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Transcriptome and Biochemical
Analysis of a Flower Color
Polymorphism in Silene littorea
(Caryophyllaceae)
Inés Casimiro-Soriguer 1, 2*, Eduardo Narbona1, Mª L. Buide 1, José C. del Valle 1 and
Justen B. Whittall 3

1 Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain, 2 Department of

Plant Biology and Ecology, University of Sevilla, Seville, Spain, 3 Department of Biology, Santa Clara University, College of Arts

and Sciences, Santa Clara, CA, USA

Flower color polymorphisms are widely used as model traits from genetics to

ecology, yet determining the biochemical and molecular basis can be challenging.

Anthocyanin-based flower color variations can be caused by at least 12 structural

Q1

Q9

and three regulatory genes in the anthocyanin biosynthetic pathway (ABP). We use

mRNA-Seq to simultaneously sequence and estimate expression of these candidate

genes in nine samples of Silene littorea representing three color morphs (dark pink, light

pink and white) across three developmental stages in hopes of identifying the cause

of flower color variation. We identified 29 putative paralogs for the 15 candidate genes

in the ABP. We assembled complete coding sequences for 16 structural loci and nine

of ten regulatory loci. Among these 29 putative paralogs, we identified 622 SNPs, yet

only nine synonymous SNPs in Ans had allele frequencies that differentiated pigmented

petals (dark pink and light pink) from white petals. These Ans allele frequency differences

were further investigated with an expanded sequencing survey of 38 individuals, yet no

SNPs consistently differentiated the color morphs. We also found one locus, F3h1, with

strong differential expression between pigmented and white samples (>42x). This may

be caused by decreased expression of Myb1a in white petal buds. Myb1a in S. littorea

is a regulatory locus closely related to Subgroup 7 Mybs known to regulate F3h and

other loci in the first half of the ABP in model species. We then compare the mRNA-Seq

results with petal biochemistry which revealed cyanidin as the primary anthocyanin and

five flavonoid intermediates. Concentrations of three of the flavonoid intermediates were

significantly lower in white petals than in pigmented petals (rutin, quercetin and isovitexin).

The biochemistry results for rutin, quercetin, luteolin and apigenin are consistent with the

transcriptome results suggesting a blockage at F3h, possibly caused by downregulation

of Myb1a.

Q10Keywords: Silene littorea, anthocyanin biosynthetic pathway, flavonoid biochemistry, mRNA-Seq, HPLC, flower

color polymorphism, transcriptome, anthocyanin synthase, flavanone-3-hydroxylase
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INTRODUCTION

Flower color has played a pivotal role in our currentQ5

understanding of biology since Mendel’s discovery of the
inheritance of flower color in Pisum sativum (Mendel, 1866;
Ellis et al., 2011). Since then, flower color has contributed
to a wide range of important biological discoveries including
gene regulation (Napoli et al., 1990), pleiotropy (Streisfeld and
Rausher, 2011), population genetics (Wright, 1943; Schemske
and Bierzychudek, 2001), speciation (Bradshaw et al., 1995;
Hopkins and Rausher, 2011) and floral ecology (Irwin and
Strauss, 2005; Eckhart et al., 2006; Strauss and Whittall, 2006).
Although many breakthroughs involving flower color utilize
model species with available complete reference genomes,
numerous evolutionary and ecological questions regarding
flower color variation reside in non-model species. Investigating
the cause of flower color variation in non-model species would
benefit from an efficient method for sequencing and detecting
expression of all flower color related genes in non-model species.

The most common floral pigments are the anthocyanins
(Miller et al., 2011; Campanella et al., 2014) which are
produced by the anthocyanin biosynthetic pathway (ABP). Floral
anthocyanins are now considered a metamodel because of
the conserved nature of the biosynthetic pathway across most
angiosperms (Kopp, 2009). Changes in the color of anthocyanins
(e.g., shifts from blue to red flowers) and the loss of floral
anthocyanins (producing white flowers) can now be traced
from ecological interactions in the field to the biochemical and
molecular basis for these changes (Tanaka et al., 2008; Davies,
2009; Hopkins and Rausher, 2011; Zhao and Tao, 2015). These
changes can result from mutations in core structural genes or
regulatory loci (Sobel and Streisfeld, 2013). It is expected that
null coding mutations will be more frequent within species; and
cis-regulatory mutations between species (Stern and Orgogozo,
2008), which has been demonstrated in polymorphic populations
of some species such asMimulus lewisii (Wu et al., 2013).

The ABP is composed of seven core enzymes and several
side-branching enzymes, and appears largely conserved across
angiosperms (Holton and Cornish, 1995; Grotewold, 2006).
Blockages in the first steps of the ABP are predicted to have
more dramatic physiological effects and potentially ecological
consequences compared to blockages in the latter steps because
of the lack of stress-responsive flavones and flavonols (Whittall
et al., 2006). These maladaptive consequences of blocking the
ABP can be ameliorated by recruiting tissue-specific regulators
in order to limit effects solely to the petal (Streisfeld and Rausher,
2011; Wessinger and Rausher, 2012; Sobel and Streisfeld, 2013).
The ABP is regulated by a complex composed by three interacting
transcription factors: the R2R3-MYB, the basic helix-loop-helix
(bHLH) and the WD40-repeat (WDR) (Hichri et al., 2011). The
MYBs confer the majority of the tissue specificity (Zhang et al.,
2003; Schwinn et al., 2006; Dubos et al., 2010; reviewed in Albert
et al., 2014). Collectively, the core ABP, side-branches within the
ABP, genes leading into the ABP and regulatory genes provides
a relatively large target for a diversity of mutations that could
block the ABP (Wessinger and Rausher, 2012). For flower color
polymorphic plants, locating the blockage and predicting the

physiological and ecological consequences require a thorough
characterization of the ABP at the biochemical and molecular
scales (e.g., Lou et al., 2014; Nishihara et al., 2014). Deciphering
the cause of flower color variation is a complicated task because it
requires sequencing and measuring expression of all genes acting
in the ABP and their regulators.

