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ABSTRACT!

With the need for alternatives to fossil fuels becoming more prevalent, biofuels has 
become an increasingly attractive alternative. Traditional biofuel production was quickly 
halted as a result of its ethical complications, leading to the development of second-
generation biofuels. This system utilizes plant waste instead of food as its starting 
material, allowing for rapid recycling of this widely available and cheap carbon source. 
This switch was, however, coupled with complications. Of those, the most prominent is 
the inevitable release of acetic acid resulting from the breakdown of the lignocellulosic 
waste. This acetic acid is challenging to neutralize or extract in a scalable manner, 
leaving it in high concentrations in the substrate fed to the yeast, greatly decreasing their 
efficiency. To combat that problem, we are implementing an acid resistance system 
endogenous to E. coli inside of the yeast to impart a similar resistance. The system 
functions on a cyclopropanation mechanism that decreases the permeability of the 
membrane to slow the diffusion of the acid into the cell. With this system, in conjunction 
with other complementary modifications, we look to increase the efficiency of second-
generation biofuel production bringing it another step closer to playing a prominent role 
in our energy economy. !
!
!
!
!
! !
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Introduction and Significance 
Background 
Alternatives to fossil fuels have been highly sought after for many years and though first 

generation biofuels offered promise, the detrimental impact that it would have on the food supply 

if implemented at large scale superseded its potential benefits. To compensate for this issue, 

industry has moved toward second-generation biofuels, specifically bioethanol, that uses organic 

waste instead of food as its substrate.  

 

However, there are still numerous obstacles that must be surmounted to ensure its economic 

feasibility. The primary bottle-neck of this potentially lucrative industry is that the digestion of 

the lignocellulosic waste generates inhibitors, specifically weak acids, which lead to a decrease 

in the overall metabolic yield possible from the yeast S. cerevisiae that is responsible for the 

fermentation. (Loow et al., 2015) 

 

The most detrimental of these weak acids is acetic acid, which results from the unlinking of the 

acetyl groups that attaches the hemicellulose in the biomass. This hydrolysis is necessary to 

generate the simple sugars that the yeast requires for fermentation and so acetic acid generation 

is inevitable (Doğan, Demirci, Aytekin, & Şahin, 2014). The acetic acid, as it is lipophilic, can 

pass through the lipid bilayer of the yeast and, once inside the cell, it dissociates and causes 

detrimental effects on the cell. There are internal mechanisms designed to handle the anion and 

accompanying proton but this process is metabolically taxing on the cell and is bounded by the 

export rate of the transporters. If the acetic acid levels exceed certain levels it begins to 

dramatically slow the growth kinetics and will eventually lead to apoptosis. As a result of this 

inherent issue, more resilient yeast must be engineered to properly make use of this abundant raw 

material. Developing tolerant strains of yeast is what our senior project is designed to do. 
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Review of Field 
There are methods that have been employed to impart greater acetic acid resistance such as the 

modifications disclosed in patent US2015/0079652. This patent includes genetic modifications, 

specifically the alcohol/aldehyde dehydrogenase and the acetyl-CoA synthetase, which allows 

for the conversion of acetic acid into acetyl-CoA and then acetyl-CoA into ethanol.  This serves 

to handle the acetate anion that results from the dissociation of acetic acid to alleviate its 

deleterious effects, but is unable to compensate for the free protons that cause the decrease in 

cytosolic pH. (Angeles, 2015) 

 

Instead of targeting the acetate directly, Zheng et al. 2013 turned to modifying the membrane to 

limit the passive diffusion of inhibitors. They utilized the elongase gene that leads to an 

alteration in the lipid biosynthetic pathway resulting in an extension of the fatty acid tails. This 

increased length creates a thicker membrane leading to a longer path length for incoming 

inhibitors, such as ethanol or acetic acid. The increased distance through the membrane made its 

entry less thermodynamically favorable. This modification leads to a marginal increase in 

ethanol production and raises concerns for the other molecular effects it could have on proper 

protein integration into the membrane (Zheng et al., 2013). 

 

Utilizing a similar approach, the teaching in WO20151/03002 makes use of several other lipid 

modifications to introduce isobutanol resistance to yeast. They also utilized the elongase gene as 

well as the genes encoding the fatty acid desaturase. All of these genes serve the function of 

decreasing the permeability, while also decreasing the fluidity of the membrane. This much like 

the previous setup, leads to issues of protein integration (Dyk, 2015). 

 

Aside from the direct lipid modifications there have been studies specifically looking for other 

forms of transport that allows for the entry of acetic acid. There have been reports of an 

aquaglyceroporin, encoded by the Fps1 gene, that allows for the passive diffusion of acetic acid 

into the cell. Mallapour et al. 2007 preformed gene knock-outs to elucidate the Fps1 gene’s role 

in acetic acid tolerance and found that it was the cause for the initial influx of acetic acid 

(Mollapour & Piper, 2007). They also showed how the mitogen-activated protein kinase (Hog1) 

will rapidly phosphorylate the porin leading to its ubiquitination and eventual degradation. It was 
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at first suspected that the elimination of this porin would render cells resistant to acetic acid but it 

was later discovered that it only imparts initial resistance because the acetic acid is still able to 

pass through the membrane making it an undesirable gene target for tolerance engineering, as 

discussed in Lindberg et el. 2013 (Lindberg, Santos, Riezman, Olsson, & Bettiga, 2013). 

 

Project Goals, Objectives, and Expected Results 
Herein, we describe the use of a cyclopropanation mechanism that can be implemented as a 

means to decrease permeability of yeast to impart resilience to acetic. This decreased 

permeability could then allow for an increase in efficiency of second-generation biofuels. The 

initial goal of our research is to prove that we are capable of imparting acetic acid resistance in 

any organism using this mechanism to confirm that we can reproduce the results found in other 

studies. To conduct this initial set of experiments we chose to engineer E. coli as it endogenously 

expresses the required enzyme and is easy to engineer. We will extract the gene required to carry 

out this reaction and then over express it and test for acetic acid tolerance. Once this is confirmed 

to be effective, we will move to expression in the yeast S. cerevisiae, as it is the prevalently used 

yeast for biofuel production. This will require the construction of a codon-optimized sequence of 

this same gene being cloned into a yeast expression vector. This plasmid will then be used to 

transform into the yeast and then tested in acetic acid. If once again successful, we will shift to 

scale up our cultures and begin analyzes on the effect of the modification at the large scale.  

 

Backup Plan 
As this project requires the use of an enzyme not endogenously expressed inside of S. cerevisiae, 

it is possible for the protein to have numerous auxiliary, and potentially deleterious effects. For 

this reason, we want to establish other modifications that could be employed at a later time if it is 

found that the modification yields negative results. The modifications that we could implement 

have already been discussed in the early section. We could shift to the other known lipid 

modifications, such as the elongase and desaturase, and create a dual expression system to 

minimize the permeability of the membrane. If this too, fails to succeed, we could then move to 

implementing the knockout of the aquaglyceroporin, Fps1, to achieve the resilience and study its 

effect on acetic acid resistance, as well as on ethanol production. (Zheng et al., 2013) 
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Significance 
The progression toward a future powered by biofuels has been a series of small incremental steps 

that has allowed it to reach its current state. These steps of increased efficiency, though 

apparently small, have monumental impacts on the field due to the scale that it must be 

implemented at. We see this modification as one of those pivotal steps that will bring green 

energy that much closer to the hands of the world. With the ability to decompose lignocellulosic 

waste without having to try and neutralize the released inhibitors, it will open the door to cheaper 

biofuels for the world making it a stronger contestant against fossil fuels. (Loow et al., 2015) 

 

Team and Management 
Our team is comprised of two students: Matt Kubit and Conary Meyer. Matt is a bioengineering 

senior who has conducted several years of research on plants, giving him insight into 

lignocellulose and its degradation pathways. Conary Meyer is also a bioengineering senior, with 

numerous years of research experience, specifically working with bacteria and cloning. This skill 

set has equipped him with the necessary knowledge to construct and use the necessary plasmids. 

