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ABSTRACT 

 

Micro-motions in surgical applications are small motions in the range of a few millimeters 

and are common in ophthalmic surgery, neurosurgery, and other surgeries which require 

precise manipulation over short distances. Robotic surgery is replacing traditional open 

surgery at a rapid pace due to the obvious health benefits, however, most of the robotic 

surgical tools use robotic motion controllers that are designed to work over a large portion of 

the human body, thus involving motion of the entire human arm at shoulder joint. This 

requirement to move a large inertial mass results in undesirable, unwanted, and imprecise 

motion. This senior design project has created a 2-axis micro-motion “capable” platform, 

where the device studies the most common linear, 2-D surgical micro-motion of pinched 

human fingers in a damped and un-damped state. Through a system of printed and modeled 

parts in combination with motors and encoders a microsurgical controller was developed 

which can provide location-based output on a screen.  Mechanical damping was introduced 

to research potential stability of micro-motion in any surgeon’s otherwise unsteady hand. The 

device is to also serve as a starter set for future biomedical device research projects in Santa 

Clara University’s bioengineering department. Further developments in the microsurgical 

controller such as further scaling, addition of a third axis, haptic feedback through the micro-

controller, and component encasing to allow productization for use on an industrial robotic 

surgical device for clinical applications. 
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1. Introduction 

1.1 Problem Statement 

Robotic surgery is replacing traditional open surgery at a rapid pace due to the 

obvious health benefits, such as reduced blood loss, reduced trauma, and faster recovery 

times. However, most of the robotic surgical applications use robotic motion controllers that 

are designed to work over a large portion of the human body, thus are mainly equipped with 

the ability to achieve large motions. These controllers mimic the human hand by providing 3 

Degrees of Freedom (3-DOF) motion capability at the shoulder joint and another 3 Degrees 

of Freedom at the human wrist [1]. The net combined effect is 6 Degrees of Freedom (6 

DOF) at the fingertip. In providing the ability to achieve large motions, little attention is paid 

to the need for moving the surgical robotic controllers by a “small” and precise amount to 

mimic the movement of a pair of pinched fingers. Micro-motions are small motions where 

the term “small,” while subjective and defined in context that is specific to applications, is 

generally recognized to be in the range of a few millimeters in surgical applications.   

 In any application that involves precision work, such as 

restoration of paintings, or microsurgery, it is the small (micro) 

motion of pinched fingers [2], see figure 1, that provides utmost 

control and precision over the task at hand by being able to 

manipulate the paint brush or the surgical tool in small motions 

(strokes). Seldom is bulky shoulder movement used for 

generating fine motion at the finger tips where motion of the 

pinched fingers provides better control and dexterity. Moving the 

shoulders for fine motion (strokes) at the finger tips requires 

moving a large mass, that of the entire arm, thus is subject to 

inertial overshooting and fatigue, both mental and physical. The lack of attention by the 

robotic motion control industry to micro-motion control in robotic controllers is the focus of 

this senior design project. This senior design project will  take into account work done by the 

robotic motion controller industry, analyze several motion control implementations, and 

research a solution that will show the advantage of adding micro- motion control to existing 

robotic motion controllers which lack a dedicated micro-motion capability. 

 

Figure1. Micro-motion of 

Pinched Fingers 



 2 
 

1.2 Project Background and Motivation 

The location of Santa Clara University, in the heart of Silicon Valley, provides SCU 

students access and opportunities to visit emerging technology companies. During a visit to a 

Sunnyvale-based medical device company, Intuitive Surgical, SCU bioengineering students 

availed an opportunity to tour the manufacturing facility and test drive a daVinci Surgical 

Robot.  

 The daVinci Surgical Robot consists of a master robot and a slave robot. A surgeon 

sits at the master robot and moves two motion controllers. The surgeon pinches a pen-like 

spindle and with wrist and shoulder motions, the surgeon moves the surgical tools on the 

slave robot [3]. The motions at the surgical controller are repeated by the slave robot on a 

patient who has no physical contact with the surgeon [3]. A nurse inserts surgical instruments 

into the arms of the slave robot that performs surgery. The daVinci Surgical Robot is a 

unique surgical robot with no competition to its abilities. 

 While there are other types of smaller and limited use surgical robots, the daVinci 

Surgical Robot has a 6 DOF motion controller for large motions, and thus is able to 

accommodate surgery over large parts of the human anatomy. 

 During a medical observer-ship program that focused on non-robotic micro surgical 

procedures in the field of neurosurgery and opthalmology, it was recognized that the 

capability of the daVinci can be increased by providing finer motion control to mimic the 

micro-motions made by pinched human fingers. The robot, in its present configuration, 

requires the surgeon to move his shoulder to achieve linear micro-motion at the finger tip. It 

is prudent to investigate the possibility of adding micro- motion abilities to the daVinci 

Surgical Robot, or any future robot that may perform the same functions that the daVinci 

does. In doing so, the capability of the robot controller will be extended to performing 

motions that are required by delicate micro surgeries. 

1.3 Project Objectives 

The goal of this senior design project is to create a 3-axis micro-motion “capable” 

platform. While the platform will be 3-axis capable, the direct purpose of the device is to 

study linear 2-D micro-motion of pinched human fingers in a damped and un-damped state.  

Mechanical damping is expected to add another level of stability to any surgeon’s otherwise 

unsteady hand.   
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Exhaustive research of published papers in various journals in the field of micro- 

motion revealed an ongoing interest and need for linear micro-motion capability in surgical 

tools. Additional research into types of micro-motion devices in existence revealed a large 

number of micro- motion capable devices that have the same end function, but their approach 

leaves a gap in the ability to achieve necessary micro-motion control with the desired 

operating precision. This micro-motion device will test linear micro-motion by combining 

two rotary axes, which in effect will provide linear motion with lesser amount of inertia 

while allowing simplified damping. 

The device will also serve as a starter set for Santa Clara University’s bioengineering 

program where the starter device will provide a mechanical device platform that can 

accommodate further development and spur innovation at both graduate and undergraduate 

levels. The device may also be used by Mechanical Engineering students to test micro- 

motions in projects such as training bomb-diffusing squads, testing the abilities of partially 

paralyzed patients, training motor functions of autistic children, etc. It may be used by 

Electrical and Computer Engineering students to enable haptics in projects that study the 

effect of haptics on improving the lives of bed-ridden patients and the elderly. 

1.4 Literature Review 

Several scholarly and research papers on micro-motions and micro surgeries were 

studied for this project. Their relevant summaries are listed below. 

1.4.1 Visual Measurement of Microsurgical Motion with Application to Robotic 

Augmentation [4] 

In microsurgery, involuntary hand motions limit a surgeon’s degree of operating 

accuracy. Hand tremor is a known to be a significant problem in microsurgical applications, 

since a high degree of accuracy is required for microsurgery procedures. Therefore, methods 

of tremor cancelation are important for surgical tools. The system investigated in this paper is 

a handheld tremor canceling system called the Micron. This article presents an error analysis 

of the stereo vision based sensing application for controlling the Micron instrument. 