RNA-Seq is a fast and efficient approach to sequence and
examine the expression of all ABP-related genes, even when a
reference genome is not available as in most non-model species
(Li et al., 2012; Lulin et al., 2012; Xu et al., 2013; Butler et al.,
2014). For flower color polymorphisms, petal mRNA must be
examined across a range of developmental stages, especially
the earliest stage when the flower color polymorphism is first
manifested (Whittall et al., 2006; Dick et al., 2011; Butler et al.,
2014). Large, complex genomes often exhibit multiple paralogs,
sometimes expressed in the same tissue (e.g., Martins et al.,
2013; Yuan et al., 2014). Differentiating paralogs and getting
paralog-specific expression levels can be a complicated step in
the mRNA-Seq bioinformatics pipeline. Once a candidate gene
has been identified with either sequence or expression differences
that correlate with flower color, subsequent biochemical analysis
of the petal can be used to test the flavonoid composition.
A blockage in the ABP should restrict the production of
downstream flavonoids and may lead to an accumulation of
upstream intermediates (Whittall et al., 2006; Dick et al., 2011).
High-Performance Liquid Chromatography (HPLC) coupled
with mass spectrometry has been extensively used to identify
and quantify the flavonoid composition in many ornamental and
wild plants (Fossen and Andersen, 2006; Qiao et al., 2011). For
instance, high concentrations of anthocyanins in black cultivars
ofDahlia, were related with elevated expression of the ABP genes
and low concentrations of flavones (Thill et al., 2012).

The genus Silene (Caryophyllaceae) is a model for studies
of evolutionary ecology (Bernasconi et al., 2009), yet no one
has examined the molecular and biochemical basis for flower
color polymorphisms in any of the species (yet see the proposed
ABP in Kaamsteeg et al., 1979). Although the Caryophyllales Q11

are largely characterized by the production of betalain pigments
in place of anthocyanins, flower color variation in Silene is
still caused by anthocyanins (Brockington et al., 2011). Herein, Q12

we focus on a discrete flower color polymorphism in the
Iberian Peninsula endemic, S. littorea (Talavera, 1979). After
surveying 17 populations across the species range, we foundmost
populations were composed of primarily dark pink individuals
(Figure 1A). Yet, in two northern populations, there were
three distinct color morphs: white, light pink, and dark pink
(Figures 1B–D). The three petal color morphs were compared
with a UV-Vis spectrophotometer. The differences among them
are concentrated in the visible range especially at the typical
wavelength that anthocyanins absorb (∼550 nm; Figure 1E), yet
the biochemical andmolecular underpinnings causing this flower
color variation in S. littorea remains unknown.

Here, we examine the petal transcriptome and biochemistry
of the flower color polymorphism in S. littorea using RNA-Seq
complemented with HPLC flavonoid profiling to try and identify
the most likely cause of the blockage in the ABP. Transcriptome
analysis is used to sequence and estimate expression of 15
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FIGURE 1 | Silene littoreaQ3 samplingQ4 and flower color polymorphism.

The map in (A) shows S. littorea populations along the Iberian Peninsula where

flower color frequencies were estimated. The two polymorphic populations are

indicated with white symbols and the proportions of white-, light pink-, and

dark pink-flowered individuals in each population are illustrated with pie

diagrams. Pink circles indicate populations fixed for dark pink petal color. The

polymorphic population (Playa de Barra) sampled for RNA-Seq and

biochemical analysis is indicated with a white cross. The three distinct color

morphs are illustrated in (B–D): dark pink (B), light pink (C), and white (D). The

average UV-VIS spectral reflectance of the upper surface of the petals of six

dark pink samples (dark pink line), six light pink samples (light pink line), and

three white samples (black line) are indicated in (E) with standard errors

(shadow area).

ABP-related genes. The sequences of these candidates are
examined to determine if there are any consistently color
differentiating SNPs. Simultaneously, we estimate expression
differences between color morphs to establish if downregulation
of any ABP-related genes correlate with white petals. We
complement our RNA-Seq results with an investigation of the
petal biochemistry of the three color morphs by identifying the

primary anthocyanin pigment and flavonoid intermediates. We
then compare their relative abundances among the three color
morphs to help target the blockage in the ABP leading to white
petals. The biochemical results are interpreted in light of the SNP
and expression findings from the transcriptome analysis.

MATERIALS AND METHODS

Plant Species
Silene littorea (Caryophyllaceae) has an anthocyanin petal

Q6

polymorphism with three distinct categories—dark pink (D),
light pink (L), and white (W) (Figures 1B–D). It belongs
to the section Psammophilae (Oxelman et al., 2013), that is
composed of five diploid (2n = 24; Talavera, 1979), annual,
primarily pink flowered taxa. The species grows primarily in
coastal sand dunes of Spain and Portugal (Figure 1A; Talavera,
1979). It has a gynodioecious-gynomonoecious sexual system
and produces a highly variable number of flowers per plant
(Casimiro-Soriguer et al., 2013), yet the flower color is constant
among flowers within a plant (unpublished observations). There
is no correlation between flower color and sexuality (unpublished
observations), but white individuals are much more common in
the northwestern portion of the species range compared to the
southeast (Figure 1A).

Sampling and RNA Extraction
Plants were sampled from a polymorphic population near the
northwestern range limit (Playa de Barra, Spain; 42◦ 15′ 35′′N,
8◦ 50′ 25′′W) (Figure 1A). Petals from W, L, and D flowers
were sampled at three developmental stages: bud, opening, and
anthesis (Figure S1 in Supplementary Material). All five petals
from the same flower were collected, immediately preserved in
RNAlater (Ambion, Inc., Austin, Texas), and stored at −20◦C
until RNA extraction. RNA was isolated using the RNeasy
Plant Mini Kit (Qiagen, Valencia, CA). Concentration and
purity of RNA was measured with a NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, Inc., Wilmington,
DE) and agarose gels were run to verify RNA integrity. The nine
samples with the highest concentration of RNA for each of the
three color morphs and developmental stages were selected: bud
white, opening white, anthesis white, bud light, opening light,
anthesis light, bud pink, opening pink, and anthesis pink.

