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Abstract 

 

 This project focuses on the design of a foundation and garage-level retaining walls for 

a 25 story building in Oakland, California. The design was completed through the use of data 

from a 1988 soil investigation and provided structural loads. The site is composed of a thin 

sand layer above a clay layer about 400 feet thick. Analysis included soil and groundwater 

conditions and exploration of spread footings, mat footings, and pile foundations. The final 

selected foundation type is driven piles with the other options discarded due to lack of data 

and an unsuitability for the structure requirements. Piles are suitable for the deep, strong soils 

underlying the work site and the massive loads of the structure. Pile capacity and settlement 

of the final foundation design, as well as the strength of the designed retaining walls, safely 

met all project requirements. Additional recommendations were made in order to ensure 

accurate foundation construction.  
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Introduction 

 One of the most important considerations in ensuring the long life and safety of a 

building is the foundation it rests upon.  Stated in the 2013 California Building Code in 

section 1803.1.1.1, “Each city, county, or city and county shall enact an ordinance which 

requires a preliminary soil report, prepared by a civil engineer who is registered by the state” 

(California Building Standards Commission, §1803.1.1.1).   The building code further states 

in section 1803.5.5 that “where deep foundations will be used, a geotechnical investigation 

shall be conducted” (California Building Standards Commission, §1803.5.5). This 

geotechnical investigation includes a detailed analysis of the underlying soil conditions and 

recommendations as to the foundation type and capacity, settlement, and construction 

methods. 

 

Figure 1: The Leaning Tower of Pisa, a popular case study in foundation settlement 

 Regardless of whether an investigation is required, proper foundation design is 

required by common sense and the duty of engineer to safeguard the public. Due to the size, 

use, and location of the structure in this project, a 25-story tall office building in downtown 

Oakland, its structural integrity is of the utmost importance. An improperly designed or 
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deficient foundation could lead to dangerous structural failure of the building, negative 

impact on adjacent structures, and costly and constant repairs. The role of foundation design 

is to make sure that the structure, its inhabitants, and its surroundings are safe.  

 The goal of this project is to come up with an effective and smart foundation design 

for the given structure. The end result will be safe recommendations for the foundation, as 

well as the garage-level retaining walls that take into account the subsurface conditions and 

site location. This project does not delve into seismic design and remains focused on the 

effect of gravity loads.  

 

Design Criteria 

 All data used in the calculations for this project were provided in a data package, 

attached to this report as Appendix A.  The data package used in the foundation design 

included column loads, a geologic report including logs of five borings, data from a small 

number of additional tests such as consolidation, liquid and plastic limit, and grain-size 

distribution tests, as well as site profiles and layout drawings. Also included are details about 

the garage levels for use in retaining wall design.  

 The gravity loads on the columns were provided based on the location of the column. 

Columns were given different max loading values depending on whether they were located in 

the interior of the tower, exterior of the tower, or in the garage. This way of providing data 

did not give any information as to the number of each column in the structure, where exactly 

the column was located in the building layout, and the exact loading on each column. 
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Because there was such a range in loads, the max load had to be used in the design, which 

made it excessively conservative and resulted in a more expensive design. 

Column Location Dead Load (kips) Live Load (kips) Dead + Max Live (kips) 

Tower Interior 2,200 to 4,000 1,400 to 2,700 3,600 to 6,700 

Tower Exterior 600 to 2,600 400 to 1,800 1,000 to 4,400 

Garages 200 to 300 120 to 200 320 to 520 

Table 1: Column loads provided in data package 

 Groundwater levels were supplied in the boring logs, but an additional note was 

added to state that in this area the groundwater level fluctuates between about 6 to 15 feet in 

elevation over the year. In this design, the worst case of groundwater at 15 feet elevation was 

used in calculations.  The initial data was entered into an Excel spreadsheet (charts shown in 

Appendix B) in order to quickly process information and easily complete calculations. 

 The data described so far was enough to begin the analysis process; further 

assumptions and values used in the design will be explained as they appear in this report.  

