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Abstract 

In 1999 general assistance recipients in New York City were required to participate in a 

job training and outplacement assistance program. Initially, recipients were enrolled in 

‘waves’ due to capacity constraints. The program’s impact is identified using a quasi-

experiment in which selectees are compared to concomitantly eligible non-selectees. 

Selectees are 15 percentage points more likely to start a job and 10 percentage points 

more likely to exit welfare than are non-selectees. This methodology is important since 

random-assignment experiments can be costly and difficult to implement. Further, 

experiments are not impervious to criticism; this procedure addresses three of five known 

shortcomings.  

 

* Santa Clara University, Department of Economics, 500 El Camino Real, Lucas 216B, 
Santa Clara, CA, 95053, 408-554-5579 (phone), 408-554-2331 (fax), jifcher@scu.edu. 



1 

 

INTRODUCTION 

Over the past two decades U.S. welfare programs have been transformed. A 

central objective of the reforms has been to help recipients move from welfare to work. In 

response, a variety of ‘welfare-to-work’ programs have been implemented. They 

typically include one or more of the following components: unpaid work experience, 

classroom instruction, on-the-job training, financial incentives, and job search assistance. 

A substantial literature has developed to identify the resulting changes in welfare 

use, employment, well-being, and family structure [recent reviews include Blank, 2002; 

Grogger and Karoly, 2005; Moffitt, 2003]. The results largely support the following two 

conclusions: First, in the short run, at least, welfare-to-work programs had the intended 

effect, reducing welfare use and increasing employment. Second, the most effective 

welfare-to-work programs are those that include mandatory work requirements with an 

emphasis on job placement [Grogger and Karoly, 2005].  

These findings are largely derived from well-designed random-assignment 

experiments. While such experiments are certainly an excellent method for identifying 

the effect of a welfare-to-work program, they are not impervious to criticism. The 

following five shortcomings have been identified and are summarized in Grogger and 

Karoly [2005]: First, since experimental programs are often implemented by above-

average managers, it is unclear whether successful pilot programs can be expanded 

without losses in effectiveness. Second, experiments miss some general equilibrium 

effects. For example, whereas full-scale implementation of a welfare-to-work program 

might crowd-out other job seekers or even subsequent program participants, a pilot 

program might not. Third, the ‘message’ of the pilot program may cross-over from the 
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program group to the control group. Fourth, experiments that only include current welfare 

recipients do not capture entry effects. That is, a welfare-to-work program may change 

the attractiveness of receiving welfare and therefore not only effect the exit rate, but also 

the entry rate. Finally, random-assignment experiments can be costly and hard to 

implement.  

The first four shortcomings are noteworthy since each could cause experimental 

estimates to be biased. For example, the first presumably introduces a positive bias and 

the third a negative bias. Thus, available estimates, which are largely based on 

experimental evidence, are potentially biased with the direction and magnitude of the 

overall bias unknown. Moreover, no new random-assignment experiments have been 

conducted since the Personal Responsibility and Work Opportunity Reconciliation Act 

(PRWORA).1 

A few non-experimental and quasi-experimental studies have explored the effect 

of welfare-to-work programs. Two of these studies have challenged the claim that the 

most effective welfare-to-work programs are those that emphasize rapid job placement 

[Hotz et al, 2006; Dyke et al, 2006]. These authors find that more intensive training, 

which emphasizes human capital development, generates larger positive effects. These 

effects, however, take longer to emerge than do the effects of programs that emphasize 

job placement.2 

The paucity of non-experimental and quasi-experimental studies is largely due to 

two factors. First, there has been a shortage of clever strategies (in the absence of 

random-assignment) to identify the effects of welfare-to-work programs using 

administrative data. Second, welfare-to-work programs vary along numerous dimensions, 
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making it difficult to parameterize the programs in a manner that is useful for 

identification. Thus, data from nationally representative surveys has not been successfully 

used to estimate the effect of welfare-to-work programs.3 

In this paper, I demonstrate a quasi-experimental identification strategy to 

estimate the effect of a welfare-to-work program. To do so, I take advantage of a quirk in 

the program’s administration. Specifically, when the program was initiated, all eligible 

General Assistance (GA) recipients could not participate concurrently due to capacity 

constraints.4 Rather, GA recipients were selected for the program in ‘waves.’ The wave 

enrollment process creates the opportunity to identify the effect of the program by 

comparing ‘selectees,’ recipients who were selected on a given date to ‘non-selectees,’ 

recipients who were eligible, but not selected, on that date. The results indicate that the 

program increased the likelihood that a recipient started a job by 15 percentage points and 

increased the likelihood that a recipient exited welfare by 10 percentage points. 

This quasi-experiment is similar to a random-assignment experiment in that it 

enables one to estimate the effect of a welfare-to-work program. It also ameliorates three 

of the five previously discussed shortcomings of random-assignment experiments. First, 

the program was not a small-scale, pilot program implemented by above-average 

managers. Rather, it was the principal welfare-to-work program for all welfare recipients 

in New York City (NYC). Second, this analysis should capture general equilibrium 

effects in the labor market given: (1) the size of program, over 10,000 GA recipients were 

enrolled during the program’ first year, and (2) the number of welfare recipients who 

started a job, over 100,000 recipients of Family Assistance (FA) and GA combined 
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reported finding a job during the program’s first two years. Finally, this program was not 

a costly, or difficult to implement, random-assignment experiment. 

