Santa Clara University
Scholar Commons

Interdisciplinary Design Senior Theses Engineering Senior Theses

6-13-2016

CuriPilot

Gregory Cusack

Santa Clara University

Karan Daryanani
Santa Clara University

Nathaniel Tucker

Santa Clara University

Follow this and additional works at: https://scholarcommons.scu.edu/idp_senior

b Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

Recommended Citation

Cusack, Gregory; Daryanani, Karan; and Tucker, Nathaniel, "CuriPilot" (2016). Interdisciplinary Design Senior Theses. 16.
https://scholarcommons.scu.edu/idp_senior/16

This Thesis is brought to you for free and open access by the Engineering Senior Theses at Scholar Commons. It has been accepted for inclusion in

Interdisciplinary Design Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact rscroggin@scu.edu.

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/idp_senior?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_senior_theses?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/idp_senior?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/idp_senior/16?utm_source=scholarcommons.scu.edu%2Fidp_senior%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

CuriPilot

by

Gregory Cusack
Karan Daryanani
Nathaniel Tucker

Submitted in partial fulfillment of the requirements
for the degree of
Bachelor of Science in Computer Science and Engineering
Bachelor of Science in Electrical Engineering
School of Engineering
Santa Clara University

Santa Clara, California
June 8, 2016

CuriPilot

Gregory Cusack
Karan Daryanani
Nathaniel Tucker

Santa Clara University
June 8, 2016

ABSTRACT

The drone industry has rapidly grown over the last three years and many large companies have determined
that the phenomenon is worth investing in. Recently, Intel has shown interest in this growing industry. Intel
developed a next generation processor to be used in drones in addition to investing in the Chinese drone
hardware company, Yuneec. Contracted by Intel, the CuriPilot team laid the foundation for linking the
hardware and software layers of Intel’s drone technology by designing the stabilization control system for
the next generation of processors and drones. The CuriPilot team built a foundation for future drone
development and gave Intel valuable feedback on both the hardware and software being used with the Curie
processor. Looking forward, future development can easily be started with the new EarHart boards and
existing drone frames. The elusive system bugs have been fixed and the EarHart board provides a stable
environment to continue autopilot development.

iii

Acknowledgements

The CuriPilot team would like to thank the following people for helping development throughout the year:

Dr. Christopher Kitts for his guidance as faculty advisor.
Dr. Sally Wood for her guidance as faculty advisor.

Jeff Ota and the Intel Corporation for sponsoring the team with Curie development boards and Yuneec
drone platforms.

Santa Clara University’s Robotics Systems Lab for allowing the CuriPilot team to work on development
in their facilities.

Steven Xing and Michael Rosen for their time and support with the hardware and software.
Dr. Jacquelyn Hendricks for her assistance with our thesis and presentation.

All the friends and family who supported CuriPilot at one time or another.

Table of Contents

Introduction
1.1 Drone Background e e
1.2 Technical And Theoretical Background
1.3 Autopilot Systems
1.4 Intel’s Curie Microprocessor as a Strategic Choice
1.5 About the Curie Processor L
1.6 Project Objectives« . e e
Design and Implementation
2.1 System Diagram
2.2 Requirements
2.3 Use-Cases v o i e
2.3.1 Use-Case Actors e
2.3.2 Use Case 1: Manual Flight
2.3.3 Use Case 2: Altitude-Locked Flight
2.3.4 Use Case 3: Way-Point Navigation
2.4 Software Layers
2.5 Technologies Used e e
2.6 Initial Implementation Methods
2.7 Risk Analysis
2.8 Development Timeline

Roadblocks and Earhart Development

3.1 Imitial Roadblocks e
3.1.1 Dealing With a Bricked Board o L.
3.1.2 Minimum Requirements for Drone-Specific Board

3.2 Curie Breakout Board Revision 3: Earhart

3.3 Finalized Earhart Board

Drone Stabilization

4.1 Real-Time Data Acquisition
411 GYTOSCOPE « v v v v v e i e e e e e e e
4.1.2 Accelerometer
4.1.3 Barometer e
4.1.4 Magnetometer e e e e e e
4.1.5 GPS . . e e

4.2 Stabilization Methodso
4.2.1 PID Control Overview e
4.2.2 Rate Control and Angle Control
4.2.3 Tuning e

4.3 Pulse Width Modulation e

5 Waypoint Navigation Development
51 MAVLInK e
5.2 QGroundControl
5.3 Radio Communication
6 Test Results
6.1 Gyroscope and Accelerometer Drift and Calibration
6.2 Packet Rate Issues e
6.3 Kernel Panic e
7 Professional Issues and Constraints
7.1 Ethics o e e e
7.1.1 Ethical Justification for CuriPilot L oo
7.1.2 Team and Organizational Ethics
7.1.3 Social Ethics e
7.1.4 Safety Requirements of Autopilot System
7.1.5 Dronesin Society L
7.1.6 Operational Ethics
7.2 Sustainability e e
7.2.1 Environmental Sustainability L o
7.2.2 Social Sustainability
7.2.3 Economic Sustainability oo o
7.3 Imtellectual Property
7.4 Conclusion L e
8 Conclusion
8.1 Summary e
8.2 Future Work e
8.2.1 Stabilization e e e
8.2.2 User-Controlled Flight
8.2.3 Way-Point Navigation L0
8.2.4 Curie and Edison Integration and Communication
8.2.5 Graphical User Interface
8.2.6 Yuneec Integration Lo
8.3 Lessons Learned e e
8.3.1 Team Member Accountability
8.3.2 Communication with Support Team
8.3.3 Technical Lessons e
Appendices
A Materials and Equipment
B Main Control Loop Code
C MAVLink Communication Code
C.0.1 Sending Data
C.0.2 Receiving Data e
D Lithium Polymer Battery Safety Information

E Spektrum ARS8000 Information

Senior Design Conference Slides As Presented

vi

27
27
28
29

30
30
30
31

32
32
32
33
34
34
34
35
35
35
36
36
37
38

39
39
40
40
40
40
40
41
41
41
41
41
41

44

45

46

51
o1
ol

53

58

70

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5

3.1

4.1
4.2
4.3
44
4.5
4.6

5.1

Drone Overview e e e e e e 5
Curie Development Boards 7
System Overview L e e 8
Use Cases and ACtOrs i e e 11
Drone Development Cage e e 14
Year-long Development Timeline o oL 16
Earhart Board e 19
Quadcopter Position Control L 21
Introduction to Roll, Pitch, and Yaw 22
Basic PID Control Loop e 24
Motor Labels e 25
PWM Diagram L 25
Voltage Step-Up Circuit oo e e e 26
QGroundControl Screenshot e 28

vii

Chapter 1

Introduction

1.1 Drone Background

The demand for drones, also known as quadcopters or quadrotors, has risen dramatically in the last few
years. Initially drone use was restricted to mainly the military sector due to their high costs; however, hob-
byists and engineers around the world have found ways to build small-scale drones to perform specific tasks
at a reasonable cost. Buying into the drone market means lower costs on various surveillance, maintenance,
and even film projects for not only commercial entities, but also for individuals. People all over the world
are realizing the cost benefits and purchasing over 200,000 drones in total each year [1]. However, many
consumers are still undecided on drones in the everyday world due to valid concerns regarding surveillance,
privacy, and physical safety. In the end, when used in a responsible way, unmanned drones open up doors
to a massive number of opportunities that would otherwise be expensive or impossible.

One industry that could benefit greatly from the use of drones is the firefighting industry. In fact, drones
are already being used to monitor fires for first res ponders [2]. It is not always safe or practical to fly a
plane over a fire, so by flying an unmanned drone with an infrared camera, firefighters can avoid danger and
properly monitor the fire. Furthermore, police departments have benefited from the widespread development
of drones. While a typical police helicopter costs about $1 million, an unmanned drone can provide essentially
the same services but at a fraction of the cost and risk [3]. However, law enforcement use of drones causes
a fourth amendment issue if used unwisely; therefore, the FAA requires police officers to produce a search
warrant before using a drone for surveillance [4].

Unfortunately, drone pilots, whether they be hobbyists or trained professionals, are not always responsible
and have caused the FAA trouble. In fact, last year the FAA reported that 700 drones have had ”near-misses”
with commercial airliners due to reckless drone flight [5]. These close encounters are just one of the many
reasons why the FAA has rolled out a new law requiring all drones between 0.51bs and 551lbs to be registered

FAA in order to ensure accountability and safety [6]. While there are some regulations that need to be

worked out in order to ensure safe and proper flight, drones provide a wide variety of ways to cut costs,

reduce safety risks, and increase efficiency in many different industries.

1.2 Technical And Theoretical Background

A quadcopter (also referred to as a quadrotor) is a helicopter-like vehicle that has four equally spaced
rotors around a central body. The quadcopter utilizes the multiple rotors simultaneously to create a stable
platform for itself. As a result of their high level of stability, multiple rotor drones have become popular
among hobbyists and professionals for use in aerial photography, search, and surveillance. For a quadcopter,
each rotor drives a propeller which spins in the same direction as the one directly across from it. However,
the propeller to its immediate left and right spin the opposite direction. By having the propellers spin in
this particular way, the rotors counteract the torque introduced into the system. In other words, if all of the
propellers spun the same way, the drone would also spin, rendering it useless in many practical applications.
To solve this problem, quadcopters use autopilot software routines and hardware control systems to maintain
stable flight.

When dealing with aircraft control systems, there are three main degrees of flight that need to be properly
controlled in order to produce a stable flight. These four degrees of freedom include roll, pitch, yaw. To be
more specific, roll, pitch, and yaw represent the drone’s rotation around the x, y, and z axes, respectively.
The stabilization control system allows the user to fly the drone from a remote control without having to
worry about stabilizing the drone when flying.

When the ground operator sends a signal to the drone to fly forward, for example, two of the propellers
will increase their rotations per minute (RPM) while the two propeller directly across will decrease their
RPM; therefore, causing the drone to tilt forward slightly. The two sets of rotors will then increase their

RPMs proportional each set based on the desired tilt causing the drone to fly forward.

1.3 Autopilot Systems

When controlling unmanned aerial vehicles, also known as UAVs, pilots need the aid of an autopilot
system to ensure safe and accurate operation. A drone can be controlled manually via standard radio
controllers but still needs stabilization and routing assistance through an autopilot system. There are
various UAV autopilot systems available, both open-source and closed-source. In general, autopilot systems
create a layer of abstraction for the communication between user input, sensor data, and the drone’s motors
for precise and accurate flight.

Currently there are several autopilot systems available. These range from simple hobbyist systems to

complex proprietary systems. Most UAV projects currently use some version of ArduPilot. ArduPilot is an
autopilot system that is based on the Arduino, an open-source, electronic, prototyping platform. ArduPilot
has a strong development community behind it, resulting in a large forum dedicated to helping others get
their drones flying, modifying current autopilot functions, and even developing new autopilot applications.
Open source allows for all people of various skill levels to take ArduPilot code, modify it, and post it back
online. As a result, much of the code that is available is not optimized and incomplete which hinders the
implementation of reliable software. On the other hand, proprietary autopilot systems may boast the same
functionality as ArduPilot or other open-source systems, but they do not have the support community behind
them. The lack of support results in unsolved bugs, lengthy waits for technician responses, and ultimately
the inability to reprogram the UAV at any given moment. Furthermore, many of these autopilot systems
provide high levels of abstraction which improve open source development but slow down response time.

Although there are many autopilot systems for UAVs, most of them are either proprietary or completely
open-source. Intel would like to enter the UAV market, but to do so they cannot use another company’s
autopilot or the open-source autopilots for legal reasons. Another issue is that Intel wants to control their
drones with their new Curie processor and select peripheral sensors. None of the current autopilot systems
are optimized for this processor’s architecture or the sensors Intel wants to integrate into their UAV.

In the end, one of Intel’s main competitors will be MicroPilot, a company that produces both autopilot
hardware and software for drones. MicroPilot focuses on all areas of autonomous robotics including fixed-
wing aircraft, land rovers, and multicopters. MicroPilot will be a big competitor for Intel since they also

develop their own software for their house designed boards.

1.4 Intel’s Curie Microprocessor as a Strategic Choice

CuriPilot is a completely new autopilot system built from the ground up. We are starting with a processor
that has never been implemented on a drone before. The Intel Curie processor was developed for situations
that need a strong computational device and a small form factor. Intel has showcased the Curie with multiple
wearable technologies and robotics, and now they want to use it on a drone. The Curie module itself contains
a gyroscope and accelerometer, two things necessary for stable UAV flight. CuriPilot is an autopilot and
stabilization system that will utilize the Curie’s small form factor and built in sensors. Since the project
is based on the Curie processor, it is desired that all flight calculations be performed solely on the Curie.
That being said, in the future the UAV might also have a supplementary Intel Edison processor to handle a
waypoint autopilot system and other computationally heavy tasks such as automatic landing procedures.

The long term goal of CuriPilot is to develop a brand new autopilot system developed solely for Intel.

The autopilot system will be built from the ground up to be fully optimized for Intel’s new Curie processor
and selected peripheral sensors. The autopilot system will take in sensor data as well as commands from the
radio controller to allow for stable controlled flight. By developing the system specifically for Intel’s Curie
processor and peripheral sensors, CuriPilot will greatly optimize the data flow and processor usage allowing

for other processes to run simultaneously and execute more advanced operations.

1.5 About the Curie Processor

Intel’s Curie microprocessor is a low-power, 32-bit, system-on-chip (SoC) device that was initially de-

L SoC refers to a low-power, integrated circuit device that contains all

signed for wearable technologies.
of the processors and memory on one chip. The Curie is run on Intel’s x86-based Quark processor that
contains 386kB of flash memory and 80kB of SRAM. Furthermore, the Curie has a 6 axis IMU (Inertial
Measurement Unit) containing the on-board gyroscope and accelerometer. The microprocessor runs on a
real-time operating system (RTOS), meaning that it is optimized for reading data, performing calculations,
and then writing data with minimal delays. As a result of the RTOS, the Curie serves as a valid option
for a quadcopter’s control system since the drone will need to read data from the on-board gyroscope and
accelerometer, perform stabilization calculations, and then output signals to the four motors in real-time.

As a result of its small size, the Curie is not the most powerful processor. Therefore, data reads and
writes from the various sensors need to be properly timed in order to maintain stable flight while also reading
data from an RC controller. Also, when adding new software and fixing bugs, the Curie’s RTOS needs to
be loaded on the Curie each time. The process of updating the RTOS is called ”flashing” and requires the
team to load the OS onto the Curie’s limited RAM each software update iteration. This process usually
takes about two minutes to complete.

By utilizing Intel’s Curie microprocessor, effective and efficient software and hardware interfaces can be
developed to produce a reliable autopilot system. Using Intel’s own chips and software development platform,
CuriPilot will interface seamlessly with the hardware; therefore, the system will provide the most powerful

and effective solution for drone autopilot.

1Side Note: The same Curie architecture that is being used for drone stabilization was also used on snowboards at the 2016
Winter X Games.

