption that events take continuous attention

// ex: event: work conference that lasts 2 days would mean 48 hours of work,

hour shifts)
public class SuggestionSystem {
private Scheduler scheduler;

private static double work = 0;

private static double workCompleted = 0;
private static double rest = 0;

private static double restCompleted = O0;
private static double exercise = 0;

private static double exerciseCompleted = 0;

private Calendar lastExercise;
private ArrayList<Task> addedInTasks = new ArrayList<Task>();
private ArrayList<Event> addedInEvents = new ArrayList<Event>();

public SuggestionSystem (Scheduler s) {
this.scheduler = s;
// starting values to prevent heavy changes
addWork (10) ;
addWorkCompleted (10) ;
addRest (10) ;
addRestCompleted (10) ;
addExercise (10);
addExerciseCompleted (10) ;

// set lastExercise to day before
Calendar cal = Calendar.getInstance();

49

not 2 8

cal.add(Calendar .DATE, —1);
lastExercise = cal;

}

39 public void refreshExercise () {
// check if they have completed a SUGGESTED exercise today:
Calendar today = Calendar. getInstance () ;

boolean sameDay = lastExercise.get(Calendar . YEAR) =— today
.get (Calendar .YEAR)
44 && lastExercise.get(Calendar .DAY.OF YEAR) = today

.get (Calendar .DAY_OF_YEAR) ;
// if we have exercised today, do nothing
if (sameDay) {
return;
19
// check if they have/have—scheduled exercise for today
if (!scheduler.exercisingToday ()) {
// if there is no exercise scheduled today, add one in
Calendar endOfDay = Calendar.getInstance ();
54 int year = endOfDay. get (Calendar .YEAR) ;
int month = endOfDay. get (Calendar .MONIH) ;
int day = endOfDay. get (Calendar .DATE) ;
endOfDay . set (year , month, day, 23, 59, 59);
endOfDay . set (Calendar . MILLISECOND, 999);
59 Task t = new Task(” Exercise”, ”Exercise_.Today”, "You_do_not_have_exercise.
scheduled _for _today._Please_arrange_to_hit_the_gym,_go_for_a_jog,h .”
+ 7or_to_spend._some_time._at_the_park”, endOfDay, 4, "exercise”);
addedInTasks.add (t);
scheduler.insertActivity (t);

}
}

// makes the changes to the numbers
public void addEvent(Event e) {
69 if (e = null)

return;
// catalog type:
ActivityCategory type = e.getType();
// get length in hours

74 double length = (e.getEnd().getTimeInMillis() — e.getStart ()
.getTimeInMillis()) / 1000 / 60 / 60;
System.out.println (” 7 4 length);
if (type = ActivityCategory .EXERCISE) {
addExercise (length);
79 } else if (type = ActivityCategory .REST) {
addRest (length) ;
} else if (type = ActivityCategory .WORK) {
addWork (length) ;
}

84
// if this one was one that was added in: delete from our list
if (addedInEvents.contains(e)) {

addedInEvents.remove(e);
}

89 }

public void completed (Task t) {

// catalog type:

ActivityCategory type = t.getType();
94 if (type = ActivityCategory .EXERCISE) {
addExercise (1) ;
addExerciseCompleted (1) ;

lastExercise = Calendar.getInstance () ;
} else if (type = ActivityCategory .REST) {
99 addRest (1) ;
addRestCompleted (1) ;
} else if (type = ActivityCategory .WORK) {

50

addWork (1) ;
addRestCompleted (1) ;

104 }

// if this one was one that was added in: delete from our list
if (addedInTasks.contains(t)) {

addedInTasks.remove(t);
109 }

}

public void removed(Task t) {
// catalog type:
114 ActivityCategory type = t.getType();
if (type = ActivityCategory .EXERCISE) {
addExercise (1) ;
addExerciseCompleted (0) ;
lastExercise = Calendar. getInstance () ;
119 } else if (type = ActivityCategory .REST) {
addRest (1) ;
addRestCompleted (0) ;

} else if (type = ActivityCategory .WORK) {
addWork (1) ;
124 addRestCompleted (0) ;
}

// if this one was one that was added in: delete from our list
if (addedInTasks.contains(t)) {
129 addedInTasks.remove(t);

}
}

134 public double getWork() {
return work;

}

public void addWork(double work) {
139 SuggestionSystem . work 4= work;

}

public static double getWorkCompleted () {
return workCompleted / work;
144 }

public void addWorkCompleted (double workCompleted) {
SuggestionSystem . workCompleted += workCompleted;

}

public double getRest () {
return rest;

}

154 public void addRest(double rest) {
SuggestionSystem .rest 4= rest;

149

}

public static double getRestCompleted () {
159 return restCompleted / rest;

}

public void addRestCompleted(double restCompleted) {
SuggestionSystem .restCompleted += restCompleted;

164

public double getExercise () {
return exercise;

}

169

o1

public void addExercise(double exercise) {
SuggestionSystem . exercise += exercise;

public static double getExerciseCompleted () {
return exerciseCompleted / exercise;
}

public void addExerciseCompleted (double exerciseCompleted) {
SuggestionSystem . exerciseCompleted 4= exerciseCompleted ;
}

52

B.2 Google Glass Application

53

N

0

B.2.1 Google Glass Landing Page

Listing B.6: HomeScreen Class

package com.ld.project.dylma;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;

import android.view.Menu;

import android.view.Menultem;
import android.view.MotionEvent;
import android.view.View;

import android.view.ViewGroup;
import android.view.Window;

import android.view.WindowManager ;
import android.widget.AdapterView;
import android.widget.Toast;

import com. google.android. glass.touchpad. Gesture;

import com.google.android. glass.touchpad. GestureDetector;
import com.google.android. glass.widget.CardBuilder;
import com.google.android. glass.widget.CardScrollAdapter;
import com. google.android. glass.widget.CardScrollView ;
import com.ld.project.activity .Event;

import com.ld.project.activity .Task;

import com.ld.project.scheduler.Scheduler;

import com.ld.project.scheduler.SchedulerWrapper;

import java.io.FileInputStream ;
import java.io.FileNotFoundException;
import java.io.lIOException;

import java.io.ObjectInputStream;

public class HomeScreen extends Activity {
private CardScrollView mCardScroller;
private View mView;
private GestureDetector mGestureDetector;
public static Scheduler suggestionSource;

public static Task taskList;
public static Event eventCurrent;
public static Event eventFuture;

@QOverride
public boolean onCreatePanelMenu(int featureld , Menu menu){
if (featureld = Window.FEATURE.OPTIONS_PANEL) {
getMenulnflater ().inflate (R.menu.main, menu);
return true;

}

return super.onCreatePanelMenu(featureld , menu);

@Override
public boolean onMenultemSelected (int featureld , Menultem item) {
if (featureld = Window.FEATURE.OPTIONS PANEL) {
switch (item.getItemId()) {
case R.id.select_task:
moveToSecondScreen (” SelectTask”) ;
break ;
/+case R.id.skip_task:

54

~
o

~
~

0

0

Toast . makeText (getApplicationContext (), ”SKIP TASK NOT
IMPLEMENTED” , Toast .LENGTH.LONG) . show () ;
break;*/
case R.id.select_activity:
moveToSecondScreen (” SelectActivity”);
break ;
}

return true;

}

return super.onMenultemSelected (featureld , item);

public void moveToSecondScreen(String activity){
Intent resultsIntent = new Intent(this, ResultsActivity.class);
resultsIntent . putExtra(ResultsActivity .SEARCH, activity);
startActivity (resultsIntent);

private GestureDetector createGestureDetector (Context context) {
GestureDetector gestureDetector = new GestureDetector (context);

//Create a base listener for generic gestures
gestureDetector.setBaseListener (new GestureDetector.BaseListener () {

@Override
public boolean onGesture(Gesture gesture) {
if (gesture = Gesture.TAP) {

openOptionsMenu () ;
return true;

} /xelse if (gesture = Gesture . TWO.TAP) {
// do something on two finger tap
return true;

} else if (gesture = Gesture.SWIPERIGHT) ({
// do something on right (forward) swipe
return true;

} else if (gesture = Gesture .SWIPELEFT) {
// do something on left (backwards) swipe
return true;

} x/else if (gesture = Gesture .SWIPEDOWN) {
finish () ;

}

return false;

}
s

gestureDetector.setFingerListener (new GestureDetector.FingerListener () {
@Override
public void onFingerCountChanged(int previousCount, int currentCount) {
// do something on finger count changes
}