Library Preparation and Sequencing
RNA-Seq libraries were prepared and sequenced at the
Epigenome Center of the University of Southern California
following the manufacturers protocol (Illumina, San Diego, CA).
The nine libraries were barcoded (6 bp), pooled in equimolar
concentrations and loaded on a single lane of the Illumina Hi-
Seq 2000 system. Sequencing consisted of 50 cycles of single-
end sequencing-by-synthesis reactions. Fortuitously, the libraries
were sequenced twice. After a preliminary analysis indicated that
both datasets produced qualitatively similar results, we merged
them for all analyses reported herein. In the combined dataset,
there was an average of 37.9million reads per sample (range 36.3–
40.0 million). Raw sequencing reads were deposited to NCBI’s
Short Read Archive (Accession number SRP033277).
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De novo Assembly of ABP-Related Loci
Since there are no closely related genome resources for Silene,
we conducted de novo assembly of the S. littorea transcriptome
following a similar pipeline developed by Butler et al. (2014)
relying largely on VELVET v.1.2.07 (Zerbino and Birney, 2008)
and OASES v.0.2.08 (Schulz et al., 2012). We assembled using the
FASTQ files across a range of k-mers (23-39) to maximize ABP
candidate gene coverage. Assembled contigs were identified by
BLAST+ against the Arabidopsis thaliana RefSeq database from
TAIR (v. 10; Swarbreck et al., 2008), limiting the results to e <

10−10.
We made sequence comparisons and expression analyses

of 15 ABP candidate genes. These include seven core ABP
structural genes [chalcone synthase (Chs), chalcone isomerase
(Chi), flavanone-3-hydroxylase (F3h), dihydroflavonol 4-
reductase (Dfr), anthocyanidin synthase (Ans), flavonoid
3-O-glucosyltransferase (Uf3gt), and acyltransferase (At)],
three genes immediately upstream of the ABP [phenylalanine
ammonia-lyase (Pal), cinnamate 4-hydroxylase (C4h), coumarate
CoA ligase (4Cl)], two side-branching genes [flavonol synthase
(Fls), flavonoid 3′hydroxylase (F3′h)], and three transcriptional
regulators [basic helix loop helix (Bhlh), WD40 Repeats (Wd40),
and R2R3-MYB domains (Mybs)]. For each of the nine samples,
we extracted all contigs from the candidates for each gene of the
ABP and these contigs were aligned in BioEdit (Hall, 1999). For
two regulatory genes, Wd40 and Mybs, two and seven different
sequences were found. For five core ABP genes, two to three
very distinct sequences of the same gene were assembled. Even
though these loci blasted to the same ABP-related locus in the
TAIR database, the alignment suggested they were unlikely
orthologous. Therefore, we treated them separately as putative
paralogs (hereafter “locus”) in all further analyses of 29 loci in
total. For each locus, a consensus sequence with ambiguities
representing all the variable sites among the nine samples was
extracted as the reference for gene expression. All ABP-related
reference loci are available in Genbank nucleotide database
[http://www.ncbi.nlm.nih.gov/nuccore/] Accession numbers
KT954895-KT954923.

Sequence Comparisons of ABP-Related
Loci
For all 29 ABP related loci, we tested for single nucleotide
polymorphisms (SNPs) that correlated with flower color. We
started by mapping the microreads back onto the de novo
consensus sequences usingMosaik (Lee et al., 2014).We followed
the author’s recommendations for the parameter settings: two
allowed mismatches and a hash length of 15. We then used
Picard v.1.94 (http://broadinstitute.github.io/picard/) to identify
PCR duplicate reads—an artifact of the library preparation
methodology. The Genome Analysis Toolkit v.2.6-4 (GATK,
McKenna et al., 2010) was used to (1) re-align the reads around
potential indels, (2) remove the PCR duplicates identified in
Picard and finally (3) identify SNPs in each of the nine samples
across the 29 ABP-related loci (DePristo et al., 2011). We
calculated the allele frequencies for each SNP for each color
type using the genotype field (GT) in the GATK output file (we

surveyed 3 individuals per color morph = 6 alleles per color
morph). We also calculated the mean likelihood of genotype
assignment (0/0, 0/1, or 1/1) for each color type (parameter PL
in the GATK output).

After finding allele frequency differences among pink and
white individuals in Ans, we conducted a survey of additional
individuals from the same population using genomic DNA.
DNA was extracted from 19 pink and 19 white individuals
following the PL2 protocol in the NucleoSpin Plant II kit
(Macherey-Nagel, Bethlehem, PA). We designed primers specific
to SlAns in order to amplify and sequence a 677 bp fragment
including the color differentiating SNPs and a 110 bp intron
(ANS-416F: CTAGTGGCCAACTCGAGTGG & ANS-1021R:
CAAAGGTTCGAGGCGGGTAA). PCR conditions followed
those of Dick et al. (2011) using Taq polymerase from New
England Biolabs (Ipswich, Massachusetts) with the following
thermal cycling steps: initial denature at 95◦C for 3 min; 35
cycles of 95◦C for 30 s, 60◦C for 30 s, 72◦C for 90 s; a final
extension at 72◦C for 10 min; and a 4◦C hold. PCR products
were purified using exoSAP and sequenced using Big Dye
Terminator methodology on an ABI 3730xl DNA Analyzer
(Sequetech Corp., Mountain View, California). Contigs were
produced from forward and reverse reads. Contigs were then
aligned and allele frequencies calculated in Geneious v.8.1.6
(Auckland, New Zealand). The flower color of each additional
sample in the Ans survey was verified with an anthocyanin
extraction of the petals and quantification by measuring their
absorbance at 520 nm (see Materials and Methods in Del Valle
et al., 2015) following correction for the petal area (Figure S2 in
Supplementary Material).

Expression Analysis
To extract the number of reads mapped for each gene from
the bam file produced by Mosaik we used Artemis (Rutherford
et al., 2000). For differential expression analysis we used the
DESeq package (Anders and Huber, 2010) in R (R Core Team,
2013). This package requires the normalization of the raw counts.
After normalization, only those loci above the 33rd quantile are
further analyzed for differential expression. This filtering step is
neccesary to avoid spurious estimates of fold-change differences
due to very low expression values. A negative binomial tests was
applied to identify any statistically differentially expressed loci
(p < 0.05). Although we analyzed the three developmental stages
separately, we focus the remainder of the expression analysis
and interpretation on the bud stage since the petal color is
already present in the bud (Figure S1 in Supplementary Material)
and therefore, the causal genes should be detectable at this
developmental stage.

