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Fig. 6. Ensemble median difference between the BC and raw dif-
ferences in precipitation between 1994–2005 and 1979–1993 for
DJF (top row) and JJA (bottom row). Right column is the interquar-
tile range (IQR), defined as the 75th percentile minus the 25th per-
centile.

The connection between bias correction, the variance, and
the trend can be understood more clearly by analyzing a sim-
ple change in the median. LetME

0.5 be the model median in
the early period, with the subscript 0.5 indicating the quan-
tile (50th percentile or median) and the superscript E for the
early period. The model median in the late period is then
ML

0.5, and we are interested in the effect of bias correction
on the model-predicted change in median,ML

0.5 −ME
0.5. Will

bias correction amplify or reduce this change? Assuming the
change is nonzero, we can writeML

0.5 = ME
p , wherep 6= 0.5

is the percentile value of the new model median in the old
model distribution. The raw model-projected change in me-
dian is then simplyME

p − ME
0.5. QM will map a model value

with percentilep in the early period to the observed value
at the same percentile: QM(ME

p ) = OE
p , whereO indicates

an observed value. The bias corrected change in median is
therefore QM(ME

p )−QM(ME
0.5) = OE

p −OE
0.5. Since we have

already stipulatedp 6= 0.5, we can compare the magnitude of
the bias corrected to original change in median using a bias-
correction ratio (BCR):

BCR=
OE

p − OE
0.5

ME
p − ME

0.5

. (3)

BCR< 1 (bias correction reduces the model change) when
the model difference between thepth percentile and median
value is larger than the observed difference between thepth
percentile and the median value – i.e., when the model has
too much variance. Similarly, where BCR> 1, bias correc-
tion will increase the model change (when the model has less
variance than observed). Furthermore, Eq. (3) indicates that

Fig. 7.Difference between observed seasonal mean precipitation of
1994–2005 and 1979–1993.

QM does not alter the sign of the model-predicted change
(at least in this simple case) and that the alteration of the
change is insensitive to any positive or negative bias between
the model and observations, being affected only by the rela-
tive variance of the two. From this simple synthetic demon-
stration it can be inferred that, if there were a preponderance
of GCMs with biases in variance in the same direction, the
net effect of QM on the simulated difference between eras
could be systematically in one direction, even with random
biases in the mean.

In reality trends in non-normally distributed variables can-
not be represented just by changes in the median, and GCMs
exhibit much more complex biases than simply an overesti-
mate or underestimate of variance, with differing biases at
different times, in different seasons, and at different quan-
tiles, for example (Boberg and Christensen, 2012; Maurer
et al., 2013; Themeßl et al., 2011), all of which can affect
the modification of GCM simulated changes by QM. Thus,
simply characterizing a GCM as exhibiting a certain bias
in standard deviation will not exactly predict the effect of
bias correction on trends. In any case, for illustration, Fig. 3
shows the ensemble median of biases in standard deviation,
expressed as a ratio of simulated to observed standard devi-
ation, for the 11 AGCMs included in this study for two sea-
sons: DJF and JJA. This shows areas where there appears to
be consistent underprediction of standard deviation by a ma-
jority of AGCMs, such as in the southeastern portion of the
domain. This means there may be a potential for the trends
in the raw output from many of the AGCMs to be modified
by the bias correction process.

Analyzing actual precipitation simulations, Figs. 4 and 5
show that bias correction does not generally change the pat-
tern of regions that are simulated as becoming wetter or drier,
as suggested by Eq. (3), since the left and center columns
are broadly similar. However, the difference between the bias
corrected and raw AGCM precipitation changes for some re-
gions is of a magnitude that is comparable to the projected
change itself. While the differences (right columns in Figs. 4
and 5) show that there are large areas where the BC process
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Fig. 8.For DJF, the TM index (described in the text) values for each
GCM.

produces a wettening or drying effect for each AGCM, there
is considerable variation among the AGCMs.

While not shown here, for JJA precipitation the changes
due to the BC process for each AGCM appear slightly less
prominent than for DJF relative to the raw AGCM precipi-
tation changes between the two periods. Figure 6 shows the
ensemble median change and the interquartile range (IQR)
between the BC and raw precipitation differences for the two
periods for both DJF and JJA. The left column represents the
ensemble median effect of BC on the seasonal mean precip-
itation difference between 1994–2005 and 1979–1993. The