D

gestureDetector.setScrollListener (new GestureDetector. ScrollListener () {
@Override
public boolean onScroll(float displacement, float delta, float velocity)

// do something on scrolling
return true;

}
s

return gestureDetector;

}

@Override
public boolean onGenericMotionEvent (MotionEvent event) {

95

if (mGestureDetector != null) {
132 return mGestureDetector.onMotionEvent (event) ;

return false;

protected void onCreate(Bundle bundle) {
super.onCreate (bundle) ;

getWindow () . addFlags (WindowManager . LayoutParams . FLAG_KEEP_SCREEN_ON) ;
mView = buildView () ;
mCardScroller = new CardScrollView (this);
mCardScroller.setAdapter (new CardScrollAdapter () {
147 Q@Override
public int getCount () {
return 1;
}

@Override
152 public Object getltem(int position) {
return mView;

}

@QOverride

public View getView(int position, View convertView, ViewGroup parent) {
157 return mView;

}
@QOverride

public int getPosition (Object item) {
if (mView.equals (item)) {
162 return O;

return AdapterView .INVALID _POSITION;

D

// Handle the TAP event.
mCardScroller.setOnltemClickListener (new AdapterView.OnlItemClickListener () {

167

@Override
public void onltemClick (AdapterView<?> parent, View view, int position ,
long id) {
172 openOptionsMenu () ;
}
1
if (HomeScreen.suggestionSource = null) {
177 HomeScreen . suggestionSource = SchedulerWrapper.getSchedule () ;
}
eventCurrent = suggestionSource.getCurrentEvent () ;
eventFuture = suggestionSource.getFutureEvent () ;

if (taskList= null) {
taskList = suggestionSource.getTask();
}

187 mGestureDetector = createGestureDetector (this);
setContentView (mCardScroller) ;

}

@Override

protected void onResume() {
super .onResume () ;
mCardScroller. activate () ;

192

197 }

56

/*
private void readFromFile() {
if (suggestionSource = null) {
202 try {
FileInputStream fileIn = new FilelnputStream (”../DyLMA/src/taskList .
ser”);
ObjectInputStream in = new ObjectInputStream (fileIn);
suggestionSource = (Scheduler) in.readObject ();
in.close ();
207 fileIn .close ();

}

// file not found: this is the first time program loaded: load
// imaginary users with default values

212 catch (FileNotFoundException nF) {
System.out.println (” File not found exception”);
suggestionSource = new Scheduler () ;

} catch (IOException i) {

217 i.printStackTrace () ;

return;

} catch (ClassNotFoundException c¢) {
System.out.println (” Schedule not found”);
c.printStackTrace () ;

222 return;

}

// customer list exists, not rewriting it
227 else {
System . out
.println (" customer list already exists, no need to rewrite”);

232 }

*/

@QOverride
237 protected void onPause() {
mCardScroller. deactivate () ;

super.onPause () ;

}

242
/%
* Builds a Glass styled ”Hello World!” view using the {@link CardBuilder} class.
*/
private View buildView () {
247 /*CardBuilder card = new CardBuilder(this, CardBuilder.Layout.TEXT);
card.setText (R.string . hello_world);
return card.getView () ;
252 CardBuilder card = new CardBuilder (this);
card.setText (R.string .app_name) ;
card .setImageLayout (CardBuilder.ImageLayout .LEFT) ;
card .addImage (R.drawable.logo) ;
return card.getView () ;
257 */
View viewl = new CardBuilder (this, CardBuilder.Layout.COLUMNS)
.setText (R.string .app-name) //”DyLMA”
262 .addImage (R. drawable.logo)

.getView () ;

57

return viewl;

58

19

39

19

64

B.2.2 User

Viewed Home Screens

Listing B.7: ResultsActivity Class

package com.ld .

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

import
import
import
import
import

import
import
import
import
import
import
import
import
import

/%

android .
android
android
android .
android .

android . os

.Bundle;

project .dylma;

app. Activity ;
.content . Context;
.content.Intent ;
graphics. Color;
os . AsyncTask;

android . view .Menu;

android . view . Menultem;

android . view . View;

android . view . ViewGroup;

android . view . Window ;

android . view . WindowManager ;

android . widget . AdapterView ;

android . widget . ArrayAdapter;

android . widget . HorizontalScrollView ;

android . widget . TextView;

android . widget . Toast ;

com. google.android . glass.touchpad. Gesture;

com. google.android. glass.touchpad. GestureDetector;
com. google.android . glass . widget.CardBuilder;
com. google .android . glass . widget . CardScrollAdapter;
com. google .android . glass . widget . CardScrollView ;
java.text.SimpleDateFormat;
java.util.ArrayList;

java.util.Arrays;

java.util.Calendar;

java.util.Date;

java.util. List;

com.ld.project .dylma.DetailedViewTask;
com.ld . project.activity .x*;
com.ld.project.scheduler.Scheduler;

TODO Use temboo—android—sck—core —2.7.0.jar to extract google calendar information
TODO Find out

TODO All

*/

public class

private
private

how to

import
syncs should be in

int numEvents = 0;
int numTasks = 0;

private String screenType;

/+Contains

all the info that

private class cardInfo {
String time;

String taskname;
public cardInfo(String x, String y) {

iCloud info
the ASyncTask doInBackground method

ResultsActivity extends Activity {

will be displayed on the schedulex/

time = y;
taskname = x;
}
private String[] dummy = new String[10];
private final SimpleDateFormat mSDF = new SimpleDateFormat ("MVM.d____h:mm_a”);

public

static

final String SEARCH = ”search”;
private String mTask=" Android” ;

99

private CardScrollView mCardScroller;
private List<View> mCards;

private TaskAdapter mAdapter;

private GestureDetector mGestureDetector;
69 private ArrayAdapter<String> ad;

private HorizontalScrollView lv;

public void replaceCardWithNewOne () {
cardInfo ci = new cardInfo(mTask, mSDF.format (new Date()));
74 updateView (ci) ;

}

public View populateCard (cardInfo ci){

79 if (ci.taskname.equals(” SelectActivity”)){

screenType = 7 ActivityScreen”;
else{
screenType = ”TaskScreen”;
84 }
for (int

i=0; i< 10; i++) {
dummy[i] = "Item.” + 1i;

89 }

94
/% for building tasklist instead of single task
taskList = HomeScreen.suggestionSource.getTaskList () ;

for (int i = 0; i < 5; i++){

99 if (taskList [i] != null){
numTasks++;

}

}
*/

104 // for single task
109 // creating the card array
mCards = new ArrayList<View>();

if (ci.taskname.equals(” SelectActivity”)) {
114 // how many events there are:

if (numEvents = 1) {
CardBuilder card = new CardBuilder (this, CardBuilder.Layout.
EMBED_.INSIDE)

.setEmbeddedLayout (R.layout .layout) ;
119

View cardView = card.getView () ;

TextView date = (TextView) cardView.findViewBylId (R.id.date);
date.setText (ci.time);

24 TextView status = (TextView) cardView.findViewBylId (R.id.status);
status.setText (” 75

status.setTextColor (Color .RED) ;

TextView toDo = (TextView) cardView.findViewById(R.id.current);
toDo.setText (” Currently:”);

129 TextView title = (TextView) cardView.findViewById(R.id.event_title);
title .setText (HomeScreen.eventCurrent.getTitle ());

TextView upcoming = (TextView) cardView.findViewById(R.id.upcoming);

o

60

w

149

5¢

164

169

179

189

194

upcoming . setText (” Coming _Up:”) ;

TextView next = (TextView) cardView.findViewBylId (R.id.next);
next.setText (”No_More_Events”) ;

TextView nextTime = (TextView) cardView.findViewById (R.id.nexttime);
nextTime.setText (7 (——:——)");

TextView nextDay = (TextView) cardView.findViewById (R.id.date_dif);
nextDay.setText (””);

mCards. add (cardView) ;
return cardView ;

}

if (numEvents = 2) {
CardBuilder card = new CardBuilder (this, CardBuilder.Layout.
EMBED_INSIDE)
.setEmbeddedLayout (R.layout.layout);

View cardView = card.getView () ;

TextView date = (TextView) cardView.findViewBylId (R.id.date);
date.setText (ci.time);

TextView status = (TextView) cardView.findViewBylId (R.id.status);
status.setText (” 75

status.setTextColor (Color .RED) ;

TextView toDo = (TextView) cardView.findViewById(R.id.current);
toDo.setText (” Currently:”);