 

Our management is made up of two professors: Drs. Tracy Ruscetti and Maryam Mobed. Dr. 

Ruscetti functioned as the mentor for the molecular biology side of the project. She worked to 

make sure that we remained on track with specific emphasis on the intentionality behind 

experiments to limit superfluous activity by the team. Dr. Mobed was the mentor for the eventual 

scale up and simulation aspect of the project. Though the project did not reach this point, she 

assisted in the further understanding of the diffusion modification that we were implementing. 

 

Budget 
Our team received $1,000 from the School of Engineering, as well as $2,000 more from the 

Roelandt’s Grant. This money was used to purchase the necessary strains, plasmids, and reagents 

required to carry out this project. The specifics of the budget can be found in the Appendix. 

 

Timeline 
1.! Fall Quarter 
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1.! Extract the cyclopropane fatty acid synthase gene from E. coli genome 

2.! Clone the CFA synthase gene downstream of an inducible high expression promoter 

within a plasmid backbone 

3.! Transform into T7 protein expression E. coli cells 

4.! Assess toxicity of the over expression 

5.! Develop and run an acetic acid shock assay 

6.! Run a gradient of acetic acid concentration to determine baseline tolerance 

7.! Conduct acetic acid shock assay on the recombinant bacterium and assess whether or not 

it has improved growth kinetics compared to the control 

2.! Winter Quarter 

1.! Screen potential S. cerevisiae strains to choose the optimal strain 

2.! Run a gradient of acetic acid concentration on the chosen strain to establish a baseline 

tolerance 

3.! Build an E. coli/S. cerevisiae shuttle vector with the CFA synthase downstream of a 

constitutive high expression promoter.  

4.! Create competent yeast and then transform with the recombinant plasmid 

5.! Run the acetic acid tolerance assay on the transformants 

6.! Analyze data and assess use in scale up applications 

3.! Spring Quarter 

1.! Troubleshoot potential issues CFA expression 

2.! Transition into larger scale experiments  
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Chapter 1 – Proof of Principle in E. coli 
Introduction 
Review of possible membrane modifications 

After extensively reviewing the literature we compiled a list of potential membrane 

modifications that result in the desired decrease in permeability. A detailed description of the 

strong contenders was described earlier in the review of the field. The strongest contenders from 

our search were the elongase and desaturase but both of these modifications can have dramatic 

ramifications on the membrane. The primary consequence is the decreased ability for protein 

integration into the membrane. By increasing the length of the fatty acid tails in the membrane, it 

increases the length of the hydrophobic region that can result in that region exceeding the length 

of the hydrophobic region of transmembrane proteins. This will lead to the instability of that 

protein in the membrane and potentially disrupt its function (Zheng et al., 2013). Desaturases 

also result in decreased integration of proteins as they greatly decrease the fluidity of the 

membrane. This decreased fluidity can result in the improper assimilation of protein bound 

vesicles targeted to the membrane as well as improper dispersion of those proteins (Bogdanov, 

Aboulwafa, & Saier, 2013; Dyk, 2015). To avoid these issues, we turned our to attention to a 

unique modification known as membrane cyclopropanation.  

 

Cyclopropanation Mechanism 

Cyclopropanation reactions have been observed in a variety of bacteria, but has been clearly 

elucidated in E. coli (Chang & Cronan, 1999). The reaction specifically converts an unsaturated 

fatty acid into a cyclopropane fatty acid through the addition of a carbon at the double bond 

within the fatty acid tail.  This carbon is pulled from the methyl donor S-adenosyl methionine to 

generate a cyclopropane ring protruding from the fatty acid chain. The reaction and its 

mechanism are displayed in Figure 1.1.  
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Figure 1.1: Cyclopropanation reaction of E. coli cyclopropane synthase (Guangqi, Lesage, & 

Ploux, 2010). 

 

The addition of this carbon results in several favorable conditions that were, until recently, 

viewed as antithetical. In a recent computational study of the dynamics of cyclopropane lipids, 

Poger et al. elucidated the unique effects of this cyclopropanation. It was found that the 

formation of this strained cyclopropane group resulted in the maintenance of the kink in fatty 

acid tail of the unsaturated fatty acid. Though the angle was found to be consistent, the ring 

structure caused the tail to remain fixed opposed to the “flexible” double bond that was there 

previously. It was discussed that it was the flexing of the unsaturated fatty acid tails that served 

as the primary entry way for small chemical species, like acetic acid. The strained ring locks the 

tail in place and limits entry. It is this phenomenon that explains the perceived decrease in 

permeability that we were interested in (Poger & Mark, 2015).  

 

This fixed kink also maintains the area per lipid that the previous unsaturated fatty acid had. This 

allows for the easy passage of lipids around one another in the lipid bilayer. The membrane 

fluidity allows proteins to integrate into the membrane and migrate as needed (Figure 1.2).  
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Figure 1.2: Diagram depicting the effects of a cyclopropanated membrane. 

 

The protein required to cyclopropanate the membrane is an enzyme known as the cyclopropane 

fatty acid (CFA) synthase. This is a cytosolic protein has a lipophilic domain that allows its 

association with the membrane and subsequent catalysis of the cyclopropane reaction detailed 

above (Figure 1.2, Chang & Cronan, 1999). We chose the overexpression of this protein to 

increase cyclopropanation of the membrane and impart the acid resistant phenotype (Figure 1.3).   

 

 
Figure 1.3: Diagram depicting CFA synthase mediated cyclopropanation of the cell 

membrane. 

 

Utilization of CFA 
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With a comprehensive understanding of the CFA mechanism and the requirements of the system 

we shifted our attention to the steps required to utilize it. Our first step was to determine if the 

overexpression of the CFA synthase would be toxic.  We performed this proof-of-principle 

experiment by overexpressing CFA within the genetically malleable and readily available E. coli 

to validate our design.  

 

Under acid stress conditions, E. coli will express CFA. We can validate our system by 

continuously overexpressing CFA to test toxicity in E. coli.  In this phase of our project, our 

goals included testing the toxicity of overexpressing CFA and increasing the tolerance of E. coli 

by overexpression of CFA.   !

 

In the second phase of our project, we will express CFA within S. cerevisiae.  Currently, existing 

technologies to mitigate the impact of acetic acid on biofuel production of S. cerevisiae use 

pretreatment methods and the addition of base into the bioreactor to deal with the excess acid.  

These alternative technologies come with drawbacks that reduce efficiency of biofuel 

production.  We focused on engineering the organism to increase acid tolerance and therefore 

increase efficiency.  Our desire is to modify the plasma membrane with CFA to increase its 

tolerance.  Other genes also alter the plasma membrane such as the desaturase and elongase 

enzymes (Zheng 2013). These gene targets have already been researched and patented but we 

believe that CFA has a possibility of playing an important role in acidic tolerance due to its steric 

hindrance on acidic molecules.!

         !