The next section of this paper presents an overview of welfare reform in NYC. 

The third section describes the quasi-experimental identification strategy. The fourth 

section discusses the empirical implementation. The fifth section presents the results. The 

sixth section describes a robustness check that was performed. The final section discusses 

the findings and presents a brief fiscal cost benefit analysis. 

WELFARE REFORM IN NYC 

In 1994, Rudolph Giuliani, newly elected mayor of NYC, made reforming the 

City’s welfare programs a priority. At the time, NYC had over one million welfare 

recipients, including almost 300,000 GA recipients. The City was spending 

approximately three billion dollars annually on welfare programs, including one billion 

dollars on GA. 

In 1995, NYC initiated the Work, Accountability, and You (NYCWAY) program. 

A central tenet of NYCWAY was that able-bodied welfare recipients were required to 

work in exchange for their benefits.5 Almost all recipients fulfilled this requirement by 

participating in a Work Experience Program (WEP) assignment 21 hours per week.6 The 

majority of WEP participants worked outdoors removing litter, weeds, and graffiti from 

parks, vacant lots, streets, and highways. Over the next six years, the number of welfare 

recipients in NYC declined by more than 50% and the number of GA recipients declined 

by 70%.  

In 1999, NYC created the Employment Services and Placement Program (ESPP), 

a job training and outplacement assistance program. With the implementation of the 
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ESPP, welfare recipients were required to participate in a WEP assignment three days a 

week and in the ESPP two days a week. This increased, from 21 to 35, the number of 

hours per week that recipients were required to spend in structured activities.  

Eleven private contractors were hired to provide ESPP services. All had a history 

of providing social services in NYC. The contractors were paid on a performance basis. 

They received a substantial payment for each recipient they placed in a job; the average 

payment was approximately $3,000. The contractors focused on developing participants’ 

‘soft skills’ including résumé writing and interview techniques, and helped participants 

arrange job interviews. ESPP contractors were required to attempt to place each 

participant for at least six weeks.  

Prior to implementation, there were over 10,000 GA recipients who were eligible 

for the ESPP. To be eligible, a GA recipient had to be participating in a WEP assignment 

and job-ready.7 Since all eligible GA recipients could not be accommodated 

simultaneously, recipients were enrolled in waves. Selectees were informed by mail of 

their status, instructed to report to the proper location at a prescribed date and time (the 

program start date was typically two weeks after the selection date), and advised that they 

would be sanctioned if they failed to comply with the program’s requirements. New 

waves were formed every two weeks until each eligible GA recipient was selected or had 

become ineligible. 

Recipients were selected for each wave centrally by computer programmers. The 

selection process did not include intake interviews or objective assessments. The 

intention was to generate a random sample of selectees for each wave stratified by 

borough. In the fourth section, I report that the selection process did not approximate a 
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random one and discuss the attendant adjustments that are made to the estimates 

presented in this paper. 

QUASI-EXPERIMENTAL IDENTIFICATION STRATEGY 

Generally, to identify the effect of a program one compares the outcomes of 

treated and untreated individuals. In the case of the ESPP, recipients who remained 

eligible should have ultimately been treated. Thus, recipients who remained untreated 

must have become ineligible prior to being selected for the ESPP and do not make a valid 

comparison group.8 

An Alternative Approach to Identify the Effect of the ESPP 

It is possible, however, to estimate the effect of the ESPP taking advantage of the 

wave enrollment process. To do so, I compare all selectees from a given wave to all ‘non-

selectees,’ recipients who were eligible but not selected, for the same wave. By 

performing this comparison for each of the first 17 waves, and combining all selectees 

into one group, the program group, and all non-selectees into another group, the control 

group (see Figure 1), I can estimate the Program Effect (PE).9 Specifically, the PE is 

defined as, 

)]0([)]1([ =−= i
M

ii
M

i PYEPYE  (1) 

where )( i
M

i PY  is an indicator function which equals one if individual i started a job 

within M months of his or her inclusion in the program or control group and zero 

otherwise, and is a function of whether recipient i was a member of the program group, 

Pi=1, or the control group, Pi=0. <<Figure 1 here>> 
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All selectees are placed in the program group, and considered treated, regardless 

of whether or not they participated in the ESPP. This even includes recipients who failed 

to attend the ESPP orientation. Hence the PE is an ‘Intent to Treat’ (IT) effect and should 

not suffer from self-selection bias.10 Members of the program group remain in the 

program group for the remainder of the study; that is, there is no program group attrition. 

Further, this identification strategy does not suffer from control group attrition. 

Each member of the control group remains in the control group for the remainder of the 

study. For example, control group members who subsequently were selected, and or 

exited welfare, remain in the control group.  

On the other hand, the identification strategy does suffer from control group 

contamination. Over 70% of control group members were selected for the ESPP 

subsequent to their inclusion therein. Consequently, the PE is negatively biased and a 

conservative estimate of the program’s true effect.  