Figure 1.1: UAV Development Drone

1.6 Project Objectives

The goal of the project was to start developing a stabilization system on a quadcopter running on the
Curie. With only a development time-line of a year, the CuriPilot team focused on four main areas of
development. First, the team began with stabilization using PID rate control, modifying and adding to
the current control code. The team also began development on GPS waypoint navigation by integrating
MAVLink and QGroundControl together to talk to the Curie. Next, the CuriPilot team looked into various
communication methods in order to manually control the drone. Finally, since the Curie is still in the
development stage, the team looked to provide valuable board and firmware documentation and feedback to
Intel.

In the end, the stabilization process was not fully completed; however, sensor polling rates were adjusted
and the beginning stages of angle control were designed. As for GPS navigation, a wired communication

protocol was set up that allowed QGroundControl to communicate with the Curie. Furthermore, an RC

controller was selected for use in manual control flight over the on-board XBee Radio for reasons that are
discussed in Chapter 5. Finally, the entirety of the development process left the CuriPilot team with valuable
feedback regarding the board design and the firmware on the Curie. This feedback was then passed on to
Intel engineers. After a year of development, ground floor has been laid out for future development teams

to continue work on the Curie controlled quadcopter.

Chapter 2

Design and Implementation

2.1 System Diagram

Figure 2.2 shows the high-level architecture of the Curie breakout board and and the ground controller.
We decided to break up the architecture into the components that are on the quadcopter and the components
that are off the quadcopter. The gyroscope and accelerometer are integrated into the Curie itself, while the
barometer and magnetometer are off chip. The Curie communicates with the motors via a voltage step-up
converter. The GPS, flight battery, and RC receiver are also on the quadcopter, while the ground control

station and the RC transmitter are off. Figure 1.1 shows the physical development drone.

Figure 2.1: Revision 3: EarHart (Left) and Revision 2: Sharkjumper (Right)

Quadcopter

GPS

Mators (x4)

Voltage Step-
Up Converter

(

Intel Curie IMU - Inertial Measurement Unit
— [Stabilization
AutoPilot) Accelerometer
Barometer
Gyroscope
P Flight Battery RC Receiver Magnetometer
i Ground Control Station L
R Commercial Charger :
HC Transmitter
Ground

Figure 2.2: System diagram explicitly stating the hardware connections and data streams

2.2 Requirements

The requirements for the UAV Autopilot system system described in the introduction can be broken
down into two categories: functional and non-functional requirements. The former outlines requirements
regarding what the system does, while the latter outlines the manner in which the functional requirements

will be accomplished. The restricting factors that limit the system in regards to sustainability, scalability,

deployment, and implementation are outlined in the Design Constraints section.

Table 2.1: Requirements and Constraints

Functional — Requirements | Nonfunctional Requirements Constraints
(The system will...) (The system will be...)
Malnt'am stability while Modular The system must be memory conscious.
hovering.
Allow for stable user con- o The system must run on the Intel Curie processor.
. Maintainable
trolled flight
System will allow for Robust The system must be be implemented on a Yuneec
altitude-locked flight drone.
. The stabilization control system must be developed
Reliable in Embedded C.
Safe

2.3 Use-Cases

A use case defines the necessary steps for an actor (or actors) to achieve a specific goal in the system.

Also included are preconditions (conditions that have to be met before steps are performed), post-conditions

(conditions that will be true after use case is performed) and exceptions (possible hindrances to use case

being performed successfully).

2.3.1 Use-Case Actors

In this case, the use-case diagram seen in Figure 2.3 shows how the actor (the pilot) interacts with the

CuriPilot drone.

2.3.2 Use Case 1: Manual Flight

Actors: Pilot

Goal: Manually fly quadcopter using remote control
Pre-Conditions: Turn on drone and controller
Post-Conditions: Actor is able to fly drone

Steps:

1. Turn on drone and RC controller

2. Fly drone via joystick input on RC controller
Exceptions:

1. Batteries out of charge, charge batteries

2.3.3 Use Case 2: Altitude-Locked Flight

Actors: Pilot

Goal: Manually fly drone at locked altitude
Pre-Conditions: Drone is currently flying
Post-Conditions: Actor is able to fly drone at fixed altitude

Steps:
1. Manually fly drone to desired altitude
2. Set to altitude-locked flight mode
3. Manually control drone in X-Y plane

Exceptions:

None

2.3.4 Use Case 3: Way-Point Navigation

Actors: Pilot

Goal: Autonomous flight based off of user selected waypoints

Pre-Conditions: Set controller/drone to waypoint navigation mode
Post-Conditions: Actor is able to fly drone by simply selecting waypoints on a map

Steps:
1. Set to waypoint navigation flight mode
2. Select desired flight path via QGroundcontrol on ground station
3. Drone will begin navigating desired route

Exceptions:

1. Flying indoors, GPS is unable to lock onto satellite. Fly outside instead.

10

Figure 2.3: Use Cases and Actors

2.4 Software Layers

The most important part of designing an autopilot system is scalability and optimization. As more
features were implemented, it seemed pointless to have to completely restructure the code each time. To
avoid the negative effects of high coupling within the software system, Curipilot utilizes a two-point modular
code base. The system is comprised of two layers: application and hardware. The application layer holds
the logic for how the autopilot system should function. Some of these features include pitch, roll, and yaw
stabilization as well as altitude lock and waypoint navigation. The hardware layer acts as a communication
platform with each specific piece of hardware, such as the gyroscope and accelerometer. The goal of the
hardware layer is to streamline communication with various hardware components. If one piece of hardware
is changed, most of the time only one function needed to be adapted rather than re-factoring the entire code
base.

The way the two layers are linked is through a read/write protocol. This protocol is the only point of
communication between the two layers. The hardware layer passes up values from specific sensors needed in
the application logic, and the application layer passes down values that need to be altered on the hardware.

The reason for a specific I/O protocol is efficiency and optimization. By having one pipe where all the

11

communication is funneled through, each I/O command can be prioritized; therefore, increasing the response
time of the system. If the two layers were to communicate at-will, every execution would prioritize itself
and could lead to a possible deadlock or run-time failure, which is unacceptable. In summary, by utilizing
modularity in the code base, new features are easily implemented; thereby, altering the existing functionality.
Moreover, by enforcing a read/write protocol, efficiency is maximized with little to no room for run-time

failures. Table 2.2 shows a condensed overview of the control layers of the Curie.

Table 2.2: The considerations taken into account when implementing software layers

Control Layer | Purpose (Controls the...) Design Considerations
1. Pitch and roll stabiliza- | 1. Drones need a base loop to ensure constant sta-
Application tion loop bility
2. Waypoint navigation | 2. The logic for navigation will be done in this layer
logic using the Intel Edison
1. Communication between
1/0 (Read layers 1. There is no streamlined way for layers to commu-

2. Operating system uses | nicate efficiently, so a new protocol has been designed
the protocol
3. Processor interrupt loop

1. Way to communicate . .
with the hardware 1. The sensors used in the system may be switched

Hardware out at any time. Need to be able to exchange hard-

2. Signal i h . .
o tsolrgna provided to eac ware without rewriting all of the code

and Write)

2.5 Technologies Used

The technologies used are a combination of coding languages and web frameworks that have helped us
to create a stable yet flexible system. Table 2.3 shows the technology and in what manner that technology

was used.

2.6 Initial Implementation Methods

Before immediately designing the autopilot system, a systematic method was put together that allows
the team to take the appropriate, logical, and sequential steps needed to successfully build the autopilot.

The first step involved making sure that the Curie was able to operate as its specifications suggest.
The Curie will be dealing with the internal control system of the drone, including the roll, pitch, and yaw
stabilization. For the safety of the people around the drone, this control system must function without
any lag from the processor. Balancing the drone properly requires the Curie to consistently send signals

to the motors, adjusting each one’s RPM as desired. This has been one of the main steps in the project’s

12

Table 2.3: Technologies Used

Item Specifications/Use
- Stabilization control and altitude lock com-
putations

Intel Curie, Intel Sharkjumper, Intel Earhart | - Peripheral sensors, communications, GPIO,

and PWM pins

- Frame, motors, batteries, and radio con-
troller

Yuneec Quadcopter - For future integration with the Intel Curie

- Embedded C - Used for control system im-
plementation (running on Curie)

- Python - Used for MAVLink and QGround-
Control communication

- Preferred development environments and file
editors

- Open source Graphical User Interface used
QGroundControl for drone navigation

Programming Languages: C and Python

Vim and Gedit

- Air Vehicle Link Protocol for communication

MAVLink to drone

timeline. Keeping the drone stable in the air, even if it is just hovering, is vital before the team moves on to
maneuvering the drone through the air.

Another large item was preparing our testing setup. In the Robotics Systems Lab, CuriPilot is utilizing a
large wood and plastic cage to test the drone inside. This prevents any team member or bystander from being
injured during development. Safety has always been a top priority. Inside the cage, the drone is connected
to a wooden mount with one degree of free motion. This degree of free motion was used to develop roll and
pitch control algorithms. Once roll and pitch are fully stabilized, another mount with two degrees of freedom
can then be used to test roll and pitch simultaneously as well as yaw.

In the future, once the drone is able to stabilize itself, the Edison will be hooked up to the Curie in order
to control waypoint navigation, a more computation-intensive system. The Edison will also be responsible for
receiving commands from the ground operator’s remote control. This step is likely to be the most complex
step in the design process. The Edison will have to receive signals from an RC controller and the Curie at
the same time. The Edison will also need to work with the Curie microcontroller in order to autonomously

direct the drone on a user-selected path when necessary.

13

Figure 2.4: Drone Development Cage

14

2.7 Risk Analysis

During the CuriPilot design stage, there were certain risks that needed to be addressed during the
development process. The following table, Table 2.7, lays out the five most important risks that our team
faced during the course of the project. Each risk has an associated consequence, probability of occurrence,
severity of risk, the impact (probability*severity) the event will have on the development process, and two

mitigation strategies. The mitigation strategies describe possible steps to take in order to prevent the risk

from happening and/or steps to follow in order to mitigate the fallout if the risk occurs.

Table 2.4: Risk Analysis Table with Risk Mitigation Strategies

Risk Consequence Probability | Severity | Impact | Mitigation Strategy
. Permanently grounded 1. .Stay’ed updated on current
Drone Legis- legislation
. and unable to have fre- | 1.0 4 4.0 .
lation Issues went test fliohts 2. Planned ahead for indoor
4 & flight tests
oRlinm;lfg De. Forced to work long 1. Spread work out
velobment hours to finish deliver- | 0.4 8 3.2 2. Followed development
Timz able on time timeline as closely as possible
Extra time spent learn- 1. Tried t.o identify necessary
Lack of Tech- ine how o implement a | 0.75 4 3.0 technologies early on
nical Ability fez%ture P ' ' 2. Used technologies team is
already familiar with
1. Remained in contact
Requirements Possible wrong im- with customer on what they
Change/ lementation and lost | 0.2 8 1.6 wanted
Miscommuni- fime ' ' 2. Tried to finish deliverables
cation ahead of schedule to get feed-
back early
Medical aid required 1. Followed established safety
Drone Re- . . protocols
. possible legal action, | 0.05 10 0.5 .
lated Injury loss of flicht privileces 2. Never flew in unapproved
ght p & surroundings

2.8 Development Timeline

The development timeline below was designed to provide a structure for the team’s development process.
Figure 2.5 represents the development timeline for the thirty week school year. The CuriPilot team was
unable to follow this timeline throughout the entire year. Specifically, development halted during December
and January due to broken hardware. At this point, the team was forced to reevaluate goals which altered

the last half of the development timeline.

15

Figure 2.5: Year-long Development Timeline.

16

Chapter 3

Roadblocks and Earhart Development

3.1 Initial Roadblocks

The Curie microprocessor is still in development which provided a very unique set of challenges. Many of
the challenges we ran into were at the hardware layer of the Curie control layer scheme. When we initially
started this project, our code base was about half a year old. In a development cycle for upbringing a new
microprocessor architecture such as the Curie, half of a year can seem more like a lifetime. After a few weeks
of development, the board broke and was rendered useless.

There could be several causes as to why the board ceased functioning, but we, along with Intel engineers,
never found out the true reason. The leading theory is a memory management issue within the operating

system that resulted in corrupt memory which blocked the flashing process.

3.1.1 Dealing With a Bricked Board

Instead of halting development, the bricked board prompted a restructuring of the scope of the project.
The CuriPilot team increased the breadth of the project and invested development time into other areas
rather than purely stabilization. The team began development on a navigation system by using MAVLink
to send position data to the drone as well as development on an RC controller. Integrating angle control
into the stabilization algorithm was another goal.

The bricked board provided a unique opportunity; CuriPilot was in a position to provide Intel with the
requirements and design constraints of a Curie breakout board specific for drone flight. The team outlined
the base requirements required to fly a drone, as well as a feature set which would aid the development
process. Intel had already fabricated a second revision of the Curie board for another endeavor named
Sharkjumper. Unfortunately, Sharkjumper was not ideal for controlling electronic speed controllers since it
had only two USB ports rather than the desired four PWM pins. However, Shakjumper did have an onboard

GPS module which allowed for preliminary development on GPS waypoint navigation.

17

3.1.2 Minimum Requirements for Drone-Specific Board

The CuriPilot team, after bricking the last board, sat down with Intel and laid out the components and
features needed on a new Curie breakout board in order to properly fly a drone. Table 3.1 shows the agreed

upon parts that were to be on the next board revision.

Table 3.1: Desired Components

Component/Features Needed

- Updated Software

- Accelerometer/Gyroscope/Barometer (on Curie)

- Minimum of 4 PWM output pins for rotors

- UART (Universal Asynchronous Receiver/Transmit-
ter) /USB debugging capabilities

- Wireless communication capability

- 4 additional PWM pins

- 4 analog to digital converter (ADC) pins for adjusting
gains in real-time

- Barometer (Altitude-lock)

- On-board rechargeable battery

- GPS module for waypoint navigation

3.2 Curie Breakout Board Revision 3: Earhart

After providing multiple rounds of feedback to Intel, we were provided a new board named Earhart.
It met all of our requirements and feature requests except for the ADC pins and additional PWM pins.
After flashing a bootloader onto our three Earhart boards, it was time to port the code. The code from the
original breakout board had many deprecated methods as well as a different architecture than the code that
the Earhart utilized. This required a large amount of collaboration between the CuriPilot team and Intel in
order to ensure the code still functioned in the manner desired. After the port, the way sensor data was read
had to be altered due to the different orientation of the sensors on the board. At the point of testing the
PWM signal output to the electronic speed controllers, it was discovered that only three of the four PWM
pins were configured for output. After restructuring the output of the final PWM pin, all of the motors were

spinning. After this process, the team was able to resume stabilization development.

3.3 Finalized Earhart Board

Below, in Figure 3.1, is the finalized Earhart board. This is a board powered by the Curie processor
specifically for drone flight. Special features to note are the board has an onboard XBee 900Mhz radio for

preliminary communication systems development and a small rechargeable battery just for the Curie module.