TextView title = (TextView) cardView.findViewById(R.id.event_title);
title .setText (HomeScreen.eventCurrent.getTitle ());

TextView upcoming = (TextView) cardView.findViewById (R.id.upcoming);
upcoming . setText (” Coming .Up:”) ;

TextView next = (TextView) cardView.findViewBylId (R.id.next);
next.setText (HomeScreen. eventFuture. getTitle ());

TextView nextTime = (TextView) cardView.findViewBylId (R.id.nexttime);

SimpleDateFormat formatDateTime = new SimpleDateFormat (”h:mm_a”);

String startTime = formatDateTime.format (HomeScreen.eventFuture.
getStart () .getTime());

String endTime = formatDateTime.format(HomeScreen.eventFuture.getEnd
() . getTime () ;

// if on the same day, trim off date

String startDay = startTime.substring (0,5);

String endDay = endTime.substring (0,5);

if (startDay.equals (endDay)){

endTime = endTime.substring (6) ;
}

nextTime.setText (startTime + ”.—_.” + endTime);

TextView nextDay = (TextView) cardView.findViewBylId(R.id.date_dif);
SimpleDateFormat formatDate = new SimpleDateFormat ("MM/dd”) ;

String startDate = formatDate.format (HomeScreen.eventFuture.getStart
() . getTime ()) ;
String endDate = formatDate.format (HomeScreen.eventFuture.getEnd() .

getTime ()) ;

String today = formatDate.format (Calendar.getInstance ().getTime());
Calendar tomorrowCal = Calendar. getInstance () ;

tomorrowCal.add (Calendar .DATE, 1);

String tomorrow = formatDate.format (tomorrowCal.getTime());

if (startDate.equals(today)) {
startDate = "Today”;

if (endDate. equals (today)){
endDate = "Today” ;

if (startDate.equals (tomorrow)) {
startDate = ”Tomorrow” ;
}

61

if (endDate. equals (tomorrow)) {
endDate = ”Tomorrow” ;
}

199
// if it starts and ends on the same day
if (startDate.equals (endDate)){

nextDay .setText (startDate) ;
}

204 // different days
else {
nextDay.setText (startDate + ”"_.—_.” + endDate);

}

209
mCards. add (cardView) ;
return cardView;

if (ci.taskname.equals(” SelectTask”)) {
for (int 1 = 1; i < 2; i++) {
CardBuilder card = new CardBuilder (this, CardBuilder.Layout.
EMBED_INSIDE)
.setEmbeddedLayout (R.layout . tasklayout);
219

View cardView = card.getView () ;

TextView date = (TextView) cardView.findViewBylId (R.id.date);
date.setText (ci.time);

TextView status = (TextView) cardView.findViewBylId (R.id.status);
status.setText (” 75

status .setTextColor (Color .GREEN) ;

TextView toDo = (TextView) cardView.findViewBylId(R.id.toDo);
toDo.setText (” Tasks_to._Do:");

229 if (numTasks = 1){

TextView title = (TextView) cardView.findViewBylId (R.id.task_list)

N
N}

title.setText (HomeScreen. taskList.getTitle ());

else {
234 TextView title = (TextView) cardView.findViewById (R.id.task_list)

title.setText (” Tasks_.Completed”);
}
// sets up the upcoming event
if (numEvents > 0) {
239 TextView upcoming = (TextView) cardView.findViewBylId(R.id.
upcoming) ;
upcoming . setText (7 Coming Up:”) ;
TextView next = (TextView) cardView.findViewByld (R.id.next);
next.setText (HomeScreen.eventFuture. getTitle ());
TextView nextTime = (TextView) cardView.findViewById(R.id.
nexttime) ;
244 SimpleDateFormat formatDateTime = new SimpleDateFormat (”h:mm.a”);

String startTime = formatDateTime.format (HomeScreen.eventFuture.
getStart () .getTime());

String endTime = formatDateTime.format (HomeScreen.eventFuture.
getEnd () .getTime ()) ;

249
// if on the same day, trim off date
String startDay = startTime.substring (0,5);
String endDay = endTime.substring (0,5);

if (startDay.equals (endDay)){

254 endTime = endTime.substring (6);

}

62

264

269

&
~

289

294

299

314

nextTime.setText (startTime + ”.—_.” + endTime);

TextView nextDay = (TextView) cardView.findViewBylId(R.id.date_dif
)

SimpleDateFormat formatDate = new SimpleDateFormat ("MM/dd”) ;

String startDate = formatDate.format (HomeScreen.eventFuture.
getStart () .getTime());
String endDate = formatDate.format(HomeScreen.eventFuture.getEnd

() -getTime ()) ;

String today = formatDate.format(Calendar.getInstance () .getTime()
)

Calendar tomorrowCal = Calendar. getInstance () ;

tomorrowCal.add (Calendar .DATE, 1);

String tomorrow = formatDate.format (tomorrowCal.getTime ());

if (startDate.equals (today)) {
startDate = ”Today” ;

if (endDate. equals (today)){
endDate = ”Today” ;

if (startDate.equals (tomorrow)) {
startDate = ”Tomorrow” ;

if (endDate. equals (tomorrow)) {
endDate = ”Tomorrow” ;
}

if (startDate.equals (endDate)){
nextDay .setText (startDate)

)

else {
nextDay.setText (startDate + ”7_.—_” 4 endDate);
}

else{

TextView upcoming = (TextView) cardView.findViewBylId(R.id.
upcoming) ;

upcoming . setText (7 Coming _Up:”) ;

TextView next = (TextView) cardView.findViewByld (R.id.next);

next.setText (?”No_More_Events”) ;

TextView nextTime = (TextView) cardView.findViewBylId (R.id.
nexttime) ;

nextTime.setText (7——:——");

}

mCards.add (cardView) ;
return cardView;

}

//mCardScroller.setSelection (0) ;
return new View(null);

}

@Override
public boolean onCreatePanelMenu(int featureld , Menu menu) {
if (featureld = Window.FEATURE.OPTIONS_PANEL) {

if (screenType.equals(” ActivityScreen”)){
getMenulnflater ().inflate (R.menu. menu.results, menu);

else {

63

319

334

339

349

359

364

369

getMenulnflater () .inflate (R.menu. menu_results_task , menu);

}

return true;

}

return super.onCreatePanelMenu (featureld , menu);

}

@QOverride
public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
if (screenType.equals(” ActivityScreen”)){
getMenulnflater ().inflate (R.menu. menu_results, menu);

else{
getMenulnflater () .inflate (R.menu. menu_results_task , menu);
}

return true;

private GestureDetector createGestureDetector (Context context) {
GestureDetector gestureDetector = new GestureDetector (context);

//Create a base listener for generic gestures
gestureDetector.setBaseListener (new GestureDetector.BaseListener () {

@Override
public boolean onGesture(Gesture gesture) {
if (gesture = Gesture.TAP) {

openOptionsMenu () ;
return true;

} else if (gesture = Gesture . TWO.TAP) {
// do something on two finger tap
return true;

} else if (gesture = Gesture .SWIPERIGHT) {
// do something on right (forward) swipe
return true;

} else if (gesture =— Gesture .SWIPELEFT) {
// do something on left (backwards) swipe
return true;

else if (gesture = Gesture .SWIPEDOWN) {

finish () ;

}

return false;

}
1)

gestureDetector.setFingerListener (new GestureDetector.FingerListener () {
@Override
public void onFingerCountChanged(int previousCount, int currentCount) {
// do something on finger count changes

b

gestureDetector.setScrollListener (new GestureDetector. ScrollListener () {
@Override
public boolean onScroll(float displacement, float delta, float velocity)

// do something on scrolling
return true;

}
s

return gestureDetector;

}

@Override
public boolean onMenultemSelected (int featureld , Menultem item) {
if (featureld = Window.FEATURE.OPTIONS_PANEL) {