Problems of tremors present significant risk in the fields of ophthalmological (applications 

such as retinal vein cannulation) and neurological surgery. Most common erroneous or 

involuntary movement that affects microsurgery is the physiological tremor, where the 

tremor is considered to be any involuntary movement, or approximately rhythmic and 
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roughly sinusoidal motion. Physiological tremor is a type that is inherent even in the 

movement of healthy subjects. In vitreoretinal microsurgery, an evident component of 

physiological tremor is the “neurogenic” component of 8-12 Hz, whose frequency is 

independent of the hand and arm’s mechanical properties. The tool tip oscillation noticed 

during vitreoretinal microsurgery is in the order of 50 microns peak-to-peak (pp) or greater.  

To overcome this problem, the intelligent active hand-held instrument, Micron, 

senses its motion. The Micron also distinguishes between desired and undesired motion by 

using advanced filtering techniques. Further, it actively compensates for undesired motion by 

applying an equal but opposite deflection sensed in its tip. 

1.4.2 Robotic Assisted Microsurgery (RAMS): Application in Plastic Surgery [5] 

The RAMS system allows for high dexterity microsurgical operations through the use 

of robotic arms. The robotic arms allow for improvements in areas such as motion scaling, 

articulation, and ergonomics. The surgeon benefits from the RAMS with improved precision 

and results. RAMS development started in the early 1990s using previously developed 

NASA telerobotics technology. The system consists of a six degree of freedom robot with a 

torso-shoulder-elbow body also to go along with a 3-degree of freedom wrist. RAMS is 

controlled by the surgeon but also acts as an assistant helping in areas such as accuracy, 

stability, and control. The system is also able to eliminate any tremors or slight unwanted 

motions of the surgeon during surgical operations. There are limitations to the RAMS system 

including limited dexterity and hand-eye coordination. There also exits a concern of 

unavailable haptic feedback that is a likely disconnect between the surgeon’s sensory feeling 

and patient. RAMS has broadened its scope and encompasses operations ranging from 

cardiac surgery to plastic surgery. The future of RAMS is to continue to build on 

transcending the human limitations to make microsurgeries easier to perform in the long run. 

1.4.3 Robotic Assisted Versus Pure Microsurgical Vasectomy Reversal: Technique and 

Prospective Database Control Trial [6] 

Microsurgical vasectomy reversal can be a technically demanding procedure, one 

which may be aided through robotic assistance. Robotic assistance can provide the surgeon 

with improved visualization, tremor elimination, and decreased fatigue. During such a 

microsurgical procedure, the patient is placed in a supine position. An incision is made at the 

scrotum and the two ends of the vas are brought out of incision. The distal vas is dissected to 
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allow for a tension-free connection between it and the proximal vas. The proximal vas is 

transected and depending on the sperm count either a RAVV or RAVE (robotic assisted) 

technique can be performed rather than a MVV/MVE. Statistical data supports that a greater 

sperm count per ejaculation rate is shown in patients who undergo RAVV/RAVE as 

compared to MVV/MVE. Reasoning for these results includes the robotic-assisted 

procedures providing a more stable operating platform for the surgeon, thereby increasing the 

rate of recovery and decreasing the duration time of the operation. 

1.4.4. Performance of Robotic Augmentation in Microsurgery Scale Motions [7] 

Development of a “steady hand” robot that can provide guidance and enforce safety 

constraints illustrates the potential promise of microsurgical applications. The platform for 

this robot has a seven degree of freedom manipulator with a force sensor to allow the robot to 

move in compliance with opposing forces during surgery. The robot is also equipped with a 

PC- based controller system that provides the operator an application interface. The steady 

hand robot proved to show greater operational accuracy during testing with higher success 

rates and faster trial times. The robotic system is less prone to errors and provides a greater 

spatial resolution to the operator.  Robotic systems can improve microsurgical procedures 

through extensions of human capabilities, but the skill of the surgeon remains a highly 

important factor in the success of a surgical operation. 

1.4.5 A Robotic System with Force Feedback for Micro-Surgery [8] 

A robotic force feedback system for micro-surgery was developed which was called 

Micro-hand. This system was designed based on a master and slave type technical platform. 

The slave manipulator platform was  designed  by  using  macro and micro  frames,  and  the  

Phantom  that was developed  by  the  Sensable Technology Company  was  used  as  the  

master  manipulating control device.  The interactive forces and torque input and output from 

the slave manipulators and the surgical environment were measured within a 6-dimensional 

arrangement of force and torque sensors. The sensor signals were then fed back to the master 

device. This is to enable a haptic system that provides force feedback to the surgeon during 

surgical procedures. The validity and performance of the system have been proven through 

animal experiments shown within the article that further show that a microsurgery robotic 

system with force feedback can be successfully deployed. 
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1.4.6 A Miniature Microsurgical Instrument Tip Force Sensor for Enhanced Force Feedback 

During Robot-Assisted Manipulation [9] 

This paper shows the development of a miniature force sensor that was designed to 

measure contact forces at the tip of a microsurgical instrument in three dimensions and its 

application for scaled force feedback using a manipulated microsurgical assistant robot. The 

key features of the sensor  are  its  small  size,  an  innovative  arrangement  of  flexure  

beams,  and strain  gauges  to measure forces isotopically at the instrument tip about 40 mm 

from the sensor body for three-axis force-sensing resolution. The design, implementation, 

and testing of a miniature force sensor was further developed to quantify forces in three 

dimensions at the tip of the micro surgical instrument. The article further describes 

microsurgical force measurement experiments that show that usual forces on microsurgical 

instrument tips during retinal surgery are very miniscule and are below the threshold of 

controller tangible sensitivity.  Measurements and comparisons of tremor within hands are 

both detected while holding microsurgical utensils in a fixed position. 

1.4.7 A Study of Instrument Motion in Retinal Microsurgery [10] 

This paper reports on high-precision recordings of hand-held instrument motion 

during actual vitreoretinal microsurgery. During the high-precision recordings of vitreoretinal 

microsurgery, movement of a hand-held instrument was recorded in six degrees of freedom. 