Phylogenetic Analysis of R2R3 Mybs
To help infer which S. littorea petal Mybs may be involved in
anthocyanin biosynthesis, we compared the seven distinct Mybs
identified in S. littorea to known regulators of the ABP from
several model species (Antirrhinum majus, Arabidopsis thaliana,
Chrysanthemum morifolium, Eucaliptus gunnii, Fragaria
ananassa, Fragaria chiloensis, Gerbera hybrida, Ipomoea nil,
Lycopersicon esculentum,Malus domestica,Mimulus aurantiacus,
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Salvia miltiorrhiza, Oryza sativa, Petunia hybrida, Populus
trichocarpa, Vitis vinifera, and Zea mays—accession numbers
can be found in Table S1 in Supplementary Material). We
conducted both maximum likelihood (RAxML; Stamatakis,
2014) and Bayesian (MrBayes; Huelsenbeck and Ronquist, 2001)
phylogenetic analyses of the aligned nucleotids of the R2R3
binding domain (315 bp) using plug-ins within Geneious v.8.1.6.
For the maximum likelihood analysis, we fit a GTR+CAT+I
model followed by 1000 bootstrap replications. For the Bayesian
analysis, we applied the GTR+I+Gmodel of sequence evolution
for two separate runs, each consisting of four independent
chains run for 5,000,000 generations sampling every 50,000
generations after 1,000,000 generations of burnin. Bayesian runs
were checked for porper mixing and convergence using standard
diagnostics.

HPLC Analysis of Flavonoids
Petal flavonoids were identified for three dark pink samples. After
that, we compared specific compounds in three white, six light
pink, and six dark pink samples. Flavonoids were extracted from
four petals of an anthesis stage flower that were preserved in 1mL
of CH3OH:H20:HCl (90:9:1, v:v:v) and stored on ice and in the
dark until the flavonoids could be extracted. The samples were
homogenized using 5 × 3 mm diameter glass beads in a Mixer
Mill MM 200 (Retsch, Haan, Germany) with a frequency of 30
oscillations/s. They were beaten until the sample was completely
homogenized (minimum of 60 s). The supernatant was removed
after 10 min centrifugation (13,000 rpm) and stored at −20◦C
until it could be separated by HPLC.

Chromatographic separation was performed using a Perkin
Elmer Series 200 HPLC system (Wellesley, USA) coupled to
an Applied Biosystems QTRAP LC/MS/MS system (Foster City,
USA) consisting of a hybrid triple-quadruple linear ion trap
(QqQLIT) mass spectrometer equipped with an electrospray ion
source. HPLC analyses were performed on a 150 × 2.0 mm
Phenomenex Luna 3u C18(2) 100A reversed-phase column with
a particle size of three µm. The flow rate was 0.2 mL/min. To
identify and quantify the flavonoid compounds in the petals of
S. littorea, we performed multiple reactions monitoring (MRM)
combined with precursor ions scan and subsequent MS/MS
analysis (Li et al., 2006; Qiao et al., 2011). We used the standards
of the flavonoids that were previously reported for S. littorea and
others species of Silene (Table S2 in Supplementary Material).
The standards were obtained from SDS (Toulouse, France). The
parameters for the MRM transitions and HPLC-ESI-MS/MS
analyses were fixed following Dardanelli et al. (2008), with the
exception of the dwell time for each transition which was set
to 0.05 s. Flavonoid amounts were corrected for flower size
using the total area of the petals measured with the software
ImageJ (US National Institutes of Health, Bethesda, MD, USA,
http://imagej.nih.gov/ij/). Size-corrected flavonoid amounts were
standardized by their maximum value. Significant differences
in individual flavonoid concentrations were examined for the
three color categories (D, L, and W) in an ANOVA after
log transformation in R v.3.1.0 (R Core Team, 2013). When
significant, we conducted Tukey HSD post-hoc paired tests to

TABLE 1 | Summary Q4of sequencing and assembling results from kmer =

31.

Sample No. of reads No. of

assembled

transcripts

Total

length of

transcripts

(bp)

Average

length of

transcripts

(bp)

BW 37,153,142 25,708 14,519,322 564.8

BL 38,063,355 35,654 9,928,394 278.5

BD 38,535,318 32,339 11,387,548 352.1

OW 36,959,208 26,367 15,006,014 569.1

OL 39,381,159 21,635 14,194,798 656.1

OD 36,319,118 26,538 12,394,184 467.0

AW 38,199,741 32,422 15,417,417 475.5

AL 40,004,007 22,091 15,444,979 699.2

AD 36,623,636 30,973 14,016,310 452.3

B, bud; O, opening; A, anthesis; W, white; L, light pink; D, dark pink.

determine which color morphs exhibited significantly different
mean flavonoid concentrations.

RESULTS

De novo Assembly of ABP-Related Genes
We identified all 15 ABP-related genes from de novo assembly
of the petal transcriptome. The longest contigs from the de
novo assembly were most frequently from Velvet k-mer 31
(Table 1), but supplemented by contigs from other kmer analyses
as necessary. After BLAST+ identification against all known
genes of A. thaliana, multiple putative paralogs were identified
for seven genes producing a total of 29 ABP-related loci (Table 2).
Three of the genes that feed into the ABP had two or three copies
each (Pal, C4h, and 4Cl). Most of the ABP structural genes and
their side-branches had only a single locus expressed in the petals
except Chs and F3h which had two and three copies respectively.
Of the three regulatory loci, there were seven Mybs, two Wd40s,
and only one Bhlh locus. The bHLH locus is closely related to
the AN1 locus of Petunia and TT8 locus from Arabidopsis, both
regulators of the ABP (see Figure S3 in Supplementary material).
We sequenced 100% of the coding sequence (CDS) for 28 of the
29 ABP-related loci (all except Myb5). In addition, we acquired
an average of 121 bp of the 5′ UTR sequence (range 35–451 bp)
and 170 bp of the 3′ UTR (range 21-306) (Table 2).

Sequence Comparisons among Color
Morphs
Among the nine samples, we found 622 SNPs in the 5′ UTR, CDS
and 3′ UTR of the 29 ABP-related loci (Table 2). The number
of SNPs per gene was highly variable, ranging from zero to 91
in F3h1 and Pal1, respectively (Table 2). Although we found
numerous non-synonymous SNPs in several loci, none of them
consistently differentiated the three color morphs.