18

Figure 3.1: Curie Breakout Board v3 (Earhart) with labels identifying various components necessary for
drone stabilization, navigation, and user-control

19

Chapter 4

Drone Stabilization

4.1 Real-Time Data Acquisition

For quadrotor stabilization, the Curipilot team dealt mostly at the application layer since the stabilization
algorithms were written in the software. There were two main sensors needed for stabilization. First, a
gyroscope is used in order to control the rate at which the drone rotates or turns. The second is the
accelerometer which is used to determine the position of the drone in space. As for altitude lock control,
the main sensor needed is the barometer, which measures the altitude of the drone with respect to sea level.
In order to fully implement waypoint navigation, a drone needs the aid of a magnetometer and a GPS for

routing assistance. The above sensors will be discussed in more depth in the following subsections.

4.1.1 Gyroscope

As mentioned above, the gyroscope is used to measure the rate at which the drone is rotating. This is
very helpful when calculating the current motion of the quadcopter for stabilization. However, gyroscope
data tends to drift away from its initial correct values due to the nature of how it functions. This means that
it needs to be offset periodically to ensure it is generating useful data. Also, a gyroscope does not measure
angles, so an accelerometer must be used if one intends to implement any sort of angle detection or angle

control algorithm.

4.1.2 Accelerometer

In order to measure the angle the drone made with the surrounding axes, the accelerometer was calibrated
in order to find what sensor values corresponded to -1G and 1G respectively. All units were converted to
Gs in order to maintain a consistent and easy to understand measurement unit. For example, in order to
calculate the angle the drone makes with the Z-axis, as seen in in Figure 4.1, the Y-force and Z-force sensor

values are read and converted into Gs. The equations to find the Y and Z forces are as follows:

20

2(accely — miny)

yG =

- —1 (4.1)
maxy — miny

O = 2(accely; — ming)

~1 (4.2)

maxy — miny

Note that the values accely and accelz are the current sensor values from the accelerometer. mazy,
miny, maxyz, and miny are the calibrated values that correspond to 1G and -1G respectively. Linear
interpolation can then be used to estimate the intermediate G values using equations 4.1 and 4.2. The angle

the quadcopter makes with the Z-axis can then be calculated using equation 4.3.

L yG) 180

Gzarctan(l_ZG) -

(4.3)

Unfortunately, the current state of the Curie’s architecture does not support the arctan() function. As
a result, the CuriPilot team is looking into a workaround by using a look-up table or including only the
necessary source code for the inverse tangent function from the common 'math.h’ library. This issue has also

been brought to the attention of Intel for future Curie development.

z (Gs)

Figure 4.1: The figure above shows a visual of what is needed to find the position of the quadcopter with
respect to the 7 axis.

4.1.3 Barometer

The barometer on the Curie measures the atmospheric pressure of the surrounding area. This pressure
can estimate the altitude of the drone with respect to sea level. Based on the elevation of the ground

controller, the barometer can be offset to provide the altitude of the drone with respect to the ground. As

21

a result, the Earhart can use the available sensor data to implement altitude-locked flight. Currently, the
Earhart board can read and output barometer data. In the future, the Curie will need to take that data and

feed it into a control loop which will lock the drone at a specified altitude.

4.1.4 Magnetometer

While the CuriPilot team has not made an effort to implement magnetometer readings into the drone’s
functionality, it will be used for routing assistance in the future. The magnetometer, along with the GPS,

will help the waypoint navigation system in directing the drone in an accurate and efficient manner.

4.1.5 GPS

The GPS is a necessary component to waypoint navigation. By selecting specific points on a map, the
Curie can take the GPS values to navigate the drone to the proper GPS coordinates. GPS integration into

the waypoint control will be discussed further in Chapter 5.

4.2 Stabilization Methods

In order to maintain a stable system, both the roll (left and right rotation), pitch (forward and backward

rotation), and yaw (left and right spin) of the system need to be controlled within safe operational bounds.

Figure 4.2: The three degrees of freedom (roll, pitch, yaw) with respect to the Cartesian Coordinate System

22

4.2.1 PID Control Overview

Figure 4.3 below outlines a simple implementation of a PID control loop. PID stands for Proportional
Integral Derivative. PID is one of the easiest types of control to implement and is ideal for real-time systems
such as a quadcopter. PID control is also pretty easy to tune. Tuning will be discussed in more detail in
Section 4.2.3.

The basics of PID are pretty simple. There is a desired setpoint in the algorithm, determined by the
developer. This desired setpoint is how the system should behave. In the case of a quadcopter, this can
either be a desired rate of rotation around an axis or a desired angle between the quadcopter and the ground.
In the average case, the desired rate of rotation is zero, and the desired angle with the ground is 180, or
parallel.

Sensors are then used to calculate an error factor. The error tells the system how far from the desired
setpoint it currently is. This error is manipulated and then fed back into the system via a negative feedback

loop to correct the error factor. Three equations make up this feedback. The first is the P equation:
(Proportional _Gain) x (Error_Value(t)) (4.4)

This is the Proportional or Primary gain of the system. This factor determines if the system will have enough

power to correct itself. The second equation is the integral equation:

T
(Integral_Gain) * Z(Error,Value(t)) (4.5)
=0

This is a summation of all the previous errors scaled by another gain factor. This smooths out the response
of the system over long periods of time and ensures that the system will settle with minimal steady state

error. The third equation is the derivative equation:

dError_Value(t))
dt

(Derivative_Gain) * ((4.6)

This looks at how fast the data is changing and helps smooth it out in the present and near future. This
helps limit the effects of sudden transient inputs. All three of these factors are then added up and sent back

into the system to correct the error.

4.2.2 Rate Control and Angle Control

The CuriPilot team decided to use a PID control loop to stabilize the system. The process began with
rate control; however, the stabilization results were not as positive as expected. The drone would tilt to

one side and then remain there occasionally. This is due to the gyroscope only picking up data when the

23

quadcopter is in motion which can result in incorrect orientations. Angle control would fix this by looking
at the angle the quadcopter makes with the ground and correcting it back to being flat. The accelorometer
data was needed for angle control. The combination of rate control and angle control resulted in a much

more stable system.

Figure 4.3: PID Control Loop. Courtesy of Wikipedia

4.2.3 Tuning

In order to stabilize the drone, the drone’s gains were tuned starting with P, moving on to D, and then
finishing with I. Each gain value was initially tested at a relatively low value (around 1), and then was
increased based on how the drone worked to stabilize. For each test, the gain value was written down in an
Excel table with notes describing what was seen in order to not repeat already tested gain values. Once the
team felt the P value was set at the appropriate level, the D gain was adjusted at an increasing increments.
There are nine separate gain values that need to be tested in order to fully stabilize the drone. Each degree
of freedom has its own PID control. However, if the quadrotor is relatively balanced, once the gain values

for roll are obtained, then the gain values for pitch will be similar.

24

Figure 4.4: Quadcopter with motors labeled 1 through 4

4.3 Pulse Width Modulation

Pulse width modulation (PWM) is the manner in which electronic high and low pulses (digital) are used
to produce a single output value (analog). The Earhart board has 4 pulse width modulation pins which were
used to control the rotor speed. The rotors were able to spin at a desired speed with adjusting the PWM

duty cycle between 50% and 100%. These percentages correspond to a 10ms and 20ms period respectively.

Figure 4.5: Diagram of PWM Signals

25

One thing to note is that the Curie performs all of its logic using 3.3V. Unfortunately, the electronic
speed controllers (ESCs) require 5V logic in order to control the rotors. In order to fix this compatibility

issue, a step-up converter was used with a comparator as the main chip.

Figure 4.6: Voltage Step-up Circuit

Resistors R1 and R2 were matched to divide 5V down to 2.5V for the reference voltage. The PWM signal
from the Curie, at 0-3.3V, was the other input. The comparator combined with resistor R3, the pull-up

resistor, would boost the voltage up to 5V or leave it at OV accordingly.

26

Chapter 5

Waypoint Navigation Development

To implement a waypoint navigation system there must be stable communication to the drone, a proce-
dure to input desired coordinates to send the drone to, and a method to manually fly the drone. To communi-
cate with the drone we utilized MAVlink. For sending coordinates to the drone we utilized QGroundControl,
and to manually control the drone we utilized radio communication. Note, that the waypoint navigation

development was being developed in the application layer.

5.1 MAVLink

The first step to having a drone automatically navigate to a certain location is sending the drone the
coordinates it needs to navigate to. In order to do that, a communication protocol must be implemented to
establish constant communication between an interface that controls where the drone will go, and the drone
itself. The protocol used is MAVLink. Micro Air Vehicle Link is an open sourced protocol used strictly
for communicating with unmanned vehicles. Mavlink is to be integrated with the graphical user interface
QGroundControl for sending and receiving position data. Mavlink operates at a heartbeat stabilization loop
of 1 Hz or once per second. This means the protocol is expecting a message every second to ensure there is
stable communication between the two ends. A Mavlink packet contains 17 bytes broken down as follows: a
6-byte header for identifying the message, a 9-byte payload containing position data, and a 2-byte checksum
for verifying the data arrived in its entirety. The position data contains latitude and longitude coordinates.
Unfortunately, the onboard GPS sensor on the Curie was never able to catch a signal; however, if it were
to catch a signal, it would be able to compare its own coordinates with the data from the Mavlink payload
to ensure it is constantly moving in the right direction. The CuriPilot team has made strides looking to

integrate another GPS sensor to continue development.

27

5.2 QGroundControl

QGroundControl is an open source graphic user interface for setting waypoints on a map. It is compatible
with Mac, Windows, and Linux. It has built in support for Mavlink and due to the fact that it is open
source, we modified it to be compatible with the Curie. After realizing the GPS module on the Earhart
was unable to receive a signal, the scope of our navigation work shifted. It was imperative the Curie and

QGroundControl had stable communication so the CuriPilot team focused on ensuring this.

Figure 5.1: The Graphical User Interface that accepts parameters such as Altitude and Position and uses
MAVLink to send parameters to the UAV

To send data from a ground station to the drone over the MAVLink protocol a special packet must
be constructed. Once the packet is sent to Sharkjumper, a function has to receive the data and handle
the message. The code in Appendix C takes the first step of establishing communication between the
two platforms. Once the data is received the message has to be handled. As stated before, MAVLink
runs on a heartbeat loop. Due to this, our receiving function must also account for a disruption in stable
communication. To test for stable communication in a visual respect, a boolean variable is passed in the
message which lights up an LED for one second out of every three seconds. The testing proved successful

as the LED lit up once every three seconds. In the end, stable communication between QGroundControl

28

and Sharkjumper was successful, but still needs further development before implementation on the Earhart

board.

5.3 Radio Communication

While the CuriPilot team began waypoint navigation development, the drone still needed a way to be
controlled by a user. The team looked at two main options for controlling the drone. The first option was to
use the on-board XBee, which is a 900MHz radio commonly used for wireless transmission. On the surface,
the XBee is viable option since it would not require any extra hardware on the drone’s frame. Unfortunately,
it is not suitable for flying drones, since communication with the ground controller is easily lost. The other
radio controlled that was looked into was the Spektrum AR8000. The AR8000 is a hobbyist RC controller
that is widely used, well documented, and relatively easy to implement. Unfortunately, the AR8000 requires
extra hardware on the drone’s frame. It also requires an extra PWM input pin on the Earhart. As of our
current state, the Earhart does not have an extra PWM pin. As a result, the CuriPilot team has provided
feedback to Intel regarding this issue. The team hopes to get an extra PWM pin on the next revision of the
Earhart board. Another option, in the meantime, is to ”bit-bang” one of the available GPIO pins and turn
it into a makeshift PWM pin. In other words, use software interrupts on the GPIO pin to make it act like a
PWM pin. Due to the scope of the project, in-depth development has not begun on the bit-bang process. In
the end, the CuriPilot team recommends using the Spektrum ARS8000 as an RC controller to future teams

because the extra documentation will be vital during development and trouble shooting.

29

Chapter 6

Test Results

When diving into the testing stage of the project, the team needed to test the control system to make sure
that the drone even had an opportunity to stabilize. Furthermore, tests on the gyroscope and accelerometer

were run in order to properly bias the sensor data.

6.1 Gyroscope and Accelerometer Drift and Calibration

When conducting stabilization testing, the CuriPilot team realized that the drone’s rotors would not spin
at the same rotational speed when the drone was not moving or rotating. After printing out the gyroscope
and accelerometer readings, it was discovered that an offset was needed in order to spin the rotors at the
same speed during stationary flight. In other words, when the drone was not moving, the sensor readings
were nonzero. In order to find a suitable offset, five tests were run with the quadrotor locked into a horizontal
position with respect to the Z axis. Both the gyroscope and accelerometer values were printed to the screen.
These values were averaged over the five tests and the resulting value was subtracted from the sensor reads
within the code in order to achieve a bias of 0 during stationary flight. The gyroscope and accelerometer
needed to be recalibrated every couple of testing cycles in order to combat the inevitable drift known to
affect these sensors. As mentioned in Section 4.1.2, the acclerometer also required extra calibration in order

to calculate the drones position with respect to its surrounding axes.

6.2 Packet Rate Issues

When testing the drone’s ability to stabilize, the team noticed that there was a lag between the drone
rotating and the rotors adjusting their speeds to maintain stabilization. It turns out that the Curie used only
1% of the available sensor data to control the rotor speed. On the initial implementation of the Curie, Intel
used it to print out data to a screen, but they only needed to print to the screen every half a second. The

CuriPilot team adjusted the packet rate to fully utilize the sensor data to control the drone. The increased

30

packet rate has had a direct impact on the drones ability to stabilize.

6.3 Kernel Panic

While testing the stabilization system, Earhart constantly went into a fail-safe method. This fail-safe
mode is called a kernel panic. The Curie entered this state due to a miscommunication between the two cores
of the Curie processor. To understand the issue, some background information is required. The Curie has
multiple cores and each one specializes in something different. The two cores used were ARC and QUARK.
The ARC core was used to interface directly with the hardware and read sensor data, as well as allow other
cores to subscribe to sensor messages. The QUARK core is where most of the stabilization and waypoint
code lived. This logic requires constant sensor data being passed to it from the ARC core. To initialize
the motors, the electronic speed controllers require a low signal for 5 seconds. To accomplish this, a low
signal is sent and a built in Curie method ”task.sleep” is called for a specific amount of time. This locks the
processor’s current task and holds for the specified amount of time. There was a fault within this method
that caused invalid parameters to be passed between the ARC and QUARK core, which resulted in a kernel
panic.The ”task.sleep” method should not cause a miscommunication between the cores; this error was
successfully solved by replacing the faulty method with a different implementation, a semaphore lock. Most
importantly, the CuriPilot team reported this fault in the code to Intel to be changed for future iterations.
The kernel panic issue arose as a result of code that was written at the application level; however, it caused

an error all the way down at the hardware layer, preventing the two cores to communicate properly.

31

Chapter 7

Professional Issues and Constraints

7.1 Ethics

Ethics and Engineering have a closer relationship than most might think. Engineering is a vast field and
contains a wide variety of jobs, processes, and mindsets. Most of the time, the goal of engineering is to
advance technology for the betterment of human life. This is where ethics come into play. Since engineering
is bringing brand new ideas, processes, and products into the world, the effects are unknown. Something
that was created with good intentions could end up causing horrible unseen consequences. Because of this,
ethics should always be discussed and analyzed when any type of engineering takes place.