Data were acquired for 5 min by using an inertial sensing module that was specifically 

developed for use with a commercially available microsurgical instrument. The maximum 

velocity used by the surgeon was estimated at 0.70 m/s, and maximum acceleration at 30.1 

m/s2. The RMS amplitude of tremor in the instrument tip motion was estimated to be 0.182 

mm. The topic of manual accuracy in microsurgery has received attention for some time, but 

quantitative assessment of the problem posed by manual accuracy has been lacking. As a 

result, most efforts toward development of systems for the enhancement of microsurgical 

accuracy have proceeded forward without a complete and accurate description of the problem 

that must be solved. Further, the scarcity of data is exacerbated by the fact that studies such 

as that of physiological tremor and other undesired components of hand movement that have 

been conducted so far have been experimented under laboratory conditions. The application 

of the results of or the reliance on such studies hence requires careful consideration of the 

degree of surgical realism simulated in the study, and its effect on the relevance of collected 
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data. “Quantification of instrument motion during actual microsurgery would obviate this 

consideration.”[10] An added capability of directly recording instrument motion during the 

vitreoretinal microsurgical procedure would allow quantification of various types of 

undesired motion (e.g., tremor, jerk) in authentic conditions, as well as determination of the 

“performance envelope” utilized by the surgeon in terms of velocity, acceleration, and 

frequency.[10]  All of these additional and mandatory measurements will prove to be 

valuable in providing baseline data for the development of accuracy-enhancement systems. 

1.4.8 Performance of Robotic Augmentation in Microsurgery-Scale Motions [11] 

This paper is part of the development process of a microsurgical “cooperating” 

assistant. To evaluate its potential for augmenting fine surgical motions, test of precision and 

operator perception in simple microsurgical scale pick and place motions are conducted. 

Such small motions are common in microsurgical procedures of micro-vascular anastomosis. 

The experiments reported in this article test the users’ ability to position a common surgical 

tool to the accuracies of 250, 200 and 150 micrometers. These experiments were performed 

by using two test platforms. The new “steady hand” robot designed for microsurgery and the 

LARS robot (a laparoscopic camera holding robot) were adapted for this purpose. 

 Comparative results for several parameters tested such as time, error rate, success 

rate, and number of attempts are included. Comparison of the performance of the two robots 

for these specific tasks is also included. Summarily, the results support the claim that the new 

“steady hand” robot surely augments basic human performance for microsurgery-scale 

motion. 
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Figure 3.  Prismatic Joint  

Figure 4.  Spherical Joint  

Figure 2. Degrees of Freedom of 

a Rigid Body on a Plane 

 

2. Systems Level Overview 

The microcontroller was developed using simple physics in undergraduate statics, 

dynamics, and mechanics courses. This allowed for accurate calculations and improvement 

of precision by allowing the focus to be the resolution of the microcontroller.  

2.1 Degrees of Freedom 

         Degrees of freedom (DOF) is a numerical system 

used in mechanics to define the number of independent 

parameters to define a rigid body’s configuration. To 

determine the DOF of a rigid body, the number of distinct 

ways it can be moved must be considered [12]. The position 

of a rigid body in can be defined by three components of 

translation and three components of rotation, along and 

about the x-axis, the y-axis, and the z-axis [13]. See figure 2. 

2.2 Mechanical Joints 

 Kinematic pairs can be defined as a movable coupling of two rigid bodies imposing 

restraints on their relative motion by conditions of their linkage. These constraints result in a 

decrease of the degrees of freedom of the system and can be divided into two categories: 

lower pairs and higher pairs. Lower pairs may also be known as surface-contact pairs and are 

a type of joint that constrains contact between a point, line, or plane in a moving body to 

correspond to a point, line, or plane of a rigid body [14].  

2.2.1 Prismatic Joint  

A prismatic joint, as shown in figure 3, keeps two axes of 

two rigid bodies aligned. The two constrained rigid bodies are able 

to have an independent translational motion only along the axis of 

motion. By its very nature, a prismatic joint introduces five 

constraints thereby removing five degrees of freedom [14]. The 

joint, therefore has a DOF of 1. 

2.2.2 Spherical Joint 

A spherical joint, as shown in figure 4, is also 

known as a ball joint which keeps two spherical centers 

together by maintaining a point in the moving body which 
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          Figure 5.  Revolute Joint  

Figure 6. Degrees of Freedom in 

Human Hand 

 

maintains contact with the point in the fixed body. This joint has 3 degrees of freedom [14]. 

2.2.3 Revolute Joint 

A revolute (cylindrical) joint, as shown in figure 5, requires the lines of the moving 

body and the fixed body to be co-linear. The two 

bodies have an independent rotary motion around 

their common axis. The revolute joint imposes five 

constraints of relative movement meaning that the 

joint has one degree of freedom [14]. 

2.3 Degrees of Freedom applied to Human Shoulder & Elbow 

 The human arm overall is considered to have 7 degrees of freedom. Of those 7, the 

shoulder provides 3 and the elbow allows only 1. The first of the shoulder degrees of 

freedom is the allowance of pitch where the shoulder is able to move up and down. The 

shoulder also is able to move from side to side, a movement called yaw. The third degree is 

the shoulder roll where the shoulder is able to rotate similar to the motion of screwing a light 

bulb. The only degree of freedom of the elbow is the pitch movement where the elbow can 

move up and down through a bending motion.  

2.4 Degrees of Freedom applied to Human Wrist 

 Of the 7 DOFs in a human arm, the remaining 3 degrees of freedom are present in the 

human wrist. These 3 DOFs are independent of movements within the shoulder or elbow. 

The first DOF in the human wrist is the pitch movement where the wrist is able to move up 

and down. The second DOF is the yaw movement 

shown through the flex motion of the wrist moving 

from side to side. The third DOF in the human wrist is 

the roll movement where it is able to rotate like a 

knob [1].  

2.5 Degrees of Freedom applied to Human Hand 

The motion of the human hand is articulate 

and complex with a varying number of configurations 

and gestures of the hand and fingers. In total there are 

roughly around 30 degrees of freedom in the human hand. Only three of the overall seven 

degrees of freedom of the human arm are required to move the human hand at any point in 
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space. Hand motion captures hand postures as well as finger motions, both of which are 

highly constrained, which in turn affects the size and dimensions of the space of its range of 

motion [12].  

 In the skeletal model of the human hand, seen in figure 6, each of the four fingers 

have 4 marked DOFs, where the DIP, PIP, and IP joints each account for one degree of 

freedom. The MCP joint and TM joint (located at the thumb) each has two degrees of 

freedom. A combination of these joints is able to provide precise micro-motion in pinched 

fingers [13].  

2.6 Bionic Arms in Robots 

 Developing a functional bionic arm that shares the same number of degrees of 

freedom as a regular arm can be challenging. Teams from institutions such as Stanford have 

prototyped designs that work to achieve reasonable performance and functionality of a 

human arm [15]. In addition to focusing on the degrees of freedom of the robotic arm, 

actuation scheme of motors and circuits are needed to operate the arm to exhibit the expected 

range of motion.  

 For the robotic arm designed at Stanford [15], the actuator scheme consists of a 

stepper motor, timing belt, cable circuit, series compliance, and output link. The arm is 

powered by the stepper motor. Coupled reduction motion mechanisms are controlled through 

belts and circuits. Use of belts and circuits results in low friction, low stiction, and zero 

backlash enabling the bionic arm to move in increments smaller than 0.5 mm.  