Ans was the only gene that had SNPs with allele frequencies
consistently associated with flower color (Table S3 in
Supplementary Material). A total of 32 SNPs were found in
the 5′ UTR, CDS and 3′ UTR in Ans, yet nine of these between
positions 697–1099 exhibited substantially different frequencies
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TABLE 2 | ABP sequencing results.

Locus 5′ UTR

length (bp)

CDS length

(bp)

3′ UTR

length (bp)

No. SNPs in

5′ UTR

No. SNPs in

CDS

No. SNPs in 3′

UTR

Total No.

SNPs

No. Non-synonymous

SNPs

Pal1 119 2154 234 6 75 10 91 7

Pal2 118 2106 221 0 34 5 39 3

Pal3 55 2148 84 0 27 0 27 11

C4h1 78 1521 237 1 11 2 14 2

C4h2 451 1191 21 4 10 1 15 1

4Cl1 88 1692 147 1 27 2 30 4

4Cl2 99 1677 75 1 37 1 39 5

Chs1 60 1176 87 0 38 1 39 1

Chs2 136 1176 169 0 2 0 2 1

Chi 114 717 279 0 11 1 12 1

F3h1 129 1098 198 0 0 0 0 -

F3h2 179 1083 105 0 1 0 1 0

F3h3 40 1083 114 1 25 1 27 4

Dfr 108 1059 207 1 7 2 10 1

Ans 115 1098 216 2 24 6 32 7

Uf3gt 78 1374 273 1 28 5 34 8

At 88 1494 189 3 21 3 27 5

F3′h 41 1539 306 0 36 3 39 5

Fls 157 1176 270 1 3 0 4 2

Myb1a 128 708 160 1 10 2 13 1

MYB1b 61 729 152 0 4 2 6 2

Myb2 160 879 141 0 19 1 20 1

Myb3 222 711 147 1 14 2 17 4

Myb4 113 1032 72 0 5 1 6 3

Myb5 190 *577 – 0 5 – 5 0

Myb6 143 750 94 0 9 1 10 4

Wd401 106 1053 306 2 9 4 15 2

Wd402 35 1023 60 0 1 0 1 0

Bhlh 54 1914 198 1 42 4 47 24

Complete CDS and partial UTRs were sequenced for all ABP-related loci except for Myb5. The number, location and type of single nucleotide polymorphisms (SNPs) are indicated for

each locus.
*Partial coding sequence.

in dark pink vs. white samples (Figure S4 in Supplementary
Material). Furthermore, the likelihood of being homozygous
for one allele or the other was also strongly correlated with
petal color (Figure S5 in Supplementary Material). There was
a very low likelihood of heterozygosity at all nine of these
SNPs for all three color morphs. Nevertheless, all of these
color-differentiating SNPs were synonymous.

Additional sequencing of the 677 bp region (including the
110 bp intron) of Ans in 19 pink and 19 white individuals
contained all of the color differentiated SNPs except the last
one at bp 1099. Seventeen SNPs including two additional SNPs
discovered in the intron were examined, however no single
SNP consistently differentiated pink and white individuals (mean
allele frequency= 0.21; Table 3).

Expression Comparisons among Color
Morphs
Since petal anthocyanins are detectable in the bud stage (Figure
S1 in Supplementary Material), we infer that all ABP-related

loci should have been expressed by this developmental stage.
Thus, we focus on the three bud stage samples for expression
comparisons (expression values for later developmental stages
are available in Table S4 in Supplementary Material). The DESeq
corrected expression estimates for the bud stage ranged from
1459.8 reads—494,875.6 reads (median = 8713.9 reads; Table S4
in Supplementary Material).

When comparing dark pink to white petal buds, there are
three loci with significantly higher expression in dark pink than
white: F3h1 (D/W= 49.0x; p= 0.039), C4h2 (D/W= 36.2x; p=
0.013), and Myb1a (D/W = 5.1x; p = 0.009) (Figure 2, Table S4
in SupplementaryMaterial).When comparing light pink to white
petal buds, there are two significantly differentially expressed loci:
F3h1 (L/W = 42.2x; p = 0.049) and F3′h (L/W = 4.5x; p =

0.047). Chalcone isomerase (Chi) is the only locus with W > L,
yet only weakly so (L/W= 0.32x; p= 0.055 (Figure 2, Table S4 in
Supplementary Material).

When comparing the two pigmented morphs (dark pink and
light pink), there are two signficantly differentially expressed loci

Frontiers in Plant Science | www.frontiersin.org 6 February 2016 | Volume 7 | Article 204

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Casimiro-Soriguer et al. Flower Color Polymorphism in Silene littorea

TABLE 3 | Broader SNP survey for Ans.

CDS Site Reference Alternate Pink Ref. Pink Pink Alt. White Ref. White White Alt. Pink Ref. White Ref. Allele Freq

No. allele (Ref.) allele (Alt.) Homozygotes Hets. Homozygotes Homozygotes Hets. Homozygotes Allele Freq. Allele Freq. Diff. (P-W)

Intron1* G A 17 1 0 14 3 1 0.97 0.86 0.11

Intron2 A G 18 1 0 14 4 1 0.97 0.84 0.13

697 A C 6 9 4 1 2 16 0.55 0.11 0.45

709 A G 16 3 0 13 4 2 0.92 0.79 0.13

746 C T 7 9 3 1 4 14 0.61 0.16 0.45

763 C A 7 10 2 3 5 11 0.63 0.29 0.34

790 A T 17 2 0 17 2 0 0.95 0.95 0.00

799 G A 7 10 2 3 7 9 0.63 0.34 0.29

845 C T 15 4 0 15 3 1 0.89 0.87 0.03

853 T C 16 3 0 19 0 0 0.92 1.00 0.08

898 C G 6 11 2 3 5 11 0.61 0.29 0.32

913 A G 5 9 5 1 4 14 0.50 0.16 0.34

919 C T 15 3 1 14 3 2 0.87 0.82 0.05

937 C A 6 10 3 1 4 14 0.58 0.16 0.42

970 C T 1 2 16 0 3 16 0.11 0.08 0.03

982 C T 18 1 0 15 3 1 0.97 0.87 0.11

994 G T 5 10 4 1 5 13 0.53 0.18 0.34

Genomic DNA sequencing of 19 dark pink and 19 white individuals from the same population as the transcriptome sequencing (Barra) reveals some allele frequency differences. No

single SNP consistently differentiates the color morphs.