Adjusting for Control Group Contamination 

To adjust for control group contamination, a set of additional, restricted control 

groups is created in which recipients are removed from the control group if they were 

selected within a given number of waves of their inclusion in the control group. For 

example, a control group with a one-wave restriction on being selected is created by 

removing members of the original control group if they were selected in the subsequent 

wave. So, a non-selectee from the first wave, who was a selectee for the second wave, 

would be excluded from this restricted control group.  

It is important to note that the original control group includes two distinct cohorts: 

(1) non-selectees who remained eligible and were ultimately selected, and (2) non-
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selectees who became ineligible prior to being selected. This distinction is important 

because all members of the original control group who are removed to form the restricted 

control groups must have remained eligible (since they were selected). That is, they must 

have been in the first cohort. For the restricted control group to be a valid comparison 

group for the program group, the ratio of members of cohort one to members of cohort 

two must be the same in the restricted control group as in the original control group. 

Accordingly, the weight placed on members of the first cohort in the restricted control 

group is increased. Specifically, the weight is the reciprocal of the probability that 

members of cohort one were not selected for the subsequent wave (see Figure 2). 

<<Figure 2 here>> 

I utilize the above procedure recursively to create control groups with up to a 

thirty-wave restriction on being selected. Imposing longer restrictions produces very 

large weights that could cause unstable estimates. For example, the maximum weight is 

286 when a thirty-two-wave restriction on being selected is imposed. In this paper, I use 

the initial, unrestricted control group, denoted control group: no restriction, and control 

groups that restrict being selected for an even number of waves. Thus, the restricted 

control groups have a one-month, two-month, three-month, …, or fifteen-month 

restriction on being selected (assuming that each month contains two-waves, or twenty-

eight days). They are denoted control group: 1M restriction, control group: 2M 

restriction, control group: 3M restriction, …., and control group: 15M restriction, 

respectively. 

EMPIRICAL IMPLEMENTATION 
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With NYC’s permission, the data for this study were extracted from an 

administrative database. The case history and available demographic characteristics were 

compiled for each eligible GA recipient. It should be noted that NYC only collected basic 

demographic information, such as race, gender, and date of birth, for each welfare 

recipient. No additional information is available.  

The program and control groups were formed as described in the prior section. Of 

all selectees and non-selectees (n = 64,800), just over half are men and about 90 percent 

are nonwhite. Their average age is 47 and they are likely to live in the Bronx, Brooklyn, 

or Manhattan (see Table 1). Comparing members of the program group (n = 6,782) and 

control group (n = 58,018), one observes that the average age, years on welfare, and 

gender and racial distributions appear similar. A difference of means test, however, 

reveals that only the gender distribution is not significantly different. The distribution of 

borough of residence is disparate as well. This is presumably the result of stratifying the 

selection by borough. <<Table 1 here>> 

Selection Process Was Not Random 

Given the results of the difference of means tests discussed above, it is unlikely 

that the selection process approximated a random one. To confirm this impression, I test 

whether recipients’ demographic characteristics significantly impact the probability of 

being selected. Specifically, the following probit equation is estimated, 

)(]1[
1

wb
i

C

c

wb
ic

wb
c

wbwb
i xFPP ελα ++== ∑

=

 (2)  

where wb
iP  is a program group dummy that equals one if individual i was a selectee and 

zero if individual i was a non-selectee in wave w and borough b; and wb
icx  is a series of C 
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demographic characteristics for individual i in wave w and borough b. To decrease the 

chance of generating spurious results, equation (2) is only estimated for the three largest 

waves in each of the four largest boroughs; the number of selectees per borough varied 

widely across waves.  

The coefficients on age, and years continuously on welfare, provide strong 

evidence that the selection process was not random. Six of twelve coefficients on age, 

and seven of twelve coefficients on years continuously on welfare, are positive and 

significantly different than zero (see Table 2). Thus, the probability of being selected 

increased with age and welfare tenure.11 For the other demographic characteristics there 

was no discernable selection pattern. <<Table 2 here>> 

One thing is certain though; eligible recipients were selected solely using 

information that was stored in the administrative database. The selection process was 

centralized and conducted by computer programmers. Individual caseworkers were not 

involved in any manner. No intake interviews or objective assessments were conducted 

prior to selection. In other words, the selection process was conducted without human 

discretion. Such a selection process, even if it did not approximate a random one, should 

not disturb the necessary assumption that there was no systematic selection on 

unobserved characteristics. Consequently, by including covariates in the analysis, one 

should be able to adjust for the observed differences. 

Adjusting for observed characteristics 

Since recipients who were older, and who had longer welfare spells, should have 

been less likely to start a job and or exit welfare, the PE as defined in equation (1) is 

potentially negatively biased. To adjust for the observed differences, a program dummy 
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and a series of observed characteristics are regressed on an outcome dummy. 