2.7 Degree of Freedom and Haptics 

2.7.1 Introduction to Haptics 

Haptic, is the term derived from the Greek word, haptesthai, which means sense of 

touch. Due to its origin, haptic is defined as science which recreates the sense of touch using 

technology. This technology allows users to sense and manipulate three dimensional virtual 

objects with respect to features such as shape, weight, surface textures, and temperature. In 

order to use haptic devices, users feed information to the computer through their movements, 

and receive information back from the computer in the form of a sensation. This exchange in 

information is referred to as a haptic interface. 

2.7.2 Haptic Devices 
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People receive and spread information throughout a 3-dimensional space.  In a virtual 

world, users can access information by imitating any 3-dimensional space.  To add realism by 

incorporating the sense of touch, a device was created that allows users to interact with a 

computer by receiving tactile feedback [8].  

Force feedback is the area of haptics that deals with devices that interact with the 

muscles and tendons that give the humans the sensation of a force being applied; it features 

hardware and software that stimulates humans' sense of touch and feel through tactile 

vibrations or force feedback. These devices consist of robotic manipulators that push back 

against a user with the forces that correspond to a virtual environment. Tactile feedback 

makes use of devices that interact with the nerve endings in the skin to indicate properties 

such as heat, pressure, and texture [16]. These indicate whether or not the user is in contact 

with the virtual object. Other tactile feedback devices have been used to stimulate the texture 

and orientation of a virtual object. Creating a force feedback device requires a great deal of 

math and engineering, as well as computer graphics and computer language skills.   

2.7.3 Uses of Haptic Technologies  

Haptics is used in many fields, medical and non-medical depending upon the number 

of degrees of freedom presented by the application. A few common uses seen are: 

• Medical Simulators: A virtual environment system that has been developed is 

being used in further developing the virtual reality based needle procedures and 

surgical simulators that enable medical trainees to see, touch, and manipulate realistic 

models of organs and biological tissues. Research is centered about the development 

of both instrumented hardware and software algorithms for real-time displays.  

• Collaborative Haptics: The use of haptics to improve human-computer interactions 

as well as human-human interactions mediated by computers is under exploration. A 

multimodal-shared virtual environment system has been developed. Experiments with 

it have been performed on human subjects to study the role of haptic feedback in 

collaborative tasks and determine if haptic communication through force feedback 

can potentially facilitate a sense of collaboration with a remote partner [3]. 

• Surgical Applications: Haptics are used for manipulating micro and macro robots 

for minimally invasive surgeries. An example of this is the da Vinci Robot made by 

Intuitive Surgical [3]. This system comprises of input via a digital interface and an 
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output device called a manipulator. A console houses the input handles, a display 

system, the digital interface, and the electronic controller. The tool handles serve as 

manipulators that are high-resolution input devices that read instructions regarding 

spatial position, orientation, and grip commands from the surgeon, and as haptic 

input. The image of the surgical site is transmitted to the surgeon through this high-

resolution display. The system projects images of the surgical site atop the surgeon’s 

hands through mirrored optics while the controller transforms the motion of the tools 

into the camera frame of reference. In this arrangement, the system restores hand-eye 

coordination and provides a natural correspondence in the motions. The user interface 

allows the surgeon to control the camera positioning while keeping the enslaved 

instrument tips in the operator’s view. This is necessary to reposition the instruments 

in their work space and to focus the camera. The orientation and alignment is always 

known for the application, and positional alignment can be adjusted to permit 

repositioning of the handles without the instrument tips.  

2.7.4 Examples of Haptic Devices  

 Phantom by Sensable Technologies: The Phantom haptic interface is a small 

desktop device that appears similar to a desk lamp. Instead of a bulb on the end of the 

arm, this device has a stylus type-grip or a finger cradling thimble for the user's 

fingertip. When connected to a computer and mapped with application software, the 

device works akin to a tactile mouse, except that in recognizes input and output in 

three dimensions. Three motors, which are sized for the application, provide force 

feedback to the user by exerting feedback pressure on the grip or the thimble. A small 

robot arm with three revolute joints each is also connected to a computer-controlled 

electrical motor. The user controls a stylus that is attached to the end of the device. 

Because of the motor size and torque capacity deployed and by sending appropriate 

current draw commands to the motors, this device can exert up to 1.5 pounds of force 

at the tip of the stylus in any of the 3 dimensions (directions) [16].   

 Omega 3 by Force Dimension: Force Dimension makes a precision haptic device 

called Omega 3. Finely designed around a unique parallel kinematic structure, Omega 

3 has been optimized for high-end force feedback. The Omega 3 is specifically 

designed for demanding applications where performance and reliability are critical. 
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Its great mechanical stiffness combined with its embedded controller enables the 

rendering of high contact forces [17].   

 CyberGrasp by Immersion Corporation: The Cyber Glove is a lightweight glove 

with flexible sensors that accurately measures the position and movement of the 

user’s wrist and fingers. The CyberGrasp is an exoskeleton-type device that fits over 

a Glove, providing force feedback. The CyberGrasp is used jointly with a position 

tracker to measure the virtual orientation of the forearm in three-dimensional space 

[18].   
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Figure 7.  The Design Process Flowchart 

3.  Micro-motion Controller 

3.1 Mechanical Design Process 

The mechanical design process consisted primarily of Computer Aided Modeling 

(CAD) and prototyping. However, it may be broken into other components. The 

flowchart in figure 7 shows the steps of the design process and its related interactions. 
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Figure 8.  End Effector 

Figure 9.  Wire Rope Drive Mechanism 

3.2 Design Details 

The first axis of the micro-motion controller will consist of a link that can host a 

pinch-like simulated mechanism (similar to a 

clothes-line clip) that allows fingers to grasp onto 

a virtual object. See figure 8. It is also configured 

to accept other kind of end effectors. Once the 

user pinches their fingers and the pinch is 

completed, the pinch mechanism itself can move 

in small amounts (micro-motion) in the X, Y 

directions where the combined motion is provided 

by two rotary joints.  

 The second axis also comprises of a link. Both the links incorporate a driving drum at 

the end of the link. The drums are driven by a threaded capstan (which almost looks like a 

screw thread). The drive mechanism is mainly that of capstan and a pulley (drum) which are 

connected via a wire rope. See figure 9. The wire rope is made of tungsten filaments which 

are of very small diameter. The wire rope is anchored into the drum and wrapped around the 

capstan for a few turns. As 

the capstan turns, the wire 

rope unravels and wraps thus 

driving the drum. This wire 

drive allows the device to 

achieve a high driving torque 

ratio. See Appendix E for 

ratio calculations. 

 These micro-motions 

in the X and Y directions, 

made by pinched human 

fingers, are then read by encoders and the motion input is translated by the encoder as motion 

output to either another micro-controller or a graphical program which pictorially 

characterizes the input. The micro-motion device also has an elastomer damper on both the 
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axes to dampen vibrations in the most precise human motion and has motors on each axis 

(for future use) that can also provide haptic feedback to the pinched fingers.  