As the consumer drone market begins to expand rapidly, the question of ethics surrounding drones has
forced its way to the forefront of ethical issues within the United States. As a result, the CuriPilot team
has looked into how our project is going to deal with all of the ethical concerns that come with any drone
project.

We divided the ethical breakdown into three main areas. First, we have the team and organizational
ethics, which is more general and deals with the ethics within our own team structure. The second area
deals with social ethics which will serve as the meat of the ethical discussion and will talk about various
issues that come up with commercial drone technologies. Finally, we looked at our product development
ethics, which looks at how our design process works and how we make sure our research is ethically sound.
By breaking down the ethical issues that may be faced within our project, we have ensured that as many

circumstances that relate to ethics are acknowledged.

7.1.1 Ethical Justification for CuriPilot

While CuriPilot is not energizing a small town in a third-world country, it is paving the way for drone

powered automation. Automated drones can provide a number of benefits including 3D structure modeling

32

and surveying buildings in need maintenance. With the growing demand for automated services, autonomous
drones can help pave the way to saving companies money and keeping people safe. However, there are still

some ethical issues that need to be addressed.

7.1.2 Team and Organizational Ethics

The team behind any engineering project should be organized and have a shared ethical code of conduct.
Sometimes this is forgotten and the end product becomes the focal point of an ethics analysis. CuriPilot is
no exception to this and has many organizational components that should be looked at.

First, we needed to act ethically in relation to each other as teammates, our university, and the city of
San Jose. As developers, teammates, and friends, we had the responsibility of creating a successful product
and keeping a professional development environment. When issues arose, we stepped back and discussed
them. We then decided the best course of action. While we never ran into the following issue, we had decided
that if we could not solve an argument within ourselves, we would immediately go to our faculty adviser to
help us solve the problem. The end product was very important; however, our integrity and relationships
with our teammates was important as well. In other words, the students working on CuriPilot needed to
work together and communicate about each others individual work in order to avoid situations which could
have proven costly to successful completion of the project.

One of the main ethical issues we could have run into as a group is if one or more of the group members
had slacked off or lied about the work that he was doing as an individual. Much of the project needed to be
broken up into various modules which allowed us to not only test different parts of the drone separately, but
also helped in debugging the system along the way. As a result, a lot of work fell into the hands of individual
group members. It was possible that one member could have lied about how much work he had gotten done
for the drone. If this was the case, the timeline for the implementation of the drone system could be delayed
dramatically. In order to avoid this situation, our team had put together a weekly plan that required each
team member to demo his own part of the project he worked on that past week. By implementing a system
that required team members to demonstrate their progress for the week, we ensured that all members were
acting ethically in relation to their teammates.

Furthermore, our project had the possibility of injuring people, and we rarely messed around and never
skipped safety measures. If there was something unsafe or illegal happening, all of us decided that we would
speak up. As individuals, we objected to any event that might harm someone. If our team members dis-
agreed with each other, we either removed the dangerous hardware and leave or had the option of calling

campus security to mitigate the issue.

33

7.1.3 Social Ethics

Since we began development on a new product, we had to analyze our ethical duty to society and the
future users of our drone system. Drones are very dangerous vehicles if they are not programmed and used
correctly. The rotors spin fast enough to cut deep into flesh and the drone flies at high speeds. If our
system is not completely stable, the user or a bystander could be severely injured. We readjusted our scope
and focused mainly on developing the software system keeping the drone stable. If our system were to fail,
the drone will undoubtedly fall out of the air and crash. The following paragraph touches on the safety

requirements of our system.

7.1.4 Safety Requirements of Autopilot System

The safety requirements of our control system were very strict. The drone will have to be in stable flight
constantly or else it will crash. To ensure this, we developed our system around two major concepts.

The first main concept was to never overburden the Curie processor. If at any point the processor be-
comes overburdened, core dumps, or locks up, the drone will become unstable and crash. The Curie is not
the most powerful processor and we needed to consider our resource usage when developing our stabilization
system. We did this by minimizing our memory usage and relying on as few computations as possible.

The second major concept was what to do if/when the system does fail. This could be the processor
freezing, memory overflowing, or the battery running low. We decided the best course of action was to
simply shut off the rotors and let the drone fall. The damage from falling would be less than the drone flying

around uncontrollably and possibly hitting someone with the rotors still spinning.

7.1.5 Drones in Society

Currently, drone safety is a very popular topic in the news. Drones can be used for a large variety of
things. From hobbyists racing them, aerial photography, surveying, searching for survivors, and even deliv-
ering packages, drones can be extremely helpful in society. However, in an analysis of ethics, the possible
bad uses of the technology must be examined as well.

First and foremost, drones can be used as weapons. They can be crashed into buildings, people, cars,
and even planes. They can be modified or constructed to carry explosives and other weapons. They provide

a remote way to injure people without the pilot being discovered.

34

Drones also are great for photography. They can be used to illegally spy on people from above, peek
through windows, and record footage over fenced areas. They allow for a huge invasion of privacy. Because
of these malicious uses, the U.S. government has enforced laws to prohibit these problems; however, laws

will not stop people from using drones with the intent to do harm or wrongfully spy on others.

7.1.6 Operational Ethics

The operation of our system during development also has strict guidelines. First, Santa Clara University
banned drone flight on campus. Second, the cities of San Jose and Santa Clara banned drone flight near
airports. Third, the U.S. government implemented legislature to make it illegal to fly a drone without reg-
istering it first.

CuriPilot is severely limited due to the current legal situation of drone flight. Currently, to avoid legal
and ethical issues at Santa Clara University, we only tested the drone firmly attached to a stationary testing
platform with protective plastic walls surrounding it. We know that our system can cause great harm, and

we proceeded as conservatively as possible to avoid legal and ethical issues.

7.2 Sustainability

7.2.1 Environmental Sustainability

The first topic of sustainability that will be examined is how the CuriPilot project affects the planet.
There are many aspects of CuriPilot that affect our world and therefore need to be analyzed in depth.
First, there are several resources needed to produce our product. Drones are highly tech-heavy and require
many different types of metals and plastics to be manufactured. Drone frames can be made out of plastics
or carbon-fiber, both of which require extensive manufacturing. The CuriPilot drone uses an Intel Curie
processor and breakout board which uses a substantial amount of silicon, solder, and rare metals. The
processor and board are also the products of extensive manufacturing processes. So, when looking at the
environmental impact of our project, we have to look into the acquisition of the materials as well as the
manufacturing processes of our components. To keep these footprints as small as possible, we need to limit
ourselves to as few parts as possible. We do not want to order excess and waste these valuable resources.
The last major part of our system is the lithium polymer battery, or LiPo for short. These batteries are
resource intensive, expensive, and dangerous if handled incorrectly. To avoid issues wasting batteries, we
need to handle them with the utmost care. They must always be charged and discharged at specified rates in

protected /enclosed containers to avoid explosions and/or fires. When our products lifespan comes to an end,

35

the materials will have to be disposed of as well. The drone frame should not be thrown away. The frame
should be taken apart and all the parts either recycled or re-purposed for other drone projects. The Curie
processor and breakout board should be recycled correctly as electronic goods. Lastly, the LiPo batteries
should be discharged completely and taken to a specialized battery recycling center to avoid harming the

earth by ending up in landfills.

7.2.2 Social Sustainability

The second issue that needs to be taken into account when looking at the sustainability of a product is
the social aspect of sustainability. As the demand for drones grows across the country, companies are looking
to utilize these new devices to perform tasks which were previously too difficult or expensive to perform. For
example, at Santa Clara University, the Facilities Department has already expressed interest in the CuriPilot
drone. Facilities currently spends tens of thousands of dollars each year in building inspection costs. By
attaching a camera to a CuriPilot drone, Facilities could quickly perform building inspections without hiring
people to manually inspect the building. Our project has the potential to save SCUs facilities department
thousands of dollars each year.

When it comes to possible negative effects on ones health and welfare, there are a couple issues. Drones
in general have been known to lose contact with the ground controller resulting in a runaway drone which
could fall out of the sky and seriously hurt someone. As a result, a tether can be attached to the drone
which will prevent it from losing contact with ground control and flying away. However, even drones on a
tether are not free from causing harm to people. Therefore, when flying the drone, people need to make
sure that there are not bystanders that could be hit by the tethered drone. Furthermore, drones have been
causing headaches for the Federal Aviation Administration, also known as the FAA. A drone flying into a
commercial airline turbine could result in a detrimental outcome. In fact, the FAA just released sanctions
on drone hobbyists saying that they cannot fly drones within 5 miles of an airport. Once again, tethering a
drone may prevent some runaway issues, but will not prevent all of them. When using the CuriPilot drone,
operators must be sure to follow all FAA regulations and fly responsibly, taking all precautions to make sure

other people are not in harm’s way.

7.2.3 Economic Sustainability

The third aspect of sustainability analyzed is CuriPilots economic sustainability. Here we look into the
financial investment put into our project and the possible financial return from CuriPilot. First, our project
required a large investment upfront in order to begin development. We required the drone frame, motors,

wires, breadboard, and the Curie processor. To continue development, all we required was a computer

36

running Ubuntu 12.04. If our project were to be put into production later on, the initial investment would
be about the same. One would need all the required components and a computer to program the system.
This brings the question, would our system be able to create enough profit or value to customers in order
to support continued use and/or purchase of CuriPilot? There are many possible sources of income for the
CuriPilot system. The first is from drone manufacturers buying low-cost Curie processors for their drones
and utilizing our autopilot system. If Intel decides to sell the Curie processor at a competitive price and
the industry likes the processor, CuriPilot would have a strong financial future. If this is the case, in order
to support the system in the future, CuriPilot would require technicians and/or software specialists to help
repair and troubleshoot issues. This would require a large amount of funding to set up. To summarize, if a

maintenance system was setup for CuriPilot, a large amount of financial backing would be required.

7.3 Intellectual Property

Our research and implementation also opened the door to plagiarism and copyright infringement. We
looked into both and researched how to avoid breaking any laws. We also discussed the topic with our
contact at Intel to further understand our legal situation. This included making sure we avoided infringing
on the nondisclosure agreement (NDA) we signed in conjunction with Intel.

The research and development of a system is an area where teams can run into trouble with intellectual
property. Our system is not a new idea. Stabilization systems have been implemented on many other mi-
croprocessors over the years. Source code for these projects is readily available online. However, no one has
implemented these on the Curie processor. The control algorithms are the same across many implementa-
tions. They only vary from system to system depending on peripheral hardware and the architecture of the
processor. We looked at and learned from other open-source implementations, but we had to develop our
own for the Curie’s architecture.

We signed an NDA with Intel concerning the architecture of the Curie processor, its peripheral circuit
boards, and our flight system implementation. We are legally unable to speak about the technological details
of our project without speaking to our contact at Intel first. To avoid any issues with this, we talk to our
contact at Intel before putting any undisclosed information out in the public through this thesis and various
presentations.

The biggest intellectual property conflict that could arise from the project in the future would most likely
come from waypoint navigation implementation. Implementing waypoint navigation from the ground up is
an arduous task; however, there are many open source programs that can be used by hobbyists. Furthermore,

many other drone companies currently using waypoint navigation in their drones. So, instead of reinventing

37

the wheel, the CuriPilot team could use some of the open source software for waypoint navigation. Unfortu-
nately, the CuriPilot team may run into some IP issues when using and adapting the open source software.
Intel cannot claim the software as their own, and the adaption of the open source code may infringe upon
one of the many waypoint navigation platforms for quadrotors or fixed-wing aircraft. For our project scope,
the best way to avoid this problem is to use a pre-built, open source waypoint program. This way, the
CuriPilot team will not be infringing on any companys patents. Down the road, in order for Intel to design
a high quality quadcopter, they will have to write their own waypoint system or buy a license to waypoint

software from a well-versed company in waypoint navigation for drones.

7.4 Conclusion

In the end, there were many societal concerns that needed to be taken into account when working on a
drone development project. The ethics that concern the team dynamic were important to the overall success
of the project. The issues that surround drone safety and privacy violations are also a hot topic for debate.
However, the good that drones can bring to people may, in fact, outweigh the negatives. Also, when in the
actual development process, the CuriPilot team needed to be aware of plagiarism issues with open-source
software when being used for a closed source system. Since we worked for Intel and under an NDA, we
needed to make sure we didn’t break our agreement with Intel. Clearly, the ethics in drone production are

a primary cause for debate that could last for hours; however, the main issues are addressed above.

38

Chapter 8

Conclusion

8.1 Summary

The goal of the project was to begin development on an Intel Curie based quadcopter. The CuriPilot
team was tasked with the preliminary research and testing of the capabilities of the Intel Curie processor
with the end goal of using it to fly a drone.

In order to do this, CuriPilot focused on four major major areas of development: stabilization, GPS
waypoint navigation, wireless communication integration, and board/firmware documentation and feedback.
The results for stabilization include the implementation of closed loop PID rate and angle control to try
and keep the quadcopter balanced. While the drone is not fully stabilized at this point in time, finer tuned
gain values could result in a balanced quadrotor. The stabilization results also include the modification of
sensor data flow in the Curie firmware and the filtering of said data. The results from waypoint navigation
development include integration of MAVLink and QGoundControl for communication with the Sharkjumper
board. As for the wireless communication system for user controlled flight, the Spektrum AR8000 RC
module was chosen and the CuriPilot team began research on how to connect this to the Curie board.
Lastly, the CuriPilot team gave valuable feedback to the engineering team at Intel corresponding to software
and hardware issues.

There are two main contributions from CuriPilot’s development. First, CuriPilot developed a strong
foundation for future groups to build from. The CuriPilot team debugged numerous critical issues with
the code, specified which parts would be best for future implementations, and helped produce a new Curie
breakout board with Intel, the EarHart, specifically for drone use. Second, the CuriPilot team encountered
several software and hardware issues with the Curie that Intel had not yet seen. Our development and
debugging produced valuable information about their processor that they can formally document for their
own developers later on. The CuriPilot team helped Intel take the first step in Curie controlled quadcopter

flight.

39

8.2 Future Work

The CuriPilot team has identified some areas of the project that need to be completed before turning

over a completed project to Intel.
8.2.1 Stabilization

While one of the goals for the CuriPilot team was to fully stabilize a drone, certain roadblocks in the
development process prevented the team from fully stabilizing the drone. There are two main areas in the
stabilization area that need to be addressed. First, full integration of angle control is necessary. This means
that the arctan() function needs to be built into the code and the corresponding control algorithm using
Equations 4.1, 4.2, and 4.3 needs to be written into the Curie code. Furthermore, once the angle control
algorithm is fully implemented, the PID gains need to be tuned once again in order to fully finish drone

stabilization.

