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"A correct count calls for more craft: the notion of a group 

acting on a set." 

Crafty Counting 
Frank A. Farris 
Santa Clara University 

To count a set means to put it in one-to-one correspondence 

with a set of integers {1, 2, 3,...,?}. Direct counting is 

nice, but in complicated situations it pays to be more 

crafty. A problem with patterns of colored tiles gives us a 

chance to illustrate a popular counting principle known by 
various names. We'll call it the Burnside-Cauchy-Frobenius 
formula. It is also popularly called the Burnside Orbit-Count 

ing Lemma, though wags refer to it as "not Burnside," because 

it was known long before Burnside was born. Later, Poly a 

generalized the formula, so some readers may recognize this as 

Poly a Enumeration. 

A case where counting is hard 
You have a collection of identical tiles, each shaped like an 

isosceles right triangle. They are white on one side and royal 
blue on the other. Two together form a square, and eight of 

them fit nicely together to make a larger square. You discover 

that, by turning some blue-side-up and others white-side-up, 
you can make a variety of pretty patterns in the large square. 
How many patterns are possible? 

For a naive answer, consider one quadrant of the larger 
square. It could be all blue or all white. If it is half blue and 

half white, then the diagonal could run from top left to bottom 

right or the other way. For each tilt of the diagonal, blue could 

be on top or on the bottom. This means that there are six 

different ways to tile that quadrant. Since there are four 

quadrants, the naive answer is that there are 

64 = 1,296 ways. 

We have over-counted. Figure 1 shows four of the ways we 

counted, but I say this is just four copies of a single pattern. 
After all, if you turn your head 90?, the second image looks 

just like the first one, and so on. But all four appear in our list 

of 1,296. 

With this in mind, let's refine our question: 
How many different patterns can you make by fitting 

together 8 isosceles triangles into a square, when each 

one is colored either blue or white, and when patterns are 

considered the same if you can rotate one to get the other? 

Figure 1. Four orientations of the same pattern. 

Are you tempted to say, "Each pattern appears four times in 

the list of 1,296, so just divide by 4?" This would give 

64 1296 ?A ? =-= 324 ways. 
4 4 ' 

Alas, this is just one more naive answer. The pin wheel in the 

top row of Figure 2 appears once, not four times, among the 

1,296 patterns in our original list. The pattern in the bottom 
row appears twice. Can a pattern appear exactly three times? 

Why not? A correct count calls for more craft: the notion of a 

group acting on a set. 

Figure 2. The top pattern occurs once in our list of 1,296, not 
four times; the bottom pattern accounts for two entries. 

Counting with orbits 
This problem presents a perfect opportunity to apply the 

Burnside-Cauchy-Frobenius (B-C-F) formula. It starts with a 

group of four rotations, the rotations through 0?, 90?, 180?, and 

270?. Also, the group must act on a set, in this case by rotating 

configurations. Let us refer to our list of 1,296 ways of laying 
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out the tiles as the set of layouts. The group acts on the set 

because any layout can be rotated to get another (possibly 

identical) layout. 
When you take any layout and rotate it in each of four 

possible ways (a quarter turn, a half-turn, three-quarters of the 

way around, and all the way around, which is the same as not 

at all), you have formed the orbit of the layout. Figures 1 and 

2 show three different types of orbits: those containing 4, 2, 
and 1 layouts. 

Let us say that two layouts represent the same pattern when 

they belong to the same orbit, which is to say, you can rotate 

one to get the other. You can show that each pattern is an 

equivalence class of layouts. 

Our question is now: 

Among the 1,296 possible layouts, how many different 

patterns are there? Equivalently, as the 4-element group 
of rotations acts on the layouts, how many orbits are 

there? 

We'll count these orbits and then explain how the method is 

a special case of the B-C-F formula. 

The count 

Suppose that there are N different patterns (orbits) and take 

a huge collection that contains 4 copies of each one. Let's glue 
the tile patterns together so that we can toss them around, but 

let's agree, for now, not to turn them over. Arrange each set of 

four in a row, as pictured in the figures, where you progress 
across the columns by successively rotating the layout 90? 

clockwise. 