 The micro controller device can similarly replicate micro-motions if used in 

conjunction with another similar 3-D micro-controller. The latter part is a development 

project for future student teams. 

3.3 Primary Mechanical Components 

This section lists and describes the primary mechanical components. General and basic 

common place hardware like screws and threaded nuts are omitted. 

3.3.1 Capstan 

A capstan is a vertical-axled rotating member that was initially developed for use on 

sailing vessels for the application of forces to ropes and cables for the purpose of deploying 

sails. It can be simply referred to as a rotating cylinder or a pole that may be plain on its 

periphery or have mechanical screw threads on its diameter. See figure 9. 

3.3.2 Wire Rope 

Wire rope is a type of mechanical cable which consists of several strands of metal 

wire laid (or 'twisted') into a helix. The term cable is often used interchangeably with wire 

rope. However, in general, wire rope refers to diameters larger than 3/8ths of an inch. Wire 

ropes of sizes smaller than 3/8ths of an inch are designated as mechanical cable or cords [19]. 

Initially wrought iron wires were used, but today steel is the main material used for wire 

ropes. Exotic materials such as tungsten are used in wire rope for medical applications. 

 An eye splice or other turnbuckles may be used to terminate the loose end of a wire 

rope. The strands of the end of a wire rope are unwound a certain distance, and plaited back 

into the wire rope, forming the loop, or an eye, called an eye splice, or crimped.  

3.3.3 Mechanical Links 

A mechanical linkage is an assembly of mechanical members connected to manage 

the direction of forces and movement. The geometry of a given link is considered to be rigid. 

The connections between rigid links are modeled to be providing ideal movement, such as 

pure rotation or pure sliding for example, and are they are called joints. A linkage modeled as 

a network of two or more rigid links and one or more ideal joints is called a kinematic chain. 

 Linkages may be constructed from closed chains, or open chains, or be a combination 

of both open and closed chains. Each link in a kinematic chain is connected to one or more 
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other rigid links by a joint. The motion of an ideal joint is typically associated with a 

subgroup of the group of Euclidean displacements. The number of motion parameters in the 

subgroup is termed as the degrees of freedom (DOF) of the joint. Mechanical linkages are 

designed such that they transform a given input force and movement into a corresponding 

desired output force and movement. The ratio of the output force to the input force is known 

as the mechanical advantage of the linkage. The ratio of the input speed to the output speed is 

known as the speed ratio. Mechanical advantage and the speed ratio are defined such that 

they yield the same number in an ideal linkage [20]. 

 A kinematic chain in which one link is fixed or stationary is called a mechanism, and 

a linkage that is designed to be stationary is called a structure. The links used in this device 

are links in motion. These links are 3 D printed from a material called ABS. It is easier to 

print links in 3 D when making a few since it is the most economical and expeditious way. 

Since the device moves in X and Y, it uses two main links, one for each axis.  

3.3.4 Bearings 

A bearing is a machine element that reduces friction and constrains relative motion 

between moving parts to achieve only the desired motion. For example, a bearing may be 

designed to provide free linear motion of the moving part or for free rotation around a fixed 

axis; or, it may even prevent a motion by controlling the vectors of normal forces that bear on 

the moving parts. Many bearings facilitate the desired motion as much as possible, such as by 

minimizing friction. Bearings are broadly classified according to their type of operation, the 

motions allowed, or to the directions of the loads (forces) applied to their parts [21]. 

 The bearing used for this device is a flanged bearing. The device has minimal loading 

in axial and thrust direction. Ball bearings have flanges as options to their configurations. 

The flange is designed to aid in mounting and positioning.  This is especially true for 

miniature and instrument bearings but applies to other ball bearing types [22]. 

 There are several specifications to consider when selecting a flange-mounted bearing. 

 Maximum speed: It is the highest speed that the bearing can safely function at before 

failure. It is influenced by load characteristics, bearing lubrication, and temperature.  

 Bearing life: It is known as the rated life L10, a statistical measure of the life of 90% 

of a group of identical ball bearings, which will be achieved or exceeded. 
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Figure 10. Shafts Used in the Micro-Motion Device 

 Bearing loads: They are either a combination of radial loads and thrust forces or they 

act alone. If the bearing is required to absorb thrust forces (along the axis of the 

bearing) in addition to radial loads, the following considerations much be made 

concerning the magnitude of the thrust force. When the applied thrust loads are half 

that of the radial load, the selection should be made based upon the applied radial 

load. When thrust loads are equal to or greater than half of the applied radial load, 

then the selection should be based upon the total applied load (radial and thrust loads 

combined) as the net equivalent applied radial load. 

3.3.5 Shafts 

A mechanical shaft is a bar in a machine which holds or turns other parts that move or 

spin. In this device, two shafts are used for different reasons. A drive shaft is used to allow 

pivoting of the drive pulleys (drums). Another shaft is used to support the motor mounting 

plate in position. See figure 10. Shafts can be made from many materials depending on the 

strength needed. This device uses shafts made of 303 stainless steel, that does not rust. 
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3.4 Team and Project Management  

 The team consists of three undergraduate bioengineers. The division of labor was 

equally portioned based on the individual team member’s confidence in the specific task. 

Karan Kapoor was responsible for modeling, drawing, and printing the parts, Cameron Chu 

was responsible for research on electronic devices, procuring purchased parts, and some 

programming, and Sandeep Adem was responsible for research on the necessity for micro-

motion controllers in surgical procedures.  

3.4.1 Project Challenges and Constraints  

 The team came across many challenges and constraints which included budgeting, 

temporal planning, part design and assembly, appropriation of expertise, reevaluation of 

functionality, and finally team management.  

3.4.2 Budget   

 In designing the micro-motion controller the primary constraint was funding. Our 

budget was limited to $1500 granted by the SCU Senior Design Grant fund application.  In 

order to remain within the apportioned budget it was imperative to obtain donated parts from 

Intuitive Surgical.  

 Prior to physically machining or assembling a micro-motion controller prototype, the 

team devoted attention to ensuring a Computer Aided Design model is fully functional and 

stable. Upon completion of this step, the team was able to proceed in determining the most 

cost effective method of producing custom-designed parts. Intuitive Surgical allowed usage 

of the 3-D printer which prints using ABS plastic material. Additionally, by submitting 

drawings to the machine shop at Intuitive Surgical, parts such as baseplates and stands were 

machined at no-cost from aluminum. Through donations as described thousands of dollars 

were eliminated from the project expenditure in developing a functional prototype and the 

final cost was $704.13 (See Appendix D2). 

3.4.3 Timeline    

While the team was able to solve complications that arose in financial planning of the 

project, another main complication arose in temporal planning. As the parts were being 

donated by Intuitive Surgical’s 3-D printers and it took time as well as scheduling for parts to 

be returned in their completed state. In situations where parts would break, it was necessary 
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Figure 11. Baseplate Assembly from Initial Parts 

to immediately request additional printed parts. Furthermore, the original request for one 

copy per printed part was adjusted to three copies.  