Specifically, the following equation is estimated,  

M
i

k j k
ikij

M
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k
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j
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1

17

1

5

11
)*(  (3) 

where M
iy  is an outcome dummy that equals one if individual i started a job within M 

months of being a selectee or non-selectee, and zero otherwise; iP  is a program group 

dummy that equals one if individual i was in the program group and zero if individual i 

was in the control group; icx  is a series of C demographic characteristics for individual i 

at the time that he or she became a selectee or non-selectee; ijB is a borough dummy that 

equals one if individual i resides in borough j and zero otherwise; and ikW  is a wave 

dummy that equals one if individual i was a selectee or non-selectee in wave k and zero 

otherwise. Equation (3) is estimated using OLS for values of M between 0.5 and 26.12 

RESULTS 

Estimating equation (3), one finds that the PE first increases in M, and then after 

peaking, decreases in M, as control group contamination increases (see Figure 3). The 

peak PE is positive and significantly different than zero using each control group. The 

magnitude of the peak PE increases – as well as the number of months required to reach 

it – as the length of the restriction on being selected increases. For example, the peak PE 

is 0.075 (t = 19.8, p = 0) when M = 4, 0.131 (t = 16.2, p = 0) when M = 8, and 0.152 (t = 

12.7, p = 0) when M = 11.5 using control groups: no restriction, 6M, and 12M 

restriction, respectively. <<Figure 3 here>> 
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Further, the PEs using control group: 1M restriction are everywhere below the 

PEs using control group: 2M restriction when M > 2. The former do not diverge from the 

latter until the former’s one-month restriction on being selected expires. This pattern is 

easy to observe in Figure 4a, which presents the PEs using the first four restricted control 

groups only. Figure 4a also reveals that the pattern recurs when one compares the PEs 

using control groups: 2M and 3M restriction, and control groups: 3M and 4M restriction. 

In fact, this pattern is present using each control group between control groups: 1M and 

12M restriction. After that, it stops. The peak PEs, and the PEs in the vicinity of the peak, 

are quite similar using control groups: 12M, 13M, 14M, and 15M restriction (see Figure 

4b). That is, further correction for control group contamination (beyond a twelve-month 

restriction on being selected) does not significantly increase the peak PE. Moreover, the 

peak PE using control group: 14M restriction is slightly larger than is the peak PE using 

control group: 15M restriction (0.158 versus 0.155). Thus, the ESPP appears to increase 

the likelihood of starting a job by approximately 15 percentage points. <<Figure 4 here>> 

This employment effect appears to persist. Comparing the post-peak PEs using 

control groups: 12M, 13M, 14M, and 15M restriction, one observes that the longer the 

restriction, the more months it takes for a consistent post-peak decline to begin. For each 

of these control groups, a consistent post-peak decline begins only after the restriction on 

being selected has ended. For example, the PEs using control group: 12M restriction 

begin to consistently decrease in M when M > 12. This pattern is easy to observe in 

Figure 4b, which presents the PEs using the four most restricted control groups only. 

Thus, the PEs using control group: 15M restriction provides a good estimate of the 

impact of the ESPP for at least fifteen months post selection. 
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The employment effect is presumably not the result of the underlying economic 

conditions, since including borough and wave dummies as well as the interaction term 

should control for any macroeconomic shocks that may have occurred during the study 

period. Further, prematurely terminating the study period on September 11th, 2001 does 

not materially affect the findings; after September 11th, the unemployment rate increased 

by over two percentage points in NYC. 

Estimating equation (3) without covariates, one finds that the PEs decline. For 

example, the PEs decrease by an average of 0.003 and 0.008 using control groups: 6M 

and 12M restriction, respectively (see Figure 5). These declines are not statistically 

significant. Further, they were expected. Recall that the probability of being selected for 

the ESPP was greater for recipients who were older and had longer welfare spells. Such 

recipients were assumed to be less likely to have started a job. Additional support for this 

assumption can be found in the coefficients on age, which are negative and significantly 

different than zero for all values of M (see Table 3). <<Figure 5 here>> <<Table 3 

here>> 

Starting a job is not the sole outcome by which the ESPP should be evaluated. For 

the ESPP to be considered a true success, it should have also increased the probability 

that recipients exited welfare after starting a job.13 Specifically, equation (3) is estimated 

with M
iy  redefined as an outcome dummy that equals one if individual i started a job and 

exited welfare for a six-month period within M months of becoming a selectee or non-

selectee, and zero otherwise.14  

The resulting PEs are similar in many respects to the previously estimated PEs. 

Again,  
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• the PE first increases in M, and then peaks (after peaking, however, it does not 

substantially decrease in M);  

• the peak PE is positive and significantly different than zero using each control 

group;  

• the magnitude of the peak PE increases as the length of the restriction increases; 

and  

• the PEs estimated using less restricted control groups are everywhere below the 

PEs estimated using more restricted control groups after the formers’ restriction 

on being selected expires.  

The peak PE is 0.052 (t = 10.4, p = 0) when M = 18.5, 0.091 (t = 9.9, p = 0) when M = 

17, and 0.111 (t = 9.6, p = 0) when M = 17 using control groups: no restriction, 6M, and 

12M, respectively (see Figure 6). Thus, it appears that the ESPP increases the likelihood 

that recipients start a job and exit welfare by approximately 11 percentage points. 

<<Figure 6 here>> 

ROBUSTNESS CHECK 

One might be concerned that ‘starting a job’ is better observed for members of the 

program group than for members of the control group.15 This is not likely since NYC set 

the ambitious goal of moving 100,000 recipients from welfare to work in 2000. Thus, the 

City had a strong incentive to accurately record each job that was found by a recipient. 