64

389

394

399

104

434

139

Intent detailedIntent ;
switch (item.getItemId()) {
case R.id.activity_-is_.complete:
// complete the task: if more that one, need to identify which
one
HomeScreen. taskList = HomeScreen. suggestionSource.complete (
HomeScreen . taskList) ;
Toast .makeText (get ApplicationContext (), ”Activity .Completed” ,
Toast .LENGTHLONG) . show () ;
replaceCardWithNewOne () ;
break ;
case R.id.remove_activity:
// remove the task: if more that one, need to identify which one
HomeScreen. taskList = HomeScreen.suggestionSource.remove (
HomeScreen. taskList) ;
Toast . makeText (getApplicationContext (), 7 Activity _Removed” , Toast
.LENGTHLONG) .show () ;
replaceCardWithNewOne () ;
break ;
case R.id.skip_activity:
// skip the task: if more that one, need to identify which one
HomeScreen. taskList = HomeScreen.suggestionSource.skip (HomeScreen
.taskList);
Toast . makeText (getApplicationContext (), ?Activity .Skipped”, Toast
.LENGTHLONG) . show () ;
replaceCardWithNewOne () ;
break ;
case R.id.current_details:
detailedIntent = new Intent(this, DetailedView.class);
detailedIntent . putExtra (SEARCH, HomeScreen.eventCurrent);
startActivity (detailedIntent);
break;
// more info on tasks
case R.id.task_details:
detailedIntent = new Intent(this, DetailedViewTask.class);
detailedIntent . putExtra (SEARCH, HomeScreen. taskList);
startActivity (detailedIntent);
break ;
// more info on future event
case R.id.event_details:
detailedIntent = new Intent (this, DetailedView.class);
detailedIntent . putExtra (SEARCH, HomeScreen.eventFuture);
startActivity (detailedIntent);
break ;
}

return true;

}

return super.onMenultemSelected (featureld , item);

@Override
protected void onCreate(Bundle bundle) {
super.onCreate (bundle) ;

getWindow () . addFlags (WindowManager . LayoutParams . FLAG_KEEP_SCREEN_ON) ;
if (getIntent ().hasExtra (SEARCH)) {

mTask = getIntent ().getStringExtra (SEARCH) ;
}

cardInfo ci = new cardInfo(mTask, mSDF.format (new Date()));

65

449

464

469

484

489

494

499

504

/% for deciding which slide to go into
// populating the list of tasks and events

numEvents = 0;
numTasks = 0;
if (suggestionSource.isBusy ()) {
eventCurrent = suggestionSource.getCurrentEvent () ;
eventFuture = suggestionSource.getFutureEvent () ;
if (eventCurrent != null && eventFuture != null){
numEvents = 2;
else if(eventFuture != null){
numEvents = 1;

}
}

// mnot busy: free state

else {
// for single task
taskList = suggestionSource.getTask();
if (taskList = null) {
numTasks = 0;
} else
numTasks = 1;
eventFuture = suggestionSource.getFutureEvent () ;
if (eventFuture != null) {
numEvents = 1;

}
*/

// populating the list of tasks and events

numEvents = 0;
numTasks = 0;
HomeScreen . eventCurrent = HomeScreen.suggestionSource.getCurrentEvent () ;
HomeScreen. eventFuture = HomeScreen.suggestionSource . getFutureEvent () ;
if (HomeScreen.eventCurrent != null && HomeScreen.eventFuture != null){
numEvents = 2;
else if (HomeScreen.eventFuture != null) {
numEvents = 1;

// mnot busy: free state
// for single task
if (HomeScreen. taskList== null) {

HomeScreen . taskList = HomeScreen.suggestionSource.getTask () ;
}
if (HomeScreen.taskList = null) {
numTasks = 0;
} else {
numTasks = 1;

}

updateView (ci) ;

}

private void updateView (cardInfo ci) {
populateCard (ci);
mCardScroller = new CardScrollView (this);
mAdapter = new TaskAdapter () ;
mCardScroller.setAdapter (mAdapter) ;
mCardScroller. activate () ;
// Handle the TAP event.
mCardScroller.setOnltemClickListener (new
AdapterView. OnltemClickListener () {
@Override
public void onltemClick (AdapterView<?> parent, View view, int position,
long id) {

66

openOptionsMenu () ;
514 }
P

mGestureDetector = createGestureDetector (this);
setContentView (mCardScroller) ;

519 }

/+*@Override
public boolean onOptionsItemSelected (Menultem item) {

// Handle action bar item clicks here. The action bar will
524 // automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.
int id = item.getItemId () ;

//noinspection SimplifiableIfStatement

529 if (id = R.id.action_settings) {
return true;

}

return super.onOptionsItemSelected (item);

534 Y}/

// internal task to make the card scroll work
private class TaskAdapter extends CardScrollAdapter {
539 //private List<CardBuilder> mCards;
//public TaskAdapter(List<> cards){
// this .mCards = cards;

//}
@Override

544 public int getCount() {
return mCards. size () ;
}

@Override
public Object getltem (int i) {
549 return mCards. get (1) ;

}

@Override

public View getView(int i, View view, ViewGroup viewGroup) {
return mCards. get (1) ;

554 }

@Override
public int getViewTypeCount() { return 1; }
@Override
public int getItemViewType(int position) { return 0; }
559 @Override
public int getPosition (Object o) {
return mCards. indexOf (o) ;
}

}

private class calSync extends AsyncTask<Void, Void, Void> {

@Override
protected Void doInBackground(Void... params) {
569

//TODO: Sync calendars here

return null;

o
=
N

67

19

B.2.3 Detailed Views on Google Glass

Listing B.8: Detailed View For Event

package com.ld.project.dylma;

import android.app.Activity;
import android.content.Context;
import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.view.WindowManager ;
import android.widget.AdapterView;
import android.widget.TextView;

import com.google.android. glass.touchpad. Gesture;

import com.google.android. glass.touchpad. GestureDetector;
import com.google.android. glass.widget.CardBuilder;
import com.google.android. glass.widget.CardScrollAdapter;
import com.google.android. glass.widget.CardScrollView;

import java.text.SimpleDateFormat;
import java.util.ArrayList;

import java.util.Calendar;

import java.util.List;

import com.ld.project.activity .x;

public class DetailedView extends Activity {

private String mTask=" Android” ;

public static final String SEARCH = ”search”;
List <View> mCards;

private CardScrollView mCardScroller;

private TaskAdapter mAdapter;

private GestureDetector mGestureDetector;
private Event displayEvent;

@Override
protected void onCreate(Bundle bundle) {
super.onCreate (bundle) ;
getWindow () . addFlags (WindowManager . LayoutParams . FLAG_ KEEP_SCREEN_ON) ;

if (getIntent () .hasExtra (SEARCH)) {
displayEvent = (Event) getIntent ().getSerializableExtra (SEARCH) ;
}

populateCard () ;

mCardScroller = new CardScrollView (this);
mAdapter = new TaskAdapter () ;
mCardScroller.setAdapter (mAdapter) ;
mCardScroller. activate () ;

// Handle the TAP event.
mCardScroller.setOnltemClickListener (new

0 A

AdapterView.OnltemClickListener

@Override

public void onlItemClick(

AdapterView<?> parent, View view, int position, long id) {

}

openOptionsMenu () ;

1)

mGestureDetector = createGestureDetector (this);

68

64

69

84

94

99

104

setContentView (mCardScroller) ;

}

private GestureDetector createGestureDetector (Context context) {
GestureDetector gestureDetector = new GestureDetector(context);

//Create a base listener for generic gestures
gestureDetector.setBaseListener (new GestureDetector.BaseListener () {

@Override
public boolean onGesture(Gesture gesture) {
if (gesture = Gesture.TAP) {

//do something if one finger tap
return true;

} else if (gesture =— Gesture . TWOTAP) {
// do something on two finger tap
return true;

} else if (gesture = Gesture.SWIPERIGHT) {
// do something on right (forward) swipe
return true;

} else if (gesture = Gesture .SWIPELEFT) {
// do something on left (backwards) swipe
return true;

} else if (gesture = Gesture .SWIPEDOWN) {
finish () ;

return false;

}
D

gestureDetector.setFingerListener (new GestureDetector.FingerListener () {
@Override
public void onFingerCountChanged(int previousCount, int currentCount) {
// do something on finger count changes

1}

gestureDetector.setScrollListener (new GestureDetector. ScrollListener () {
@Override
public boolean onScroll(float displacement, float delta, float velocity)

// do something on scrolling
return true;

}
D

return gestureDetector;

}
public void populateCard () {

// creating the card array
mCards = new ArrayList<View>();

for (int i = 1; i < 2; i4+4) {
CardBuilder card = new CardBuilder (this, CardBuilder.Layout.EMBED_INSIDE)
.setEmbeddedLayout (R.layout . detailedlayout);
View cardView = card.getView () ;
TextView asdf = (TextView) cardView.findViewById(R.id. title);
asdf.setText (displayEvent. getTitle());

asdf = (TextView) cardView.findViewBylId (R.id.category);
String categ = displayEvent.getType();
asdf.setText (categ.toUpperCase());