Design Description!
The process of overexpressing CFA within E. coli involves gene expression.  The gene, CFA, 

was cloned into a bacterial vector.  The vector contained a bacterial-specific inducible promoter 

which up-regulates expression of the gene of interest.  The vector also contained sites such as an 

origin of replication, selectable marker, and transcription terminator.  The origin of replication 

ensured that the replication of the plasmid occurs to allow the continual expression of the gene 

while passing on the plasmid to the next generation of cells.  The selectable marker allowed for 

the selection of cells only containing the plasmid containing CFA.  The transcription terminator 

stopped the RNA polymerase from transcribing anything past the CFA gene. !
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The process of transformation allows foreign DNA into the cell of an organism.  For the focus of 

overexpression of our gene, the goal was to allow the engineered plasmid into cells.  Antibiotic 

resistance encoded on the plasmid selected for those cells that successfully incorporated the 

plasmid DNA. We confirmed transformation by running a colony-PCR.  This process amplified 

the CFA region within the plasmid using primers complementary to the vector.  A positive result 

from the colony-PCR yielded an amplicon the size of the gene, meaning the CFA gene was 

successfully cloned into the vector. A negative result from the colony-PCR would have yielded 

an amplicon much smaller than the CFA gene, meaning the gene was not within the plasmid.   !

 

We tested acetic acid tolerance by exposing E. coli harboring the plasmid containing the CFA 

gene to an acetic acid. We determined the optimal concentration of acetic acid, one that effects 

the growth rate yet allows the culture to go through the growth cycle.  Once the concentration 

had been determined, the acetic acid growth assay was devised.!

          

The acetic acid growth assay will involve continuously inducing the expressing of CFA in the 

engineered E coli strain along with control E coli strains.  The cultures will contain 3mL of LB 

media and inoculated with E. coli containing CFA or a control GFP plasmid at similar starting 

concentrations (measured by OD600).  After an hour of growth shaking at 37 degrees Celsius, a 

1:2 dilution was done to make the final concentration of acetic acid as experimentally 

determined.  Optical density was measured at a wavelength of 600nm using the Genesys 20 

every 30 minutes to determine the growth of the cultures.  The Genesys 20 ensures sterility due 

to its ability to read the optical density of the inoculation tubes that our used in our growth assay.!

 !

Supporting Analyses!
Initial experiments testing our E. coli with CFA and with a control plasmid showed almost 

uniform growth patterns.  Testing under no acetic acid conditions expressed the addition of 

IPTG, which induces transcription of CFA or GFP in our E. coli, showed a 3% decrease in 

growth and saturation level compared to uninduced cultures. !

          !

Expected Results!
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We expected the growth of E. coli with the overexpression of CFA under acetic acid conditions 

to have a shorter lag phase, increased growth rate, and a higher final saturation level CFA’s 

ability to inhibit acetic acid from passing through the plasma membrane.  We measured these 

parameters by analyzing the OD600 values taken from our acetic acid growth assay.  Lag phase 

was determined by analyzing the timeframe where the cultures had only minimal doubling time, 

in comparison to the rest of the growth cycle.  Log phase and growth rate was measured by 

doubling time, calculated by using the OD600 values and converting to cells per milliliter.  With 

an OD600 value of 1.0, there are 8 x 108 cells of E. coli per milliliter. The culture saturates when 

nutrients run out or waste products build up.  Saturation occurs when the slope between two time 

points approaches zero. The concentration at which the slope approaches zero is considered the 

saturation level.!

 !

Materials and Methods!
Materials!

LB (Luria Bertani, 10g/l tryptone, 5g/l yeast extract, 10g/l NaCl, pH = 7.5) broth was the media 

we used to grow E coli. 2% agar was added to make agar plates.  Kanamycin sulfate, the 

selectable marker, from was ordered from Sigma-Aldrich. One Shot Top10 Chemically 

Competent E. coli was used for the transformation and used to extract the genomic DNA of E. 

coli. A bacterial genomic mini-prep, Pure-Link Genomic DNA Prep from Invitrogen was used to 

extract out genome of E. coli.  The extraction of CFA from the genomic DNA required Taq 

Polymerase 2X (Thermofisher), Barnstead Ultra-Pure Water and Forward_CFA 

(ATTCGAAATCCGTACATCCA) and Reverse_CFA (CTACTATTACTTATCTACT) primers 

were ordered from IDT.  Agarose was purchased from Sigma-Aldrich.  The Electra Cloning Kit 

was ordered from DNA2.0 with the pD411.mal vector used for the cloning process.  S.O.C. 

media was ordered from Thermofisher.!The following confirmation primers were used 

Forward_CFA_Plasmid (CTTAAGCGGTATCGATCG) and Reverse_CFA_Plasmid 

(GTACGTAGGACCTAAACG) from IDT.!IPTG and Glacial Acetic Acid was ordered from 

Sigma-Aldrich.  The Genesys 20 Visible Spectrometer from Thermofisher was used along with 

15mm test tubes for OD600 measurements. !

 

Methods!
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The CFA gene was cloned out of E. coli genome by first performing a genomic prep on cultured 

E. coli.  TOP10 E. coli was grown overnight in 3 milliliters of LB media.  The following day, a 

genomic mini-prep (Pure-Link Genomic DNA Prep from Invitrogen) was performed on the 

saturated culture.  Using the genomic DNA as the template, a polymerase chain reaction was 

performed to amplify the CFA gene.  The amplification primers were homologous to the CFA 

coding sequence overhangs to clone into the vector.  Template DNA was added for a total of 

20ng.  Primers were added for a final concentration of 1 micromolar.  The reaction was run at 95 

degrees Celsius, then 30 cycles of 95°C for 30 seconds, 58°C for 30 seconds, and 60 seconds at 

72°C, before a final extension of 7 minutes at 72°C and then holding at 12°C.  A 1% agarose 

TAE gel was run to analyze the amplicon of the polymerase chain reaction to ensure the reaction 

completed as expected. !

          

For the cloning procedure, make a cloning mixture to add into the competent E. coli.  The 

cloning mixture will be 20ng of DNA, 1 mL of Electra Buffer, 1mL of vector, 1mL of Electra 

Enzyme, and 15mL of Water.  Add in 1 mL of the cloning mixture into 20uL of chemically 

competent E. coli.  We incubated the mixture on ice for 30 minutes, heat shocked at 42°C for 30 

seconds, then placed on ice for 5 minutes.  The cells were recovered in 950mL of S.O.C. media 

into the mixture.  And shake at 250rpm at 37°C for 30 minutes.  In LB + Kan (50ug/mL) plates, 

plate the transformed cells in 10-fold dilutions.  Incubate at 37°C for 24 hours and check for 

transformants. !

          

From 0 mM to 100 mM of acetic acid within LB was tested in increments of 5 mM in 3 mL 

cultures.  Cultures were inoculated with the same volume of overnight E. coli.  The OD600 

values were measured every 30 minutes to determine growth. 10mM of acetic acid was 

determined to be our experimental concentration.!

          

The acid shock assay involved incubating both E. coli with CFA and E. coli with GFP (same 

plasmid substituting GFP) in 10 mL of LB + Kan for 24 hours within a 250-mL Erlenmeyer flask 

at 37°C shaking at 225rpm.  Basing off the OD600, we calculated the volume of the culture 

needed to make a starting OD600 of 0.100 for 3 mL and inoculated triplicates for each variant.  