Nevertheless, to rule out this possibility, I estimate the effect of the ESPP on recipients’ 

welfare use. The ESPP should have increased welfare exits, if it increased employment. 

Specifically, equation (3) is estimated with M
iy  redefined as an outcome dummy that 

equals one if individual i has exited welfare for a six-month period within M months of 

becoming a selectee or non-selectee and zero otherwise.16 
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The resulting PEs are again similar in many respects to the PEs estimated using 

the initial dependent variable (see Figure 7). Again,  

• the PE first increases in M, and then after peaking, decreases in M, as control 

group contamination increases;  

• the peak PE is positive and significantly different than zero using each control 

group; 

• the magnitude of the peak PE increases as the length of the restriction on being 

selected increases; and  

• the PEs estimated using less restricted control groups are everywhere below the 

PEs estimated using more restricted control groups after the formers’ restriction 

on being selected expires.  

The peak PE is 0.040 (t = 7.2, p = 0) when M = 8, 0.076 (t = 6.4, p = 0) when M = 13, 

0.094 (t = 5.4, p = 0) when M = 13.5, and 0.103 (t = 4.8, p = 0) when M = 13.5 using 

control groups: no restriction, 6M, 12M, and 15M, respectively. Thus, it appears that the 

ESPP increases the likelihood that recipients exit welfare by approximately 10 percentage 

points. <<Figure 7 here>> 

DISCUSSION 

The primary contribution of this paper is the development of a new quasi-

experimental approach to identify the effect of a welfare-to-work program. This is 

important for the following four reasons. First, random-assignment experiments are often 

costly and difficult to implement. Second, random-assignment experiments are not 

impervious to criticism. This quasi-experiment addresses three of five known 

shortcomings. Third, this identification strategy can be used to estimate the effect of other 

government programs that face capacity constraints. For example, the Section 8 program 

is perpetually oversubscribed as are many high performing public schools (in districts 
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with school choice).17 Fourth, this identification strategy can be utilized ex post. In 

contrast, random-assignment experiments need to be designed ex ante.  

The quasi-experiment developed in this paper is not without its own 

shortcomings. Most notably, control group contamination is an inescapable side effect of 

the identification strategy. Even after adjusting for control group contamination to the 

extent possible, one is only able to estimate short-term effects. In the long-run, the PE’s 

negative bias returns after the restriction on being selected expires. This limitation, only 

being able to estimate short-term effects, is not unique to this study. Most research 

regarding welfare reform only makes uses a few years of follow-up data [Friedlander et 

al, 1997].  

Another unique aspect of this study is that it estimates the impact of a welfare-to-

work program on GA recipients; GA is virtually unstudied to date. Yet, GA programs 

serve a large population of economically vulnerable individuals who should be of interest 

to researchers. The ESPP appears to have had a persistent positive impact on GA 

recipients in NYC. It increased the probability that they exited welfare and started a job 

by 10 and 15 percentage points, respectively.18   

Previous studies that estimated the effect of similar welfare-to-work programs – 

those with mandatory work requirements and an emphasis on job placement – on FA 

recipients found that welfare exits and employment increased by an average of 6 and 9 

percentage points, respectively [Grogger and Karoly, 2005]. The ESPP’s effect on GA 

recipients is somewhat larger than the above reported averages. Whether this difference is 

due to the distinct population (GA versus FA recipients), the unique identification 

strategy, or another factor is unclear.  
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This research also contributes to the literature by studying the effect of a welfare-

to-work program in NYC. Neither random-assignment experiments nor non-experimental 

studies have focused on a welfare-to-work program there. Yet, 23 percent of all GA 

recipients, and 7 percent of all FA recipients, lived in NYC in 1996. The only study that 

focuses on the impact of welfare reform in NYC is Chernick and Reimers [2004]. This 

study found that welfare use declined and earnings increased for ‘at risk’ individuals after 

PWRORA.19 The authors acknowledged, however, that the observed changes could have 

been caused by welfare reform, the robust economy, or another factor. 

Finally, one should consider whether the benefits of the ESPP outweighed the 

costs. Preferably, one would conduct a comprehensive Cost-Benefit Analysis (CBA) as 

was done in Orr et al [1996]. Unfortunately, such a CBA is not possible due to missing 

data. Specifically, recipients’ earnings are not available. Increased earnings are the 

primary benefit of a training program for an enrollee. 