SimpleDateFormat formatDate = new SimpleDateFormat ("MVM_d”) ;

69

139

164

169

79

189

194

SimpleDateFormat formatTime = new SimpleDateFormat(”_._.__h:mmm_a”);

String today = formatDate.format(Calendar.getInstance () .getTime());
Calendar tomorrowCal = Calendar.getInstance () ;

tomorrowCal.add (Calendar .DATE, 1);

String tomorrow = formatDate.format (tomorrowCal.getTime());

String startDate = formatDate.format(displayEvent.getStart().getTime());
String endDate = formatDate.format (displayEvent.getEnd () .getTime());

if (startDate.equals(today)) {
startDate = ”Today”;

if (endDate. equals (today)){
endDate = ”Today” ;

if (startDate.equals (tomorrow)) {
startDate = ”Tomorrow” ;

if (endDate. equals (tomorrow)) {
endDate = ”Tomorrow” ;
}

asdf = (TextView) cardView.findViewBylId (R.id.start);
asdf.setText (
startDate + formatTime.format(displayEvent.getStart().getTime()))

asdf = (TextView) cardView.findViewById (R.id.end);
asdf.setText (
endDate + formatTime.format (displayEvent.getEnd().getTime()));

asdf = (TextView) cardView.findViewBylId (R.id.description);

asdf.setText (displayEvent.getDescription());
mCards.add (cardView) ;

}

/+*@Override

public boolean onCreateOptionsMenu (Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenulnflater () .inflate (R.menu. menu_detailed_view , menu) ;
return true;

b/

/+*@Override

public boolean onOptionsItemSelected (Menultem item) {
// Handle action bar item clicks here. The action bar will
// automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.
int id = item.getItemId () ;

//noinspection SimplifiableIfStatement

if (id = R.id.action_settings) {
return true;

}

return super.onOptionsItemSelected (item) ;

b/

private class TaskAdapter extends CardScrollAdapter {
//private List<CardBuilder> mCards;
//public TaskAdapter(List<> cards){
// this .mCards = cards;

I}

70

@Override
public int getCount() {
199 return mCards. size () ;

}

@Override

public Object getltem (int i) {
return mCards. get (1) ;

204 }

@Override
public View getView(int i, View view, ViewGroup viewGroup) {
return mCards. get (i);

209 @Override
public int getViewTypeCount() { return 1; }
@Override
public int getltemViewType(int position) { return 0; }
@Override
214 public int getPosition(Object o) {

return mCards. indexOf (o) ;

}

71

30

40

60

Listing B.9: Detailed View for Tasks

package com.ld.project .dylma;

import android.app.Activity;
import android.content.Context;
import android.os.Bundle;

import android.view . View;

import android.view.ViewGroup;
import android.view.WindowManager ;
import android.widget.AdapterView;
import android.widget.TextView;

import com.google.android. glass.touchpad. Gesture;

import com.google.android. glass.touchpad. GestureDetector;
import com.google.android. glass.widget.CardBuilder;
import com.google.android. glass.widget.CardScrollAdapter;
import com.google.android. glass.widget.CardScrollView ;

import java.text.SimpleDateFormat;
import java.util.ArrayList;

import java.util.Calendar;

import java.util.List;

import com.ld.project.activity .x;

public class DetailedView extends Activity {

private String mTask="Android”;

public static final String SEARCH = ”search”;
List <View> mCards;

private CardScrollView mCardScroller;

private TaskAdapter mAdapter;

private GestureDetector mGestureDetector;
private Event displayEvent;

@QOverride
protected void onCreate(Bundle bundle) {
super.onCreate (bundle) ;
getWindow () . addFlags (WindowManager . LayoutParams . FLAG_KEEP_SCREEN_ON) ;

if (getIntent ().hasExtra (SEARCH)) {
displayEvent = (Event) getIntent().getSerializableExtra (SEARCH) ;
}

populateCard () ;
mCardScroller = new CardScrollView (this);
mAdapter = new TaskAdapter () ;
mCardScroller.setAdapter (mAdapter) ;
mCardScroller. activate () ;
// Handle the TAP event.
mCardScroller.setOnltemClickListener (new
AdapterView.OnltemClickListener

@Override
public void onltemClick (
AdapterView<?> parent, View view, int position, long id) {
openOptionsMenu () ;
}

1)

mGestureDetector = createGestureDetector (this);
setContentView (mCardScroller) ;

72

90

110

130

private GestureDetector createGestureDetector (Context context) {
GestureDetector gestureDetector = new GestureDetector (context);

//Create a base listener for generic gestures
gestureDetector.setBaseListener (new GestureDetector.BaseListener () {

@Override
public boolean onGesture(Gesture gesture) {
if (gesture = Gesture.TAP) {

//do something if one finger tap
return true;

} else if (gesture = Gesture TWOTAP) {
// do something on two finger tap
return true;

} else if (gesture =— Gesture . SWIPERIGHT) {
// do something on right (forward) swipe
return true;

} else if (gesture = Gesture .SWIPELEFT) {
// do something on left (backwards) swipe
return true;

else if (gesture = Gesture .SWIPEDOWN) {
finish () ;

}

return false;

}
D

gestureDetector.setFingerListener (new GestureDetector.FingerListener () {
@Override
public void onFingerCountChanged(int previousCount, int currentCount) {
// do something on finger count changes
}

s

gestureDetector.setScrollListener (new GestureDetector. ScrollListener () {
@Override
public boolean onScroll(float displacement, float delta, float velocity)

// do something on scrolling
return true;

}
D

return gestureDetector;

}

public void populateCard () {

// creating the card array
mCards = new ArrayList<View>();

for (int 1 = 1; i < 2; i++4) {
CardBuilder card = new CardBuilder (this, CardBuilder.Layout.EMBED_INSIDE)
.setEmbeddedLayout (R.layout.detailedlayout);
View cardView = card.getView () ;

TextView asdf = (TextView) cardView.findViewById(R.id. title);
asdf.setText (displayEvent.getTitle ());

asdf = (TextView) cardView.findViewById (R.id.category);
String categ = displayEvent.getType();
asdf.setText (categ.toUpperCase());

SimpleDateFormat formatDate = new SimpleDateFormat ("MVMVLA”) ;
SimpleDateFormat formatTime = new SimpleDateFormat(”_._.__h:mm_a”);

73

140

160

165

180

190

195

String today = formatDate.format (Calendar.getInstance () .getTime());
Calendar tomorrowCal = Calendar.getInstance () ;

tomorrowCal.add (Calendar .DATE, 1);

String tomorrow = formatDate.format (tomorrowCal.getTime());

String startDate = formatDate.format(displayEvent.getStart().getTime());
String endDate = formatDate.format (displayEvent.getEnd () .getTime());

if (startDate.equals(today)) {
startDate = ”Today” ;

if (endDate. equals (today)){
endDate = "Today” ;

if (startDate.equals (tomorrow)) {
startDate = ”Tomorrow” ;

if (endDate. equals (tomorrow)) {
endDate = ”Tomorrow” ;
}

asdf = (TextView) cardView.findViewBylId (R.id.start);
asdf.setText (
startDate + formatTime.format(displayEvent.getStart().getTime()))

asdf = (TextView) cardView.findViewByld (R.id.end);
asdf.setText (
endDate + formatTime.format (displayEvent.getEnd().getTime()));

asdf = (TextView) cardView.findViewBylId(R.id.description);

asdf.setText (displayEvent.getDescription());
mCards. add (cardView) ;

}

/+*@Override

public boolean onCreateOptionsMenu (Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenulnflater ().inflate (R.menu. menu_detailed_view , menu);
return true;

b/

/*@Override

public boolean onOptionsItemSelected (Menultem item) {
// Handle action bar item clicks here. The action bar will
// automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.
int id = item.getItemId () ;

//noinspection SimplifiableIfStatement

if (id = R.id.action_settings) {
return true;

}

return super.onOptionsltemSelected (item);

b/

private class TaskAdapter extends CardScrollAdapter {
//private List<CardBuilder> mCards;
//public TaskAdapter(List<> cards){
// this .mCards = cards;
//}
@Override
public int getCount() {
return mCards. size () ;

74

200 }
@Override

public Object getltem(int i) {
return mCards. get (i);

205 @Override

public View getView (int i, View view, ViewGroup viewGroup) {
return mCards. get (i);

}

@Override
210 public int getViewTypeCount() { return 1; }
@Override
public int getltemViewType(int position) { return 0; }
@Override
public int getPosition(Object o) {
215 return mCards. indexOf (o) ;