Each culture was grown in 3 mL of LB + Kan with the addition of 1mM of IPTG. Again shaking 
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at 225rpm at 37°C, the cultures were taken out every 30 minutes to measure their OD600.  After 

60 minutes, the cultures were diluted 1:2 in 3mL of 20mM acetic acid + LB + Kan for an acetic 

acid shock at a final concentration of 10mM.  To remain at a culture of 3mL, 3mL of the now 

diluted culture was taken out to maintain consistency.  Time points every 30 minutes for OD600 

readings were taken until the cultures had reached saturation.!

         !

Results!
The PCR reaction to extract out the CFA gene resulted in a 2% gel with a band at roughly 1200 

base pairs in comparison to a 100 bp ladder from Invitrogen. This band is the correct size 

considering the CFA gene is 1152 base pairs.  !

  

The acetic acid gradient experiment can be seen in the data presented in Figure A1.  At 10mM 

acetic acid, E coli growth is inhibited (Figure 1.1).  In comparison to the 5 mM culture, the 

10mM is growing 2% decrease in growth rate.  But in comparison to 20mM and higher acetic 

acid concentration cultures, the 10mM is growing at a faster rate while showing the effects of 

hindrance of acetic acid. !

          

Once the experimental concentration of acetic acid was chosen, the acetic acid growth assay was 

planned to test the effect of CFA within E. coli.  The IPTG was added with the LB + Kan before 

inoculation to induce CFA expression immediately.  After the acetic acid shock test, Figure 1.2 

shows the overall growth cycle of the cultures.  Table 1.1 shows the lag time, log phase, and 

saturation level with statistical significance.  
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Figure 1.2: E. coli acetic acid shock assay. Red Squares represent the CFA mutants and black 

diamonds represent the control culture. (n=3) 

 

Table 1.1: Growth kinetics analysis of E. coli acetic acid shock assay. 

 
 

The drop in the OD600 at time 60 minutes is due to the dilution to add in the acetic acid.  There 

is an overall 37% decrease in lag time and 4.8% increase in saturation level of CFA in 

comparison to the control.  The lag time of CFA within this experiment is 4.25 hours in 

comparison to the control’s 6.75 hours with a p-value of 0.044, a difference of 2.50 hours.  The 

growth rates between the two are 4.2% different with CFA at 1.36x108 cells per mL hour in 

comparison to the control’s 1.42x108 cells per mL hour, with a p-value of 0.490. CFA had a 

slightly higher saturation level with an OD600 of 1.51 in comparison to the control’s 1.44, a 

4.8% difference.  
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!

Discussion 

Our results suggest that the expression of CFA has a beneficial effect on the growth parameters 

in the presence of acetic acid.  The most significant impact on E coli growth kinetics was 

observed in the decreased lag time.  By decreasing lag time by 37%, the overall growth cycle is 

shortened, which can increase the efficiency of bioreactors and thereby increase profit margins. 

The overall growth rate is not effected by CFA expression suggesting little in the way of 

negative effects.  !

          

Wild type E. coli expresses CFA under acetic acid stress but constitutive overexpression of CFA 

improves the growth cycle of E. coli within acetic acid conditions.  Increased levels of CFA 

increases the organism’s tolerance of the negative effects of the acidic conditions.  The eventual 

overlap of the control’s growth rate shows that E. coli is able to survive within these acetic acid 

conditions, but the early expression of CFA improves its growth cycle by minimizing the lag 

time.!
 !
Summary & Conclusion!
The goals for the first phase of our project were successfully completed.  The expected growth of 

E. coli with the overexpression of CFA under acetic acid conditions had a shorter lag phase and 

higher final saturation level, but fell short of our expectation of having an increased growth rate.  

Although the increased growth rate within the control may have been due to the endogenous 

expression of CFA improving its growth while our engineered E. coli consistently overexpressed 

CFA, possibly creating a metabolic tax on the system. !

          

The successful decrease in 37% of lag time for the overexpressed CFA construct while 

maintaining a similar growth rate is promising.  This proves the possible beneficial effects CFA 

can have on an organism’s ability to tolerate acidic environments. !

          

To continue on with our project, we will be moving to the next phase where we will be 

implementing CFA into the yeast S. cerevisiae to focus on bioethanol production. !
 !
 !
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Chapter 2 – Transition to Yeast Expression 
Introduction!
As stated before, yeast is an effective producer of ethanol.  Yeast is also oftentimes used in 

bioreactors to create biofuels such as bioethanol.  This process involves taking simple sugars 

from a biomass, and harnessing the energy to create bioethanol.  This process has been used for 

centuries, possibly longer, for baking and creating wine and beer.!

          

As we observed in E coli during phase 1 of our project, we wanted to use S. cerevisiae to 

overexpress CFA to increase its tolerance to acetic acid. This required many of the same 

experiments as done in E. coli to test the effects of CFA on yeast.  In doing so, we ran a similar 

growth assay on yeast with and without CFA, in conditions involving acetic acid and no acetic 

acid.  These experiments will test the effects CFA has on the organism as a whole, and to see if it 

has any effect on the organism’s growth cycle within acetic acid conditions. !

 !

Design Description!
Our process of overexpressing CFA within S. cerevisiae was done in the same manner as 

overexpressing CFA within E. coli.  We cloned a plasmid to overexpress CFA and then 

transformed into the organism.  In this case, the vector will contain a eukaryotic-specific 

constitutive promoter, which will constitutively overexpress CFA in yeast. The vector will still 

contain the origin of replication, multiple selectable markers, and a transcription terminator.  

!

The process of cloning again followed the Electra Cloning System.  Then, the transformation 

was first done within E. coli using the same method as before.  Then, the successful transformed 

colonies were cultured and the plasmid was extracted.  Once purified, the plasmids were verified 

by restriction digest.  The restriction digest gel expressed the correct bands, meaning the plasmid 

was transformed into yeast using a transformation kit specifically designed for yeast.  The 

transformed yeast was tested with a colony-PCR, to confirm the plasmid contained the CFA 

gene.  

!
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Like Phase I of our project, the yeast underwent an acetic acid gradient growth assay to 

determine a viable acetic acid concentration to test our construct at.  Once the acetic acid 

concentration was determined, the acetic acid growth assay was performed. 

!

In a very similar manner to the E. coli growth assay, OD600 was used to measure the number of 

cells within a culture and time points were determine growth rates under acetic acid and non-

acetic acid presence.  The acetic acid was present at the start of the growth assay this time 

around, as CFA was constitutively expressed.  The volume of the cultures was kept the same (3 

mL), the media was Synthetic Complete Medium, leucine was left out in order to maintain 

selection, and the temperature was changed to 30°C.!

 !

Expected Results!
After analyzing the E. coli acetic acid shock assay, the expectations for yeast were similar.  We 

expected yeast with CFA to have a decrease in lag time, similar growth rate, and a slightly higher 

saturation level in comparison to yeast without CFA.  The yeast-CFA construct may perform 

better than the E. coli-CFA construct, considering E. coli endogenously expressed CFA.  These 

results were determined in the same manner as the previous growth assays in Phase 1 of the 

project.  The OD600 values were taken at intervals to measure the growth of each culture and the 

lag phase, growth rate and saturation levels were determined based upon the analysis of these 

raw values.  With an OD600 value of 1.0, there are 1.75 x 107 cells of S. cerevisiae per milliliter. !
 !
Materials and Methods!
 

Materials!