3.4.4 Design Process     

As described above, timing the 

production of parts was a complex 

issue and for this reason the 

development of parts was designated 

according to assembly order. The 

primary parts including the stand, 

baseplate, and motor plate were 

requested first, see figure 11. This 

allowed for time to test the electronic equipment which would later be used 

once the prototype was fully assembled. Electronic testing and part design 

were delegated to respective teammates and allowed the processes to run in 

parallel (See Appendix B). Upon completing the base structure of the design 

time permitted for the development of individual pieces for the user 

functionality of the device. This included the development of drums, arms, 

and capstans.  

Initial capstans were developed from threaded screws, see figure 12. 

The general principle of capstans does not involve helical threads however 

due to cost limitations and machining times, threaded screws 

seemed most appropriate. The threaded screws were not 

functional as the tungsten wires that were wrapped around the 

capstans entangled and cut along the intersecting threads. A quick 

modification was made, and the threaded capstans were replaced 

with smooth surface cylindrical rod (also machined).  

 Upon placing capstans upon motors and solving the issue 

of intertwining threads, another issue was encountered when 

decreasing the length of tungsten wire, the wire unraveled. This 

presented a major issue because the anchors of the tungsten wire were dependent on the ends 

Figure 13. Loctite 4011 

Placed on Tungsten Wire 

Figure 12. 

Threaded 

Capstan 
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of the wire remaining intact. The solution was simple – an adhesive was able to bind the 

individual wire threads together.  See figure 13. 

 Further complications were not encountered in the assembly of the device. 

3.4.5 Risks and Mitigations 

 Ironically, further developments and additions to the device were the biggest risks 

posed to the device. Initially, the device was planned to be 3-axis based however it was later 

changed to 2-axis based to permit the elimination of dampers. Since there were only two 

degrees of freedom, dampers to eliminate tremor from user’s hands were not necessary as it 

was discovered tremor was generally in the z-plane and the functional axes of motion were in 

the x and y- planes. The reason why the dampers posed a risk to the device was due to the 

fact dampers would not permit the possibility of haptic feedback. Since dampers would 

eliminate some of the force transferred, it would be too complex to incorporate an accurate 

measurement of feedback to the device.  

3.4.6 Team Management  

 As described in the initial introduction of this section, the delegation of tasks was 

appropriated to the team member with expertise and schedule availability. Many times team 

members conducted tasks in parallel and if complications arose in one task, the other task 

would have to be temporarily suspended to avoid further complications in device assembly. 

The majority of these issues arose from part failure when assembling the device as the 

specific mechanical tools were not always available since only one copy of each tool was 

provided while multiple members may have required them to complete the assigned task. For 

this reason the team was able to assign a schedule to avoid parallel task completion on tasks 

which required the same materials. In the final stages, work was completely divided into 

unrelated sections, mechanical assembly, computer modeling, and electronic assembly to 

completely avoid conflict.  
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4.  Electronics  

The main concern with electronic components included was the final resolution of the 

microcontroller. Based on extensive research four electronic components were included, two 

motors, a motor controller, and an encoder.  

Motor: Several micro motor options were considered. The considerations were based off 

resolution, voltage, and cost. Future uses include haptics capabilities. Based on budget and 

precision, “FAULHABER® Coreless Technology series 1724_SR, 17 mm dia. brush DC 

micro motor” was used. The micro motor is capable of 12V winding voltage and possesses a 

3.0 mm shaft. The motor controller output would be fixed at 5V which allowed a large 

tolerance for future adjustments in output voltage.  

Encoder: As further development of the micro-motion controller is expected to expand to 

three axes, it is important that encoders used are capable of multiple motors. Produced by 

Phidgets, “1047_1 - PhidgetEncoder HighSpeed 4-Input” was selected as the encoder for the 

micr- motion. It allows 4 inputs which will permit further expansion to three axes. One input 

for each axis. An additional input may be utilized in grasping mechanisms of the controller. 

Motor Controller: The motor controller used will be defined by future teams who further 

develop the microcontroller as the purpose of the Motor Controller is to add haptics to the 

controller. With capabilities of an output from 6V to 18V “Phidgets Motor Control HC USB 

Dual 14A 6V-15V Motor Controller” was selected. 
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5.  Experimentation 

5.1 Mechanical Experimental Protocol 

In order to meet requirements listed in Appendix A, mechanical testing of the 

microcontroller device focused on the important functionality of the device, which is 

resolution and tracking (encoder functionality). Since haptics are not required, the motors 

were simply verified to be working. Using a digital angle caliper the calculated total range of 

motion for each arm of the micro controller was fixed at 60°. However, encoders attached to 

both motors and the encoder values at each endpoint were assessed. Without the mechanical 

stops it is possible to obtain approximately 107.2 degrees of motion per axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Encoder Output on Phidgets Control Panel (Value depicted 

shows location of motor and is termed as “Encoder Position”) 
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a 

α 
R 

Figure 15. Length of Cord 

in an Arc Segment 

5.1.1 Experiment Protocol  

A sharp pin was fixed to the pinch portion of the device and it was moved over a 

metal scale that had graduations in centimeters. It was assumed that over the duration of the 

tests the room temperature and expansion effects of various materials will be ignored. The 

encoder counts from the fixed motions in X and Y axis were then correlated to encoder 

counts. The recorded encoder counts were converted to X &Y values. 

5.1.1 Experiment Calculations  

 The design calculation table is shown in Appendix E. For these calculations a total 

encoder count change of 6432 units over 60 degrees was observed. Since the drive ratio is 

10:1, the post quadrature encoder resolution (1024/rev x 4) is 682.66 for every 60 degrees, 

and the manufacturing error in expected 10:1 drive ratio =  5.83% 

5.2 Results  

 Each arm of the microcontroller measures 3” in length (theoretical distance). Every 

degree of encoder motion will equal a cord distance a = 2 R sin (1/2 α) Here “R” = 3” which 

is the arm of the X and Y axes of the microcontroller “a” is the cord. While there is a 

manufacturing offset in the capstan to drum drive ratio, this ratio will not affect 

measurements. The drive drums and the capstan have anchored drive cables or the cables are 

wrapped multiple times to eliminate slippage. There is not much force being transmitted by 

the user to move the device, thus eliminating slippage as a cause of concern. Figures 16 and 

17 show the difference in expected v/s actual recorded “linear” motion and the small error 

over 3 cms of test travel. 
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5.3 Interpretation of Results  

Motion at the pinch point is converted to motion at the encoder and since the error is not 

linear, one can deduce that there exists a minor oval shape deformation in the drum structures 

and out of roundness in the drive capstans. The motion error or lack of linear motion 

accuracy is affected by low stiffness of the 3D printed parts and by the out-of-round 

condition in them which is created by cable tension. The device performs reasonably well 

and its performance can be improved by making the parts out of a stiffer material. All the 

measurements were taken in a relatively short period of time, so any errors due to dissimilar 

coefficient of expansion rates in the capstan and the drive drum are ruled out. The encoders 

move at slow speed, so speed of motion is not contributing to the observed error. 