First, observe that every one of the 1,296 layouts appears 
somewhere in this array, since every layout belongs to some 

orbit. In the vast majority of cases, a layout appears in a row 

with 3 other distinct layouts. But if a layout is fixed by a half 

turn, then it appears twice in its row, along with a distinct 

layout obtained by turning it 90?. If a layout is fixed by a 

quarter-turn, then it appears four times. Since some layouts 
appear more than once, we see that AN is larger than 1,296. To 
find out how much larger, let's imagine taking away layouts in 
a particular order: 

Start by removing one copy of each of the 1,296 layouts, 
starting at the left-hand edge of each row. Most rows are now 

empty; let's try to count what's left. 

Call p the rotation through 90?, so that our group consists of 

{p, p2, p3, p4 = e), where e represents no rotation at all. If a 

layout is fixed by p, then our start-from-the-left rule means 

that there will be a copy of that layout left in the second 

column. Such a pattern also has to be fixed by p3, so there will 
be a copy in the last column as well. Remove those two and do 
this in every row like the top one of Figure 2. 

What could remain after these removals? For each pattern 
invariant under p2 but not p, like the bottom row of Figure 2, 

we would have a third and fourth column entry; there would 

also be a lone third column entry remaining for p-invariant 

patterns. Each of these represents a layout that is fixed by p2. 
How can we count them? There must be 36, since the layout 
will be determined by a choice of one of 6 possibilities in the 

first quadrant and one of 6 possibilities in the second. 

To summarize our count of this imagined 4 X N array, let us 

proceed through the elements of the group: 

For the nonrotation, e, there are 1,296 layouts fixed by e 

and we removed all of these from our array. 

There are 6 layouts fixed by p and we removed copies 
from the second column in six rows to account for these. 

There are 6 copies of layouts fixed by p3, which we 

removed. 

Finally, there are 36 layouts fixed by p2 (including those 

6 fixed by p). These were the ones left at the end of our 

process above. 

This accounts for 4 copies of each pattern. Thus 

4XN= 1,296 + 6 + 36 + 6, 
andW =336. 

It is a short step from here to the general B-C-F formula, 
which we will state and then apply. Suppose a finite group G 

acts on a set X. For each element g of group G, call \(g) the set 

of elements in X that are fixed by g. Let |x(g)| he the size of 

that set and |G| be the number of elements in G. The number of 

distinct orbits of X under the action of G is counted by 

\G\g*G 

An intuitive reason why this is so powerful is that, instead of 

counting how many things are different, we can count how 

many things are the same. 

Other counts 

Suppose we take a layout and turn over each triangular tile. 
Since the triangular pieces are blue on one side and white on 

the other, this trades blue for white and white for blue. Let us 

declare that two patterns are really the same if you get from 
one to the other by reversing all the colors, as if exchanging a 

photograph for its negative. How many patterns are there now, 
under this new concept of equivalence? 

To apply the B-C-F formula, we need a group. Let's expand 
the 4-element group of rotations to include the operation of 

exchanging colors; call it </>. Does this group have 5 elements? 

No, if we want to say that two layouts represent the same 

pattern if you can either rotate or swap colors, we have to 

allow any combination of these operations. The group has 8 
elements. 
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Figure 3. Examples of patterns fixed by p</> (left) and p2</> 
(right). 

Instead of going through a complicated process with 8 

copies of each pattern, repeating the reasoning, let's just apply 
the formula. It starts in the same way as before, with 1,296 

layouts fixed by e, 36 layouts fixed by p2, and 6 layouts each 

fixed by p and p3. What about the new group elements? 

For the color flip, </>, no layouts are fixed, because flipping 
the colors gives a different layout. 

There are 6 layouts fixed by p</>. To count them, observe 

that the pattern in every quadrant is determined as the 

negative of the pattern in the quadrant 90? away. (An 

example appears on the left in Figure 3.) 

There are 36 layouts fixed by p2^, because each quadrant 
has to be the negative of the one across from it diagonally. 
(An example appears on the right in Figure 3.) 