For S. cerevisiae, a strain was ordered on ATCC catalog #BY4741.  In order to grow this strain, 

Synthetic Complete Media was made without Leucine for future selection.  This was made up of 

1.7g/liter of yeast nitrogen base (Sunrise Science), 5g/liter of ammonium sulfate(Sigma-Aldrich), 

20g/liter of dextrose (Sigma-Aldrich), and all essential amino acids except leucine.  Media was 

filter sterilized. !

          

A similar acetic acid gradient assay was run with the wild-type S. cerevisiae, we ran 3mL tubes 

of inoculated cultures with a gradient of 0 mM to 300 mM acetic acid, increasing by increments 
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of 25 mM.  Taking OD600 readings every 60 minutes, we selected a concentration of 60mM to 

use as our growth assay.!

          

Using the same gene extraction PCR product, the cloning proceeded in a very similar manner as 

previously with the Electra Cloning Kit (DNA2.0).  This time, vector pD1211 was purchased 

which contains the TEF1 promoter, Leu2 expression marker, and E. coli high copy number with 

kanamycin selection. !

          

The cloning process used Top10 Chemically Competent E. coli Cells again.  The Spin MiniPrep 

Kit (Qiagen) was used to extract and purify the plasmids from the transformed E. coli cultures.  

To ensure the plasmid was successfully within the E. coli, a colony-PCR was performed on 

individual colonies.  The primers were designed such that the forward primer would bind within 

the sequence encoding CFA while the reverse primer was designed to fit on the vector. This way 

we ensure that CFA is both present within the cell and oriented appropriately inside the plasmid.!

          

The transformation was done through the Frozen-EZ Yeast Transformation II Kit (Zymo 

Research).  Frozen chemically competent S. cerevisiae cells and the transformation was 

accomplished following the protocol available.  

!

The Genesys 20 Visible Spectrometer from Thermofisher was used again along with 15mm test 

tubes for OD600 measurements.  

!

For further growth assay tests, Hydrogen Chloride (Sigma-Aldrich) and Sodium Acetate (Sigma-

Aldrich) were used to alter the pH of the initial cultures and the free acetate available.  Matlab 

Version 2015b was used for our data analysis program.!

 !
Methods!

For the cloning procedure, we made a cloning mixture to add into the competent E. coli.  The 

cloning mixture was 20ng of DNA, 1 mL of Electra Buffer, 1mL of vector, 1mL of Electra 

Enzyme, and 15mL of Water.  We added in 1 mL of the cloning mixture into 20uL of chemically 

competent E. coli.  We placed mixture on ice for 30 minutes and heat shocked at 42°C for 30 
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seconds.  After placing on ice, we added 950mL of S.O.C. media into the mixture and shook at 

250rpm at 37°C for 30 minutes.  In LB + Kan (50ug/mL) plates, we plated the transformed cells 

in 10-fold dilutions.  We incubated at 37°C for 24 hours and checked for transformants. !

          

After growing up the transformed cultures within LB+Kan media, a plasmid extraction was 

performed.  Following the protocol of the Spin MiniPrep Kit (Qiagen), we nanodropped a 

microliter and found a concentration of 150 nanograms per microliter. !

          

We then made competent S. cerevisiae cells with the Frozen-EZ Yeast Transformation II Kit 

(Zymo Research) before transforming the cells based upon the protocol given.  The cells were 

plated on SC-Leu plates for selection. !

          

To ensure the plasmid was successfully within S. cerevisiae, a colony-PCR was performed on 

individual colonies.  The same primers and protocol was used as the colony-PCR as in E. coli.!

          

From 0 mM to 300 mM of acetic acid within SC-Leu was tested in increments of 25 mM in 3 mL 

cultures were tested to determine a hindering, yet survivable concentration to run our growth 

assay with.  Cultures were all inoculated with the same volume of an overnight culture of S. 

cerevisiae.  The OD600 values were measured every 60 minutes to determine growth. 60mM of 

acetic acid was determined to be our experimental concentration.!

          

The acetic acid growth assay was performed by inoculating 10mL cultures for 48 hours at 30°C 

shaken at 225rpm with a single colony of either transformed or untransformed S. cerevisiae.  

After checking the OD600 of the 48 hour cultures, we inoculated 3mL of SC-Leu with acetic 

acid and SC-Leu without acetic acid with enough of the 48 hour cultures to reach an OD600 

value of 0.100.  Each parameter had a triplicate and was then inserted into a shaker at 30°C while 

shaken at 225rpm.  OD600 readings were taken every 30 minutes, and were lightly vortexed 

before. !

          

The pH gradient growth assay was completed by testing the S. cerevisiae growth cycle from pH 

3 to 7 with increments of 1.  Both transformed and untransformed S. cerevisiae were tested in 
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triplicates.  Hydrogen chloride and potassium phosphate was used to change the pH of SC-Leu.  

The same 3mL cultures were used with 48-hour cultures.  OD600 readings were taken every 30 

minutes, and were lightly vortexed before. !

          

The methionine acetic acid growth assay was completed by testing the S. cerevisiae growth cycle 

with 2mM and 5mM methionine addition in the presence of acetic acid and without.  The 3mL 

cultures of SC-Leu, with and without the addition of methionine, and with and without the 

addition of acetic acid were tested in triplicates and were inoculated with 48-hour 10mL cultures.  

OD600 readings were taken every 30 minutes, and were lightly vortexed before. !

          

The incubation dependent growth assay was completed by testing the S. cerevisiae growth cycle 

with 48 and 72-hour 10mL cultures.  The 3mL cultures of SC-Leu and acetic acid were tested in 

triplicates.  OD600 readings were taken every 30 minutes, and were lightly vortexed before. !

          

The analyzation program was created on Matlab without the need for additional libraries.  

Importing the raw OD600 values from our excel files, the program will parse out the data to 

create individual time courses associated with the speficied string used to identify each tube. 

Once the individual matrices are determined, the program calculates the rate of change between 

each time point and then converts that into doubling time. These values were compared within 

each own’s triplicate to ensure statistical significance.  Then, the log phase was inferred by the 

comparison of doubling times.  The maximum doubling time and the additional time points plus 

or minus 20% of the maximum doubling time were categorized as the log phase.  The time points 

before were categorized as the lag phase.  The time points after the log phase were categorized as 

the stationary phase.  The program then gave out a graph to visualize the overall growth cycle 

per construct.  A table was included to state statistical significance and give overall values for 

each phase.!
!
Results 
The initial transformation of the CFA-construct into E. coli was successful, as colonies were 

present on the LB+Kan plates.  The plasmid extraction from E. coli colonies grown up resulted 

in 124.1 ng/uL of plasmid DNA.  The restriction digest showed that EcoRI resulted in two 
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distinct bands of expected size (700 and 400 base pairs) that were shown on an agarose gel.  The 

transformation of the plasmid into S. cerevisiae was shown to be successful by the growth of 

yeast colonies on the SC-LEU plates.   

  

The acetic acid gradient growth assay was tested for 0 mM to 300 mM acetic acid, with 

increments of 25 mM.  Figure A1 shows the overall growth of the cultures grown within the 

varying acetic acid grown with 3 mL of SC-Leu, measured by OD600.  60 mM acetic acid was 

chosen due to its growth yet, obvious hindrance by acetic acid.   

  

The acetic acid growth assay where CFA was overexpressed within S. cerevisiae in the presence 

of 60mM acetic acid produced a 36% decrease in lag time, in comparison to the control, as seen 

by Table 2.1.   We also observed a 30% decrease in growth rate in the engineered CFA cells. 