}

75

10

B.3 Android Application

B.3.1 Google Calendar Connection

The following code is part of the Android application and it is significant because it establishes a
connection from the application to the user's Google account and it also manages the connection
to the internal database. The GoogleCalendarConnection prompts the user to input his/her email
address and password and then the user is asked if the application has permission to view and edit
the user's tasks and calendar events. After receiving permission, the code will generate the correct
retrieve commands to retrieve all of the user's entered tasks in Google and all the users events that
are scheduled for the next twenty-four hours. The information is retrieved and packaged into JSON
objects, which are then compacted into JSON arrays. The retrieval of the data from Googles servers
is done through an Asynchronous task so that the main UI thread is not blocked and the user does
not lose interaction abilities with the application. After the data is retrieved, the data that has been
packaged into JSON objects in JSON arrays will be also stored into the devices internal memory via
an SQLite database. This is where the second class becomes significant. An instance of the second
class, MySQLiteHelper, is the manager of the database stored internal to the device running the
application. The data stays persistent and will always be available to the application. The connection
to Googles calendar will be made when the application first runs, when updates are made through
the application, or when data has been added to the Google account via another means, for example,
when the user adds data through a desktop computer. The code is packaged into a separate class
to simplify the use of the Google server connection. An instance of the GoogleCalendarConnection
class will serve as a sort of meta-Api because it acts as a quasi-Api for the Apis Google already
provides. It was created in this fashion to further simplify the data transfer between Google servers
and the Android application. The instance of the GoogleCalendarConnection class has the ability
to push and pull data from both the internal database and from Google Servers.

Listing B.10: GoogleCalendarConnection Class

public class GoogleCalendarConnection {
private HttpTransport transport;
private JsonFactory jsonFactory;
private Calendar calClient;
com. google.api.services.tasks.Tasks taskClient;
private String accountName;
private Context _context;

private String Scopes; // contains both CalendarScopes.Calendar and TasksScopes.

TASKS

private JSONArray listEvents; // array of json objects that holds info
about each event

private JSONArray listTasks; // array of json objects that hold info about

each task

private ProgressDialog dialog;
private Intent intent;
//private final AsyncTask<Void, Void, String> aTask;

// connects to google calendar and google tasks
// retrieves the day’s event'’s
// retrieves the user’s tasks that are due within the next 2 weeks
public GoogleCalendarConnection(final Context context, final GoogleApiClient
mGoogleApiClient, final ProgressDialog _dialog, Intent _intent) throws
ExecutionException, InterruptedException {

_context = context;

accountName = Plus.AccountApi.getAccountName(mGoogleApiClient) ;

list Tasks = new JSONArray();

listEvents = new JSONArray () ;

Scopes = "https://www. googleapis.com/auth/calendar” + ”.” + ”https://www.
googleapis.com/auth/tasks”;

76

30

10

60

90

dialog = _dialog;
intent = _intent;

final AsyncTask<Void, Void, String> aTask = new AsyncTask<Void, Void, String
>0 |
@Override
protected void onPreExecute () {
dialog .setMessage (" Pulling _Data..”);
dialog .show () ;

@OQOverride

protected String doInBackground(Void... params) {
String token = null;
String taskToken = null;

try {
transport = new NetHttpTransport();
jsonFactory = new JacksonFactory () ;

GoogleAccountCredential credential = GoogleAccountCredential.
usingOAuth2 (context, Collections.singleton (Scopes));
credential .setSelectedAccountName (accountName) ;

try {
token = credential.getToken();

} catch (UserRecoverableAuthException e) {
//startActivityForResult (e.getIntent (), 1);
_context.startActivity (e.getIntent ().addFlags(Intent.

FLAG_ACTIVITY NEW_TASK)) ;

} catch (GoogleAuthException e) {
e.printStackTrace () ;

}

// creating client to retrieve calendar events
calClient = new Calendar.Builder (transport, jsonFactory ,
credential)
.setApplicationName (” Google—CalendarAndroid”)
.build () ;

java.util.Calendar cal = java.util.Calendar.getInstance();
cal.add(java.util.Calendar .DATE, 0);

cal.set (java.util.Calendar . HOUR.OF DAY, 0);

cal.set (java.util.Calendar .MINUTE, 0);

cal.set (java.util.Calendar .SECOND, 0);

Date begToday = cal.getTime();

java.util.Calendar cal2 = java.util.Calendar.getInstance();
cal2.add(java.util.Calendar .DATE, 0);

cal2.set (java.util.Calendar .HOUR.OF DAY, 23);

cal2.set (java.util.Calendar .MINUTE, 59);

cal2.set (java.util.Calendar .SECOND, 59);

Date endToday = cal2.getTime();

DateTime dtBegToday = new DateTime(begToday, TimeZone.getDefault

DateTime dtEndToday = new DateTime(endToday, TimeZone.getDefault

String pageToken = null;
JSONObject obj;
do {
Events events = calClient.events().list (accountName)
.setPageToken (pageToken)
.setTimeMax (dtEndToday)
.setTimeMin (dtBegToday)

7

.execute () ;

List <Event> items = events.getltems();

for (Event event : items) {
05 obj = new JSONObject () ;
try {

obj.put(”Id”, event.getld());
} catch (JSONException e) {

Log.i(”MyApp—Events” , ”Error_retrieving .ID”);
100 e.printStackTrace () ;
}

try {
obj.put(” Title”, event.getSummary());

} catch (JSONException e) {

105 Log.i(”MyApp—Events” , ”Error_retrieving._Title”);
e.printStackTrace () ;

}

try {
obj.put(” Details”, event.getDescription());

110 } catch (JSONException e) {
Log.i(”MyApp—Events” , ”Error_retrieving._.Details”);
e.printStackTrace () ;

}

try {

115 obj.put(”StartTime”, event.getStart());

} catch (JSONException e) {
Log.i(”MyApp—Events”, ”Error_retrieving._Start_Time”);
e.printStackTrace () ;

}

120 try {
obj.put (”EndTime” , event.getEnd());

} catch (JSONException e) {
Log.i(”MyApp—Events”, ”Error_retrieving _End_Time”);
e.printStackTrace () ;

125 }

listEvents.put(obj);
}

pageToken = events.getNextPageToken () ;
130 } while (pageToken != null);

// creating client to retrieve tasks

taskClient = new com.google.api.services.tasks.Tasks.Builder (
transport , jsonFactory, credential)
135 .setApplicationName (” Google—TasksAndroid”) . build () ;

com. google.api.services.tasks.model. Tasks t = taskClient.tasks ().
list (” @Qdefault”)
.setShowCompleted (false)
.setShowDeleted (false)
140 .setDueMin (String.valueOf(dtBegToday))
.setFields (7items”)
.execute () ;

JSONObject o;

145 if(t.size() > 0 && (!t.isEmpty()))

for (Task a : t.getltems()) { // error when empty
Log.i(”MyApp-Tasks” , a.getTitle());
o = new JSONObject () ;

”

try {
150 o.put(”Id”, a.getld());
} catch (JSONException e) {
Error_retrieving .ID”);

Log. i (”MyApp-Tasks” |
e.printStackTrace () ;
}
155 try {
o.put(”Title”, a.getTitle());

78

160

165

180

190

195

205

210

} catch (JSONException e) {
Log.i(”MyApp-Tasks” , ?Error_retrieving _Title”);
e.printStackTrace () ;

}

try {
o.put(”Description”, a.getNotes());

} catch (JSONException e) {
Log. i (”MyApp-Tasks” , ”Error_retrieving._Description”);
e.printStackTrace () ;

}

try {
o.put(”DueDate” , a.getDue());

} catch (JSONException e) {
Log.i(”MyApp—Tasks” , ”Error_retrieving .Due_.Date”) ;
e.printStackTrace () ;
}
try {
o.put(”Status”, a.getStatus());
} catch (JSONException e) {
Log.i(”MyApp-Tasks”, ”Error_retrieving._status”);
e.printStackTrace () ;
}
try {
o.put(”Priority”, 737);
} catch (JSONException e) {
Log.i(”MyApp—Tasks” , ”Error_inserting._Default._
priority_of_3");
e.printStackTrace () ;

}

list Tasks .put(o);

}
} catch (IOException e) {
Log.i("My_-Activity”, ”Error_Found_when_connecting._to_google._
calendar”);
e.printStackTrace () ;