 

Soil Analysis 

 Using the boring logs and geologic profile in the supplied data package (Appendix 

A), the underlying soil was characterized in order to better understand what was going on 

below the site. This understanding was then used in order to make judgments regarding 

which foundation type was most appropriate for this site. The first step in this process was 

looking at the geologic profile and report to get a basic understanding of the depth and 

composition of the underlying soil.  
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 The site’s underlying soil is composed of a Merritt Sand layer (~30 ft. thick) 

composed of slightly cemented, fine-grained to clayey sands above the San Antonio 

formation, which is composed of very stiff to hard silty clays with occasional dense gravel 

lenses. Under the San Antonio Formation is the Alameda formation, which consists of hard 

marine clay in the upper half and sandy oxidized clay in the lower half. These three layers 

rest on Franciscan bedrock, which did not come into use in this design. Essentially, there is a 

relatively thin sand layer on top of a very thick clay layer, although a dense gravelly sand 

lens in the San Antonio Formation was an essential part of the final design. 

 

Figure 1: Basic diagram of the underlying soil composition 

 After understanding the overall trends in site conditions with the general soil profile 

above, more specific details were required. Using data provided for three borings (Borings 1, 

3, and 5 in Appendix A), the specific soil profile was constructed.  The specific soil profile 

showed that this site conformed to the general geologic trends. As can be seen on Figure 3, 

the site is composed of a sand layer above a thick clay layer. The boring data also showed the 

presence of a gravelly sand layer at an approximate elevation of -40 feet that extended an 

unknown distance through the site. After the underlying soil conditions and their strength 

were known, the analysis proceeded to the exploration of different foundation types.    



5 

 

 

Figure 2: Site layout showing the cross-section used in construction of the specific soil 

profile 

 

Figure 3: Specific soil profile of the site 
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Analysis of Alternatives 

 The analysis of which foundation type was most appropriate started with shallow 

foundations and then moved to deep foundations. The reason for this is the lower cost of 

materials and installation for shallow foundations. If a shallow foundation could meet the 

demands of the column loading, then it would be a better option than a deep foundation.   

 The first shallow foundation investigated was the spread footing. Values for the 

effective angle of internal friction for sands were conservatively estimated using the density 

of the layer which was estimated from soil type and blow count values during boring. 

Excavation of the site prior to foundation installation would drop the top of the spread 

footings to below the maximum water table level. Although dewatering during construction 

would lower it further, after the dewatering systems are removed, the water level would again 

be at or above the spread footing, so the depth to water was taken to be 0 feet. As can be seen 

in Figure C1, the size of a spread footing would need to be about 26 square feet to satisfy the 

loading on the heaviest column. This is excessively large for a spread footing, especially 

considering the spacing of the columns is approximately 30 feet in the tower section. 

Furthermore, after excavation the spread footing would be dangerously close to the very 

thick clay layer. The consolidation of the clay layer due to the large spread footing would 

cause excessive settlement and damage to the structure. Additionally, the way the footings 

spread their load would adversely impact the foundations of nearby structures. Due to the 

excessive size and settlement issues, the spread footing was discarded as a solution. 

 The next foundation type explored was the mat footing. The immediate problem with 

designing a mat footing is the lack of data provided on the columns. The columns are only 

divided into three groups and assigned a load range based on their group. However, in order 
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to properly design a mat footing, far more specific data would be needed. Because large mat 

foundations cannot be perfectly rigid, an analysis using a non-rigid method would have to be 

performed to design the thickness of the mat. This analysis would need specific data on the 

location of each column and the load it is receiving in order to calculate bending moments.  

Because this data was not provided, the proper analysis for the mat footing cannot be 

performed, so it was discarded as a solution. Also, because the water table exists at an 

elevation higher than the bottom of the mat footing, dewatering operations during the pouring 

of the concrete would pose a challenge. 

 The analysis then proceeded to the deep foundations, between driven piles and cast-

in-place piles. Driven piles were selected over cast-in-place piles because of the reduction of 

soil strength that comes with drilling a shaft before pouring. Cast-in-place piles disturb the 

in-situ soil strengths due to the installation method, resulting in unchanged or decreased 

lateral pressure and side friction, as well as decreased end bearing capacities. Driving piles 

densifies both the soil surrounding the pile and the soil beneath the tip, resulting in increased 

side friction and end bearing capacity. The driven piles used in this project were assumed to 

be round, pretensioned, reinforced concrete piles. The combination of the clay-dominated site 

conditions and the heavy column loading required getting as much strength out of the soil as 

possible, so the cast-in-place piles were discarded in favor of the driven piles.  