Figure 2.1 also shows the overall growth kinetics of the S. cerevisiae grown in the presence of 

acetic acid.  The yeast expressing CFA versus the control yeast grown in SC-Leu without acetic 

acid showed lag times with 18% difference at a p-value of 0.374 and growth rates, only 10% 

different with a p-value of 0.005. 

  

 
Figure 2.1: Acetic acid tolerance assay conducted with CFA mutant S. cerevisiae. (n=3) 
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Table 2.1: Growth kinetics analysis of acetic acid tolerance assay of S. cerevisiae. 

 
!
  

The pH gradient growth assay showed the effect of a lower pH on the system.  The growth rates 

in the pH 3 cultures for CFA versus control showed a 4.6 percent difference. The data is shown 

in Figure A2. 

   

Running all the previous data collected on the Matlab Program expressed no change in analysis 

of our data.  The analysis was standardized, yet the analysis showed no change in conclusion 

from any experiments. 
  

Discussion 

As seen by the results, the CFA-yeast construct was successfully engineered.  Yet, our acetic 

acid growth assay is resulting in different results in comparison to our data collected with the E. 

coli-CFA construct.  The overall decrease in lag phase is still present, but it is accompanied with 

a 30% decrease in growth rate. The non-acetic acid cultures had very only a 10% and 18% 

difference in growth rate and lag time with p-values of 0.005 and 0.374, respectively.  This 

would suggest the large change of growth kinetics is the direct result of growing in the presence 

of acetic acid.  
 

Summary & Conclusion 

With the overall goal of this project to increase efficiency within bioethanol production in yeast, 

the growth rate correlates directly with ethanol production.  The lag phase decrease should be 

highlighted as this will shorten the length of the overall cell cycle, but the decrease in growth rate 

must be changed.  After running numerous tests to identify the issue resulting in the decreased 

growth rate, we believe that it must be an unknown biological mechanism.  More research must 

be done to better understand what pathways are being hindered for us to be able to determine a 

solution to the slow in growth rate. 
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Chapter 3 – Addressing Growth Defect 
Introduction 
In this chapter we will describe the methodology that we employed to further characterize the 

potential causes leading to the slowed growth kinetics seen in our CFA synthase. After 

exhausting all of the parameters that appeared to be involved in the expression of the CFA 

synthase we determined that the cause of the change in growth rate must be resultant of a more 

complex biological phenomenon. The hypothesis was that if we could identify the root cause of 

the slowed growth we could create another genetic modification to alleviate that problem. We 

could then take a compensatory gene and clone it into our CFA expression vector so that we 

could co-express the two proteins to retain the decrease in lag time while restoring the growth 

rate and saturation point. Our approach to doing this was to conduct a literature search to 

determine potential cause of the growth perturbation then build them into an expression vector to 

test for toxicity, and then engineer them into our CFA expression vector to co-express them and 

then rerun the mutant through the acetic acid tolerance assay 

 

Literature Review 
To avoid embarking on a blind search through endless publications, we established a set of 

criteria that we gathered through our experimentation. From our control conditions we found that 

there was little to no growth perturbation from the expression of CFA when no acetic acid was 

added. This told us that the toxicity was not resultant from the CFA synthase expression itself. 

This told us that it is likely not the protein but possibly the substrate that it uses. The methyl 

donor utilized in the cyclopropanation reaction is S-adenosyl methionine, or SAM, and functions 

as our link between the CFA synthase and the larger metabolic pathways of S. cerevisiae. We 

also know that the problem only arises when acetic acid is present in high concentrations. So in 

summary what we were looking for was something in the S-adenosyl methionine biosynthetic 

pathway that would be inhibited when acetic acid is present. 

 

Our first step in our search was to identify potential targets in S-adenosyl methionine pathway 

that acetic acid could interact with. While it is possible for the acetic acid to interact directly with 

the metabolites involved in the cycle, we figured that it would be far more likely that it is 
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inhibiting one of the proteins responsible for catalyzing the reactions. To being our search we 

went to the Kyoto Encyclopedia of Genes and Genomes, KEGG, which has a comprehensive 

metabolic pathway for S. cerevisiae. The pathway obtained from KEGG is shown in Figure __. 

Figure 3.1: KEGG S-adenosyl methionine biosynthetic pathway. 

 

From this pathway we figured the most logical method to screen the proteins involved would be 

to work backward from our cyclopropanation mechanism that converts S-adenosyl methionine 

into S-adenosyl homocysteine. This lead us to the enzyme S-adenosylmethionine synthetase, 

SAM2, which catalyzes the conversion of methionine to S-adenosyl methionine. We ran an 

literature search on this protein with any association with acetic acid or acetate. Our searches 

through Web of Science, PubMed and Google Scholar came back with no results that disclosed 

any clear relationship between its activity and acetic acid concentrations. After scanning through 

all of the potential articles we decided to take another step backward in pathway, the conversion 

of homocysteine to methionine. 

 

The protein responsible for converting homocysteine to methionine in S. cerevisiae is the 

homocysteine methyltransferase, Met6. We first went to the protein’s flatfile on NCBI to look 

through its references. After screening those as well as those citing them, we moved to the same 

searching method employed for SAM2. Unfortunately, we still returned nothing that indicated 

that Met6 should be inhibited by acetic acid or acetate. We decided to then broaden the search a 

bit more and came up with a review paper covering the effects of carboxylic acids on 
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biocatalysts in S. cerevisiae. This paper described many of the mechanisms that we were already 

familiar with but in one of the last paragraphs, it stated: “Accumulation of carboxylate anions 

could increase the ionic strength of the cell interior, potentially inhibiting the activity of enzymes 

such as homocysteine transmethylase.” (Jarboe, Royce, & Liu, 2013) This statement was backed 

by two citations that we investigated further. 

 

The first publication which was referenced was from many years ago but they noted that there 

was inhibition due to acetic acid but did not elaborate much further (Whitfield, Steers, & 

Weissbach, 1970).  The next publication elaborated much further on this observed inhibition, 

however it was all in reference to the E. coli protein responsible for catalyzing the same reaction 

as Met6. The paper discusses the growth inhibition seen by disruption of the methionine 

biosynthetic pathway specifically referring to the buildup of homocysteine in the cells. This 

accumulation of homocysteine upon the exposure to acetic acid was then traced to the activity of 

homocysteine methyltransferase MetE in E. coli  (Roe, O’Byrne, McLaggan, & Booth, 2002). In 

order to glean an insight into the possibility of the S. cerevisiae homocysteine methyltransferase 

also being inhibited, we conducted a bioinformatics study. 

 

Bioinformatic Assessment of Homology 
The workflow that we sought to employ to determine the relationship was to acquire the 

necessary sequence, construct a global alignment, locate catalytic residues, and assess identity at 

those sites. To locate and extract the desired sequences we searched through the Entrez Life 

Science Database. By searching for the protein and organism name, the sequences for both E. 

coli and S. cerevisiae were relatively easy to find. The accession numbers that we used were 

YP_002414981.1 for MetE and NP_011015.3 for Met6. Both sequences are RefSeqs, meaning 

that they are verified sequences.  

 

Once we had our sequences, we ran a blastp suite-2 sequence analysis on them. The goal behind 

running this analysis was to a local alignment of our sequences to quickly assess whether the two 

sequences were homologous. The results of the Blast strongly indicated homology between the 

two polypeptide sequences as the reported Expect value was zero over a 98% query coverage. 



  26 

Confident that we had homologous sequences we went ahead and created an alignment 

(Altschul, Gish, Miller, Myers, & Lipman, 1990). 