*Sequence data was only available for 18 pink individuals for this site.

which are both regulatory—Myb1a (D/L = 4.2x; p = 0.021)
and Myb3 (D/L = 0.3; p = 0.033) (Table S4 in Supplementary
Material).

Phylogenetic Analysis of R2R3 Myb Loci
The phylogenetic analysis of the R2R3 Myb DNA binding
domain including several ABP-related Mybs from model species
indicates numerous S. littorea Mybs are likely ABP regulators.
RAxML and MrBayes phylogenetic analyses produced nearly
identical topologies. For simplicity, we present the RAxML
results (Figure 3). In particular, SlMyb4, SlMyb1a, and SlMyb1b,
are strongly supported as sister to Subgroup 7, which controls the
first dedicated steps of the ABP gene regulation including F3h
in A. thaliana (Stracke et al., 2007; Dubos et al., 2010). SlMyb5
and SlMyb6 grouped with a large number of unresolved eudicot
Mybs of Subgroup 6 which are known to control the later genes
of the ABP (Figure 3; Dubos et al., 2010). Both of these mybs
have the expected bHLH interaction residues and the ANDV
motif in the R3 domain that are characteristic of Subgroup 6
(results not shown). SlMyb2 and SlMyb3 are less likely involved
in the blockage of the ABP since they are not closely related to
exemplars from Subgroups 6 or 7. Both of these mybs have the
bHLH binding domain and the C1 conserved motif, but the C2
motif is only present in SlMyb3 (Dubos et al., 2010; Yoshida et al.,
2015).

Identification and Quantification of
Flavonoids
HPLC analysis revealed three anthocyanin compounds
(glycosylated cyanidin derivatives) responsible for the petal
color in S. littorea (Table S5 in Supplementary Material). We

detected seven additional flavonoids: four flavones (identified
from standards as apigenin, isoorientin, isovitexin and luteolin),
two flavonols (quercetin and rutin), and one dihydroflavonol
(dihydroquercetin). No flavonoids matching the flavanone
narigenin nor the isoflavone genisteine, from the earliest
dedicated steps of the ABP, were detected. The putative location
of these flavonoid intermediates in the ABP is shown in Figure 4.

We compared the relative amounts of anthocyanins and their
intermediates across color morphs to link the transcriptome
results to the phenotype. The amount of cyanidin derivatives
significantly increased with the intensity of the petal color as
expected (Table 4, Figure 5). In three of the five flavonoid
intermediates (rutin, isovitexin and quercetin), the relative
amounts of metabolites in the color morphs were significantly
different. Amounts of luteolin derivatives and apigenin were
not significantly different among the color morphs (Table 4,
Figure 5). Post-hoc pairwise comparisons among the three color
morphs indicate that differences were always strongest between
pigmented and white petals, except for quercetin where white and
pink were not significantly different from each other. Light and
dark pigmented morphs did not differ in the relative amount of
any of the five flavonoid intermediates (Table 4, Figure 5).

DISCUSSION

We sequenced and measured expression of all ABP-related
genes from the petals of the non-model species, S. littorea. We
assembled complete coding sequences of 28 out of 29 ABP-related
loci and identified over 600 SNPs, yet none are sufficient to
confer a structural blockage in the ABP. This study is the first
to sequence and measure expression of structural and regulatory
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FIGURE 2 | Expression differences, estimated as fold changes,

between dark/white (dark pink bars) and light/white (light pink bars)

petals at bud developmental stage. Fold change values between

pigmented and white petals after normalization of the raw counts are shown.

Only those loci that are above the lower 33 quantile are included. This filtering

step prevents spourious estimates of fold-change values due to very low

expression.

genes of the ABP in the petals of Silene. A previous transcriptome
analysis of white flowered S. vulgaris has been completed, but it
utilized pooled RNA from leaves, roots and whole flowers (Blavet
et al., 2011; Sloan et al., 2012). Recently, RNA-Seq studies in non-
model species of Mimulus, Muscari, and Parrya have similarly
used de novo assemblies followed by expression analyses of the
ABP genes (Butler et al., 2014; Lou et al., 2014; Yuan et al.,

TABLE 4 | Statistical analysis of petal flavonoid concentrations.

Flavonoid ANOVA F-statistics Pairwise Tukey post-hoc p-values

White—Light White—Dark Light—Dark

Cyanidina 14.18*** 0.046 0.001 0.024

Rutin 19.71*** 0.001 0.002 0.120

Quercetin 5.56* 0.015 0.108 0.390

Luteolinb 3.10 – – –

Apigenin 3.72 – – –

Isovitexin 10.25** 0.002 0.022 0.243

ANOVA results and pairwise Tukey post-hoc analyses for significant differences of

flavonoid concentrations among the three color morphs (dark pink, light pink, and

white). Tukey post-hoc tests were only performed on flavonoids with significant ANOVA.

Significant Tukey post-hoc results (p < 0.05) are indicated in bold.
aThe three cyanidin derivatives were pooled in the ANOVA because our MS/MS

quantification cannot differentiate among them.
bLuteolin and isoorientin (luteolin hexoside) were pooled for the same reason.

*P < 0.05; **P < 0.01; ***P < 0.001.

2014). As in Silene littorea, these studies also identified the ABP
genes and some of the regulatory loci, confirming our result
that RNA-Seq is an efficient tool for narrowing the number of
candidate genes responsible for a flower color polymorphism.We
assembled the complete CDS of most of the ABP loci (28 out
of 29) compared to an average of 71% in Muscari and 89% in
Parrya likely due to the excessive coverage following the replicate
sequencing runs (Butler et al., 2014; Lou et al., 2014).

The concentration of synonymous SNPs that correlated
with flower color in Ans was initially encouraging and
warranted further investigation. Unfortunately, none of these
SNPs consistently differentiate the flower color samples (highest
D-W allele frequency difference is 0.45). Given that there are
numerous non-color differentiating SNPs on either side of the
cluster of color-related SNPs, it is unlikely that we surveyed a
region adjacent to a structural blockage in the ABP at ANS.
Furthermore, since none of these SNPs cause any changes to the
amino acids, they should have no structural effect on the enzymes
activity. Lastly, these SNPs are unlikely to cause regulatory
changes since in Arabidopsis and Ipomoea, the regulation of Ans
occurs in the promoter (Dong et al., 2014; Xu et al., 2014) where
MYB and bHLH binding sites are found.