It is possible, however, to conduct a rough fiscal CBA. The primary cost for the 

government were the fees paid to the ESPP contractors. The average fee was $3,000 per 

placement. Some placed selectees, however, would have found a job without the help of 

an ESPP contractor. Thus, we need to determine the cost of a ‘new’ placement, one that 

would not have occurred without the ESPP. To do so, consider that approximately 35 

percent of selectees started a job during the study period and that the ESPP’s employment 

effect was approximately 15 percentage points, thus NYC had to pay for 35 placements 

to generate 15 new placements. Consequently, the cost of a new placement was 

approximately $7,000 (= $3,000 × (35 ÷ 15)). 
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The primary benefit for the government was a reduction in GA benefits. In early 

2000, a typical GA recipient received $350 per month, or $4,200 annually. Thus, the 

average selectee had to remain off welfare for 1.66 years (= $7,000 ÷ 4,200) for the 

primary fiscal benefit to outweigh the primary fiscal cost. There is not enough post 

selection data, unfortunately, to determine whether this is the case.20 However, at the end 

of the study period, over two-thirds of the selectees who started a job were still off 

welfare. These recipients had already been off welfare for a year, on average. Projecting 

into the future, if one assumes that one-third of the selectees who started a job, and who 

were still off welfare at the end of the study, returned to welfare in each of the three 

subsequent years, then the primary fiscal benefits would surpass the primary fiscal costs. 

Further, there are numerous additional fiscal benefits, for example, decreased 

expenditures on Food Stamps or Medicaid, and few additional fiscal costs; data regarding 

these additional fiscal benefits are not available. Thus, it appears likely that the ESPP 

would pass a fiscal CBA. 

NOTES 

I wish to thank Alan Auerbach, David Card, Ken Chay, Swati Desai, Nada Eissa, Guido 

Imbens, John Quigley, Steve Raphael, Emmanuel Saez, and three anonymous referees for 

their help suggestions. I also wish to thank the Burch Center at the University of 

California, Berkeley for its generous support and the New York City Human Resources 

Administration for making the data available and funding a portion of this work. All 

findings and conclusions expressed in this paper are those of the author. 

1 Prior to passage of the PRWORA in 1996, states could receive a ‘waiver,’ permission 

from the federal government, to implement pilot welfare-to-work programs for a portion 
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of their Aid to Families with Dependent Children caseload. As a condition of receiving 

the waiver, the state had to evaluate the pilot program using a random-assignment 

experiment. 

 2 Also using a quasi-experimental approach, Autor and Houseman [2005] have 

demonstrated that, unlike direct-hire jobs, temporary help jobs do not change the 

likelihood that the recipients are employed one to two years post placement.  

3 This is generally true for other components of welfare reform as well. One exception is 

time limits. Using a non-experimental identification strategy, Grogger [2003] 

demonstrates that time limits decrease welfare use. 

 4 GA is cash assistance for financially needy individuals who are not covered by 

federally funded income maintenance programs.  

 5 Other components of NYCWAY included enhanced detection of welfare fraud, 

increased substance abuse treatment, and diversion to federally funded disability 

insurance where appropriate. 

 6 Participants received no compensation other than their welfare benefits and a nominal 

stipend for carfare and lunch. 

 7 GA recipients were deemed job-ready if they did not have physical or emotional 

barriers to employment.  Private contractors were hired to evaluation recipients’ job-

readiness. Over 90 percent of GA recipients who were already participating in a WEP 

assignment were found to be job-ready. 

 8 Becoming ineligible was not exogenous. Recipients could become ineligible by exiting 

welfare or failing to comply with various program requirements. 
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 9 After 17 waves, 6,782 recipients had been selected, 953 remained eligible, and 3,791 

had become ineligible. 

10 In contrast, one could estimate the effect of participating in the ESPP, a ‘Treatment on 

the Treated’ (TT) effect. To do so, one could multiply the IT effect by the inverse of the 

fraction of selectees who received treatment – that is, participated in the ESPP [Orr, 

1996, p. 107-108]. For the TT estimate to be unbiased the following assumption needs to 

hold: The ‘threat’ of treatment cannot have an effect that is similar to the effect of the 

treatment itself; otherwise, the TT estimate will be positively biased. This assumption is 

unlikely to hold since the treatment is mandatory and costly for participants [Black et al, 

2003]. IT and TT effects are further discussed in Katz, Kling, and Liebman [2001]. 

 11 The computer programmers who conducted the selection process mistakenly believed 

that sorting the list of eligible recipients by borough would cause each resulting borough 

list to be randomly ordered. Thus they simply selected recipients from the top of these 

lists. 

 12 This approach enables one to estimate a very general, non-parametric hazard rate. 

Corrected standard errors are calculated by clustering the observations by individual. This 

is necessary since some individuals appear in the dataset repeatedly. M = 26 is the 

maximum number of months for which there is post selection data for each recipient. 

Again, each month is assumed to have 28 days. So there are 26 M’s in two years. 

 13 It would have been interesting to study whether recipients remained employed. 

However, NYC did not collect job retention data, and New York State was unwilling to 

provide the unemployment insurance wage records for study participants. Thus, this 
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measure is used. It provides some information regarding whether recipients remained 

employed, since recipients who lose their job presumably would return to welfare. 

14 This analysis is limited to M ≤ 18, since there are only two years of follow-up data and 

six months of follow-up data are needed to determine whether a recipient exited welfare. 

 15 This concern arises since ESPP contractors were paid for each job placement. Thus the 

contractors had a strong incentive to make sure that each placement was recorded. 

16 Again, this analysis is limited to M ≤ 18, since there are only two years of follow-up 

data and six months of follow-up data are needed to determine whether a recipient exited 

welfare. 

 17 In a future study, this identification strategy will be used to estimate the ESPP’s effect 

on GA recipients’ homeless shelter use. 