 

To generate our global alignment we utilized the program Geneious. We uploaded our GenBank 

files for the above sequences and then ran a MUSCLE alignment. With stringent gap and 

extension costs we were able to generate a strong alignment (Kearse et al., 2012). 

 

Armed with the alignment, we proceeded to track down the catalytic and binding residues to 

determine the likelihood that Met6 would also be inhibited by the presence of the acetate anion. 

We searched the flat files of the two sequences to determine where and what residues made up 

the sites. We determined that there were 20 significant residues in both proteins and that they 

shared 100% identity across those sites, except for one residue in the THF binding site. There is 

a mutation from a Tyrosine to a Cysteine in the S. cerevisiae Met6 protein. According to the 

Blosum matrix, which assess the similarity in chemistry between amino acids, this conversion 

was rated a -2 (Goffeau et al., 1996; Touchon et al., 2009). 

 

 
Figure 3.2: Homocysteine methyltransferase alignment, generated on Geneious, with 

catalytic residues highlighted and indicated on protein structure visualized on Cn3D. 
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The very similar identity that we see at these prominent loci indicates that they likely use very 

similar mechanisms. Therefore, if MetE were inhibited by acetate, it would be reasonable to 

assume that the Met6 protein would also be inhibited. Feeling comfortable with that conclusion, 

we decided to shift back to wet lab and design experiments to directly assess whether or not this 

hypothesis is true. 

 

Experimentation 
Addressing the Methionine Deficiency 

To assess the validity of our hypothesis that the S. cerevisiae methyltransferase Met6 is inhibited 

by acetate, we determined what would be the direct result of the inhibition as well as what 

parameters could actually be observed given our resources. To understand its larger effect we 

created a clearer depiction of the biosynthetic pathway that allowed us to better understand the 

effects. This figure is shown in Figure 3.3. From this figure it is evident what the direct 

consequences of the inhibition are that pertain to our cyclopropanation modification: decrease in 

methionine, S-adenosyl methionine, and S-adenosyl homocysteine concentrations, with an 

increase in homocysteine concentration.  
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Figure 3.3: Diagram depicting the methionine biosynthetic pathway with acetic acid 

inhibition. 

Of these potential effects, the one that was the easiest to test was the decrease in methionine and 

its subsequent metabolites. To address this deficiency we decided to rerun the acetic acid 

tolerance assay but this time supplement with methionine. Based on protocols for producing 

media for methionine auxotrophs, we gathered that the required concentration for methionine is 2 

mM. We then ran the experiment yielding the growth curve seen in Figure 3.4 as well as the 

results from our MatLab analysis code in Table 3.1. 
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Figure 3.4: Acetic acid tolerance assay with methionine supplementation. The red lines 

represent the CFA mutant while the black lines represent the control. The faded boxes represent 

samples with 2 mM methionine, and the filled represent samples without methionine. (n=3) 

 

Table 3.1: Growth kinetics analysis of methionine supplemented acetic acid tolerance 

assay. 

 
 

Though the growth curve portrays the CFA mutant preforming worse in the presence of 

methionine, our deeper growth analysis indicated that it was not significant. We found this result 

to be inconclusive because we were unable to differentiate whether the decrease in methionine 

was the cause of the decreased growth kinetics seen in acetic acid conditions or if the 

concentration of methionine was not high enough inside of the cells. We proceeded to replicate 

the assay, however this time we ran a gradient of methionine concentrations, ranging from 5 mM 

to 20 mM. The growth curve as well as our analysis can be found in the Appendix. This assay 
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revealed that levels of 5 mM methionine and above leads to toxicity and decreased growth. With 

the addition of methionine yielding no data indicating a positive result we moved to our second 

possibility, which was to address the accumulation of homocysteine. 

 

Prior to pursuing our hypothesis that homocysteine was the root cause of the decreased growth 

we turned to the literature to determine whether homocysteine is toxic in high concentrations. 

Based on the papers that we read, the consensus is that the accumulation of homocysteine leads 

to the formation of homocysteine-thiolactone. Homocysteine-thiolactone then initiates an error 

prone pathway, which leads to the use of homocysteine, instead of methionine, during protein 

translation. This results in dysfunctional proteins and decreased cell vitality (Zimny, Sikora, 

Guranowski, & Jakubowski, 2006). 

  

Confident in our findings we decided to move forward with testing. To evaluate the intracellular 

concentration of homocysteine would require HPLC and other sophisticated analytics which we 

did not have access to, so instead we decided that the best way to evaluate this hypothesis was to 

create other gene constructs that would be capable of alleviating the homocysteine stress. We 

decided to create two new gene constructs, one to over express the homocysteine 

methyltransferase, Met6, and the other to express the homocysteine thiolactonase, Lap3. Met6 

was chosen because it is the most direct way to recover the inhibition. If the acetic acid 

concentration that we are utilizing is capable of inhibiting a significant portion of the Met6 

present in the cell, we could over express the protein to accommodate for the decreased flux 

through the pathway. This however might not be able to adequately compensate for the 

inhibition. To employ a potentially more efficacious modification we turned to the endogenous 

homocysteine stress relief mechanism. This mechanism utilizes Lap3 to hydrolyze 

homocysteine-thiolactone back into homocysteine and thiolactone, rendering them inert.  

  

To construct these new gene constructs, we decided to follow the same workflow as we did to 

generate our CFA expression mechanism. We extracted and purified the S. cerevisiae genome 

and designed the necessary primers to be able to PCR the Met6 and Lap3 genes from the purified 

genome. Once we had the primers we began running the necessary PCR reactions.    
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Fps1 Knockout 

While running the cloning procedure for the other constructs we also decided to begin 

developing our other gene target from our backup plan. We chose to work on the Fps1 knockout 

due to its simplicity and connection to our growth defect. These porins are degraded rapidly in 

the presence of high acetic acid concentrations, but that only occurs once the acetic acid has 

entered. Our hypothesis is that the initial diffusion through these porins compromises the 

membrane, irregardless of whether it is cyclopropanated. It was originally suspected that the 

acetate anion is exported through the carboxylic acid ABC transporter Pdr12 (Piper et al., 1998), 

but it was later proven that Pdr12 is only responsible for longer chain carboxylic acid extrusion 

(Nygård et al., 2014). With this disproven, we were unable to find any other acetate transporters 

for yeast potentially meaning that there are transporters for acetate. This would leave diffusion or 

conversion as its only method to leave the cell. If diffusion is in fact the primary method, this 

would be greatly limited in our CFA mutants, as the cyclopropanation slows diffusion both in 

and out of the cell. This trapping of acetate inside the cell might also be contributing to the 

decreased growth rate.  

 

To test this hypothesis, we were granted access to a yeast knockout library. From this library we 

selected the Fps1 knockout and attempted to grow it up. Over the course of several weeks we 

tried to culture it with no success, so Dr. Ruscetti contacted another lab with a similar library. 

They, too, were unable to culture the knockout. We hypothesized that the cause could be from 

the deletion of the Fps1 knockout itself. As this porin also allows glycerol through, without it, 

glycerol might not be able to enter the cell and effectively protect it from internal crystallization, 

leading to its death in a -80C freezer (Mollapour & Piper, 2007).  