}

return token;
}
@Override

protected void onPostExecute(String token) {

Log. i (? FINISHED _CONNECTING” , ”FINISHED._CONNECTING”) ;
if (dialog.isShowing ()){

dialog.dismiss () ;
}

MySQLiteHelper db = new MySQLiteHelper(_context.getApplicationContext

if (listEvents.length() > 0){
for(int j = 0; j < listEvents.length(); j ++) {
if(j =0 [] j = 1){

}
try {
db.insertEventToDB (listEvents.getJSONObject(j));

} catch (JSONException e) {
e.printStackTrace () ;
}

}

if (listTasks.length () > 0){
for(int i = 0; i < listTasks.length(); i ++) {
try {

79

230

235

N
o

&
o

260

&

N
0
o

db.insertTaskToDB (listTasks.getJSONObject(i));
} catch (JSONException e){

e.printStackTrace () ;
}

}

db. close ();

s

aTask.execute () ;

public String getAccountName () {
return accountName;
}

public JSONArray getListOfTasks () {
if (listTasks.length() > 0){
return listTasks;
telse{
Log.i(”MyApp”, ”listTasks_is.null”);
return null;

public JSONArray getListOfEvents () {
if (listEvents.length () > 0)
return listEvents;
else {
Log.i(”MyApp” , ”listEvents._is.null”);
return null;

public void addCalEntry(String _title , String _details , EventDateTime _start,
EventDateTime _end){

Event event = new Event();
event .setSummary (-title);
event.setDescription(_details);
event.setStart (_start);

event .setEnd(_end);

try {
calClient.events().insert (”primary”, event).execute();

} catch (IOException e) {
e.printStackTrace () ;

Log.i(”AddCalEntry” , ”Error_.Adding_Calendar_Entry”);
}
}
public void addCalEntryDetails(String -id, String _details){
Event event = null;
try {
event = calClient.events().get (" primary”, _id).execute();

} catch (IOException e) {
e.printStackTrace () ;
Log.i(” AddCalEntryDetail” , ”Error_.Retrieving . Event_before_updating”);

80

290

310

330

335

340

event .setSummary (_details);

try {
calClient.events () .update(” primary”, event.getIld (), event).execute();

} catch (IOException e) {
e.printStackTrace () ;
Log.i(” AddCalEntryDetail” , ” Error_updating_event_details_to_server”);

public void addTaskEntry(String _title , String _details, DateTime _due){
Task task = new Task();
task.setTitle(_title);

task .setNotes(_-details);

task .setDue(-due);

try {
taskClient . tasks () .insert (” @default”, task).execute();
} catch (IOException e) {
Log.i(”AddTask” , ”Could_not._add_Task_Entry”);
e.printStackTrace () ;

public void addTaskEntryDetails(String -id, String _details){
Task task = null;
try {
task = taskClient.tasks ().get(” @Qdefault”, _id).execute();
} catch (IOException e) {
e.printStackTrace () ;
Log.i(” AddTaskDetails” , ”Error_Retrieving_Task_before_updating”);

task .setNotes(_-details);

try {

taskClient . tasks () .update(” @Qdefault”, task.getId (), task).execute();
} catch (IOException e) {

e.printStackTrace () ;

Log.i(” AddTaskDetails” , "Error_.updating.Task_.details_.to_Server”);

}

// saves to google calendar
public void completeTaskEntry (String _id){
Task task = null;
try {
task = taskClient.tasks().get(” @default”, _id).execute();
} catch (IOException e) {
e.printStackTrace () ;
Log.i(” AddTaskDetails” , "Error_Retrieving _Task_before_updating”);

// status either: needsAction or completed
task.setStatus (”completed”);

try {
taskClient . tasks () .update(” @Qdefault” , task.getId (), task).execute();
} catch (IOException e) {
Log.i(” AddTaskDetails” , ”"Error_updating_Task_status_to_Server”);
e.printStackTrace () ;

81

360

365

380

28

}

/*
Event Table Columns
eventlD text
title text
description text
startTime text
endTime text
Task Table Columns
taskID text
title text
description text
dueDate text
status text
priority INTEGER

*
/

Listing B.11: MYSQLiteHelper Class

public class MySQLiteHelper extends SQLiteOpenHelper {

// Database Version
private static final
// Database Name

private static final

int DATABASE_VERSION 1;

String DATABASE NAME ?Dilemma” ;

public MySQLiteHelper (Context context) {
super (context , DATABASENAME, null, DATABASE VERSION) ;

@Override
public void onCreate(SQLiteDatabase db) {

//SQL statement to create dilemma table

String CREATE TASKS TABLE = "CREATE_TABLE_tasks._(.” + ”id _.INTEGER_PRIMARY _KEY
_AUTOINCREMENT, _” 4 ”taskID _TEXT,.” + ” title _TEXT,.” + ”description TEXT,.” -+ 7
dueDate .-TEXT, .” + ”status TEXT,_.” 4+ ”priority .INTEGER.)” ;

String CREATEEVENTS TABLE = "CREATE_.TABLE_events.(.” + 7id _INTEGER_PRIMARY .
KEY_AUTOINCREMENT, .7 4+ ”eventID _TEXT,_.” 4+ ” title .TEXT,.” + ”description TEXT,_.” +
?startTime _TEXT, .” + ”endTime TEXT.)” ;

//create dilemma table
db . execSQL (CREATE.TASKS_TABLE) ;
db . execSQL (CREATE_EVENTS TABLE) ;

}

@QOverride

public void onUpgrade(SQLiteDatabase db,
//Drop older dilemma table if existed
db . execSQL ("DROP_TABLE_IF _EXISTS_tasks”)
db . execSQL ("DROP_TABLE_IF _EXISTS_events”

int oldVersion, int newVersion) {

)
//create fresh tasks table
this.onCreate (db);

public JSONArray getAllTasks() throws JSONException {

82

48

o
)

63

88

93

98

JSONArray taskList = new JSONArray() ;
JSONObject obj;

String selectQuery = ”"SELECT_x_FROM._tasks”;
SQLiteDatabase db = this.getReadableDatabase();

Cursor ¢ = db.rawQuery (selectQuery , null);
if (c.moveToFirst()){

do{
obj = new JSONObject () ;

obj.put(”Id”, c.getColumnIndex (”taskID”));

obj.put(” Title”, c.getColumnIndex(” title”));

obj.put(” Description”, c.getColumnIndex(” description”));
obj.put(”DueDate” , c.getColumnIndex (”dueDate”));
obj.put(”Status”, c.getColumnIndex (”status”));

obj.put(” Priority”, c.getColumnIndex(” priority”));

taskList .put(obj);
} while (c.moveToNext());

return taskList;

public void insertTaskToDB (JSONObject o) throws JSONException {
if (o = null) {
Log.i(”Dilemma” , ” Task_.JSONODbject_is._empty”);
return;

}

SQLiteDatabase db = this.getWritableDatabase () ;

ContentValues values = new ContentValues();
values.put(”taskID”, o.get(”Id”).toString());

values.put(” title”, o.get(” Title”).toString());
values.put(” description”, o.get(”Description”).toString());
values.put(”dueDate” , o.get(”DueDate”).toString());
values.put(”status”, o.get(”Status”).toString());
values.put(” priority”, o.get(” Priority”).toString());

//insert row to table
db.insert (”tasks”, null, values);

public void deleteTask(String taskId){
SQLiteDatabase db = this.getWritableDatabase () ;

db.delete (”tasks”, ”taskID=?", new String[]{ taskld});

public void updateTask (JSONObject o) throws JSONException {
if (o = null) {
Log.i(”Dilemma” , ”"Task_JSONObject_is_empty”);
return ;

}

SQLiteDatabase db = this.getWritableDatabase () ;
ContentValues values = new ContentValues();
values.put(”taskID”, o.get(”Id”).toString());

values.put(” title”, o.get(” Title”).toString());
values.put(” description”, o.get(”Description”).toString());

83

values.put(”dueDate” , o.get(”DueDate”).toString());
values.put(”status”, o.get(”Status”).toString());
values.put(” priority”, o.get(” Priority”).toString());
108

db.update(” tasks”, values, ”taskID.=_." + o.get(”Id”).toString (), null);

public JSONArray getAllEvents () throws JSONException {
JSONArray eventList = new JSONArray () ;
JSONObject obj = new JSONObject () ;

118 String selectQuery = "SELECT._*_FROM.events”;
SQLiteDatabase db = this.getReadableDatabase();

Cursor ¢ = db.rawQuery(selectQuery , null);

123 if (c. moveToFirst()){
do{
obj = new JSONObject () ;

obj.put(”Id”, c.getColumnIndex(”eventId”));
128 obj.put(” Title”, c.getColumnIndex(” title”));
obj.put(”Details”, c.getColumnIndex (” description”));
obj.put(”StartTime” , c.getColumnIndex(”startTime”));
obj.put(”EndTime” , c.getColumnIndex (”endTime”));

133 eventList.put(obj);
} while (c.moveToNext());
}

return eventList;

public void insertEventToDB (JSONObject o) throws JSONException {
if (o = null) {

143 Log.i(”Dilemma” , ”Event_.JSONObject.is._empty”);
return;

}

SQLiteDatabase db = this.getWritableDatabase () ;
148
ContentValues values = new ContentValues();
values.put(”eventID”, o.get(”Id”).toString());
values.put(” title”, o.get(” Title”).toString());
values.put(”description”, o.get(” Details”).toString ()

(‘,

(

);
).