 18 It is also likely that the ESPP increased earnings, since most selectees were placed in 

direct hire jobs and such jobs have been shown to increase earnings and quarters of 

employment [Autor and Houseman, 2005]. 

 19 At risk households were defined as those headed by a mother with a minor child as 

well as those headed by an uneducated, non-elderly, childless adult.  

 20 Previous studies have suffered from the same limitation and have projected the 

benefits of short-term training programs into the future as well [Friedlander, 1997]. 
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Table 1 

Demographic Characteristics of Members of the Program and Control Group  

Demographic 
characteristic

Observations

Male 0.541 (0.002) 0.539 (0.006) 0.541 (0.002)

Age 47.324 (0.034) 48.199 (0.101) 47.221 (0.036)

Years continuously 3.379 (0.012) 3.716 (0.037) 3.340 (0.013)
   on welfare

Race
   Asian 0.012 (0.000) 0.009 (0.001) 0.012 (0.000)
   Black 0.492 (0.002) 0.478 (0.006) 0.493 (0.002)
   Hispanic 0.352 (0.002) 0.371 (0.006) 0.349 (0.002)
   White 0.095 (0.001) 0.086 (0.003) 0.096 (0.001)
   Not reported 0.042 (0.001) 0.050 (0.003) 0.042 (0.001)

Borough of residence
   Bronx 0.389 (0.002) 0.308 (0.006) 0.399 (0.002)
   Brooklyn 0.309 (0.002) 0.265 (0.005) 0.314 (0.002)
   Manhattan 0.180 (0.002) 0.289 (0.006) 0.168 (0.002)
   Queens 0.111 (0.001) 0.124 (0.004) 0.110 (0.001)
   Staten Island 0.007 (0.000) 0.014 (0.001) 0.006 (0.000)

Standard errors are given in parenthesis.  
Bold means are significantly different for the program and control group.

All recipients      
(1)

Control group     
(3)

64,800 58,018

Program group    
(2)

6,782



Table 2 

Coefficients from Estimating Equation (2) for Select Borough-Wave Pairs 

 

  

 

Demographic 
characteristic

Bronx     
3rd wave

Bronx      
4th wave

Bronx      
12th wave

Brooklyn   
3rd wave

Brooklyn   
11th wave

Brooklyn   
16th wave

Manhattan 
1st wave

Manhattan 
2nd wave

Manhattan 
3rd wave

Queens     
4th wave

Queens     
5th wave

Queens     
6th wave

Male -0.0434 0.0592 0.0086 0.1885 -0.1316 0.3983 0.1398 -0.0197 0.0175 0.1497 -0.1053 -0.0159
(0.0632) (0.0675) (0.0732) (0.0755) (0.0904) (0.1151) (0.0700) (0.0716) (0.1047) (0.1195) (0.1216) (0.1348)

Age 0.0077 0.0016 0.0177 0.0119 0.0031 0.0083 0.0070 0.0089 0.0109 0.0070 0.0206 0.0182
(0.0037) (0.0039) (0.0044) (0.0046) (0.0054) (0.0071) (0.0044) (0.0043) (0.0062) (0.0069) (0.0076) (0.0080)

Years continuously 0.0800 0.0674 -0.0199 0.0438 -0.0573 0.0447 0.1091 0.0789 -0.0099 0.0935 0.0123 -0.0418
   on welfare (0.0095) (0.0103) (0.0123) (0.0122) (0.0163) (0.0170) (0.0110) (0.0125) (0.0201) (0.0193) (0.0214) (0.0265)

Race
   Asian -0.0227 - - - -0.1606 -1.5415 -0.5790 -0.6611 0.5272 0.1396 -0.3055 0.2656

(0.4157) (0.5724) (0.5917) (0.4508) (0.4702) (0.5006) (0.4093) (0.4715) (0.4792)

   Black -0.0717 -0.0478 0.1155 -0.0862 0.2813 -0.4173 -0.2989 -0.0398 -0.2199 -0.0563 0.0506 0.2926
(0.1324) (0.1456) (0.1931) (0.1551) (0.2430) (0.2618) (0.1325) (0.1728) (0.2677) (0.2828) (0.3126) (0.3627)

   Hispanic 0.0867 -0.0490 0.2344 -0.0503 0.3712 -0.3528 -0.2489 -0.0200 0.1130 0.0994 0.1166 0.5131
(0.1271) (0.1420) (0.1906) (0.1634) (0.2516) (0.2753) (0.1326) (0.1734) (0.2674) (0.2976) (0.3280) (0.3796)

   White 0.2063 -0.1216 -0.0126 -0.3179 0.1867 -0.6867 -0.1420 -0.2260 -0.4293 -0.1750 -0.0310 0.0423
(0.1827) (0.2156) (0.2555) (0.1894) (0.2652) (0.2920) (0.1824) (0.2211) (0.3510) (0.3029) (0.3296) (0.3826)

Standard errors are given in parenthesis.  
Bold coefficients are significantly different than zero at p < 0.01
Bold Italicized coefficients are significantly different than zero at p < 0.05



Table 3 

Coefficients from Estimating Equation (3) using Control Group: 6M restriction 

 