 

 

Figure 16. Recorded Motion vs Theoretical Motion in cms 

Figure 17. Motion Error in cms 
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6.  Conclusion 

6.1 Summary  

Micro-motions are small motions and are generally recognized in the range of a few 

millimeters in surgical applications. Regular handheld surgical equipment requires surgeons 

to have high stability and low margin of error in microsurgery. However, tremors caused by 

involuntary hand motion induce stress for surgeons during these operations as manual 

accuracy, may not be precise enough for micro-surgical applications. This is why robotic 

assisted surgery may be a better alternative as surgeons indirectly use robotic arms remotely 

with the use of controllers. This greatly enhances the experience for surgeons during 

microsurgery as it eliminates tremor, improves operational accuracy, leads to faster surgical 

times, and alleviates stress. Our design project is a micro-motion controller that is a 3-axis 

capable, expandable device with 2 motor-actuators, 2 encoders, and mechanical linkages. 

With this device, linear 2-D micro-motion of pinched human fingers in a damped and un-

damped state can be studied and analyzed.  

6.2 Future Uses 

Development of the micro-motion controller opens up the possibilities for future uses 

and capabilities. The device can be used as a platform for expansion and research in the 

fields of surgical robotic applications. Research for the micro -motion controller can provide 

a greater depth and understanding of micro-motion for surgery and in comparing damped 

motion. Further understanding of motion in robotic applications can help improve speed of 

surgery and reduce the chance of surgical error.  

The device also serves as a platform for further research into devices utilizing haptic 

technology and providing the surgeon a sense of feel and touch when operating the micro- 

motion controller. The micro-motion controller also provides a platform for research and 

development of other future bio-devices including neurological disorder tracking systems and 

gaming platforms for the disabled. The micro-motion controller can also provide a benefit to 

Santa Clara University by being used as an expandable research platform that can be used 

and further built upon by future undergraduate and graduates students. 

6.3 Lessons Learned 

What we learned in the development and building of the micro- motion controller was 

the benefits provided by robotic assistance in surgical settings. One of the most significant 
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problems in microsurgical applications is involuntary hand tremor of the surgeon limiting the 

accuracy and stability of the operation. The micro-motion controller benefits the issue by 

eliminating tremor and involuntary motion and providing greater accuracy and precision to 

surgical applications. Added damping provides greater stability to unsteady hands and aids in 

reducing occupational strain on surgeons. Also learned during this process is the mechanical 

design process. The steps of computer aided modeling, prototyping, part procurement, and 

device assembly are important stages in the design process. All these lessons are great 

building steps that students can use in future applications and endeavors. 
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7.  Professional Issues and Constraints 

Professional issues and constraints can arise in any engineering project, and the micro-

motion controller is not any different. However, the main issues in ethics, science, 

technology, health& safety, manufacturability, usability, and environmental impact are 

primarily found in the production stages of this kind of product rather than end use.  

7.1 Ethical Complications 

 The procedures conducted by micro-motion controllers are intended to be medical 

procedures and involve complications when appropriately testing the device. The primary 

concern is specimen testing to ensure the new device works and fulfills the desired purpose. 

The micro-motion controller is intended for use in micro-motion procedures where precision 

and accuracy are paramount and this requires a multitude of tests on specimens including live 

animals and cadavers. When considering these tests, it is most important to understand that 

the utilization and possible functionality of the device is explored to a maximum so the tests 

are conducted without wasting live specimens rather than testing incrementally over time. 

Proper planning allows the amount of live animals and cadaver usage to be minimal.  

7.2 Science 

 Science and technology based complications are limited in the micro-motion 

controller, however it has a positive impact as this device may be utilized for research stages 

into neurological disorder tracking, gaming platforms for disabled, and haptic-based 

evaluation of arthritic hands. 

7.3 Manufacturability and Environmental Impact 

 The micro-motion controller developed remains in prototype stages as it has not been 

manufactured from industry-grade materials such as aluminum and stainless steel. 

There are other functional materials which extend durability and provide aesthetics, and their 

use on the environment can only be considered during productization. Medical waste 

accounts for a large portion of landfills and biohazards and extending the usage time of the 

micro-motion controller allows for a lessened environmental impact. Since the controller will 

be used for every procedure involving micro-motions, a device with an extended life time 

lasting the years of the console it is utilized on should be prioritized. Further considerations 

must be provided for quick disassembly to allow recovery of printed circuit boards and 

recycling of materials used. 
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7.4 Usability 

 Prior to marketing the micro-motion controller for use in clinical procedures, the 

device must be fully functional and have a versatile user base which allows multiple 

individuals to use the product. The micro-motion controller has been developed with an 

adjustable gauge to increase the range of motion. This ensures that the product can be utilized 

by individuals with varying hand and finger sizes.  
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Appendix A: Project Specifications 

 Device Type: Expandable Two Degrees of Freedom Micro-Controller 

Device Expandability: Mechanical design provision only. The Computer Aided 

Design must consider the possibility of allowing the adding of a third motion axis in 

the CAD design.  

 Device Input: Motion by human hand 

 Input Range: Minimum 1 cm in X and Y axis 

Device Output: Encoder Values. The device must use DC motors with encoders to 

allow future possibility of haptics output. 

 Motion Elements: DC Motors 

 Motion Control: DC Motor Controller 

 Position Recording: High Resolution Digital Encoders (no potentiometers) 

 Position Backlash: Near zero (use of gears is not recommended) 

 Budget: Under $ 1500 
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Appendix B: Engineering Drawings 

Appendix B1: CAPSTAN, LONG SCU001 
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Appendix B2: CAPSTAN, SHORT SCU002 

 

 

 

 

 

 

 

 



 33 
 

Appendix B3: PIVOT SHAFT SCU003 
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Appendix B4: SHAFT SCU004 
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Appendix B5: MOTOR PLATE SCU005 
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Appendix B6: BASE PLATE SCU006 
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Appendix B7: POST SCU007 
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Appendix B8: PULLEY DRUM 1 SCU008 
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Appendix B9: PULLEY DRUM 2 SCU009 
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Appendix B10: LINK 1 SCU0010 
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Appendix B11: PINCH CLIP SCU0011 
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Appendix B12: CABLE TENSIONER SCU0012 

 

 

 

 

 

 

 



 43 
 

Appendix B13: CABLE ASSEMBLY SCU0013 
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Appendix C: Project Timeline 
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Appendix D: Bill of Materials 