The expression analysis identified several significantly
differentially expressed genes in the petal buds where there was
substantially lower expression in white samples compared to
pigmented samples. Although we have focused our interpretation
of expression differences on the developmental stage closest
to when the pigment difference between pink and white
become apparent (bud), we have provided results for later
petal developmental stages as well (Table S4 in Supplementary
Material). In particular, F3h1 exhibits significantly different
expression for both dark pink vs. white and light pink vs. white
comparisons. In fact, these are the two largest fold-changes in
expression of pigmented vs. white among all ABP-related loci.
Changes in F3h1 expression could be due to mutations in the
cis-regulatory elements of the promoter or changes in the trans-
acting myb-bHLH-WD40 regulatory complex. Unfortunately,
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FIGURE 3 | Phylogenetic analysis of Myb R2R3 DNA binding domains for S. littorea and other model species. The R2R3 domains of seven Mybs identified

in the S. littorea petal tanscriptome were aligned and analyzed under maximum likelihood phylogenetic methods. Bootstrap values greater than 70% are indicated at

the nodes. Branches are drawn proportional to the number of substitions per site (see scale bar). Species abbreviations: Am, Antirrhinum majus; At, Arabidopsis

thaliana; Cm, Chrysanthemum morinifolium; Eg, Eucaliptus gunnii; Fa, Fragaria ananassa; Fc, Fragaria chiloensis; Gh, Gerbera hybrida; In, Ipomoea nil; Le,

Lycopersicon esculentum; Ma, Mimulus aurantiacus; Md, Malus domestica; Sm, Salvia miltiorrhiza; Os, Oryza sativa; Ph, Petunia hybrida; Pt, Populus trichocarpa; Sl,

Silene littorea; Vv, Vitis vinifera; Zm, Zea mays. Genbank accession numbers can be found in Table S1 in Supplementary Material.
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FIGURE 4 | Tentative anthocyanin biosynthetic pathway for S. littorea. The pathway is primarily linear with three side branches that produce the anthocyanin

pigment cyanidin. Flavonoids detected by HPLC are indicated with asterisks. Enzymes not included in this study are indicated in gray. Enzyme abbreviations are

indicated next to arrows: PAL, phenylalanil ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, coumarate CoA ligase; CHS: chalcone synthase; CHI, chalcone

isomerase; F3′H, flavonoid 3′hydroxylase; FNS, flavone synthase; F3H, flavanone-3-hydroxylase; FLS, flavonol synthase; DFR, dihydroflavonol 4-reductase; ANS,

anthocyanidin synthase; UF3GT, flavonoid-3-O-glucosyltransferase; AT, acyltransferase. The three gene regulatory complex consists of a basic Helix Loop Helix

protein (bHLH), WD Repeats (WD40) and R2R3-MYB domains (MYB) in most angiosperms.

there is no DNA sequence variation in the 129 bp of the 5′ UTR
that we have sequenced, thereby limiting our ability to associate
this region with any adjacent cis-acting color-differentiating
SNPs. Mutations upstream from the 5′ UTR cannot be excluded
as a cause of F3h1 downregulation in S. littorea since this locus
can affect flower color as has been reported in other species
(Dedio et al., 1995; van Houwelingen et al., 1998). Nishihara
et al. (2014) found that a white-petaled Torenia was caused by
a retrotransposon in the promoter of the F3h gene. In addition,
antisense suppression of F3h in carnation resulted in a variety of
transgenic plants showing a range of loss of function, from subtle
attenuation to complete loss (Zuker et al., 2002).

The regulation of ABP genes through changes in expression
of their regulatory elements, could also lead to the differential
expression observed in F3h. In Mimulus aurantiacus, MaMyb2
regulates the expression of F3h, Dfr, and Ans. When MaMyyb2
was silenced, the expression of these genes was significantly lower
than the control (Streisfeld et al., 2013). In S. littorea, the gene
tree of MYBs, placed SlMyb5 and SlMyb6 in the same group as
MaMyb2 and many other known ABP regulators (Subgroup 7
according to Dubos et al., 2010), and also presented a reduction
of expression in the non-anthocyanin morph, although not
significant. This result highlights SlMyb5 and SlMyb6 as tentative
regulators of the expression of the ABP genes, however further
experiments are needed to test this hypothesis.

Significant differences in expression were also found in C4h2
(dark pink vs. white), F3′h (light pink vs. white) and the
transcription factor Myb1a (dark pink vs. white and dark pink
vs. light pink). C4h2 is a pre-ABP gene acting in the general
phenylpropanoid biosynthetic pathway (Ehlting et al., 2006).
Since we did not detect the biochemical product of C4H (nor
were the products of CHS and CHI, chalcone and naringinen,
identified), we cannot differentiate whether there is a blockage at
C4H due to decreased expression or if the enzymes downstream
of C4H are consuming all of the product during flux down the
ABP. Interestingly, suppression of the first two dedicated genes
of ABP such as Chs or Chi would eliminate most flavonoid
intermediates without affecting the production of upstream
compounds including the volatile benzenoids responsible for
floral scent (Clark and Verwoerd, 2011). This is because C4h2,
Chs, and Chi are all located downstream of the production of
cinnamic acid, the initial substrate of this side branch (Davies

Q12
and Schwinn, 2006; Ben Zvi et al., 2008). Although differences
were not significant, expression of C4h2 was also much higher in
light vs. white morphs. The phylogenetic tree of Mybs showed
that SlMyb1a (closely related to SlMyb1b, with 68% of amino
acid similarity) and SlMyb4 are closely related to Subgroup 7
(sensu Dubos et al., 2010) which controls several genes in the
first half of the ABP including F3h in A. thaliana (Dubos et al.,
2010). On the other hand, we also found that light pink and
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FIGURE 5 | Comparison of flavonoid concentrations among color

morphs. Six classes of flavonoids were identified by HPLC: (A) Cyanidin, (B)

Rutin, (C) Quercetin, (D) Luteolin, (E) Apigenin, and (F) Isovitexin. Cyanidin is

the primary anthocyanin pigment. The remaining five flavonoids are

intermediates in the pathway (see Figure 4). Log transformed, size corrected

relative peak areas are compared for white, light pink, and dark pink samples.