IQR in Fig. 6 is analogous to the standard deviation, repre-
senting the spread of the AGCMs about the median. In gen-
eral, where the ensemble median has the greatest magnitude,
the IQR is also large, indicating high variability among the
models in the effect of BC on the precipitation change. The
changes in precipitation differences induced by the BC pro-
cess in Fig. 6 can be a cause for concern. While in large
portions of the domain they are small in comparison to the
observed difference in mean precipitation between the two
periods (Fig. 7), at many individual points the effect can be
substantial. For example, for the DJF median panel in Fig. 6,
there is a swath of dark blue grid cells along the southern
west coast, with a median effect of the BC on the precipita-
tion trend of 0.4 mm d−1 or higher. This would be an im-
portant modification based on the observed differences in
Fig. 7, with a median change between the periods of 0.5–
1.0 mm d−1. Second, the DJF IQR for these cells is greater
than 0.5 mm d−1, indicating that 25 % of the AGCMs would
show trend modifications by BC in excess of approximately
0.65 mm d−1 (the median plus half of the IQR), which is on
the order of the observed trend in Fig. 7. This latter point
makes clear the importance in using an ensemble of climate
models rather than one or a few, since the regions of en-
hancement/reduction of trends are not coherent across dif-
ferent models and the effect diminishes when combined into
an ensemble.

Perhaps more importantly, in Fig. 6, some areas where the
BC process appears (in the median) to produce much wet-
ter conditions than the raw AGCM are also areas where the
observed difference between the 1994–2005 and 1979–1993
periods is considerably higher than the AGCMs simulate.
One example is the Pacific northwest, where Figs. 4 and 5
show more than half the models simulating drying DJF con-
ditions between 1994–2005 and 1979–1993, in distinct con-
trast to the wettening trend in the observations (Fig. 7). It
should be emphasized that the BC only adjusts the quantiles
of the AGCM to match those of observations within a 15 yr
training period – there is no attempt to match trends, either
within the 15 yr training period or over longer periods. Thus,
any trends are inherited directly from the AGCM, though the
QM can, as discussed above, modify these.

This raises the question of whether the change induced
by BC in the precipitation change (or trend) between the
two periods degrades or improves the correspondence be-
tween simulated and observed trends in any systematic way.
In terms of the link between the trend modification and vari-
ance, this is equivalent to asking if models with variances
that are too large tend to have trends that are too large, and
vice versa. The TM index described above is used to illus-
trate this for each AGCM for DJF in Fig. 8. Values in blue
(negative values) show where the effect of the BC results in
an improved representation of the observed difference in pre-
cipitation between the two periods, and red (positive values)
indicate a degraded precipitation trend due to BC. It is evi-
dent that over the entire domain, for each AGCM there are

www.hydrol-earth-syst-sci.net/18/915/2014/ Hydrol. Earth Syst. Sci., 18, 915–925, 2014



922 E. P. Maurer and D. W. Pierce: Climate model simulated precipitation changes

Fig. 9. For DJF and JJA, the ensemble median TM index value (left panels), the locations of grid cells (dark rectangles) where the 25th
percentile TM index value exceeds 0 (center panels), and the grid cells where the 75th percentile value is less than 0.

areas of improved and degraded precipitation trend represen-
tation due to BC. Regions with improved or degraded skill
vary from model to model, with no apparent geographical
consistency. In sum, the errors in an individual model’s vari-
ance appear unrelated to the errors in the model’s trend.

Figure 9 summarizes the results for the ensemble in Fig. 8
and the similar ensemble for JJA. The median TM values
(left panels) tend to lie close to zero, and neither degraded
(TM > 0) nor improved (TM< 0) values dominate the pic-
ture for either DJF or JJA. The center panels highlight re-
gions where 75 % of the AGCMs show a degraded change in
precipitation (relative to the observed change) due to the BC
process. These cases constitute 4.3 % of the grid cells for DJF
and 13.0 % of the grid cells for JJA. The right panels show
the grid cells where 75 % of the AGCMs show improved cor-
respondence with the observed change after BC. These cover
26.2 and 4.5 % of the domain for DJF and JJA, respectively.

This suggests that with an ensemble of 11 AGCMs as
used in this effort the BC produces no consistent improve-
ment or degradation in the simulated AGCM precipitation
change. While the effect of BC on the trend can be signifi-
cant, it tends as often as not to bring AGCM simulated trends
closer to observed trends for the periods used in this study.
However, there are isolated locations where the trend appears
to be degraded for most model simulations, which could be
of particular interest for impacts studies. One such case is
the southwestern portion of the domain, where Fig. 9 (cen-
ter panels) shows the grid cells for which JJA precipitation
trends are degraded for 75 % of the AGCM simulations by
the BC process. For these locations, it may be beneficial to
retain the raw GCM simulated trend during impacts analysis
studies. Conversely, in Fig. 9 (right panels) there are many
grid cells in the northeast where DJF precipitation trends are
improved by BC for most of the AGCM simulations.