 

Characterizing CFA Mutants 

During the time that we were developing all of these other constructs we decided to reanimate 

our CFA mutant and rerun our acetic acid tolerance assay to make sure that we had the system up 

and running prior to testing our new mutants. However, upon use of these reanimated CFA 

mutants we did not see the decrease in lag time that we had seen previously. Confused by the 

result, we decided to rerun the experiment but this time picked numerous colonies from our plate 

and ran a colony PCR to be sure they all still contained the plasmid. This run also yielded no 
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results resembling that of our previous experiments. Having kept all of the controllable 

parameters constant we decided that it was possibly a result of the freeze-thaw procedure, we 

decided to remake our CFA mutant. We pulled from the same stock of competent yeast that we 

made and transformed with the CFA plasmid that we created. The transformation was successful 

and so we once again conducted the acetic acid tolerance assay with colony PCR. Unfortunately, 

our transformants showed to evidence of a decrease in lag time. 

 

With the cause of this variability unclear we looked for any possible source of variation. Upon 

revision we found that between our assays there were as high as 12-hour differences in the 

incubation time allotted for culturing the samples used to inoculate the cultures for the assay. We 

hypothesized that this could have resulted differences between the growth stages of our CFA 

compared to our control. CFA mutants have shown to grow slower than our control and so it 

might not reach death phase. Pulling cells from an early growth phase could potentially lead to 

more favorable growth kinetics in the inoculated cultures. To see if our early runs were a result 

of differential pre-culture incubation times we conducted yet another acetic acid tolerance assay 

with a gradient of incubation times. The data is seen below in Figure 3.5. 

 

 
Figure 3.5: Growth curve of acetic acid tolerance assay with variable pre-culture 

incubation time. Red lines represent CFA mutants and black lines represent the control. 
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Transparent squares represent cultures inoculated after 48 hours of incubation. Solid circles 

represent cultures inoculated after 72 hours of incubation. (n=3) 

 

From this data we concluded that the growth kinetics are impacted by the incubation of the 

cultures used to inoculate. However even though there is a change between the cultures 

incubated for 48 hours compared to 72 hours, our CFA mutant preformed unfavorably in both 

cases. We once again saw no significant decrease in our lag time resulting from our 

modification. 

 

After this assay, we were unsure what other tests we could run as we had examined all of the 

potential variants from our original assays that demonstrated the decrease in lag time. The next 

logic step would be to ensure that our protein was actually functioning as we intended. To do so 

we would need to conduct a lipidomics study to determine the percentage of the membrane that 

is cyclopropanated to ensure that the CFA synthase is in fact active. Many studies that we found 

running lipidomic analyses utilized HPLC to identify the concentrations of lipids. Due to the 

inaccessibility to HPLC, we looked for other means. The only alternative that we found was to 

outsource the analysis to a company. There were several companies capable of conducting the 

required profiling for S. cerevisiae but it was also estimated to take three weeks to receive the 

results. As we were nearing the end of the quarter we recognized that we would not be able to get 

the results from the company in time.  

 

Future Perspectives 
If allotted more time, we would start by sending our samples out for the lipidomics analysis. 

From this result we would either see the presence of cyclopropane fatty acids or not, informing 

us on the activity of the inserted gene. If the results returned that there was in fact cyclopropane 

fatty acids, that would tell us that it was possible that something was incorrect with our original 

assays that revealed the decrease in lag time. If the results, however, showed no 

cyclopropanation, this would not confirm that our prior results were correct but it would indicate 

that the perturbation in growth is not specifically due to the cyclopropanation and that the lack of 

decrease in lag time is not there because the cyclopropanated membrane is unable to slow the 

diffusion of acetic acid. The inactive CFA synthase could then be explained through a variety of 
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ways, ranging from the original transformation, the transcription of the plasmid, translation of 

the CFA encoding mRNA, to the final folding of the protein, etc.  This is where we would 

recommend a future team to begin their project, if someone decided to continue it. We also 

recommend the further investigate the other gene constructs that we identified, with specific 

emphasis on the homocysteine methyltransferase inhibition. This acetate meditated inhibition has 

never been recorded in S. cerevisiae and so if found to be valid, it could inform future studies 

looking to impart acetic acid resistant.  

!
!
! !
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Engineering Standards and Realistic Constraints  
 

Economic 
The economic considerations played a considerable role in the initial project ideation process. 

We knew that we wanted to improve upon biofuel technology, and we knew that the major issue 

currently standing in the way of this technology’s scalability is its cost. Currently, fossil fuels are 

still significantly less expensive and so it is constantly out competed. In order to get this 

sustainable technology to reach a state we need to address every possible attribute of the process 

and reduce its cost and increase efficiency. For our specific project we wanted to develop a 

system that could work within the existing infrastructure, as the machinery required to produce 

biofuels at large scale are both complex and very expensive. To do this we decided upon 

implementing a genetic modification because after the initial investment in development, the cost 

required to use this system is no different than the previous system. However, it would be 

slightly more efficient, reducing its cost. 

 

Environmental 
The primary goal surrounding the advancement of biofuel technology is the pursuit of a more 

environmentally friendly solution to our energy demands. This technology works to aid the 

environment both in its production and it is use. The refinement of fossil fuels into usable fuel, 

requires excessive energy input and the release of harmful toxins. The production of biofuels 

only requires the breakdown of plant waste and its formulation in a bioreactor. Fossil fuels also 

release enormous amounts of carbon dioxide upon use compared to the clean emissions of the 

biofuel. This drive toward a more environmentally conscious future was the driving force behind 

our project and therefore it persisted through the design process by ensuring that our system 

would be able to work within their system so as to not disrupt tis environmentally friendly 

process. Our idea to decrease the susceptibility would actually make the process better for the 

environment because it wouldn’t require the use of excessive amounts of weak base to neutralize 

the acetic acid in the environment, because our modified cells would be resilient. 

 

Sustainability 
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The other goal of biofuel production is the pursuit of a fuel source that will not deplete. It has 

become increasingly more apparent that there is a limited supply of fossil fuels and at the rate 

that we are consuming it, we will need alternatives for the generations to come. By switching to 

biofuels over fossil fuels we turn to a sustainable solution because it offers the possibility to 

continually replenish our supplies through the ongoing processes that we already employ, such as 

farming. Within the context of our specific project within biofuels, ours fits well within this 

system because the further implementation of our system will not require the any continually 

input to implement. Once the stable modification has been made, the industrial yeast can be 

continually cultured and used to make biofuels. 

 

Manufacturability  
Large-scale manufacturability was the Achilles heel of first generation biofuels. The original 

concept for biofuel production required the use of food, such as corn, to produce its fuel. This 

process was not scalable, as the scaling of its production would continually pull from the food 

supply leaving many people hungry around the world. To shift to a substrate more readily 

available, scientists turned to bio-waste, one of the most abundant carbon sources. This change 

has allowed this process to become scalable due to the availability of this material. Our 

modification is then capable of easily scaling with this technology. By placing the modified yeast 

into a larger bioreactor it will readily scale to occupy the space allotted provided ample substrate 

and growth conditions. 

 

Ethical 
Our desire to create an ethically conscientious addition to an already ethically driven pursuit was 

present throughout the entirety of our project. The primary ethical consideration that drove our 

project was our obligation to society to help bring it a better future. Through the process of 

making biofuel production more economically feasible, we bring this technology closer to the 

hands of the public and therefore carry out our obligations to society. 
!
!
!
! !
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Appendix 
!

!
Figure'A1:'Acetic'acid'gradient'assay.'(n=3)!
!

!
Figure A2: pH gradient tolerance assay of S. cerevisiae utilizing hydrochloric acid.
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Figure'A3:'Acetate'gradient'tolerance'assay'of'S.#cerevisiae#using'sodium'acetate.'
!
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