The boxes represent the 25th and 75th percentiles, the whiskers are the 5th

and 95th percentiles, the central solid lines are the median values, and circles

represents outliers.

dark pink petals showed differential expression in two Myb
transcriptional regulators. This suggests that differences in color
intensity between the light and dark pink morphs could be due
to a different candidate ABP locus than the loss-of-function
(e.g., Hopkins and Rausher, 2011; Yuan et al., 2013), rather
than heterozygosity of a single loss-of-function locus in the
white morph. In fact, during the SNP assignment, the light pink
morph never had a higher probability of being heterozygote,
however confirming the number of loci responsible for these
three color morphs must be evaluated with an F2 population that
is segregating for flower color.

A structural or regulatory blockage in the ABP would decrease
the amount of flavonoid intermediates below the blockage, but
would increase the amount of intermediates in upstream side
branches (depending on the dynamics of metabolite flux through
the pathway). The flavonoid biochemical analysis identified
cyanidin as the primary anthocyanin and an additional five
flavonoid intermediates to compare among the color morphs.
Only three of them were significantly different between white
and pigmented individuals and two (quercetin and rutin) are
consistent with a blockage at or above F3H. Consistent results
between HPLC and expression analysis were found in Parrya
nudicaulis, where the white morph did not produce catechins or
flavonols due to the reduced expression in Chs (Dick et al., 2011).

Nevertheless, in Iris lutescens, the production of non-anthocyanic
flavonoids (including chalcones, flavones and flavonols) in the
yellow morph was higher than in the purple (Wang et al., 2013).
In Muscari armeniacum, Lou et al. (2014) found that except
for anthocyanins (delphinidin and cyanidin), the white morph
contained the same metabolites as the blue, and generally at
higher concentrations. They argue that the blockage in DFR in
the white morph, caused a redirection of the flux of metabolites
through a side-chain to other products. A similar argument
may hold between the light and pink morphs in S. littorea.
Although differences were not significant, the light morph of
S. littorea showed a trend toward higher concentrations of
flavonols and flavones compared with the dark pink morph
(Figure 5), which could be due to a redirection of the flux of
metabolites.

Based on our biochemical analysis, we have proposed a
tentative metabolic pathway of anthocyanin in the petals of
S. littorea (Figure 4). The pink color of the petals is caused
by the accumulation of cyanidin 3-glucoside derivatives, as is
found in S. armeria (Iwashina and Ootani, 1987) and S. dioica Q12

(Kamsteeg et al., 1979). Dark pink flowers in S. littorea showed
the same cyanidin 3-glucoside derivatives but in a much higher
concentration than light pink flowers, which suggest that the
pink intensity is caused by the different concentration of these
compounds. In other species, it has been proposed that co-
pigments such as flavones and flavonols play an important
role in the color or intensity of the petals (Gould and Lister,
2006; Thill et al., 2012; Nishihara et al., 2014). For example,
brown color of outer part of the labellum of Ophrys speculum
is suggested to be caused by the flavonols acting as co-pigments
of cyanidins (Vignolini et al., 2012). In S. littorea, flavonols
and flavones are not expected to play a key role in the pink
intensity since higher concentrations were not found in darker
petals.

The lack of anthocyanins, and the lower levels of other
flavonoids in petals of the white-flowered morph of S. littorea
could result in a fitness disadvantage in stressful conditions.
These pigments (and some of their intermediates) are known
to influence pollinator visitation, attraction of florivores and
susceptibility to pathogens (e.g., Hoballah et al., 2007; Johnson
et al., 2008; Falcone Ferreyra et al., 2012). Furthermore,
anthocyanin-less morphsmaymore susceptible to abiotic stresses
such as heat, cold and dessication (reviewed in Winkel-
Shirley, 2002). Interestingly, individuals of the white campion,
S. pratensis, lacking glyscosilated isovitexin showed ruptured
upper epidermal cells that caused curved petals (van Brederode Q12

and Steyns, 1985). The possible disadvantage of the lack of
anthocyanins or other flavonoids can be even higher when
vegetative tissues are also affected (Levin and Brack, 1995;
Warren and Mackenzie, 2001). This could be the case of a
different type of white-flowered mutant that appears rarely in a
few southern populations of S. littorea. This whole-plant mutant
is not able to produce anthocyanins in other tissues of the plant
(see the calyx in Figure S1E in Supplementary Material), and
is found at very low frequencies (<0.05%; Casimiro-Soriguer,
2015). Mutations in structural genes are commonly responsible Q12

for low frequency white-floweredmutants in several other species
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(i.e., Coberly and Rausher, 2008; Wu et al., 2013). Thus, the rare
mutant in S. littorea could be also due to a coding mutation,
but future experiments should be carried out to answer this
question. However, the high frequency white-flowered mutant
studied here, is able to produce anthocyanins and flavonoids
in other tissues of the plant including calyx, leaves and stem
(see calyx in Figure S1E in Supplementary Material). Instead, we
posit that regulatory changes in SlMyb1a affects expression of
SlF3h1 (at least) which is then the most likely blockage in the
ABP for these northwestern Iberian white-flowered morphs of S.
littorea.

CONCLUSIONS

We used RNA-Seq to simultaneously sequence and estimate
expression of 29 ABP-related loci among three flower color
morphs of the non-model plant, S. littorea. After sequencing
the complete coding regions of all structural genes and most
regulatory loci, we found a cluster of nine synonymous SNPs
around the intron in Ans whose frequencies differ among color
morphs, yet their functional significance is unclear. Additional
sampling confirmed these Ans allele frequency differences, yet
no single SNP consistently differentiates the color morphs.
Instead, there is consistent and significant downregulation in
the expression of F3h when comparing pigmented and white
petal buds which may be influenced by decreased expression
of Myb1a—a regulator of F3h in other eudicots. The flavonoid
biochemical analysis is partially consistent with downregulation
of F3h—the most likely blockage in the ABP leading to the loss of
floral anthocyanins potentially mediated by expression ofMyb1a.
Expanded sampling of white and dark individuals for expression
analysis of SlMyb1a and F3h and sequencing of the promoter
region in association with genetic analysis of these loci using a
segregating F2 population are essential steps to validating these
results.
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