)

153 values.put(”startTime” , o.get(”StartTime”).toString ()
values.put(”endTime”, o.get(”EndTime”).toString ());

db.insert ("events”, null, values);

o
o0

public void deleteEvent (String eventId){
SQLiteDatabase db = this.getWritableDatabase () ;

163 db.delete (”events”, 7eventID=?", new String[]{eventld});

public void updateEvent (JSONObject o) throws JSONException {
168 if (o = null) {

Log.i(”Dilemma” , ”Event_JSONObject_is_empty”) ;
return ;

84

o

193

198

208

SQLiteDatabase db = this.getWritableDatabase () ;
ContentValues values = new ContentValues();

values.put(”eventID”, o.get(”Id”).toString());
values.put(” title”, o.get(” Title”).toString());
values.put(”description”, o.get(” Details”).toString());
values.put(”startTime” , o.get(”StartTime”).toString());
values.put(”endTime” , o.get(”EndTime”).toString ());

db.update(” events”, values, "eventID_=." + o.get(”Id”).toString(),

public int numTasksInDb () {
SQLiteDatabase db = this.getReadableDatabase () ;

Cursor cursor = db.rawQuery (”SELECT_x FROM_tasks” , null);

return cursor.getCount () ;

}

public int numEventsInDb (){
SQLiteDatabase db = this.getReadableDatabase();

Cursor cursor = db.rawQuery (”SELECT_% _FROM_events” , null);

return cursor.getCount () ;

}

public void closeDB(){
SQLiteDatabase db = this.getReadableDatabase () ;
if (db != null && db.isOpen()){
db.close () ;
}

null);

85

00

48

B.3.2 Bluetooth Connection

Listing B.12: Bluetooth Data Transfer

import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;
import android.bluetooth.BluetoothSocket;
import android.content.Context;

import android.content.Intent;

import android.os.Handler;

import android.os.Message;

import android. util.Log;

import org.json.JSONException;
import org.json.JSONObject;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Set;

import java.util.UUID;

public class DataTransfer{
//Constants
private final static int REQUESTENABLEBT = 1; //1
private static final UUID MY_UUID = UUID. fromString (”
00001101 —-0000—1000—8000—00805f9b34fb”) ;

//Instance variables

private BluetoothAdapter mainBluetoothAdapter;
private BluetoothDevice mainDevice;

private ConnectThread connectionThread;
private ConnectedThread dataThread;

private Handler mainHandler;

public DataTransfer (Context _context) { //Testing out the constructor to fix the
errors with the unknown symbol.

mainBluetoothAdapter = BluetoothAdapter.getDefaultAdapter(); //Obtains
bluetooth adapters

//Preliminary bluetooth checks
if (mainBluetoothAdapter = null)
Log.w(” Error”, "The_device.does_not_support.bluetooth”);
if (!mainBluetoothAdapter.isEnabled()) {
Intent enableBluetoothIntent = new Intent (BluetoothAdapter.
ACTION_REQUEST_ENABLE) ;
_context.startActivity (enableBluetoothIntent.addFlags(Intent .
FLAG_ACTIVITY NEW_TASK)) ;

}

//Obtains all paired devices
Set<BluetoothDevice> pairedDevices = mainBluetoothAdapter.getBondedDevices () ;

if (pairedDevices.size() > 0 || !pairedDevices.isEmpty()) {
for (BluetoothDevice device : pairedDevices)
mainDevice = device;

}

//Defines the Handler to handle the data by converting the byte array to a
string .
mainHandler = new Handler () {
@Override
public void handleMessage (Message message) {
byte[] writeBuffer = (byte[]) message.obj;

JSONObject testingTransfer = new JSONObject () ;
try {

86

68

88

98

testingTransfer.put(” Test”, "correct”);
} catch (JSONException e) {
e.printStackTrace () ;
}

int start = (int) message.argl;
int end = (int) message.arg?2;

switch (message.what) {
case 1:
String writeMessage = new String (writeBuffer);
writeMessage = writeMessage.substring (start, end);
break ;

}

if (!(mainDevice = null)) {
connectionThread = new ConnectThread (mainDevice);

connectionThread.start (); //Begins the alternate thread for the bluetooth

connection .

dataThread = new ConnectedThread (connectionThread.getMainSocket ());
dataThread.start (); //Begins alternate thread for bluetooth transfer

else{
Log. i (?TEST_DATA” , "NO_DEVICES_FOUND”) ;
}

//Inner class to define a new connection thread to handle data transfer
private class ConnectThread extends Thread {

//Instance variables

private final BluetoothSocket mainSocket;

private final BluetoothDevice connectedMainDevice;

public ConnectThread (BluetoothDevice device) {
BluetoothSocket socketAttempt = null;
connectedMainDevice = device;

try {
socketAttempt = device.createRfcommSocketToServiceRecord (MY_UUID) ;

} catch (IOException e) {
Log.w(” Error”, ”Failed_to_create_the_socket.”);

mainSocket = socketAttempt ;

}

public void run() {
mainBluetoothAdapter. cancelDiscovery (); //Makes sure the device is not
searching for devices.

try {
mainSocket . connect () ;
} catch (IOException eConnect) {
Log.w(”Error”, ”Failed_to_.connect_socket”);

try {
mainSocket . close () ;
} catch (IOException eClose) {
Log.w(” Error”, ”Failed_to_close_socket_after_a_failed _connect.”)

//return;

}

public void cancel() {
try {

87

)

mainSocket . close () ;
} catch (IOException e) {
Log.w(”Error”, ”Failed_to_close_socket.”);

}

public BluetoothSocket getMainSocket () {
return mainSocket ;
133 }

}

//Inner class to handle the data transfer

private class ConnectedThread extends Thread {

138 //Instance variables

private final BluetoothSocket connectedSocket;
private final InputStream mainInputStream;
private final OutputStream mainOutputStream;

143 public ConnectedThread (BluetoothSocket socket) {
connectedSocket = socket;

InputStream attemptInput = null;
OutputStream attemptOutput = null;

148 try {
attemptInput = connectedSocket.getInputStream () ;
attemptOutput = connectedSocket.getOutputStream () ;

} catch (IOException e) {
Log.w(” Error”, ”Failed _to_obtain_.input.or.output.stream”);

mainInputStream = attemptInput;
mainOutputStream = attemptOutput;

}

public void run() {

byte [] buffer = new byte[1024]; //New serial buffer

int counter = 0;

int numberOfBytes = 0;
163

while (true) {
try {
numberOfBytes += mainInputStream.read (buffer , numberOfBytes,

buffer.length — numberOfBytes) ;

168 for (int i = counter; i < numberOfBytes; i++) {
mainHandler.obtainMessage (1, counter, i, buffer).sendToTarget
0

counter++;
if (i = numberOfBytes — 1) { //If all the bytes are read,
then it resets the counters.
numberOfBytes = 0;
counter = 0;

~

}

} catch (IOException e) {

Log.w(” Error”, ”Failed_to_read _from_the_input._stream”);
178 break ;
}
}
}
183 public void write(byte[] bytes) {

try {
mainOutputStream. write (bytes);
} catch (IOException e) {
Log.w(” Error”, ”Failed_-to_write_to_output._stream”);

88

193

198

public void cancel () {
try {
connectedSocket . close () ;
} catch (IOException e) {

Log.w(” Error”, ”Failed_to_close_data_connected_socket.”)

)

89

	Santa Clara University
	Scholar Commons
	6-4-2015

	Dynamic life management assistant (DyLMA)
	Arturo Aguilar
	Ruben Luva
	David Mora-Barajas
	Sunny Patel
	Alejandro Rodriguez
	Recommended Citation

	Untitled