Appendix D1: Parts Material List 

ITEM 

# Name of Part Material 

Quantit

y Manufacturer Manufacturer Part # 

1 CAPSTAN, LONG 

ALUMINUM 

6061-T6 1 SCU TEAM SCU001 

2 CAPSTAN, SHORT 

ALUMINUM 

6061-T6 1 SCU TEAM SCU002 

3 PIVOT SHAFT 

300 SERIES 

STN STEEL 3 SCU TEAM SCU003 

4 SHAFT 

300 SERIES 

STN STEEL 2 SCU TEAM SCU004 

5 MOTOR PLATE ALUMINUM 1 SCU TEAM SCU005 

6 BASE PLATE ABS  1 SCU TEAM SCU006 

7 POST ABS  3 SCU TEAM SCU007 

8 

6-32 LONG 

ULTRASERT BRASS 14 MCMASTER  93365A132 

9 

PHILLIPS PAN HEAD 

SCREW 6-32 x 3/8  

STAINLESS 

STEEL 11 MCMASTER  91735A146 

10 MOTOR Proprietary  2 MICROMO 1724T012SRIE2-1024 

11 

PHILLIPS PAN HEAD 

SCREW M1.6 x 3mm  

STAINLESS 

STEEL 12 MCMASTER  92000A001 

12 680 LOCTITE Proprietary 0.02 OZ MCMASTER  91458A121 

13 3/16" SHIM SPACER 

STAINLESS 

STEEL 20 MCMASTER  90917A510 

14 Retaining Ring (E-Style) 

STAINLESS 

STEEL 2 MCMASTER  97431A280 

15 PULLEY DRUM 1 ABS  1 SCU TEAM SCU008 

16 PULLEY DRUM 2 ABS  1 SCU TEAM SCU009 

17 

4-40 LONG 

ULTRASERT BRASS 4 MCMASTER  93365A122 

18 

FLANGED BALL 

BEARING 3/16"X 5/16" 

STAINLESS 

STEEL 6 SDP A 7Y55 F3118      

19 LINK 1 ABS  1 SCU TEAM SCU0010 

20 PINCH CLIP ABS  1 SCU TEAM SCU0011 

21 CABLE TENSIONER ALUMINUM 1 MCMASTER  SCU0012 

22 MOTOR CONTROLLER Proprietary 1 PHIDGETS RB-PHI-54 

23 ENCODER INPUT Proprietary 1 PHIDGETS RB-PHI-94 

24 POWER SUPPLY 18V Proprietary 2 AMAZON VFB-85-SP-SP20-01-H01 

25 POWER SUPPLY 5V Proprietary 2 AMAZON “0835561000325”  

26 CABLE ASSEMBLY VARIOUS 2 SCU TEAM SCU0013 

27 DRIVE CABLES TUNGSTEN 10 FEET INTUITIVE SCRAP ITEMS 

28 

PHILLIPS PAN HEAD 

SCREW 4-40 x 1/4 

STAINLESS 

STEEL 4 MCMASTER  91735A102 
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Appendix D2: Parts List - Costing 

ITEM 

# Name of Part 

Manufacturer 

Part # TYPE METHOD COST 

1 CAPSTAN, LONG SCU001 CUSTOM MACHINED Donated 

2 CAPSTAN, SHORT SCU002 CUSTOM MACHINED Donated 

3 PIVOT SHAFT SCU003 CUSTOM MACHINED Donated 

4 SHAFT SCU004 CUSTOM MACHINED Donated 

5 MOTOR PLATE SCU005 CUSTOM MACHINED Donated 

6 BASE PLATE SCU006 CUSTOM 3D PRINT Donated 

7 POST SCU007 CUSTOM 3D PRINT Donated 

8 

6-32 LONG 

ULTRASERT 93365A132 HARDWARE PURCHASED $0.05/ea 

9 

PHILLIPS PAN HEAD 

SCREW 6-32 x 3/8  91735A146 HARDWARE PURCHASED $0.15/ea 

10 MOTOR 

1724T012SRIE2-

1024 ELECTRONIC PURCHASED $182.36/ea 

11 

PHILLIPS PAN HEAD 

SCREW M1.6 x 3mm  92000A001 HARDWARE PURCHASED $0.15/ea 

12 680 LOCTITE 91458A121 HARDWARE PURCHASED $16.00 

13 3/16" SHIM SPACER 90917A510 HARDWARE PURCHASED $0.50/ea 

14 Retaining Ring (E-Style) 97431A280 HARDWARE PURCHASED $.02/ea 

15 PULLEY DRUM 1 SCU008 CUSTOM 3D PRINT Donated 

16 PULLEY DRUM 2 SCU009 CUSTOM 3D PRINT Donated 

17 

4-40 LONG 

ULTRASERT 93365A122 HARDWARE PURCHASED $0.15/ea 

18 

FLANGED BALL 

BEARING 3/16"X 5/16" A 7Y55 F3118      HARDWARE PURCHASED $9.39/ea 

19 LINK 1 SCU0010 CUSTOM 3D PRINT Donated 

20 PINCH CLIP SCU0011 CUSTOM 3D PRINT Donated 

21 CABLE TENSIONER SCU0012 HARDWARE MACHINED Donated 

22 MOTOR CONTROLLER RB-PHI-54 ELECTRONICS PURCHASED $120/ea 

23 ENCODER INPUT RB-PHI-94 ELECTRONICS PURCHASED $106/ea 

24 POWER SUPPLY 18V 

VFB-85-SP-

SP20-01-H01 ELECTRONICS PURCHASED $13.95/ea 

25 POWER SUPPLY 5V “0835561000325”  ELECTRONICS PURCHASED $6.79/ea 

26 CABLE ASSEMBLY SCU0013 ELECTRONICS ASSEMBLED Donated 

27 DRIVE CABLES SCRAP ITEMS N/A N/A Donated 

28 

PHILLIPS PAN HEAD 

SCREW 4-40 x 1/4 91735A102 HARDWARE PURCHASED $0.20/ea 

Total 
    

$704.13  
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Appendix E: Design Calculations  

Design Calculations Data/Misc Values Units Remarks 

          

Capstan drive diameter (X and Y axis)     "A"   .150 inches   

Driven drum diameter  (X and Y axis)      "B"   1.5 inches   

          

Drive Reduction Ratio         X axis B/A 10   Reduction 

Drive Reduction Ratio         Y axis B/A 10   Reduction 

Rated Motor Torque   4.5 mNm   

Possible torque at pinch tip   45 mNm   

          

Encoder resolution per revolution 1024   counts   

Encoder resolution post quadrature 4098   counts   

Encoder counts over 60 deg of pinch rotation 683   counts   

Counts with 10:1 theoretical drive ratio 6830   counts   

Actual encoder counts over 60 deg 6432   counts   

Actual counts/expected counts ratio 0.94       

% offset/deviation in drive ratio 5.83   %   

every degree in radians (conversion factor) 0.017453293   radians   

Pich tip movement every degree of drum =  0.0524   inches 3" arm 

Pich tip movement every degree of encoder =  0.5236   inches 10:1 ratio 

Pich tip movement every degree of encoder =  1.3300   cms 10:1 ratio 
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Appendix F: Results Table  
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