8.2.2 User-Controlled Flight

As mentioned in Section 5.3, the CuriPilot team began looking into implementing user-controlled flight.
However, the control system running on the Curie needs to be developed in order to properly fly the drone.
For example, the drone needs to maintain a constant tilt when flying forward. This control system will need
to take in data from the RC controller and feed the data through a set of algorithms. These algorithms will

allow the drone to fly in all directions.
8.2.3 Way-Point Navigation

Due to the hardware issues with GPS module, the Earhart was not able to gather GPS data from the
board itself. The CuriPilot team provided feedback to Intel to replace the on-board GPS module on the
next Curie board revision which will allow for continued development of the waypoint navigation system. If

another revision is not available, a future team should use a off-board GPS module and integrate it with the

ARC core.

8.2.4 Curie and Edison Integration and Communication

Another goal is to integrate the Curie with the Edison to help divide up the processing power. The
end goal would be to have the main control systems running on the Curie, while the Intel Edison, a more

powerful processor, handles the heavier waypoint navigation computations.

40

8.2.5 Graphical User Interface

QGroundControl has proven to be a viable solution for mapping waypoints on an interface and sending
that data to the UAV. It can be modified to support more complex MAVLink messages. Future work for
the graphical user interface involves streamlining message formats as well as implementing support for more

than four Waypoints.

8.2.6 Yuneec Integration

Intel purchased two Yuneec drones for the CuriPilot team. The end goal is to have the new revision of
the Earhart board installed on the Yuneec drone, controlling it. The Yuneec drone integration is likely the

last part of the project that needs to be completed before handing the final product over to Intel.

8.3 Lessons Learned

8.3.1 Team Member Accountability

One of the biggest lessons we learned over the course of the project was the importance of team member
accountability. During the Fall quarter, our team was relatively consistent with setting up meeting times
each week to work on the project and to meet with our advisor. Unfortunately, during the second quarter
when our team needed to dive into development, class work began to intrude on our regular meeting times.
As a result, the development processes slowed and the number of meetings began to decrease. By keeping

each other accountable, we would have kept our regular meetings and improved our development progress.

8.3.2 Communication with Support Team

Another lesson we learned involved simply asking for help. Intel was constantly available to help us with
any issues we ran into. However, sometimes the CuriPilot team hesitated in reaching out to Intel for help
or advice. When we did reach out, developers from Intel would come out to the Robotics Systems Lab to
help us with any issue. In the end, if one does not ask for help, it only delays the development process.
Engineering is a team process, not to be done individually. We highly suggest that the next team not be

afraid to use Intel as a resource.

8.3.3 Technical Lessons

We learned a couple lessons regarding actual software and hardware development. First, we need to make
sure we have backup boards in case one of the boards gets bricked. The first Curie breakout board we used for

development stopped working in January. Unfortunately, we did not have a backup board; therefore, we had

41

to get a new one. This issue halted the development process in terms of stabilization progress dramatically.
Had we had backup boards, we could continued on the desired development timeline.

The second lesson we learned regarding the actual technology has to do with the gyroscope and accelerom-
eter. We were initially unaware that the gyroscope and accelerometer tend to drift pretty dramatically over
time; therefore, requiring regular calibration. Without calibrating the sensors regularly, the drone stabiliza-
tion process is much more difficult.

Finally, we have provided input to Intel regarding what is needed for the next revision of the Earhart
Board. One of the most important components that was lost between the first and third revision of the Curie
breakout boards was the analog-to-digital (ADC) input pins. These pins provide a way to adjust the drone’s
gains in real time. This will save massive amounts of time since the code does not have to be recompiled and
reflashed onto the board every time a single PID value is updated. The CuriPilot team should have pushed
harder on getting ADC pins on the Earhart Board since the recompile and flash technique cuts deeply into

the valuable development time.

42

References

[1] Dolesh, Richard J. ”The Drones Are Coming.” Parks & Recreation 50.3 (2015): 48-53. Academic
Search Complete. Web. 19 Nov 2015.

[2] Beaugex, Jim. ”The Unmanned Revolution.” Systems Contractor News 22.7 (2015): 70-74. Applied
Science & Technology Source. Web. 31 May 2016.

[3] Koerner, Matthew R. ”"Drones And The Fourth Amendment: Redefining Expectations Of Privacy.”
Duke Law Journal 64.6 (2015): 1129-1172. Academic Search Complete. Web. 19 Nov 2015.

[4] Alba, Davey. ”Behind The Curve.” Popular Mechanics 191.4 (2014): 84. MAS Ultra - School Edition.
Web. 31 May 2016.

[5] Burt, Jeffrey. ”Qualcomm Takes Aim At The Consumer Drone Market.” Eweek (2015): 1. Applied
Science & Technology Source. Web. 31 May 2016.

[6] Erb, Kelly Phillips. "FAA Announces Registration Requirements & New ’Drone Tax’.” Forbes.Com

(2015): 6. Business Source Complete. Web. 31 May 2016.

43

Appendices

44

Appendix A

Materials and Equipment

e Curie Microprocessor and breakout board
e Yuneec Drone (x2)

e Laptop running Ubuntu 14.04 LTS

e USB cables (x4)

e Quadcopter frame

e Electronic speed controller (x4)

e 3 Cell 11.1V Lithium Polymer Battery
e Battery charger

e Charge Controller

e Rotors (x4)

e Breadboard (x2)

e Potentiometers for gain tuning (x4)

o Wires

e Jumpers

e Comparator

e Resistors

e Solder and Flux

45

Appendix B

Main Control Loop Code

/*

* Note: This code is abridged due to NDA restrictions
* with Intel; and therefore, will not compile.

* However, it does provide an overview of the code

* and logic that was used for PID control, motor

* initialization, and debugging.

*/

int32_t KPX = 50;

int32_t KIX = 30;

int32_t KDX = 10;

int roll_rate_pid()
{
//int32_t accel_val = dater->ay - 40;
int32_t roll_rate_error = des_roll_rate - dater->gx + 15;
//if (accel_val > 1) {
// roll_rate_error = roll_rate_error + accel_val;
//}
//else if(accel_val < -1) {
// roll_rate_error = roll_rate_error - accel_val;

//%}
//int32_t roll_rate_error = dater->gx - des_roll_rate + 15;

//filter noise below
/*
if (roll_rate_error > -2000 && roll_rate_error < 2000) {
roll_rate_error = 0;

x/
//if (roll_rate_error > 10000) {
// roll_rate_error = 10000;
//Yelse if(roll_rate_error < -10000){
// roll_rate_error = -10000;
//}

//int32_t error_deriv = roll_rate_error - rate_error_prev->prevx; didnt work for rate error prev
rate_error_prev->prevx) ;

int32_t error_deriv = roll_rate_error -rate_error_prev->prevx;

rate_error_int->intx = roll_rate_error - rate_error_prev->prevx + rate_error_int->intx;

rate_error_prev->prevx = roll_rate_error;

46

int ret = (KPX * roll_rate_error) + (KIX * rate_error_int->intx) + (KDX * error_deriv);

return ret;

//#define KPY 20
//#define KIY O
//#define KDY 0
int32_t KPY;
int32_t KIY;
int32_t KDY;

int32_t pitch_rate_pid()
{
int32_t pitch_rate_error = des_pitch_rate - dater->gy;
int32_t error_deriv = pitch_rate_error - rate_error_prev->prevy;
rate_error_int->inty = pitch_rate_error - rate_error_prev->prevy
+ rate_error_int->inty;
rate_error_prev->prevy = pitch_rate_error;
int64_t ret = (KPY * pitch_rate_error)
+ (KIY * rate_error_int->inty)
+ (KDY * error_deriv);
ret = 0;
return ret;

#define KPZ 20
#define KIZ O
#define KDZ O
int32_t yaw_rate_pid()
{
int32_t yaw_rate_error = des_yaw_rate - dater->gz;
int32_t error_deriv = yaw_rate_error - rate_error_prev->prevz;
rate_error_int->intz = yaw_rate_error - rate_error_prev->prevz
+ rate_error_int->intz;
rate_error_prev->prevz = yaw_rate_error;
int64_t ret = (KPZ * yaw_rate_error)
+ (KIY * rate_error_int->intz)
+ (KDY * error_deriv);
ret = 0;
return ret;

}
void set_pwm_output(uintS_t channel, int64_t pwm_duty_cycle)
{
struct soc_pwm_channel_config configure;
configure.mode = PWM_MODE;
configure.pwm_period_ns = 20000000; //20 ms period
configure.pwm_duty_cycle_ns = pwm_duty_cycle;
configure.pwm_enable_interrupts = false;
}

void pwm_motor_output ()
{
int64_t roll_adjust = roll_rate_pid();
if(roll_adjust > -10 && roll_adjust < 10)
roll_adjust = 0;
int64_t pitch_adjust = pitch_rate_pid();
//int64_t pitch_adjust = 0;

47

int64_t yaw_adjust = yaw_rate_pid();
//int64_t yaw_adjust = O;
int64_t motor_O_pwm = throttle+(roll_adjust - pitch_adjust - yaw_adjust) / 3;

int64_t motor_1_pwm = throttle+(yaw_adjust - roll_adjust - pitch_adjust) / 3;

+7?

//change roll to

int64_t motor_2_pwm = throttle+(roll_adjust + pitch_adjust + yaw_adjust) / 3;

int64_t motor_3_pwm

if
if
if
if
if
if
if
if

+7

(motor_O_pwm
(motor_l_pwm
(motor_2_pwm
(motor_3_pwm
(motor_O_pwm
(motor_1_pwm
(motor_2_pwm
(motor_S_pwm

pwm_0_duty_cycle
pwm_1_duty_cycle
pwm_2_duty_cycle
pwm_3_duty_cycle

A AN AN ANV V V V

2000000)
2000000)
2000000)
2000000)
1000000)
1000000)
1000000)
1000000)

throttle+(pitch_adjust - roll_adjust - yaw_adjust) / 3;

motor_O_pwm =
motor_1_pwm =
motor_2_pwm =
motor_3_pwm =
motor_O_pwm =
motor_1_pwm =

motor_2_pwm

motor_3_pwm =

motor_O_pwm;
motor_1_pwm;
motor_2_pwm;
motor_3_pwm;

//change roll to

2000000;
2000000;
2000000;
2000000;
1000000;
1000000;
1000000;
1000000;

/*We were able to print out PWM values here to troubleshoot and observe response time*/

set_pwm_output (0, pwm_O_duty_cycle);

//Green

set_pwm_output (1, (pwm_1_duty_cycle+50000)); //Yellow

set_pwm_output (2, pwm_2_duty_cycle);

//White

set_pwm_output (3, (pwm_3_duty_cycle+50000)); //Orange

//set_pwm_output (0,
//set_pwm_output (1,
//set_pwm_output (2,
//set_pwm_output (3,

return;

1500000) ; //GREEN
1550000) ; //YELLOW
1500000) ; //WHITE
1550000) ; //0RANGE

int32_t des_roll_angle;
int32_t des_pitch_angle;
int32_t des_yaw_angle;

struct angle_integral {

};

int32_t intx;
int32_t inty;
int32_t intz;

struct angle_integral *int_angle;

#define KR 1
#define KP 1
#define KY 1

/*x/

struct gyro_average{

};

int32_t *avg_x;
int32_t *avg_y;
int32_t *avg_z;

48

struct gyro_average *gyro_avg;

int32_t i;
void update_gyro_avg(int32_t x, int32_t y, int32_t z)
{
gyro_avg->avg_x[i] = x;
gyro_avg->avg_y[i]l = y;
gyro_avg->avg_z[i] z;
it++;
if(i>4) i = 0;
}
void average_gyro_data()
{
int64_t x 0;
int64_t y = O;
int64_t z = 0O;
for (int j=0; j<3; j++) //changed 2 to 5
{

x+=gyro_avg->avg_x[j];

y+=gyro_avg->avg_y[j];

z+=gyro_avg->avg_z[j];
}
dater->gx
dater->gy
dater->gz

}

3)
3;
3.

>

I n
N < M
~N NN

void main_task(void *param)
{
for (int a=0; a<4; a++)
{
struct soc_pwm_channel_config config;
config.mode = PWM_MODE;
config.pwm_period_ns = 20000000;
config.pwm_duty_cycle_ns = 1000000;
config.pwm_enable_interrupts = false;

rate_error_prev->prevx =
rate_error_prev->prevy
rate_error_prev->prevz
rate_error_int->intx =
rate_error_int->inty =
rate_error_int->intz

non
o O

O O ol

for (int j = 0; j<5; j++)

{
gyro_avg->avg_x[j] = 0;
gyro_avg—>avg_y[jl = 0;
gyro_avg->avg_z[j] = 0;

}

i=0;

dater->ax = -150;
dater->ay = -30;
dater->az = 1160;

dater->gx = 0;
dater->gy = 0;

49

dater->gz = 0;

int_angle->intx
int_angle->inty
int_angle->intz

CHANGE = 0;
des_roll_rate =
des_pitch_rate
des_yaw_rate =
des_roll_angle
des_pitch_angle
des_yaw_angle =

o n

o ou
o O O

0;
0;
0;
= 0;
0;

50

Appendix C

MAVLink Communication Code

C.0.1 Sending Data

mavlink_system_t mavlink_system;

mavlink_system.sysid = 119; //ID of SHKJMP
mavlink_system.compid = MAV_COMP_ID_IMU; //Component/Process ID
// Define the system type, in this case an airplane

uint8_t system_type = MAV_TYPE_QUADROTER;

uint8_t autopilot_type = MAV_AUTOPILOT_GENERIC;

uint8_t system_mode = MAV_MODE_PREFLIGHT; //Initialize Motors
uint8_t system_state = MAV_STATE_STANDBY; //Ready for action

mavlink message_t msg; //Initiiazlize Message
uint8_t buf [MAVLINK_MAX_PACKET_LEN];

// Pack the message
mavlink_msg_heartbeat_pack(mavlink_system.sysid, mavlink_system.compid, &msg, system_type,
autopilot_type, system_mode, custom_mode, system_state);

// Copy the message to the send buffer
uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);

//Send Data over UART
uartO_send(buf, len);

C.0.2 Receiving Data

static void communication_receive(void)
{
mavlink_message_t msg;
mavlink_status_t status;

while(uartO_char_available()) //UART used for communication
{
uint8_t ¢ = uartO_get_char();
// Try to get a new message
if (mavlink_parse_char (MAVLINK_COMM_O, c, &msg, &status)) {
GPIO_PIN_2 = &msg;
//MSG is bool, Pin is LED

o1

switch(msg.msgid)

{
case MAVLINK_MSG_ID_HEARTBEAT:
{
// Ensure Comm
}
break;
case MAVLINK_MSG_ID_COMMAND_LONG:
// ACTION = TRUE
break;
default:
break;
}

}

// Track number of packet drops
packet_drops += status.packet_rx_drop_count;

52

Appendix D

Lithium Polymer Battery Safety
Information

Lithium Polymer Batteries

Thank you for purchasing E-flite Li-Po batteries featuring the proven technology of ThunderPower cells with Charge Protection Circuitry, which
safely monitors the status of each cell to ensure a safe charging process. ThunderPower’s match cell technology assures the consistency in
performance of our E-flite batteries.