 

Pile Capacities 

 After driven piles were selected as the optimal solution, calculations began to 

determine the capacities of the piles. After review of the soil profile, the decision was made 

to split the piles into two groups: friction piles and friction plus end bearing piles. Because of 
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the presence of the dense gravelly sand layer, it could be utilized to support shorter end 

bearing piles with capacities near to those of the friction piles with less than half the length. 

The other piles would be entirely dependent on the friction of the clay layers to resist the 

gravity loads. Data from Boring 1 was used for friction pile calculations and data from 

Boring 3 was used for the end bearing piles. 

 For analysis of piles in clay, the methods used to calculate the end bearing capacity 

and the side friction capacity were the O’Neill and Reese Method and the α-Method, 

respectively. The supporting calculations are given in Appendix C. Calculations were 

performed with the aid of the spreadsheet shown in Appendix B.   

 For analysis of piles in sands, the methods used to calculate the end bearing capacity 

and the side friction capacity were the Vesic-Kulhawy Method and the β-Method, 

respectively. The supporting calculations are located in Appendix C. Calculations were 

performed with the aid of the spreadsheet shown in Appendix B.   

 A factor of safety of 2.5 was applied to both the friction and end bearing piles. This 

value was decided to be conservative enough for the piles in sand and clay. After calculating 

the capacities of the individual piles, the basic design of the pile caps was performed. Using 

the size, spacing, and number of piles, the approximate sizes of the pile caps were 

determined. The group efficiency of the piles was calculated and applied to the allowable 

capacity of the pile groups. Additionally, the contributions of the piles caps as spread 

footings were added to the capacity of the pile groups.  

 The result of the pile design was a group of end bearing piles driven down to the 

gravelly sand layer, and friction piles driven down as far as the data would allow. With the 

addition of the factor of safety of 2.5, the number of friction piles required to support the 
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columns rose dramatically, and the piles needed to be sunk to great depth in order to reduce 

the number required. Although very deep, the embedment depth is not unreasonable and 

should not introduce any great difficulties. The majority of pile diameters were 18 inches in 

diameter, which was in the upper bounds of what is reasonable in a driven pile, but was 

necessary in order to recruit as much side friction as possible. Both friction and end bearing 

groups were split into interior and exterior tower column groups, and all garage columns 

were supported on friction piles. The garage columns were so lightly loaded that they did not 

need to be driven as deep as the sandy layer, allowing a much cheaper, shallower pile group 

to be utilized.  

 

Type Column Location 
Pile 

Diameter 

Embedment 

Depth (ft) 

Piles 

per 

Column 

Pile Cap 

Size (ft) 

Friction Tower Interior 18” 127 17 13 X 11.5 

 Tower Exterior 18” 127 10 14 X 9.5 

 Garages 16” 42 5 5 X 5 

End 

Bearing 
Tower Interior 18” 57 19 16 X 13.5 

 Tower Exterior 18” 57 13 12.5 X 8.5 

Table 2: Final design of driven piles 

 

Settlement 

 Settlement for the selected design was determined to be negligible due to a variety of 

factors. Foremost is the historical tendency of piles to have undergone very minor settlement. 

According to Donald Coduto, “Most deep foundations… will have total settlements of no 

more than about 12mm (0.5 in), which is acceptable for nearly all structures” (Foundation 
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Design, 543). He additionally states that engineers often do not even perform any settlement 

computations for deep foundations. The next most important factor in the decision to 

disregard settlement was the very high strength of the deep soils. Although they are clays, the 

soils below this site have very high compressive strength generally ranging from 3,000 psf to 

4,000 psf and even up to 5,500 psf (as seen in Boring 1 in Appendix A). These assumptions 

were brought to the advising faculty member and it was advised that settlement be regarded 

as negligible. Therefore, no calculations were performed for settlement of the driven piles 

because it was assumed to be within safe bounds for the project structure. 

 

Construction Recommendations 

 During completion of the foundation design, there were some concerns that arose that 

should be mentioned as final construction recommendations. First, the effect of down drag on 

the piles, which will create an additional force on the pile in the downward direction. This is 

caused by the densification of upper layer soils, which in turn compress the soil below them, 

leading to compressing layers which “pull” down on the pile. This is often caused by 

dewatering systems or pile driving, where water is driven from the soil as the pore pressure 

increases. The down drag effect should not have a large impact on this site as the top layer is 

sand, in which pore pressure equalizes relatively quickly, and below that is already very 

compact and hard soils. Because of the in-situ strength of the soils and what should be a 

minor dewatering system, down drag should not be a problem. 