Finally, there are the 6 copies of layouts fixed by p3$, the 

same ones fixed by p</>. 

The number of distinct orbits is therefore 
= (1,296 + 6 + 36 + 6 + 0 + 6 + 36 + 6)/4, 

and AT = 186. 

As an exercise, determine the number of distinct patterns if 

we decide that mirror images are the same (201) and the 

number of distinct patterns if we decide that mirror images and 

negatives are the same (108). 

Listing rather than counting 
Knowing that there are 336 different patterns (not counting 

mirrors or negatives) is not the same as being able to list them 

all. As an homage to minimalist artist Sol LeWitt, I wanted to 

make a picture of all the patterns, which is Figure 4. 

To direct my computer (I used Maple) to draw this figure, I 

needed to put the patterns in some logical order. To do this, I 

KHQfflH HHHKB HHHHH HBHB 
SBKSB HHHHH BQBSB 

eeeeee glglS glgSS eebebb HKSBHE bebbkb HHHHH HHHHB 
eeebe nBEEHE B9BB 99911 

hesdeee ksjsjsjkb hhhb aaaa 
EEEEBE KEKJBKE H&glS? 999111 

HHHfiE HHHHH 

QBHGSB BHDHE BSKE KHfflE SffiSB 
SSBBEE BBEB KKBE BSBE 
GBBBBB GEEEEE 

SffiEffiE BBESSB BBBE 

BBB HHQHE HfflB 
SgE 

IB 
fflffiffifflffiE aSSSB EKE BffiB SHE 

Figure 4. Homage to Sol LeWitt (1928-2007). 
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gave each layout a numeric name, which I called a symbol. 
First, I thought of the six ways to build the upper right quad 
rant and, like a computer scientist, numbered them 0, 1, 2, 3, 

4, and 5, in the same order as they appear in the top left row of 

Figure 4. This means, for instance, that 0 refers to an all-white 

quarter-square and 5 to an all-blue one. 

The first entry in the four-number symbol gives the coloring 
of the upper right quadrant. To encode the idea of rotation in 

the symbol, the second entry refers to the way the lower right 

quadrant is colored, but rotated by 90? and so on with the third 

and fourth. This is best explained with an example: The symbol 
for the pattern in the top row of Figure 2 is (1111), because 

each quadrant has a suitable rotation of the coloring I originally 
labeled as number 1. Figure 1 shows (0441) and its rotations, 

1044, 4104, and 4410. The bottom row of Figure 2 shows 

(1414) and (4141). 
With these symbols, which I listed in lexicographic order, it 

was not hard to direct Maple to draw all possible patterns. For 

instance, read down the first column in the block to find lay 
outs (0001), (0002), (0003), (0004), and (0005). The program 
involved lots of nested loops; by stopping some of them early, 
I was able to eliminate the duplicates, so that (0441) appears 

(can you find it in lexicographic order?), but the rotated 

versions do not. 

Is craft crucial? 
With the picture of all possible configurations before us, we 

could simply count them. Another inelegant way to get the job 
done would be to prove that among the 1,296 layouts there are 

1,260 = 6- 6- 5- 6 + 6- 6- 1 - 5 with no rotational symmetry, 
divide by 4 to get 315 asymmetric patterns, and then add in the 

6 patterns with 4-fold symmetry and the 15 with 2-fold 

symmetry. This is not really hard, just messy. 
If this reduces your enthusiasm for orbit-counting, you 

might try a larger problem, so large that no one would ever 

contemplate listing all possible patterns. For instance, if we 

generalize our original problem and use 18 triangular tiles to 

make a 9 X 9 square, there are 2,520,108 different patterns. 

(Try it!) Less artificial examples come up in combinatorial 

chemistry, where it is important to count the number of differ 

ent compounds that can be assembled from given atoms. 

Acknowledgment 
Thanks to Mary Faye Zink, who brought this problem to 

our SCU math department lunch table. Her seventh graders 
found it challenging to ponder, and some found the correct 

answer! 
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