E-flite Li-Po batteries have two separate leads. The shorter lead with the WHITE (JST) connector attached is for charging only. |t is the
only lead protected by Charge Protection Circuitry, helping prevent costly charging errors. It is very important to note that the circuit only
protects during the charge process. The second longer lead is for discharging or the power source for your airplane. The longer lead may
also be supplier with a JST connector or you may need to solder a connector onto the 16-gauge wire before use.

WARNING: Please read before charging or using battery
IMPORTANT SAFETY INSTRUCTIONS AND WARNINGS

* You must read these safety instructions and warnings before using or charging your batteries.

» Lithium Polymer batteries are volatile. Failure to read and follow the below instructions may result in fire, personal injury and damage to
property if charged or used improperly.

* Neither Horizon Hobby, Thunder Power, or our retailers assume any liability for failures to comply with these warnings and safety guidelines.
* By purchasing this battery, the buyer assumes all risks associated with lithium batteries. If you do not agree with these
conditions, return the battery immediately before use.

General Guidelines and Warnings

1) Use specific Lithium Polymer charger only. Do not use a NiCd or NiMh charger - Failure to do so may cause a fire, which may
result in personal injury and property damage.

2) Never charge batteries unattended. \When charging Li-Po batteries you should always remain in constant observation to monitor
the charging process and react to potential problems that may occur.

3) Some Li-Po chargers on the market may have technical deficiencies that may cause it to charge the Li-Po batteries incorrectly or at
an improper rate. It is your responsibility solely to assure the charger you purchased works properly. Always monitor the charging
process to assure batteries are being charged properly. Failure to do so may result in fire.

4) If at any time you witness a battery starting to balloon or swell up, discontinue charging process immediately. Disconnect
the battery and observe it in a safe place for approximately 15 minutes. Continuing to charge a battery that has begun to swell
will result in fire. Likewise, never use a battery if you find it swollen or ballooned upon purchase.

5) Since delayed chemical reaction can occur, it is best to observe the battery as a safety precaution. Battery observation should occur
in a safe area outside of any building or vehicle and away from any combustible material.

6) Wire lead shorts can cause fire! If you accidentally short the wires, the battery must be placed in a safe area for observation for
approximately 15 minutes. Additionally, if a short occurs and contact is made with metal (such as rings on your hand), severe injuries
may occur due to the conductibility of electric current.

7) A battery can still ignite even after 10 minutes.

8) Inthe event of a crash, you must remove battery for observation and place in a safe open area away from any combustible material
for approximately 15 minutes.

9) If for any reason you need to cut the terminal wires, it will be necessary to cut each wire separately, ensuring the wires to not touch
each other or a short may occur, potentially causing a fire.

10) To solder a connector: Remove insulating tape of Red wire and solder to positive terminal of a connector, then remove insulating
tape of Black wire and solder to the negative terminal of connector. Be careful not to short the wire lead. If you accidentally cause the
battery to short, place it in a safe open space and observe the battery for approximately 15 minutes. A battery may swell or even
possibly catch fire after a short time.

11) Never store or charge a battery pack inside your car in extreme temperatures, since extreme temperature could cause fire.

Before You Charge
1) Make a visual inspection of the pack. Look for any damaged leads, connectors, broken shrink, swelling of cells, or other irregularities.

Do not use if you find any of the above issues with your pack.
2) Before installing or changing the connector, check the voltage of the pack using a digital voltmeter (not your charger). All new packs
ship at approximately 3.80V per cell.
Example 2S pack should read approximately 7.60V
3S pack should read approximately 11.40V
3) If any damage to the pack or leads is found, or the voltage is significantly less for your pack than specified above, do not attempt to
charge or fly the pack; contact E-flite (Horizon Hobby) or Thunder Power directly as soon as possible.

Charging Process
1) Never charge batteries unattended.

2) Charge in an isolated area, away from other flammable materials on a concrete surface outside of buildings.

3) Let the battery cool down to ambient temperature before charging.

4) Do not charge batteries packs in series. Charge each battery pack individually. Failure to do so may result in incorrect battery
recognition and charging functions. Overcharging may occur and fire may be the result. ***In order to discharge packs in series, the
charged voltage of both packs must be within 0.01V for the same cell count pack***

5) Be sure you use the shorter lead with the JST (BEC) connector for all charging. This is the lead protected by the Charge
Protection Circuitry referenced in the introduction. There are two sets of lead wires on this battery. The shortest one is always used
exclusively for charging.

6) When selecting the cell count or voltage for charging purposes, select the cell count and voltage as it appears on the
battery label. Selecting a cell count or voltage other than the one printed on the label can cause fire. As a safety precaution, please
confirm the information printed on the battery is correct.

a. Example: The label on a 2-Cell battery pack in series will read — “Charge as 2-Cell (7.4V), or may cause fire” — You must
select 2-Cell for charging.

b. Example: The label on a 3-Cell battery pack in series will read — “Charge as 3-Cell (11.1V), or may cause fire” — You must
select 3-Cell for charging.

7) You must check the pack voltage before charging after flight. Do not attempt to charge any pack if open voltage per cell is less
than 3.3V
Example Do not charge a 2-cell pack if below 6.6V

Do not charge a 3 cell pack if below 9.9V

8) You must select the charge rate current that does not to exceed 1C (one times the capacity of the battery, unless otherwise
noted®). A higher setting may cause fire. The below chart is calculated at 1 x capacity of pack.
Example 860 mAh: Charge at or below 860 mA

1200 mAh: Charge at or below 1.2 Amps
1800 mAh: Charge at or below 1.8 Amps
2100 mAh: Charge at or below 2.1 Amps

First Flights

We recommend 3-5C max average discharge for breaking in new packs. Also be extremely careful not to over discharge new packs (Packs
should NEVER be over discharged at any time, but over discharging on the first flight will ruin the battery permanently before you are able to
enjoy it. See “Caring for Battery” below).

Storage & Transportation
1) Store battery at room temperature between 40 and 80 degrees F for best results.

2) Do not expose battery pack to direct sunlight (heat) for extended periods.

3) When transporting or temporarily storing in a vehicle, temperature range should be greater than 20 degrees F but no more than 150
degrees F.

4) Storing battery at temperatures greater than 170 degrees F for extended periods of time (more than 2 hours) may cause
damage to battery and possible fire.

Caring for Battery

1) Charge battery with good quality Lithium Polymer charger. A poor quality charger can be dangerous (such as the MRC Super Brain
969 which is NOT a proper Lithium Polymer charger).

2) Set voltage and current correctly (failure to do so can cause fire).

3) Please check pack voltage after the first charge.
Example 2-Cell: 8.4V (8.30 to 8.44)

3-Cell: 12.6V (12.45 to 12.66)

4) Do not discharge battery to a level below 3V per cell under load. Deep discharge below 3V per cell can deteriorate battery
performance. Be sure to set your ESC for the proper cut off voltage (6.0V cut off for 2S packs, 9.0V cut off for 3S packs, etc).

5) Use caution to avoid puncture of the cell. Puncture of cells may cause fire.

Operating Temperature
Charge: 32 to 113 degrees F
Discharge: 32 to 140 degrees F
1) Let battery cool down to ambient temperature before charging.
2) During discharge and handling of batteries, do not exceed 160 degrees F.

Battery Life
Batteries that lose 20% of their capacity must be removed from service and disposed of properly.
Discharge the battery to 3V/Cell, making sure output wires are insulated, then wrap battery in a bag for disposal.

Product Warranty

Product warranty is limited to original defects in material and workmanship. Warranty does not cover collateral damage. Due
to the nature and use of this product there is no term warranty. Misuse, abuse, incorrect charging, failure to comply with the above
warnings and guidelines, and other inappropriate use of this product are not covered under warranty.

Horizon Service Center
Attention: E-flite Service
4105 Fieldstone Road
Champaign, IL 61822
Phone: (877) 504-0233

E-flite™ is an exclusive brand of Horizon Hobby, Inc.
© 2004 Horizon Hobby, Inc.
www.horizonhobby.com

Robotic Systems Lab Safety Instructions
LiPo Battery Safety

Overview
This packet covers the requirements for safe handling of Lithium Polymer batteries.

Training

Watch the following videos

https:/ /www.youtube.com/watch?v=K6hGvXxFTFA
https:/ /www.youtube.com/watch?v=gobFcNzGG9I1

Optional video
https://www.youtube.com/watch?v=ixIOEPnsgbl

Read and review the following document
http:/ /www.hotizonhobby.com/pdf/EFL-LiPoSafetyWarnings.pdf

Charging
Batteries must be charged in the designated fire cabinet.

Do not leave the batteries charging unattended or overnight.

It is important to make sure that the cells are charging evenly. Never charge over 4.2 volts per cell.
Always charge at 1C.

Make sure you select the right number of cells for the battery you are charging.

Let batteries cool down before charging.

Usage
Never go below 3.3 volts per cell.

Never discharge over its maximum C rating. Example- If you need to draw 40 amps, the smallest
battery you can use is a 2000mAh battery that is rated at 20 C.

Storage
Batteries should be stored with each cell at 3.7-3.8 volts.

Store the batteries in designated fire cabinet.

Transport

When transporting the batteries, use LiPo bags and/or metal cases

When to dispose of battery

Do not use the battery if any of the following are met:
At least one of the cells is below 3.0 volts

The battery is bloated
The battery has physical damage

In both photos, the batteries on the left appear to be in good condition; the cells still need to be
checked to make sure that the battery is balanced. The middle batteries are started to bloat and
should be disposed of and no longer used. The batteries on the right have physical damage and
should also be disposed of.

Discharge for disposal
TBD- possibly EHS

In case of fire
TBD-If can be safely done, pour sand over batteries to smother fire or use D rated fire extinguisher

In an Emergency:
Call 4444 from the lab phone (or 408-554-4444 from a cell phone), or 911
from a cell phone.

Appendix E

Spektrum ARS8000 Information

SPEKTRUIT]

The Leader in Spread Spectrum Technology

AR8000 User Guide

AR8000 Bedienungsanleitung
AR8000 Guide de l'utilisateur
AR8000 Guida dell’utente

AR8000 User Guide

The AR8000 full range 8-channel receiver features DSM2™ technology and is compatible with
all Spektrum™ and JR® aircraft radios that support DSM2 technology including: JR12X, X9303,
Spektrum DX8, DX7, DX7se, DX6i, DX5e and Module Systems.

Note: The AR800O0 receiver is not compatible with the Spekirum DX6 parkflyer transmitter.

Features
e 8-channel full range receiver
e Patented MultiLink receiver technology
¢ Includes one internal and one remote receiver
e SmartSafe™ failsafe system
e QuickGonnect™ with Brownout Detection
¢ Flight Log compatible (optional)
¢ 2048 Resolution
e High-speed 11ms operation when used with capable transmitters
¢ Hold indicator (Red LED indicates number of holds incurred during flight).

Applications

Full range up to 8-channel aircraft including:
e All types and sizes of glow, gas and electric powered airplanes
e All types and sizes of no-powered gliders
e All types and sizes of glow, gas and electric powered helicopters

Note: Not for use in airplanes that have full carbon fuselages. Not for use in airplanes that
have significant carbon or conductive structures. It is recommended to use either the
AR6250 or AR9300 receivers for carbon fuselage applications.

Specifications:
Type: DSM2 full range receiver
Channels: 8
Modulation: DSM2
Main Receiver Dimensions: 1.27 x 1.35 x 0.45 in (32.3 x 34.3 x 11.4mm)
Remote Receiver Dimensions: 0.80 x 1.10 x 0.27 in (20.3 x 28.0 x 6.9mm)
Main Receiver Weight: .33 0z (9.4 g) Weight with Remote Receiver: .49 oz (13.9 g)
Voltage range: 3.5 to 9.6V
Resolution: 2048
Frame rate: 11ms when paired with the DX7se or DX8
Compatibility: All DSM2 aircraft transmitters and module systems

Patented MultiLink™ Receiver Technology

The AR8000 incorporates dual receivers, offering the security of dual path RF redundancy. An
internal receiver is located on the main printed circuit board, while a second external receiver
is attached to the main board with a 6-inch extension. By locating these receivers in slightly
different locations in the aircraft, each receiver is exposed to its own RF environment, greatly
improving path diversity (the ability for the receiver to see the signal in all conditions).

Antenna Polarization

For optimum RF link performance it’s important that the antennas be mounted in an orientation
that allows for the best possible signal reception when the aircraft is in all possible attitudes
and positions. This is known as antenna polarization. The antennas should be oriented
perpendicular to each other; typically one vertical and one horizontal (see Receiver Installation).
The remote receiver’s antenna should be mounted in a position perpendicular at least 2 inches
away from the main receiver’s antenna using double-sided foam tape.

Receiver Installation

In gas and glow aircraft install the main receiver using the same method you would use to install
a conventional receiver in your aircraft. Typically, wrap the main receiver in protective foam and
fasten it in place using rubber bands or hook and loop straps.

Alternately, in electric airplanes or helicopters, it's acceptable to use thick double-sided foam
tape to fasten the main receiver in place.

Mounting the remote receiver in a slightly different location, even just inches away from the
primary receiver, gives tremendous improvements in path diversity. Essentially, each receiver
sees a different RF environment and this is key to maintaining a solid RF link, even in aircraft that
have substantial conductive materials (e.g. larger gas engines, carbon fiber, pipes, etc.), which
can weaken the signal.

Using servo tape, mount the remote receiver keeping the remote antennas at least 2 inches away
from the primary antenna. Ideally, the antennas will be oriented perpendicularly to each other. In
airplanes, we’ve found it best to mount the primary receiver in the center of the fuselage on the
servo tray and to mount the remote receiver to the side of the fuselage or in the turtle deck.

In helicopters, there is generally enough room on the servo tray to achieve the necessary separation.
If necessary a mount can be fashioned using clear plastic to mount the external receiver.

Important: Y-Harnesses and Servo Extensions

When using Y-harnesses or servo extensions it’s important to use standard non-amplified
Y-harnesses and servo extensions as this can/will cause the servos to operate erratically or not
function at all. Amplified Y-harnesses were developed several years ago to boost the signal for
some older PCM systems and should not be used with Spektrum equipment. Note that when
converting existing models to Spektrum be certain that all amplified Y-harnesses and or servo
extensions are replaced with conventional non-amplified versions.

Binding

The receiver must be bound to the transmitter before it will operate. Binding is the process of
teaching the receiver the specific code of the transmitter so it will only connect to that specific
transmitter.

1. To bind an AR8000 to a DSM2 transmitter, insert the bind plug in the BATT/BIND port on the
receiver.

Note: To bind an aircraft with an electronic speed controller that powers the receiver through the
throttle channel (ESC/BEC), insert the bind plug into the BATT/BIND port in the receiver and
the throttle lead into the throttle (THRO) port. Proceed to Step #2.

2. Power the receiver. Note that the LED on the receiver should be flashing, indicating that the
receiver is in bind mode and ready to be bound to the transmitter.

3. Move the sticks and switches on the transmitter to the desired failsafe positions (low throttle
and neutral control positions).

4. Follow the procedures of your specific transmitter to enter Bind Mode, the system wiill
connect within a few seconds. Once connected, the LED on the receiver will go solid
indicating the system is connected.