 The next consideration is the care required in handling, transporting, and driving the 

piles. As the piles are rather thin and long, there must be great care taken to not destroy them 

as they are being moved and transported. Lifting piles from the middle or ends will result in 
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broken piles. Although the construction crew should know this, it is something worth a 

reminder, as broken piles could lead to costly delays and replacement. Furthermore, proper 

methods in driving should be followed to prevent the destruction of the tops of the pile.  

 Finally, additional borings should be performed in order to properly determine where 

the gravelly sand layer ends under the site. Because the pile design is split into end bearing 

and friction piles, it is very important that the end bearing piles end on the sand layer. 

Because the amount of boring data is limited, there should be additional borings conducted 

prior to construction so that the piles are driven in the proper place. Thus it is recommended 

that further investigation be done between the initial Borings 1 and 3.  

 

Retaining Walls 

 The final design component of this project was the garage-level retaining walls. In 

performing the calculations for the retaining walls, the only data needed from the data 

package in Appendix A was the height of the retaining walls and the soil the wall footing 

would be resting upon. Because the garage is composed of two levels across the western half 

of the site and three levels across the eastern half, there were two walls designed. The 

retaining walls were to be embedded in the present soil, a clayey sand, but it was decided that 

in order to remove the expansive effects of the clays additional excavation would be carried 

out. The backfill would be replaced with a well-graded, clean gravel-sand mix in order to 

facilitate proper drainage, increase the uniformity of the walls, and help ensure the accuracy 

of the calculations. Values for pressure caused by this backfill were sourced from the 2012 

International Building Code and can be seen in Appendix C. Because the basement floors are 

tied into the retaining walls, there needs to be some nominal reinforcement of the walls. The 
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floors also act to prevent overturning and sliding of the wall. However, when in construction, 

there will be no floors to support the wall so calculations were performed using free standing 

retaining walls. Calculations were performed with the aid of the “Bearing” and “Retaining 

Wall” excel spreadsheets and can be seen in Appendix C. 

 

Design Values Western Garage Eastern Garage 

Stem Height (ft) 30 31 

Footing Thickness (ft) 3 3 

Footing Embedment (ft) 1.5 1.5 

Stem Thickness – Top (ft) 3 3 

Stem Thickness – Bottom (ft) 3 3 

Toe Extension (ft) 7 7 

Heel Extension (ft) 13 13 

Sliding FS 1.94 1.88 

Overturning FS 5.35 5.04 

Bearing Pressure OK? Yes Yes 

Table 3: Dimensions and safety factors of retaining walls 

 

Non-Technical Issues 

 With the construction of a large office building, the foundation it rests upon will be 

partly responsible for ensuring the safety of its inhabitants. When the building has a proper 

foundation, workers can be safely housed inside and bring the economic advantage of the 

structure to full use. In this way, this foundation is essential to a structure that would bring 

jobs to the local populace, economically benefit the area, and thereby improve the lives of 

people in the Oakland area. Throughout the design, the goal was to provide an effective 

solution that is as affordable as possible. Although conservatism is very important in the 
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design of foundations because of the amount of uncertainties and estimation in the process, it 

was also important to make sure it wasn’t too conservative. By putting a great deal of thought 

into the judgment calls made in this project, the overall efficiency of the design is 

maximized. As far as environmental impact, the main factor is simply the cradle to grave cost 

of the materials. Concrete is an incredibly long lasting material, and for a structure of this 

size, a lot of concrete is needed for the foundation. There are not any great alternatives to 

concrete when used for this purpose as its strength is essential, but by making a foundation 

that will stand the test of time and remain functional as long as needed, the environmental 

impact can be lessened.   

 

Conclusion 

 In summary, driven piles were chosen as the design solution due to the overwhelming 

presence of clay under the site and because of the massive column loading. All required 

capacities modified by a conservative factor of safety were met and settlement was 

determined to be negligible. Retaining wall design was completed and met the safety 

requirements for sliding, overturning, and bearing capacity failure. Although this project did 

not include any seismic design or in-depth detailing, it demonstrated a diligent design attitude 

and creative thinking. Ultimately, this project is a practical and effective foundation design 

for the data provided and reflects the hard work and thoroughness that went into the design 

process. 
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