One of the driving motivations for much downscaling is
the investigation of regional and local hydrological impacts
of climate change (Fowler et al., 2007). Since the runoff re-
sponse to changing precipitation is highly nonlinear (Wigley
and Jones, 1985), changes in precipitation are amplified in
their convolution to runoff changes. This emphasizes the im-
portance in ensuring that the projected precipitation trends
not be degraded during the BC process, since the implica-
tions would be for even greater biases in projected runoff
changes.

4 Summary and conclusions

Quantile mapping bias correction has been shown to mod-
ify the projected changes, or trends, produced by climate
models. This is of critical concern regarding precipitation
projections, where changes to the raw climate model output
can have significant impacts on the implications for water
supply and management in the face of climate change. The
resulting discrepancy between the raw climate model out-
put and bias corrected output leaves some ambiguity as to
whether the bias correction should be modified to preserve
the original climate model simulated changes. It is empha-
sized that this study is only concerned with the effect of
quantile mapping on precipitation trends. It includes no as-
sessment of the effectiveness of quantile mapping at reducing
biases, which would be enhanced by considering the differ-
ent sources of bias.

The historical changes in daily mean precipitation simu-
lated by 11 atmospheric general circulation models, driven
by observed sea surface temperatures and sea ice to preserve
observed variability in boundary conditions, were exam-
ined across the conterminous United States. The differences
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were compared between precipitation for two periods,
1979–1993 and 1994–2005 for all AGCMs, both before
and after a quantile mapping bias correction, and grid-
ded observed precipitation. We consider winter and summer
precipitation separately.

We found that the bias correction did produce differ-
ent precipitation changes from the raw AGCM output, with
a wettening effect in some locations and a drying effect
in others. While there was some spatial consistency in re-
gions showing a tendency for bias correction to make the
projections wetter or drier, the skill, measured as a corre-
spondence to observed changes, was more variable, with
different AGCMs responding to bias correction differently.
Taken as an ensemble, the bias correction had no coherent,
overwhelming negative or positive effect on the correspon-
dence of the simulated to observed precipitation changes
between periods. Reliance on a single AGCM or a small
sample of AGCMs however could, for some regions, re-
sult in a degraded simulated trend in precipitation due to
bias correction.

Based on these results, it does not appear that there is a
clear advantage to either preserving the raw AGCM simu-
lated trend in precipitation during bias correction or allowing
the trend to be modified by the process. In most locations, as
long as a reasonable ensemble size is used, even though the
trend in seasonal precipitation may be modified in the pro-
cess, it may be as likely as not to be beneficial to do so. Sim-
ilar to the suggestions by others (Cloke et al., 2013), it may
be prudent for practitioners to examine the projected trends
in raw AGCM output as well as in bias corrected output, to
be completely transparent as to the effects of bias correction
on trends.

These findings are limited to the extent of this study,
namely seasonal mean precipitation for the observed periods
used here. This focus was motivated by the observation of
changes in trends in mean precipitation produced by quantile
mapping. Since changes in the magnitude of extreme pre-
cipitation events are important for assessing many impacts
to society, future efforts will examine the effect of quantile
mapping bias correction on trends in extreme events. Quan-
tile mapping can have different effects at the tails of distri-
butions (Li et al., 2010), and changes in the projected trends
in extreme events due to quantile mapping have not been ex-
plored. Furthermore, the bias correction was performed at a
1◦ spatial scale, so that the observations are comparable to
the scale of the climate models. At finer scales, the biases
between interpolated AGCM output and observations would
be expected to be much more heterogeneous, and the impact
of quantile mapping bias correction at finer scales could be
quite different from that found here, though employing quan-
tile mapping to downscale to fine scales has been found to be
problematic (Maraun, 2013).

Table A1. Climate models used in this study.

Modeling center Model name

1 Commonwealth Scientific and
Industrial Research Organiza-
tion (CSIRO) and Bureau of
Meteorology (BOM),
Australia

ACCESS1.0

2 National Center for
Atmospheric Research

CCSM4

3 Centre National
de Recherches
Météorologiques/Centre
Européen de Recherche et
Formation Avancée en Calcul
Scientifique

CNRM-CM5

4 Commonwealth Scientific and
Industrial Research Organi-
zation in collaboration with
Queensland Climate Change
Centre of Excellence

CSIRO-Mk3.6.0

5 NOAA Geophysical Fluid
Dynamics Laboratory

GFDL-CM3

6 NASA Goddard Institute for
Space Studies

GISS-E2-R

7 Institute for Numerical
Mathematics

INM-CM4

8 Institut Pierre-Simon Laplace IPSL-CM5A-MR

9 Max-Planck-Institut für Mete-
orologie (Max Planck Institute
for Meteorology)

MPI-ESM-LR

10 Meteorological Research
Institute

MRI-CGCM3

11 Norwegian Climate Centre NorESM1-M
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