5. Remove the bind plug from the BATT/BIND port on the receiver before you power off the
transmitter and store it in a convenient place.

6. After you've set up your model, it’s important to rebind the system so the true low throttle
and neutral control surface positions are set.

IMPORTANT: Remove the bind plug to prevent the system from entering bind mode the next
time the power is turned on.

SmartSafe™ Failsafe

The AR8000 features SmartSafe failsafe. SmartSafe is ideal for most types of aircraft. With
SmartSafe, when signal is lost the throttle channel only is driven to its preset failsafe position
(normally low throttle) while all other channels hold last command.

e Prevents unintentional electric motor response on start-up.

e Eliminates the possibility of over-driving servos on start-up by storing preset failsafe positions.

e Establishes low-throttle failsafe and maintains last-commanded control surface position if
the RF signal is lost.

Receiver Power Only

¢ When the receiver only is turned on (no transmitter signal is present), the throttle channel has
no output, to avoid operating or arming the electronic speed control.

e All other channels are driven to their preset failsafe positions set during binding.

After Connection
¢ When the transmitter is turned on and after the receiver connects to the transmitter, normal
control of all channels occurs.
o After the system makes a connection, if loss of signal occurs SmartSafe drives the throttle
servo only to its preset failsafe position (low throttle) that was set during binding.
e All other channels hold their last commanded position. When the signal is regained, the
system immediately (less than 4ms) regains control.

Plugging in the Leads
Plug the servo leads into the appropriate servo ports in the receiver noting the polarity of the
Servo connector.

Red LED Hold Indicator

The ARB000 features a red LED that indicates the number of holds that have occurred since

the receiver was last powered on. The LED will flash the number of holds then pause (e.g.,
flash, flash, flash, pause, flash, flash, flash, pause indicates three holds occurred since the
receiver was last turned on). Note that holds are reset to zero when the receiver is turned off.
During the first flights of a new airplane, it's recommended to check the red LED hold indicator.
If it’s flashing, it’s important to optimize the installation (move or reposition antennas) until no
hold occurs. On later flights, the LED Hold Indicator can be used to confirm RF link performance.

Range Testing

Before each flying session and especially with a new model, it is important to perform a range
check. All Spektrum aircraft transmitters incorporate a range testing system which, when
activated, reduces the output power, allowing a range check.

30 paces (90 feet/28 meters)

1. With the model restrained on the ground, stand 30 paces (approx. 90 feet/28 meters) away
from the model.

2. Face the model with the transmitter in your normal flying position and place your
transmitter into range check mode.

3. You should have total control of the model with the button depressed at 30 paces (90
feet/28 meters).

4. If control issues exist, call the Product Support Team in the U.S. at 1-877-504-0233 for
further assistance. In the UK or Germany use one of the following contacts.

European Union: +44 (0) 1279 641 097 (United Kingdom)
or email sales@horizonhobby.co.uk
+49 4121 46199 66 (Germany)
or email service@horizonhobby.de

Advanced Range Testing

For sophisticated models that have significant conductive material in them, the advanced range
test using a flight log is recommended. The advanced range check will confirm that the internal
and remote receivers are operating optimally and that the installation (position of the receivers)
is optimized for the specific aircraft. This Advanced Range Check allows the RF performance of
each receiver to be evaluated and to optimize the locations of the remote receiver.

Advanced Range Test

1 Plug a Flight Log (SPM9540 - optional) into the Batt/Data port on the AR8000 and turn on

the system (Tx and Rx).

2. Advance the Flight Log until F-frame losses are displayed by pressing the button on the
Flight Log.

3. Have a helper hold your aircraft while observing the Flight Log data.

4. Standing 30 paces away from the model, face the model with the transmitter in your
normal flying position and put your transmitter into range test mode. This causes reduced
power output from the transmitter.

5. Have your helper position the model in various orientations (nose up, nose down, nose
toward the Tx, nose away from the Tx, etc.) while your helper watches the Flight Log
noting any correlation between the aircraft’s orientation and frame losses. Do this for 1
minute. The timer on the transmitter can be used here.

Receiver Power System Requirements
Inadequate power systems that are unable to provide the necessary minimum voltage to the
receiver during flight have become the number one cause of in-flight failures. Some of the
power system components that affect the ability to properly deliver adequate power include:
e Receiver battery pack (number of cells, capacity, cell type, state of charge)
e The ESC’s capability to deliver current to the receiver in electric aircraft
¢ The switch harness, battery leads, servo leads, regulators etc.
The AR8000 has a minimum operational voltage of 3.5 volts; it is highly recommended the
power system be tested per the guidelines below and in the Flight Log section.

Recommended Power System Test Guidelines

If a questionable power system is being used (e.g. small or old battery, ESC that may not have
a BEC that will support high-current draw, etc.), it is recommended that a voltmeter be used to
perform the following test.

Note: The Hangar 9 Digital Servo & Rx Current Meter (HAN172) or the Spektrum Flight Log
(SPM9540) are the perfect tools to perform the test below.

Plug the voltmeter into an open channel port in the receiver and with the system on, load the
control surfaces (apply pressure with your hand) while monitoring the voltage at the receiver.
The voltage should remain above 4.8 volts even when all servos are heavily loaded.

Note: The latest generations of Nickel-Metal Hydride batteries incorporate a new chemistry
mandated to be more environmentally friendly. These batteries when charged with
peak detection fast chargers have tendencies to false peak (not fully charge) repeatedly.
These include all brands of NiMH batteries. If using NiMH packs, be especially
cautious when charging, making absolutely sure that the battery is fully charged. It is
recommended to use a charger that can display total charge capacity. Note the number
of mAh put into a discharged pack to verify it has been charged to full capacity.

QuickConnect With Brownout Detection
Your AR8000 features QuickConnect with Brownout Detection.
e Should an interruption of power occur (brownout), the system will reconnect immediately when
power is restored (QuickConnect).
e The LED on the receiver will flash slowly indicating a power interruption (brownout) has occurred.
¢ Brownouts can be caused by an inadequate power supply (weak battery or regulator), a loose
connector, a bad switch, an inadequate BEC when using an electronic speed controller, etc.
© Brownouts occur when the receiver voltage drops below 3.5 volts thus interrupting control as the
servos and receiver require a minimum of 3.5 volts to operate.

How QuickConnect™ With Brownout Detection Works
¢ When the receiver voltage drops below 3.5 volts the system drops out (ceases to operate).
¢ When power is restored the receiver immediately attempts to reconnect to the last two
frequencies that it was connected to.
¢ |f the two frequencies are present (the transmitter was left on) the system reconnects
typically within one second.

QuickConnect with Brownout Detection is designed to allow you to fly safely through most short
duration power interruptions, however, the root cause of these interruptions must be corrected
before the next flight to prevent catastrophic safety issues.

Note: If a brownout occurs in flight it is vital that the cause of the brownout be determined
and corrected.

Flight Log (SPM9540 Optional)

The Flight Log is compatible with the AR8000. The Flight Log displays overall RF link
performance as well as the individual internal and external receiver link data. Additionally it
displays receiver voltage.

Using the Flight Log
After a flight and before turning off the receiver or transmitter, plug the Flight Log into the Data
port on the AR800O. The screen will automatically display voltage e.g. 6v2= 6.2 volts.

Note: When the voltage reaches 4.8 volts or less, the screen will flash indicating low voltage.

Press the button to display the following information:
A - Antenna fades on the internal antenna
B — Not used
L — Antenna fades on the external antenna
R — Not used
F - Frame loss
H - Holds

Antenna fades—represents the loss of a bit of information on that specific antenna.

Typically it’s normal to have as many as 50 to 100 antenna fades during a flight. If any single
antenna experiences over 500 fades in a single flight, the antenna should be repositioned in the
aircraft to optimize the RF link.

Frame loss—represents simultaneous antenna fades on all attached receivers. If the RF link

is performing optimally, frame losses per flight should be less than 20. A hold occurs when 45
consecutive frame losses occur. This takes about one second. If a hold occurs during a flight, it's
important to evaluate the system, moving the antennas to different locations and/or checking to
be sure the transmitter and receivers are all working correctly.

Note: A servo extension can be used to allow the Flight Log to be plugged in more
conveniently. On some models, the Flight Log can be plugged in, attached and left on
the model using double-sided tape. Mounting the Flight Log conveniently to the side
frame is common with helicopters.

ModelMatch

Some Spektrum and JR transmitters offer a patent pending feature called ModelMatch.
ModelMatch prevents the possibility of operating a model using the wrong model memory,
potentially preventing a crash. With ModelMatch each model memory has its own unique code
(GUID) and during the binding process the code is programmed into the receiver. Later, when
the system is turned on, the receiver will only connect to the transmitter if the corresponding
model memory is programmed on screen.

Note: If at any time you turn on the system and it fails to connect, check to be sure the
correct model memory is selected in the transmitter. Please note that the Spektrum
Aircraft Modules do not have ModelMatch.

Tips on Using Spektrum 2.4GHz

While your DSM equipped 2.4GHz system is intuitive to operate, functioning nearly identically to
72MHz systems, following are a few common questions from customers.

Q: Which do I turn on first, the transmitter or the receiver?

A: If the receiver is turned off first—all servos except for the throttle will be driven to their preset
failsafe positions set during binding. At this time the throttle channel doesn’t output a pulse
position preventing the arming of electronic speed controllers or in the case of an engine powered
aircraft the throttle servo remaining in its current position. When the transmitter is then turned

on the transmitter scans the 2.4GHz band and acquires two open channels. Then the receiver
that was previously bound to the transmitter scans the band and finds the GUID (Globally Unique
Identifier code) stored during binding. The system then connects and operates normally.

If the transmitter is turned on first—the transmitter scans the 2.4GHz band and acquires two
open channels. When the receiver is then turned on for a short period (the time it takes to
connect) all servos except for the throtile are driven to their preset failsafe positions while the
throttle has no output pulse. The receiver scans the 2.4GHz band looking for the previously
stored GUID and when it locates the specific GUID code and confirms uncorrupted repeatable
packet information, the system connects and normal operation takes place. Typically this takes
2 1o 6 seconds.

Q: Sometimes the system takes longer to connect and sometimes it doesn’t connect

at all?
A: In order for the system to connect (after the receiver is bound) the receiver must receive
a large number of consecutive uninterrupted perfect packets from the transmitter in order to
connect. This process is purposely critical of the environment ensuring that it’s safe to fly when
the system does connect. If the transmitter is too close to the receiver (less than 4 feet) or if the
transmitter is located near metal objects (metal TX case, the bed of a truck, the top of a metal
work bench, etc.) connection will take longer and in some cases connection will not occur as
the system is receiving reflected 2.4GHz energy from itself and is interpreting this as unfriendly
noise. Moving the system away from metal objects or moving the transmitter away from the
receiver and powering the system again will cause a connection to occur. This only happens
during the initial connection. Once connected the system is locked in and should a loss of signal
occur (failsafe) the system connects immediately (4ms) when signal is regained.

Q: I've heard that the DSM system is less tolerant of low voltage. Is this correct?

A: All DSM receivers have an operational voltage range of 3.5 to 9.6 volts. With most systems
this is not a problem as in fact most servos cease to operate at around 3.8 volts. When using
multiple high-current draw servos with a single or inadequate battery/power source, heavy
momentary loads can cause the voltage to dip below this 3.5-volt threshold thus causing

the entire system (servos and receiver) to brown out. When the voltage drops below the low
voltage threshold (3.5 volts), the DSM receiver must reboot (go through the start-up process
of scanning the band and finding the transmitter) and this can take several seconds. Please
read the receiver power requirement section as this explains how to test for and prevent this
occurrence.

Q: Sometimes my receiver loses its bind and won’t connect requiring rebinding. What
happens if the bind is lost in flight?
A: The receiver will never lose its bind unless it’s instructed to. It’s important to understand that
during the binding process the receiver not only learns the GUID (code) of the transmitter but the
transmitter learns and stores the type of receiver that it’s bound to. If the transmitter is placed
into bind mode, the transmitter looks for the binding protocol signal from a receiver. If no signal is
present, the transmitter no longer has the correct information to connect to a specific
receiver and in essence the transmitter has been “unbound” from the receiver. We’ve had several
DX7 customers that use transmitter stands or trays that unknowingly depress the bind button
and the system is then turned on losing the necessary information to allow the connection to
take place. We've also had DX7 customers that didn’t fully understand the range test process
and pushed the bind button before turning on the transmitter also causing the system to “lose its

bind.”
[EN |

Warranty Period

Exclusive Warranty- Horizon Hobby, Inc., (Horizon) warranties that the Products purchased (the “Product”)
will be free from defects in materials and workmanship for a period of 1 year from the date of purchase by
the Purchaser.

1-Year Limited Warranty

Horizon reserves the right to change or modify this warranty without notice and disclaims
all other warranties, express or implied.

(a) This warranty is limited to the original Purchaser (“Purchaser”) and is not transferable. REPAIR

OR REPLACEMENT AS PROVIDED UNDER THIS WARRANTY IS THE EXCLUSIVE REMEDY OF THE
PURCHASER. This warranty covers only those Products purchased from an authorized Horizon dealer.
Third party transactions are not covered by this warranty. Proof of purchase is required for warranty claims.
Further, Horizon reserves the right to change or modify this warranty without notice and disclaims all other
warranties, express or implied.

(b) Limitations- HORIZON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED,
ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE
PRODUCT. THE PURCHASER ACKNOWLEDGES THAT THEY ALONE HAVE DETERMINED THAT THE
PRODUCT WILL SUITABLY MEET THE REQUIREMENTS OF THE PURCHASER'S INTENDED USE.

(c) Purchaser Remedy- Horizon's sole obligation hereunder shall be that Horizon will, at its option, (i)
repair or (ii) replace, any Product determined by Horizon to be defective. In the event of a defect, these are
the Purchaser's exclusive remedies. Horizon reserves the right to inspect any and all equipment involved
in a warranty claim. Repair or replacement decisions are at the sole discretion of Horizon. This warranty
does not cover cosmetic damage or damage due to acts of God, accident, misuse, abuse, negligence,
commercial use, or modification of or to any part of the Product. This warranty does not cover damage due
to improper installation, operation, maintenance, or attempted repair by anyone other than Horizon. Return
of any goods by Purchaser must be approved in writing by Horizon before shipment.

Damage Limits

HORIZON SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, LOSS OF
PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCT,
WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.
Further, in no event shall the liability of Horizon exceed the individual price of the Product on which
liability is asserted. As Horizon has no control over use, setup, final assembly, modification or misuse,
no liability shall be assumed nor accepted for any resulting damage or injury. By the act of use, setup or
assembly, the user accepts all resulting liability.

If you as the Purchaser or user are not prepared to accept the liability associated with the use of this Product,
you are advised to return this Product immediately in new and unused condition to the place of purchase.

Law: These Terms are governed by Illinois law (without regard to contlict of law principals).

Safety Precautions

This is a sophisticated hobby Product and not a toy. It must be operated with caution and common sense
and requires some basic mechanical ability. Failure to operate this Product in a safe and responsible
manner could result in injury or damage to the Product or other property. This Product is not intended
for use by children without direct adult supervision. The Product manual contains instructions for safety,
operation and maintenance. It is essential to read and follow all the instructions and warnings in the
manual, prior to assembly, setup or use, in order to operate correctly and avoid damage or injury.