  

 PE 0.1310 (0.0078) 0.1348 (0.0077) 0.1309 (0.0081) 0.075 (0.01) 0.0823 (0.0125) 0.0823 (0.0129)

Male -0.0092 (0.0110) -0.0066 (0.0112) -0.0182 (0.0208) -0.0147 (0.0208)

Age -0.0016 (0.0006) -0.0017 (0.0006) -0.0042 (0.0011) -0.0044 (0.0011)

Years continuously -0.0020 (0.0016) -0.0024 (0.0017) 0.0015 (0.0034) -0.0002 (0.0034)
   on welfare

Race
   Asian 0.0835 (0.0673) 0.0690 (0.0661) 0.0566 (0.1083) 0.0393 (0.1057)
   Black 0.0096 (0.0220) 0.0007 (0.0218) 0.0199 (0.0460) 0.0116 (0.0467)
   Hispanic -0.0051 (0.0222) -0.0042 (0.0220) -0.0516 (0.0460) -0.0431 (0.0471)
   White 0.0055 (0.0263) -0.0165 (0.0266) -0.0199 (0.0540) -0.0514 (0.0547)

Borough of residence
   Bronx -0.0538 (0.1184) -0.0764 (0.1650)
   Brooklyn 0.0159 (0.1190) 0.0417 (0.1651)
   Manhattan -0.0090 (0.1220) 0.0238 (0.1692)
   Queens 0.0456 (0.1320) 0.0233 (0.1807)

Wave dummy
Interaction term

Standard errors are given in parenthesis.  
Bold coefficients are significantly different than zero at p < 0.01

Eight months (sixteen waves) post selection (M  = 8)Demographic 
characteristic

Two years post selection (M  = 26)
(4) (5) (6)(1) (2) (3)

Yes
No Yes

No
No

No
No

No
No

Yes
Yes

No



Figure 1 

The Formation of the Program and Control Groups 

The program group: 
All selectees from the first 17 waves.  Specifically it is the union of T1, T2, T3, ….., T17. 
 

The control group: 
All non-selectees from the first 17 waves.  Specifically it is the union of C1, C2, C3, ….., C171.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Repeat the process through the 17th wave (on 6/15/2000) 

                                                 
1 Note that many recipients were non-selectees in multiple waves.  Consequently, many recipients are 
members of the control group multiple times. 

6,250 recipients were  

eligible on 11/17/99 

6,790 recipients were  

eligible on 11/3/99 

652 eligible recipients  

selected on 11/3/99 

6,138 eligible recipients  

not selected on 11/3/99 

619 eligible recipients  

selected on 11/17/99 

5,631 eligible recipients  

not selected on 11/17/99 

5,910 recipients were 

 eligible on 12/2/99 
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not selected on 12/2/99 
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Figure 2 

The Formation of the Program Group and the Control Group with a One-Wave Restriction on Being Selected 

The treatment group: 
All selectees from the first 17 waves.  Specifically it is the union of T1, T2, T3, ….., T17. 
 
The control Group with a one-wave restriction on being selected 
All recipients who were: 

 

1. non-selectees during any of the first 17 waves and 
2. not selected in the wave subsequent to the one in which they were a non-selectee. 

 

Specifically it is a weighted union of C1a, C1b, C2a, C2b, C3a, C3b, ….., C17a, C17b.  The weight placed on each member of each a-series cohort is equal to 
one.  The weight placed on each member of each b-series cohort is equal to the reciprocal of the probability of not being selected in the subsequent wave, 
conditional on being eligible to be selected in that wave, for example, for members of C1b the weight is the reciprocal of (5,248/5,860), or (1/0.896 ) = 1.116. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Repeat the process through the 17th wave (on 6/15/2000) 

5,860 eligible recipients 

 on 11/17/99 

6,790 recipients were 

 eligible on 11/3/99 

652 eligible recipients 

 selected on 11/3/99 

6,138 eligible recipients  

 not selected on 11/3/99 

C1b 

278 ineligible recipients 

 on 11/17/99 

612 eligible recipients 

selected on 11/17/99

C1a 1st wave T1 

5,248 eligible recipients 

not selected on 11/17/99

5,354 eligible recipients 

 on 12/2/99 

6,250 recipients were 

 eligible on 11/17/99 

619 eligible recipients 

 selected on 11/17/99 

5,631 eligible recipients  

 not selected on 11/17/99 

C2b 

277 ineligible recipients 

 on 12/2/99 

899 eligible recipients 

selected on 12/2/99

C2a 2nd wave T2 

4,455 eligible recipients 

not selected on 12/2/99



Figure 3 

Estimated effect of ESPP on starting a job using all control groups 
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Figure 4 

a) Estimated effect of ESPP on starting a job using four least restricted control groups 

 

 
 
 
 
 

b) Estimated effect of ESPP on starting a job using four most restricted control groups 
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Figure 5 

Estimated effect of ESPP with various covariates included using control groups: 6M and 12M restriction 
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Figure 6 

Estimated effect of ESPP on starting a job and exiting welfare using all control groups  
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Figure 7 

Estimated effect of ESPP on exiting welfare using all control groups  
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