Questions, Assistance, and Repairs

Your local hobby store and/or place of purchase cannot provide warranty support or repair. Once assembly,
setup or use of the Product has been started, you must contact Horizon directly. This will enable Horizon to
better answer your questions and service you in the event that you may need any assistance. For questions
or assistance, please direct your email to productsupport@horizonhobby.com, or call 877.504.0233 toll

free to speak to a Product Support representative.

Inspection or Repairs

If this Product needs to be inspected or repaired, please call for a Return Merchandise Authorization
(RMA). Pack the Product securely using a shipping carton. Please note that original boxes may be
included, but are not designed to withstand the rigors of shipping without additional protection. Ship via a
carrier that provides tracking and insurance for lost or damaged parcels, as Horizon is not responsible for

merchandise until it arrives and is accepted at our facility. A Service Repair Request is available at www.
horizonhobby.com on the “Support” tab. If you do not have internet access, please include a letter with
your complete name, street address, email address and phone number where you can be reached during
business days, your RMA number, a list of the included items, method of payment for any non-warranty
expenses and a brief summary of the problem. Your original sales receipt must also be included for
warranty consideration. Be sure your name, address, and RMA number are clearly written on the outside of

the shipping carton.

Warranty Inspection and Repairs

To receive warranty service, you must include your original sales receipt verifying the proof-of-purchase
date. Provided warranty conditions have been met, your Product will be repaired or replaced free of charge.

Repair or replacement decisions are at the sole discretion of Horizon Hobby.

Non-Warranty Repairs

Should your repair not be covered by warranty the repair will be completed and payment will be required
without notification or estimate of the expense unless the expense exceeds 50% of the retail purchase cost.
By submitting the item for repair you are agreeing to payment of the repair without notification. Repair
estimates are available upon request. You must include this request with your repair. Non-warranty repair
estimates will be billed a minimum of 2 hour of labor. In addition you will be billed for return freight.
Please advise us of your preferred method of payment. Horizon accepts money orders and cashiers checks,
as well as Visa, MasterCard, American Express, and Discover cards. If you choose to pay by credit card,
please include your credit card number and expiration date. Any repair left unpaid or unclaimed after 90
days will be considered abandoned and will be disposed of accordingly. Please note: non-warranty repair
is only available on electronics and model engines.

Electronics and engines requiring inspection or repair should be shipped to the following address:

Horizon Service Center
4105 Fieldstone Road
Champaign, Illinois 61822, USA

All other Products requiring warranty inspection or repair should be shipped to the following address:

Horizon Product Support
4105 Fieldstone Road
Champaign, lllinois 61822, USA

Please call 877-504-0233 or e-mail us at productsupport@horizonhobby.com with any questions or
concerns regarding this product or warranty.

European Union:
Electronics and engines requiring inspection or repair should be shipped to one of the following
addresses:

Horizon Hobby Limited
Units 1-4 Ployters Rd
Staple Tye, Harlow
Essex CM18 7NS
United Kingdom

Please call +44 (0) 1279 641 097 or email sales@horizonhobby.co.uk with any questions or concerns
regarding this product or warranty.

Horizon Technischer Service
Hamburger Str. 10
25335 Elmshorn
Germany

Please call +49 4121 46199 66 or email service@horizonhobby.de with any questions or concerns
regarding this product or warranty.

Horizon Hobby SAS
14 Rue Gustave Eiffel
Zone d’Activité du Réveil Matin
91230 Montgeron
France

Please call +33 (0) 160 47 44 47 with any questions or concerns regarding this product or warranty.

Compliance Information for the European Union
c Declaration of Conformity

(inaccordance with ISO/IEC 17050-1)

No. HH2010012801

Product(s): Spektrum AR8000 Receiver
ltem Number(s): SPMARS000
Equipment class: 1

The objects of declaration described above are in conformity with the requirements of the
specifications listed below, following the provisions of the European R&TTE directive 1999/5/EC:

EN 301 489-1v.1.6.1 General EMC requirements for Radio equipment
EN 301 489-17v.1.2.1

Signed for and on behalf of:

Horizon Hobby, Inc.

Champaign, IL USA

Jan 28, 2010 Steven A. Hall
Vice President
International Operations and Risk Management
Horizon Hobby, Inc.

Instructions for Disposal of WEEE by
Users in the European Union

This product must not be disposed of with other waste. Instead, it is the user’s
s [65pONSIDIlity to dispose of their waste equipment by handing it over to a
designated collection point for the recycling of waste electrical and electronic equipment. The
separate collection and recycling of your waste equipment at the time of disposal will help to
conserve natural resources and ensure that it is recycled in a manner that protects human health
and the environment. For more information about where you can drop off your waste equipment for
recycling, please contact your local city office, your household waste disposal service or where you
purchased the product.

FCC Information

This device complies with part 15 of the FCC rules. Operation is subject to the following two
conditions: (1) This device may not cause harmful interference, and (2) this device must accept any
interference received, including interference that may cause undesired operation.

Caution: Changes or modifications not expressly approved by the party responsible for
compliance could void the user’s authority to operate the equipment.

This product contains a radio transmitter with wireless technology which has been tested and found
to be compliant with the applicable regulations governing a radio transmitter in the 2.400GHz to
2.4835GHz frequency range.

US patent number 7,391,320. Other patents pending.

DSM and DSM2 are trademarks or registered trademarks of Horizon Hobby, Inc. The Spektrum trademark is used with
permission of Bachmann Industries, Inc. Spektrum radios and accessories are exclusively available from Horizon Hobby, Inc.

Appendix F

Senior Design Conference Slides As
Presented

70

CuriPilot

Greg Cusack, Karan Daryanani, Nathaniel Tucker
Advisors: Dr. Christopher Kitts, Dr. Sally Wood
May 12th, 2016

YUNEEC ¢+#

ELECTRIC AVIATION

Objectives

e Show that the Intel Curie Processor
is a viable choice for running a drone’s
stabilization control system.

e Help Intel bring up a new revision of
the Curie board suitable for UAVs

e To develop a fully functional UAV
autopilot system

Figure 2: Intel Curie Processor

5/24/2016

Agenda

e Project Background
e Objectives

e |Initial Design

e Final Design

e Testing and Results

e Lessons Learned

Figure 1: CuriPilot Logo

Functional and Nonfunctional Requirements

CuriPilot will...

e maintain stability
while hovering

e allow for stable
user controlled
flight

e allow for altitude
locked flight

CuriPilot will be...

e modular

e maintainable

e robust

e reliable

e safe

Design and Testing Constraints

e Stabilization system must
run on the Intel Curie

e Stabilization system must
be implemented in
embedded C

e Limits of a Real Time
Operating System

e lllegal for us to fly outdoors

Figure 3: Drone Development Cage

Initial Work and Roadblocks

e \What we had:
o Rev.1 breakout board
o QOutdated Curie software

e What happened?
o “Bricked” our Rev.1 board

e How did we react?
o Restructured scope of project
o Began developing on other parts
of the system besides stabilization

Figure 5: Drone with 1st Board

5/24/2016

About the Curie

32-bit, low-power, Intel Quark Processor
400MHz clock speed
384kB Flash Memory
6 axis IMU containing the onboard accelerometer and
gyroscope
Real-time Operating System
Same platform used on
snowboards in 2016 Winter
X Games!
Figure 4: Curie Size Comparison
6
Curie Breakout Board v3
GPS
Wireless
Communication
module
Barometer Curie
Battery UART
Debug
Pins
4x PWM
Pins

Figure 6: Earhart Board

System Architecture

Quadcopter e o
P
U Convarar
.

I Groung Comeol Swnon [S—
‘ G Traraminier

Figure 7: High-level System Architecture

Ground

PID Control Overview

Figure 9: PID Control Diagram

5/24/2016

Introduction to Drone Flight

e Roll, Pitch, and Yaw
e Rate Control vs Angle Control

e Altitude Lock

Figure 8: Roll, Pitch, and Yaw

Rate Stabilization

e KPX, KIX, KDX represent gain values used for the control
system

e Proportional:

rate err = (desired rate - gyro x) * KPX

e Integral:

int _err = (rate err + int err) * KIX

e Derivative:

deriv_err = (rate err - rate err prev) * KDX

Control Loop Output

e Use accelerometer & gyroscope data to calculate
output PWM signals for each motor (0,1,2,3)

0% duty cycle

| 10% duty cycle

| 25% duty cycle

LU 59% duty cycle

Minimum Il n I I
Speed m M 1 m
: [S SN S S B SR
Maximum
Speed [LI LI L

100% duty cycle

Operating Range

e Signal is sent through our 3.3V -> 5V converter and
then to the 4 ESC’s (Electronic Speed Controllers)

Gain Testing for Stabilization
Ran MATLAB script with simulated gyroscope data to

quickly test algorithm and gain values

On Rev. 1 of the board, we had ADC pins which

allowed us to use Potentiometers to manually adjust

the gains at run-time

e Began with adjusting KPX

o Start with small value and work way up until

relatively balanced

Moved on to KIX and KDX with same strategy

Motor[11:
- roll adjust
- pitch adjus’

+ yaw adjust

Motor[0l:
+ roll adjust
- pitch adjus’

- yaw adjust

5/24/2016

Output to Motors

Motor[2]:
- roll adjust
+ pitch adjust

- yaw adjust

Motor[31:
+ roll adjust
+ pitch adjus
+ yaw adjust

Figure 11: Drone on Test Stand

MATLAB Simulation

[mpilse Respense

Unit Step Response

Square Wave Response

Figure 12: MATLAB Plots

Progress to Date on GPS Integration

e MAVLink (Micro Air Vehicle Link) is a protocol that
enables communication to unmanned vehicles

e MAVLink XML Generation
o Supports: stabilization, altitude lock and waypoint
navigation
o Converts common XML using Python to MAVLink
logic headers
o Heartbeat stabilization loop of 1hz (1 second)

Choosing a Communication Method

e Onboard XBee vs. RC Controller (Spektrum AR8000)
o XBee
m Less reliable for flying since signal is easily dropped
m Integrated on Curie breakout board
o AR8000
m Well documented, reliable,
hobbyist device

m Requires extra PWM iV

RC Receiver

Throttle Write
PWM Figure 14: AR8000 Throttle Controller

19

5/24/2016

Progress to Date on GPS Integration

e QGroundControl

torn apart to
support custom
MAVLink

Establish stable

connection

between Curie

and

QGroundControI Figure 13: QGroundControl Graphical User Interface

Gyroscope Offset and
Accelerometer Calibration

e Gyroscopes tend to drift over time

o Implemented on offset in order to obtain accurate
data for the control system

e Calibrated accelerometer for angle control algorithm

o Found what accelerometer value corresponds to -
1G and 1G

o Used linear interpolation to calculate intermediate
G values

20

5/24/2016

Adjusting Packet Rate “Live” Demo

e Severe delay in Curie’s response time hindered
stabilization capability
o Only writing 1% of available data to rotors

e Adjusted code to utilize significantly more sensor
data for rotor control
o Averaged every 5 readings and wrote average to
ESCs.

Figure 16: Input Data from Gyroscope

Figure 17: Output PWM Duty Cycles
Figure 15: Packet Rate Control Code

21 22

Challenges Recap

=

e 2 active cores conflicting e Initial Goals

o Fully stabilize a

ARC QUARK quadcopter running on
. the Curie
Sensor Reads o Main Loop
o Develop user controlled
Subscribe to e Queue flight
message data management o Begin altitude locked
and scheduling .
Hardware flight
Configurations e Stabilization o Begin development on

N Figure 19: Drone with 3rd Board revision
logic and motor

output

waypoint control
o Build Curie into Yuneec
drone

Figure 18: Kernel Panic

23 24

Recap

e Accomplishments

(¢]
o

O O O O

Integrated rate and angle control into system
Successfully developed a systematic way to calibrate
the Curie’s onboard sensors

Began waypoint control development

Brought up new board with Intel

RC control development

Identified and solved multiple firmware issues within
the Curie

25

Advice to Future Development Teams

e Intel is around to help you!
o Do not be afraid to ask the Intel development team for

help

e Regularly calibrate sensors

e Use available ADC pins and potentiometers to adjust
gains in real time

27

5/24/2016

Future Work

e Fine tune PID gains

e Fully integrate RC control
o Spektrum AR8000

e Finish altitude lock flight
control

° Integrate Curie into Figure 20: Yuneec Typhoon Q500 4K

Yuneec drone

26

Acknowledgements
e Intel e Robotics Systems Lab
o Jeff Ota o Dr. Christopher Kitts
o Steven Xing o Addison Fattor
o Mike Rosen o Robert McDonald
C AL

NeeC .

ELECTRIC AVIATION

28

5/24/2016

Questions? Figure References

Figure 2: http://www.electropages.com/2016/01/intel-curie-based-board-is-aimed-at-
developing-wearable-technology/

Figure 4: http:/iq.intel.cc icas-greatest-mak

Figure 9: https://drstienecker.com/tech-332/7-pid-control/

Figure 10: https://www.arduino.cc/en/Tutorial/SecretsOfArduinoPWM

Figure 13: http://www.qgroundcontrol.org/screenshots

Figure 20: http://www.pcmag.com/article2/0,2817,2487122,00.asp

29 30

Technologies Used Board Revision Comparison

Intel® Curie and Curie Breakout Board

o Stabilization control, altitude lock computations,
and RC control

o Peripheral sensors, communications, and GPIO
pins

Programming Languages: Embedded C

o Used for control system implementation (running
on Curie)

Vim

o Development environment

Python

° MAVLInk header generations Figure 6: Updated Breakout Board and Updated Wearable Device

31 32

5/24/2016

. o Pictures
Angle Control for Initial Stabilization
e yG = (accel Y - min Y)*2/(max Y - min Y) - 1
® zG = (accel Z - min Z)*2/(max Z - min_Z) - 1
e O = tan' ((1-yG)/ (1-2G))*180/m
N IZ(GS)
\\\\ v (Gs)
\/a\\ je
LN l
¥a— \'\\ Figure 1: Frame of the drone
33 34

Pictures Getting a New Breakout Board

e What we needed:
Figure 3: o The updated software!
Step up converter Accelerometer/Gyroscope (on Curie)
GPS (Waypoint navigation)
Barometer (Altitude lock)
4 PWM output pins
m Pulse Width Modulation
Onboard, rechargeable battery
Figure 2 Power o UART/USB debugging capability
(Located inside m Universal Asynchronous Receiver/Transmitter
drone frame) m Universal Serial Bus

o Wireless communication capability

35 36

O O O O

o

5/24/2016

Pictures
Figure 4: Figure 5:
Drone with 1st Drone with 3rd
Board Board revision

37

10

	Santa Clara University
	Scholar Commons
	6-13-2016

	CuriPilot
	Gregory Cusack
	Karan Daryanani
	Nathaniel Tucker
	Recommended Citation

	tmp.1467756280.pdf.o38Jb

